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Genetic pediatric eye disease frequently leads to severe vision impairment or

blindness. Voretigene neparvovec is the first approved gene therapy for an

inherited retinal dystrophy (IRD). Voretigene neparvovec has been shown to be

well tolerated and safe, with encouraging results in terms of efficacy, mainly

when administered early in childhood. While we assisted at the first gene therapy

available in clinical practice for an IRD, some questions remain unanswered,

especially when gene therapy is delivered in young children. We review here the

most recent reports and promising ongoing studies concerning various

approaches on gene therapy in pediatric ophthalmology.
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1 Introduction

Genetic pediatric eye disease frequently leads to severe vision impairment and/or

blindness, with long-lasting individual and societal impacts. Gene therapy involves the

transfer of genetic material to remove, replace, repair, or introduce a gene, or to overexpress

a protein, which has a therapeutic impact. Even though for most anterior segment diseases

gene therapy still relates to the preclinical stage (1, 2), for inherited retinal disorders

translation has been reached. Over the last 10 years, gene therapy for biallelic RPE65-

mediated inherited retinal dystrophy has been the subject of many clinical trials, leading to

the first United State Food and Drug Administration (US FDA)-approved ocular gene

therapy for the treatment of an inherited retinal disorder. Voretigene neparvovec (VN,

Luxturna®), administered by subretinal injection after a 25-gauge vitrectomy, uses a non-

replicating adeno-associated virus (AAV) as a vector to transfer a functional copy of the

RPE65 gene into the retinal pigment epithelium cells. VN has been shown to be well

tolerated and safe in humans (3–7), with encouraging results in terms of efficacy, mainly

when administered early in childhood (8–12).
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2 Voretigene neparvovec for pediatric
patients with biallelic RPE65-mediated
inherited retinal dystrophy

A Phase III study reported in 2017 led to US FDA and European

Medicines Agency (EMA) approval of VN (9). The study included

20 treated patients and nine control patients; 40% of patients were

aged 3 to 10 years. The primary endpoint was based on the results of

the multi-luminance mobility testing (MLMT) score change from

baseline to year 1. MLMT had been designed by Spark Therapeutics

to measure changes in functional vision, as assessed by the ability of

a subject to navigate a mobility course accurately in different levels

of environmental illumination. A significant change in MLMT score

(1.8 vs. 0.2 light levels, p = 0.0013) was reported when comparing 20

treated patients with nine control patients. In addition, 65% of

treated patients (13/20), but no control patients, passed the MLMT

at the lowest level of luminance (1 lux, equivalent to a summer night

with a full moon). The mean improvement in BCVA was not

significant between groups (+8.1 letters in treated subjects vs. +1.6

letters in control participants). However, a significant improvement

was reported in the treated group compared with the control group

for full-field light sensitivity threshold (FST), Goldmann visual field

(VF, III4e), and macular sensitivity threshold (Humphrey).

Reported adverse effects included elevated intraocular pressure

(20%), cataracts (15%), retinal tears (10%), eye inflammation

(10%), macular holes (5%), maculopathy (5%), and retinal

hemorrhages (5%). More recently, it has been reported that

improvements in ambulatory navigation, light sensitivity, and

visual field lasted for at least 3–4 years (10).

Weleber et al. have suggested that the greatest improvements in

visual acuity ranged from 6 to 14 letters in pediatric patients (aged

6–11 years) at 2 years (11). More recently, Sengillo et al. reported

significant vision change that reached statistical significance only in

the pediatric population, with a mean follow-up of 10 months (13).

Testa et al. have reported six consecutive pediatric patients treated

bilaterally with VN. Significant improvement of BCVA and outer

nuclear layer thickness of the internal ETDRS‐ring on SD-OCT at

day 30/45 and day 180 were shown, suggesting that improvement of

visual acuity could be related to partial recovery of retinal

morphology in the perifoveal ring (14). At 6 months a mean

change of −0.2 logMAR (SD ± 0.07 logMAR) was observed. In

particular, six eyes (50%) showed an improvement of one ETDRS

line and the remaining six eyes (50%) improved by two ETDRS

lines. Interestingly, intra‐operative foveal detachment was not

associated with a higher function gain in terms of BCVA. Deng

et al. reported a follow-up of 27 eyes of 14 pediatric patients (age

range 4–17 years) with a mean visual acuity improvement of +7.5 to

+12.5 ETDRS letters (15). Additionally, significant improvements

in FST and Goldmann visual fields were reported for all patients.

Elevation in intraocular pressure (59%), persistent intraocular

inflammation (15%), and vitreous opacities (26%) were the most

important side effects. Gerhardt et al. reported in four young

children (aged 3–6 years, eight eyes) a marked increase in vision-

guided behavior and in visual acuity, with a mean change of >0.30

logMAR units 6 months after gene therapy (16). Two eyes showed
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partial electrophysiological recovery of an ERG that was

undetectable before treatment. Intra‐operative foveal detachment

was reached in all eyes. Rhegmatogenous retinal detachment

was reported in two eyes and circumscribed atrophy of the

photoreceptor layer at the injection site was reported in one eye.

Development of subretinal deposits has been observed at 1 week

post-operatively in three pediatric patients (ages: 22 months,

2 years, and 5 years) (17). All three patients experienced

improved visual function and subretinal deposits improved or

resolved over the follow-up period.

A previously undescribed perifoveal chorioretinal atrophy was

observed in 18 eyes of 10 patients (mean age 11.6 years, range 5–20

years) who underwent post-market VN treatment by subretinal

injection (18). The perifoveal chorioretinal atrophy was first

noticeable at an average of 4.7 months (SD 4.3 months) following

surgery, and progressively enlarged in all cases up to the last follow-up

examination (mean follow-up at 11.3 months). Despite this atrophy,

improvements in visual acuity, FST, and visual field were evidenced in

the majority of patients. It is important to highlight that atrophy was

observed within and outside the area of the subretinal bleb in 10

(55.5%) eyes, exclusively within the area of the bleb in seven (38.9%)

eyes, and exclusively outside the bleb in one (5.5%) eye. Further studies

are necessary to determine whether ocular conditions, surgical delivery,

and/or vector-related parameters predispose patients to this

complication, and to determine the way it evolves in the long term.
3 Other gene therapies for
pediatric patients with retinal
inherited dystrophies

Various promising approaches have been investigated for

retinal inherited dystrophies, including antisense oligonucleotides

(AON), CRISPR-based genome editing techniques, and mutation-

independent strategies.
3.1 Leber congenital amaurosis

An intravitreal injection of AON, which induces persistent

suppression of pathological RNA transcripts by exon skipping,

has shown improvement in visual acuity at 3 months without

serious adverse effects in CEP290-Leber congenital amaurosis (19,

20). A Phase I/II clinical trial has recently shown a manageable

safety profile and improvements in visual acuity and retinal

sensitivity, supporting the continuation of AON (QR-110,

sepofarsen) development (21). A Phase II/III double-masked,

randomized, controlled, multiple-dose study evaluating the

efficacy, safety, tolerability, and systemic exposure of intravitreal

injections of AON (QR-110) in CEP290-Leber congenital amaurosis

has failed to meet the primary endpoint (ClinicalTrials.gov

identifier: NCT03913143). However, post hoc analyses reveal

multiple pointers of a beneficial effect when comparing sepofarsen

with a sham group if the contralateral eyes in each group are

adjusted for (22). Additional analyses are ongoing (22).
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An innovative CRISPR-based genome editing technique is an

exciting approach currently being evaluated for CEP290-Leber

congenital amaurosis (23). The ongoing Phase I/II clinical trial

evaluates the safety, tolerability, and efficacy of single escalating

doses of EDIT-101, a novel gene editing product designed to

eliminate the mutation on the CEP290 gene, administered via a

subretinal injection (ClinicalTrials.gov identifier: NCT03872479).

A Phase I/II clinical trial evaluating the safety and tolerability of

ascending doses of SAR439483 administered as subretinal injections in

patients with Leber congenital amaurosis caused by autosomal

recessive guanylate cyclase 2D (GUCY2D) mutations (GUCY2D-

LCA) is ongoing (ClinicalTrials.gov identifier: NCT03920007).
3.2 X-linked retinitis pigmentosa

A single, subretinal injection of cotoretigene toliparvovec

(BIIB112/AAV8-RPGR) gene therapy has shown an early and

sustained improvement in retinal sensitivity and low-luminance

visual acuity in some participants through 12 months, supporting

consideration of additional clinical trials for gene therapy in X-

linked retinitis pigmentosa (RP) (24, 25).

Three Phase III clinical trials including children are ongoing to

determine the efficacy of a subretinal administration of AAV5-

RPGR (ClinicalTrials.gov identifier: NCT04671433), a subretinal

administration of rAAV2tYF-GRK1-hRPGRco (ClinicalTrials.gov

identifier: NCT04850118), and an intravitreal injection of 4D-125

in patients with X-linked RP.
3.3 Achromatopsia

An open-label, non-randomized controlled trial has shown that

gene therapy vector AAV8.CNGA3 administered by a subretinal

injection in adult patients with achromatopsia had no substantial

safety problems and had visual acuity and contrast sensitivity gains

(26), paving the way for an achromatopsia gene therapy at a

younger age. This is particularly important because the lack of

cone photoreceptor input at a young age can have long-term effects

on the development of the visual cortex, limiting the benefits of such

gene therapy in adult patients (27, 28). Several Phase I/II clinical

trials to examine AAV therapies in both children and adult patients

with CNGB3 and CNGA3 achromatopsia are ongoing

(ClinicalTrials.gov identifiers: NCT03001310, NCT03758404,

NCT02935517, NCT02599922).
3.4 X-linked retinoschisis

An open-label, Phase I/II dose-escalation clinical trial evaluated

the safety and efficacy of rAAV2tYF-CB-hRS1, a recombinant

adeno-associated virus vector expressing retinoschisin (RS1), in

22 adults and five children with retinal disease caused by mutations

in the RS1 gene. The therapy was generally safe and well tolerated

but failed to demonstrate a measurable treatment effect. The clinical
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trial is ongoing through 5 years of follow-up in order to assess its

long-term safety (29).
3.5 Mutation-independent strategies

Various congenital disorders already exhibit severe

developmental defects or cell loss at birth, limiting the potential

for viral gene therapy. Thus, mutation-independent strategies seem

promising to maintain cell survival or restore visual function.

Optogenetic therapies deliver light-activated ion channels to

surviving retinal cell types (for instance, bipolar cells and retinal

ganglion cells), restoring photosensitivity. Partial functional

recovery has recently been reported in an adult patient with

advanced non-syndromic rod-cone retinal dystrophy after

optogenetic therapy (30). The treatment combined the injection

of an optogenetic vector and the use of light-stimulating goggles.

The patient was able to perceive, locate, count, and touch various

objects using the vector-treated eye alone while wearing the goggles.

A Phase I/II clinical trial for adults with non-syndromic retinal

dystrophy is ongoing (ClinicalTrials.gov identifier: NCT03326336).

Multi‐characteristic opsin (MCO) has been shown to effectively

re‐photosensitize photoreceptor‐degenerated retina in mice,

leading to vision restoration in an ambient light environment

(31). A Phase IIB randomized, double-masked, sham-controlled

study to evaluate the efficacy and safety of intravitreal injections of

vMCO-010 optogenetic therapy in adults with advanced RP is

ongoing (ClinicalTrials.gov identifier: NCT04945772).

Other mutation-independent strategies tested in mouse models

of retinal degeneration aimed to promote photoreceptor cell

survival, as a CRISPR-mediated knockdown of the key

transcription factor Neural Retina Leucine zipper (Nrl), or a viral-

mediated expression of the rod-derived cone viability factor

(RdCVF) (32, 33). Whether these strategies will translate into

long-lasting restoration of retinal function in humans remains to

be determined.
4 Congenital aniridia

Congenital aniridia (OMIM# 106210) is a rare panocular

malformation caused by loss of function variants in the Paired

box 6tbox6 gene (PAX6) or 11p13 chromosome rearrangements,

and more than 700 pathogenic variants have been reported to date

(34). Ataluren, a nonsense mutation suppression therapy, enables a

ribosomal read-through of mRNA-containing premature

termination codons, resulting in the production of a full-length

protein. Postnatal administration of ataluren eye drops reverses

congenital tissue malformation defects in Pax6Sey+/− mice (35). A

Phase II clinical trial evaluating oral ataluren, which has already

been approved for the treatment of Duchenne muscular dystrophy,

failed to meet its primary endpoint (ClinicalTrials.gov identifier:

NCT02647359). An ophthalmic formulation of ataluren has been

recently assessed (36), opening new therapeutics perspectives in

congenital aniridia.
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5 Discussion

Restoring vision in children remains a challenge in

ophthalmology. Gene therapy opens a promising field and is in

constant development. The number of clinical trials for retinal gene

therapies has increased dramatically over the last decade. While we

assisted with the first gene therapy available in clinical practice for

an IRD, some questions remain unanswered, especially when gene

therapy is delivered in young children.

It has been suggested that better outcomes are observed when

Luxturna® is administered earlier in childhood. However, assessment

of efficacy in very young children is not always feasible and remains to

be determined. Early treatment indications should then balance

phenotype and disease progression, patient cooperation to assess

functional quantifiable measures (visual acuity, visual field, full-field

ERG, FST), and potential treatment-related complications. Subretinal

injections in pediatric patients’ eyes could result in several

complications that could interfere with visual outcome and should

therefore be performed by experienced pediatric vitreoretinal

surgeons. Whether foveal detachment should be induced remains a

key unsolved aspect. Finally, little is known about long-term

durability (beyond 4 years), which is essential in the

pediatric population.

The administration route plays an important role in the

success of gene therapy. In congenital aniridia, oral ataluren failed

to meet its primary endpoint, apparently due to patient age and

phenotypical discrepancies. However, results could possibly be

different if a topical route of administration were used, improving

availability of the drug for the eye and cornea (34). The recent

development of a drop formulation of ataluren (36) should

encourage clinical trials in congenital aniridia.

A growing number of innovative therapies are the objects of

ongoing clinical trials and these have the potential to become a

standard of care for IRD within the next few years. To take full

advantage of advances in gene therapy, it is critical to improve early

diagnosis of IRD and facilitate genetic identification from a young
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age. Rare disease centers of excellence with the infrastructure and

expertise for precise phenotyping and clinical networks represent

the basis of an organizational structure that ensures access to care

for patients and phenotype characterization of rare diseases. A

multidisciplinary collaboration at national and international levels

among clinicians, molecular biologists, clinical geneticists, and

clinical and scientific researchers should be promising in terms of

improving the diagnosis, treatment, and follow-up of this rare and

complex disease, in addition to including patients in national

registries in order to contact them when mutation-specific

therapies are becoming available.
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