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Chronotype—the relationship between the internal circadian physiology of an

individual and the external 24-h light-dark cycle—is increasingly implicated in

mental health and cognition. Individuals presenting with a late chronotype have an

increased likelihood of developing depression, and can display reduced cognitive

performance during the societal 9–5 day. However, the interplay between

physiological rhythms and the brain networks that underpin cognition and mental

health is not well-understood. To address this issue, we use rs-fMRI collected

from 16 people with an early chronotype and 22 people with a late chronotype

over three scanning sessions. We develop a classification framework utilizing the

Network Based-Statistic methodology, to understand if di�erentiable information

about chronotype is embedded in functional brain networks and how this changes

throughout the day. We find evidence of subnetworks throughout the day that

di�er between extreme chronotypes such that high accuracy can occur, describe

rigorous threshold criteria for achieving 97.3% accuracy in the Evening and

investigate how the same conditions hinder accuracy for other scanning sessions.

Revealing di�erences in functional brain networks based on extreme chronotype

suggests future avenues of research that may ultimately better characterize the

relationship between internal physiology, external perturbations, brain networks,

and disease.

KEYWORDS

chronotype (morningness-eveningness), functional connectivity, fMRI, classifier,

network-based statistical (NBS) analysis, functional networks, graph theory

1. Introduction

Almost all bodily functions depend fundamentally on oscillations. A diversity of

biological clocks tightly interconnect to control processes over time scales of hours such as

sleep stages or body temperature through to days and months, for example, hormone release

or the female menstrual cycle (Kondratova and Kondratov, 2012).

Processes that oscillate with a period of around a day are called circadian. These include

neurobehavioral (i.e., attention or mood), hormonal (i.e., melatonin or cortisol secretion)

and physiological (i.e., heart rate or body temperature) (Wirz-Justice, 2007). Circadian

rhythms in the context of sleep refer to the naturally occurring oscillatory nature of a
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human’s high and low sleep propensity (Borbély and Achermann,

1999). However, the phase relationship between the internal

circadian rhythm and the external clock time can differ markedly

between individuals, contributing to the classification of people

according to their chronotypes (Blautzik et al., 2013). Chronotype

classification will fall across a spectrum, with early circadian

phenotypes (ECPs) and late circadian phenotypes (LCPs) sitting

at the two extremes. These two extreme phenotypes are often

colloquially referred to as “Morning Larks” and “Night Owls”.

Upon removing external social obligations, the sleep of ECPs and

LCPs will show little difference—except for the phase between

circadian rhythm and clock time. For example, driven by the

endogenous circadian rhythm of the individual, extreme ECPs may

wake up at the same time that extreme LCPs are falling to sleep

(Roenneberg et al., 2003).

The Munich Chronotype Questionnaire (MCTQ), first

introduced in Roenneberg et al. (2003), is a standard tool for

chronotype classification alongside actigraphy data and finding

peaks in cortisol and melatonin concentrations from saliva

samples (Facer-Childs, 2018). These methods permit classification

based upon physiological markers; however, they do not provide

an insight into the underlying processes that lead to circadian

rhythmicity and how these oscillations ultimately impact upon

health and brain function.

Chronotype is a known risk factor for a variety of common

health conditions. In particular, late chronotypes are associated

with an increased risk of cancer, type 2 diabetes, as well as increased

BMI and obesity (Hug et al., 2019). Further, late chronotype is a

known risk factor for the development of depression (Levandovski

et al., 2011) as well as being predictive of variability in cognitive

outcomes across the day (Facer-Childs, 2018). The role of

functional brain networks in supporting healthy brain function

and the disruptions that lead to impaired performance and disease

are increasingly understood in many fields such as depression

(Liu et al., 2020) as well as cognition both in terms of cognitive

architecture (Petersen and Sporns, 2015) as well as cognitive

aging (Terry et al., 2004; Hausman et al., 2020). Consequently, an

increased understanding of the relationship between chronotype

and functional brain networks could provide insight into the

increased risk of mental health and cognitive outcomes, the reason

for the disparity of such impacts along the chronotype spectrum,

and therefore areas upon which to focus future research. In

addition, a greater understanding of how chronotype impacts the

brain’s functional network could provide support for practical

changes in society, such as the school day starting later for

adolescent children (Adolescent Sleep Working Group et al., 2014)

or greater flexibility in workplace hours (Vetter et al., 2015).

A common technique to investigate how macroscale

neurological processes occur or manifest in the brain is fMRI

(functional Magnetic Resonance Imaging). FMRI produces a

blood-oxygen-level-dependent timeseries for each voxel—the

3D analog of a pixel—in the brain. Groups of spatially and

functionally related voxels can then be grouped together into

regions of interest (ROIs), with each ROI having an averaged

timeseries of the voxels within. Functional connectivity (FC)—the

statistical dependencies between time-series (Friston, 2011)—can

then be calculated between pairs of voxels, pairs of ROIs or

between ROIs and other voxels. A seed-based approach focuses

on the statistical dependencies between a specific voxel or ROI,

known as the seed, and all other voxels. In a connectivity-based

approach the entire brain network is represented as a functional

network (FN) with ROIs as nodes and connections (edges)

between them determined by FC. Creating a FN permits tools

and techniques from mathematics, such as graph theory and the

calculation of graph metrics (Liu et al., 2014; Farahani et al., 2021)

to be utilized.

Motivated by the success of seed-based and connectivity-based

pipelines within areas such as time of day effects (Hodkinson

et al., 2014), as well as chronic acute (Farahani et al., 2019) and

prolonged sleep deprivation (Liu et al., 2014), some limited studies

exploring the role of chronobiology on functional networks have

been undertaken. For example, Facer-Childs et al. (2019) seeded in

themedial Prefrontal Cortex and Posterior Cingulate Cortex within

the Default Mode Network. For both seeds, using the contrast

ECP > LCP, the respective clusters were predictive of attentional

performance as measured through a psychomotor vigilance test.

In addition, resting state FC recorded from the medial Prefrontal

Cortex was predictive of Stroop performance, and the Posterior

Cingulate Cortex was predictive of subjective sleepiness measured

using the Karolinska Sleepiness Scale (KSS). Facer-Childs et al.

(2021) also completed a similar analysis within the Motor Network

system, where Motor Network resting state FC was shown to

contribute to individual variability in motor performance. On the

other hand, Fafrowicz et al. (2019) seeded in 36 regions throughout

the brain. Correlation of the resulting clusters’ FC to time of day,

chronotype, and time of day × chronotype was considered. The

effect of chronotype manifested itself differently in these studies:

chronotype alongside rs-fMRI was successfully used as a predictor

of cognition (Facer-Childs et al., 2019), whereas Fafrowicz et al.

(2019) failed to find a significant difference between extreme

chronotypes with rs-fMRI and instead only found significant time

of day effects.

On the other hand, Farahani et al. (2021, 2022) chose a more

traditional connectivity-based approach of creating individual

FNs before binarizing the networks at a range of density-

based thresholding values. Graph metrics were then calculated

using the binarized networks before being considered for group-

level differences between ECPs and LCPs in the morning and

evening. In these works, a total of 15 graph metrics were

calculated ranging from local scale to mesoscale and global

scale. In all cases, graph metrics did not significantly differ

based upon chronotype. However, significant time of day effects

were once again seen when comparing graph metrics associated

with different scans in the morning and evening for the small-

world index, assortativity and network synchronization and within

specific nodes when calculating degree centrality and betweenness

centrality. Highlighting the lack of success in differentiating ECPs

and LCPs within current connectivity-based pipelines.

The limited research and conflicting findings on the role

of chronotype on functional networks derived from fMRI data

is suggestive of chronotype having relatively subtle effects on

functional brain networks, that cannot easily be detected using

traditional seed or connectivity-based pipelines. An alternative

approach to creating a classifier based on the graph metrics of FNs
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is utilizing Network-Based Statistic (NBS). NBS is a connectivity-

based method, that aims to find a subnetwork consisting of edges

showing high differentiation levels between the functional networks

of two groups (typically a control and patient cohort)—called a

dysconnected network. The term dysconnected network is not to be

confused with disconnected network a word commonly used within

graph theory to refer to a network in which two nodes have no

path between them. NBS is neither a seed-based method nor a

connectivity-based method, but an intermediate. For example, NBS

does not require a seed like seed-based approaches, neither is it used

to calculate graph metrics per subject like many connectivity-based

approaches. However, there are similarities between NBS and these

methods. For instance, NBS utilizes connectivity-based approaches

both through the method requiring a FN for each participant and

the method producing a single group-level FN—the dysconnected

network. Also, like seed-based approaches NBS utilizes contrasts

and statistical tests to understand directed group-level differences—

in this case the differences in the edge weights between two ROIs

rather than two voxels. Therefore, NBS encompasses a mixture of

the two methods whilst also being distinctly different.

The original application of NBS explored differences between

the functional networks of people with schizophrenia and controls

(Zalesky et al., 2010) (RRID:SCR_002454). Since then, NBS has

been explored in a range of neurological contexts from the effects of

habitual coffee drinking on the FC patterns in the brain (Magalhães

et al., 2021) to considering how age and intelligence (DeSerisy et al.,

2021) or symptoms of ADHD (Cocchi et al., 2012) can be correlated

with the FC in dysconnected edges found from NBS. A recent

extension of NBS (NBS-Predict) has also been published (Serin

et al., 2021). It uses a training set to select relevant features from

NBS networks for the classification of test subjects. In contrast,

our classifier evaluates whether an ECP or LCP label of the test

subject leads to greater differentiation between the two groups in a

group-level comparison. The use of the test subject therefore differs

between the two classification approaches.

The methodology underpinning the NBS approach is described

in detail in Zalesky et al. (2010) and is published alongside a

freely available NBS toolbox for MATLAB (MathWorks, USA).

Alongside the recent extension NBS-Predict for the classification of

test subjects (Serin et al., 2021). For completeness, a brief overview

of NBS in the context of chronotype is provided below.

To consider whether NBS may be better suited than seed-based

or graph metric connectivity-based pipelines for differentiation

between ECPs and LCPs we introduce a classifier to assess

the ability of NBS-derived dysconnected networks for classifying

individuals as ECP, LCP, or unclear. Within NBS, a t-statistic

thresholding step is required. Therefore, we originally create a

classifier, with an objective method for selecting this threshold. The

t-statistic threshold selection criteria is based on the assumption

of connectedness for the undirected dysconnected networks. In

particular, t-statistic thresholds which create minimum connected

components (MCCs) are utilized, therefore ensuring all ROIs are

present with an undetermined number of edges. With no prior

knowledge of the subjects this accounts for the potential uniqueness

in an individual’s subnetwork of importance by assuming all

ROIs provide information and must therefore form part of

the subnetwork.

Broadly, the classifier uses NBS to create and compare the

dysconnected networks resulting from labeling a test subject as

first an ECP and then an LCP. We compare the significance

of these dysconnected networks at specific t-statistic thresholds,

alongside their size (number of edges), to classify the test subject—

significance and larger networks are taken as an indication of

correct labeling.

Additional analyses were performed using the classifier within a

classification framework to examine time of day effects. In addition,

the stability of the classifier on subsets of the dataset created from

leaving out one subject at a time was considered leading to an

investigation into the reasons why the removal of certain subjects

resulted in large changes in accuracy and possible ways to mitigate

this effect.

Overall, chronotype can greatly affect both the day-to-day life

as well as the long term physical and mental health of individuals.

However, little information is known about the effect of chronotype

on rs-FNs. In this work, we use a novel approach of a classification

framework based on NBS to understand if differential information

between extreme chronotypes is present in rs-fMRI data. Data from

three scanning sessions across the day are considered; therefore

the ability of the NBS classifier to differentiate ECPs and LCPs at

different times of the day will also be assessed as it is unlikely the rs-

FNs of the two groups will differ in the same manner across the

entire day. Given the lack of significant differences in the graph

metrics (Farahani et al., 2021, 2022) and seed-based functional

connectivity (Fafrowicz et al., 2019) of ECPs and LCPs in current

literature, finding scenarios of clear differentiation between groups

would provide evidence that chronotype can affect rs-FNs and

motivate future studies.

2. Materials and methods

The chronotype dataset analyzed in this study was first

presented by Facer-Childs et al. (2019), which can be referred to

for a detailed description of the data acquisition and preprocessing

methodology. Ethical approval was provided by the Research Ethics

Committee at the University of Birmingham, before any data

acquisition started. Participants had at least 48 h before the start of

the study to read over information sheets and consent forms, and

they were free to end their participation at any time. In addition,

the University of Birmingham’s Advisory Group on the Control

of Biological Hazards approved the COSHH risk assessments and

biological assessment forms that were completed. All the data

and samples were given by participants voluntarily and were

fully anonymized.

2.1. Participants

Thirty eight participants were enrolled into the study, with

an average age of 22.7 ± 4.2 years (mean ± standard deviation),

of whom 24 were female. Exclusion criteria included (1) prior

diagnosis of any sleep, neurological, or psychiatric disorders (2) use

of medication that would knowingly affect sleep (3) an intermediate

chronotype classification from the MCTQ. For 2 weeks prior to
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the scanning sessions, participants were instructed to follow their

preferred sleep pattern, with no restrictions imposed by the study

except for 2 h before the scanning sessions when alcohol and

caffeine consumption, as well as exercise, were prohibited.

16 subjects were classified as ECPs (age 24.7 ± 4.6 years,

9 females) and 22 as LCPs (age 21.3 ± 3.3 years, 15 females).

Chronotypes were determined by the outcome of the MCTQ and

were further validated by the analysis of Dim Light Melatonin

Onset (DLMO) and Cortisol Awakening Response (CAR) times as

well as sleep onset and wake up times measured from actigraphy

data (Facer-Childs et al., 2020). Across all 5 categories, the

difference between the groups was significant (Facer-Childs et al.,

2019).

Participants attended three scanning sessions at the local

times of 14 : 00, 20 : 00, and 08 : 00 the following day. One ECP

(Subject 11) had their 14 : 00 rs-fMRI scan excluded due to

excessive movement.

2.2. Data acquisition

A Philips Achieva 3 Tesla MRI scanner with a 32-channel head

coil was used to collect the imaging data for all participants. This

involved a 5-min T1-weighted scan to create a standard high-

resolution anatomical image of the brain (1 mm isotropic voxels)

before a 15-min eyes-open resting-state scan was obtained. The

scans captured the entire brain using gradient echo echo-planer

imaging oriented parallel to the AC-PC line with the following

parameters: 450 volumes, TR = 2,000 ms, TE = 35 ms, flip angle

= 80◦, 3 × 3 × 4 mm3 voxels. Respiratory and cardiac fluctuations

were monitored using equipment also provided by Philips.

2.3. Data preprocessing

Pre-processing was completed using UF2C (User-Friendly

Functional Connectivity) introduced in de Campos et al. (2016)

(RRID:SCR_016550). This is a toolbox written in MATLAB

(RRID:SCR_001622), which relies upon SPM12 (Penny et al.,

2007) (RRID:SCR_019184) and PhysIO (Kasper et al., 2017),

which are needed for physiological noise correction. Preprocessing

involved standard steps implemented in SPM12 (reorientation

to the anterior commissure as origin, rigid body motion

correction, spatial normalization to the MNI-152 template, spatial

smoothing with a 6 mm3 Gaussian kernel, linear detrending). In

addition, physiological noise corrections were performed using

RETROICOR within the PhysIO toolbox (third order cardiac,

fourth order respiratory, and first order interaction Fourier

expansion of cardiac and respiratory phase, heart rate variability

and respiratory volume per time). As a result, 18 nuisance

regressors were added to preprocessing routines in UF2C, as well as

average signals for white matter and cerebrospinal fluid and the six

movement regressors. Data were high (>0.008 Hz) and low (<0.1

Hz) filtered. Scans with an average framewise displacement (Power

et al., 2012, 2014) above 0.5 mm were excluded, resulting in the

exclusion of the afternoon scan from one participant.

2.4. Functional network construction

The brain was parcellated into 70 functional ROIs previously

used in de Campos et al. (2016) and based upon the 90

functional ROIs used by the Stanford Find Lab presented in

Shirer et al. (2012). This excluded ROIs in the cerebellum due to

incomplete coverage. Information about the ROIs used in the study,

including MNI coordinates, is provided in Supplementary Table 1

of Supplementary Section 1. The average timeseries for all voxels

within each ROI was then extracted before each timeseries was

standardized to mean 0 and standard deviation 1.

FNs were then calculated for each subject using Tikhonov

partial correlation. A symmetric weighted adjacency matrix with a

size 70 × 70 was created for each scan where edge weights are in

the range [−1, 1]. Note that all values in the leading diagonal are set

to NaN as self-links are not interpretable under partial correlation.

Partial correlation was chosen to reduce the contribution from

indirect connections (Marrelec et al., 2006, 2009) as well as

its superior performance at replicating ground truth networks

considered in simulated data studies (Smith et al., 2011;Wang et al.,

2014, 2016). Further, Pervaiz et al. (2020) did an extensive review of

partial correlation as well as various regularization techniques, and

concluded Tikhonov partial correlation as a recommendedmethod.

The regularization technique requires adding a scaled identity

matrix to the covariance matrix of each subject before partial

correlation is calculated using the inverse of the (regularized)

covariance matrix, known as the (Tikhonov) precision matrix. The

scalar λ, known as the regularization parameter, was optimized by

minimizing the difference between the average precision matrix

across all participants and the Tikhonov precision matrix of

each individual participant. This optimization was completed by

summing over all participants the element-wise difference between

the average and individual precision matrix before squaring each

element. Since the resulting matrix is symmetric, the square root

of the sum of the upper triangular elements was calculated. By

considering a range of values of the parameter λ, the choice which

minimizes this square root sum is considered optimal. For this

study, using data from all three scanning sessions λ = 0.0259 was

found to be optimal. The regularization λ = 0.0259 was used for the

creation of all Tikhonov partial correlationmatrices throughout the

paper. Further details on the use of Tikhonov partial correlation, as

well as the calculation of the regularization parameter are presented

in Supplementary Section 2.

For completeness, after the functional networks were

completed graph theoretical analyses and NBS Predict were

used and compared to the classifier. Details can be found in the

Supplementary Sections 4, 5, respectively.

2.5. Network-based statistics

After calculating FNs for all subjects, we used NBS to

determine dysconnected networks. The group level difference in

edge weights for every edge in the Tikhonov partial correlation

functional networks across subjects was determined using a t-test

under a specific contrast—either ECP > LCP or ECP < LCP.
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In this case each element—in the 70 × 70 t-statistic matrix—

represents the difference in the mean edge weights between the

two groups resulting in a symmetric matrix whose elements are

the output of a two-sample one-sided t-test. The t-statistic matrix

was then thresholded with the largest connected component of

suprathreshold edges, called a dysconnected network, selected as

the subnetwork of interest. Here the dysconnected network is

a subnetwork of edges that show the highest difference in FC

between the two phenotypes. The significance of a dysconnected

network was determined using non-parametric permutation testing

(n = 5,000) to create a familywise error (FWE) corrected p-value.

This test compares the intensity (the total weight of the edges)

of the connected component to a null distribution of connected

component intensities created by randomizing the group to which

each participant is assigned. The p-value was then calculated as the

percentage of random permutations whose intensity is larger than

that of themeasured dysconnected network. TheNBSmethodology

as originally implemented in Zalesky et al. (2010) is outlined in

Supplementary Figure 1.

2.6. NBS threshold selection

Thresholding is a key step within the traditional NBS

methodology. Different t-statistic threshold choices can have

a critical impact on network properties such as the number

of nodes and edges, and therefore impact the properties of

the dysconnected network. When seeking to label each test

subject as an ECP and subsequently an LCP, a t-statistic

threshold is required for each labeling. The choice of the t-

statistic threshold in the original NBS literature is somewhat

arbitrary, with no rigorous method suggested. Here we suggest

a process for determining these t-statistic thresholds, which is

as follows:

For each individual test subjectm ∈ {1, 2, . . . , 38}, label the test

subject an ECP while letting the training set retain their chronotype

label (determined by MCTQ, saliva samples and actigraphy data).

Using the NBS pipeline calculate the 70 × 70 t-statistic matrix

across all subjects using the selected contrast; ECP > LCP or ECP

< LCP. Each element represents the difference in the mean edge

weights between the two groups of extreme chronotypes when the

test subject has been artificially placed in the ECP group. Then

set tmE as the highest t-statistic threshold such that the network of

suprathreshold edges is connected. This value tmE is known as the

percolation threshold. Similarly, repeat the steps above with the test

subject m labeled an LCP to find the percolation threshold for the

LCP labeling, setting tmL to this value.

The importance of setting t-statistic thresholds tmE and tmL as

percolation thresholds is directly linked to the creation ofminimum

connected components (MCCs), which were first presented and

fully explained in Vijayalakshmi et al. (2015). Effectively, the MCC

is a pragmatic balance between the sparsity and density of a

network. Interestingly, Vijayalakshmi et al. (2015) found the MCC

to be sensitive to subtle changes in FNs resulting from changes to

cognitive load in EEG (electroencephalogram) recordings, which

were difficult to detect using other methods.

2.7. The classifier

To determine whether an individual is an ECP or an LCP, we

developed a classifier that considers whether the individual fits

best within a family of known ECPs or LCPs. The main steps are

summarized in Figure 1.

Let CLmt denote the dysconnected network created by assigning

subject m the chronotype label (CL) at t-statistic threshold t,

calculated using the NBS toolbox (Zalesky et al., 2010). For the

two possible chronotype labelings of the test subject and the two

t-statistic thresholding values tmE and tmL four subnetworks are

created: EmtE , L
m
tL
, EmtL , and LmtE . Each subnetwork will have its own

FWE-controlled p-value where n = 5, 000 random permutations

of class labels were used to create a null distribution. Here p <

0.05 is considered to be significant, and intensity—the sum of the

weights—was used when calculating the p-value. Intensity was used

because the NBS reference manual (Zalesky et al., 2012) suggests

calculating the FWE p-value using intensity rather than the number

of edges is beneficial for detecting subtle (distributed but sparse)

effects throughout the network, rather than focal effects within a

specific component of the network. From here, the classifier was

constructed as follows:

Step one is to consider the significance of EmtE and L
m
tL
. If only one

of these is significant, the classification of subjectm is the significant

chronotype label CL. If neither are significant the classification of

subject m is unclear. If both are deemed to have a significant size

compared to a null distribution then further steps are needed.

Step two is to consider the significance of the two remaining

percolation thresholds for each CL: EmtL and LmtE . In this case, if

only one of these is significant, the classification of subject m is the

significant chronotype label CL. If neither are significant then the

classification of subject m is unclear. If both are deemed to have

a significant intensity compared to a null distribution, one further

step is required.

Step three is to consider the number of edges |CLt| of the

dysconnected networks in t-statistic threshold pairs. For the four

significant subnetworks EmtE , L
m
tL
, EmtL , and LmtE , the chronotype label

with the higher number of edges indicates the label that the

classifier will assign to subject m—all comparisons are shown in

Figure 1. This is based upon the assumption that for any edge,

correctly labeling a subject will result in greater separation between

the two groups edge weights, which should be reflected in higher

t-statistic values. Therefore, at a specific t-statistic threshold, more

edges should survive the thresholding step when correctly labeled

in contrast to being incorrectly labeled.

Due to the inclusion of the test subject in the classifier, labeled

as an ECP or an LCP more advanced techniques such as nested

cross-validation cannot be used. Also, note that due to the potential

for test subjects to be labeled “unclear”, we define accuracy to

be the number of subjects classified correctly divided by the total

number of subjects. Similarly, misclassification is the number of

subjects given a label of ECP or LCP incorrectly divided by the total

number of subjects. Finally, unclear is the number of test subjects

given the label unclear divided by the total number of subjects.

Hence, accuracy, misclassification and non-classified will add up to

1. In addition, sensitivity can be considered as the number of test

subjects classified as ECP divided by the number of ECP subjects
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FIGURE 1

(A) All subjects Tikhonov Partial Correlation matrices (70× 70 × number of subjects) where test subject m has a label unknown to the classifier. (B)

Using the NBS pipeline to find the percolation threshold when the test subject has been labeled an ECP and then an LCP. (C) The four dysconnected

networks which are created from the two thresholds and two labelings. (D) The three steps of the classifier to classify subject m as an ECP, an LCP or

unclear. (E) The reduced classifier needed in the special case, tm
E

= t
m

L
= t

m.
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and specificity is analogously defined for LCP subjects. Therefore,

it should be noted that an unclear classification will not increase

accuracy, sensitivity, or specificity. Also, through the t-tests the

classifier is based on the comparison of two distribution means

therefore the imbalance in numbers will not provide a bias toward

the classification of the larger group. To clarify that the imbalance in

group sizes does not bias classification in this framework, balanced

accuracy—the mean of sensitivity and specificity—is also presented

within the tables of results.

2.8. Varying the t-statistic threshold

A method for selecting the threshold values at which to

threshold the t-statistic matrix has already been outlined in Section

2.6. However, the threshold selection process was reliant on the

assumption that all ROIs provide differential information. To

understand the impact of this assumption we also decided to range

the t-statistic thresholding parameter from 0 to 4.5 in increments

of 0.01. Therefore, only one t-statistic threshold is selected for both

chronotype labelings.

As the t-statistic threshold range extended beyond the

percolation threshold some dysconnected networks did not include

all ROIs. Therefore, for certain t-statistic thresholds multiple

distinct dysconnected networks existed. In this case, we selected

the dysconnected network with the smallest FWE p-value. When

multiple dysconnected networks had the same p-value then

the dysconnected network with the highest number of edges

was selected. If multiple dysconnected networks had the same

number of edges then for the purpose of classification they were

indistinguishable to the classifier and one was selected arbitrarily.

After selecting the dysconnected networks it can be noted that

when tmE and tmL are equal (i.e., ∃ tm ∈ R
+ s.t. tmE = tmL = tm)

the classifier can be applied as described in Section 2.7, however

to reduce redundancy step one can be removed and step three

can be streamlined as shown in Figure 1. For instance, the case

(|EmtE | > |LmtE | and |EmtL | < |LmtL |) is no longer plausible since EmtE
and EmtL as well as L

m
tE
and LmtL are identical.

Dysconnected networks for select thresholds were then

considered and displayed visually using BrainNet Viewer (Xia et al.,

2013) (RRID:SCR_009446).1

2.9. Investigating the stability of the
classifier

When creating a classifier on small datasets, such as the 38

participants available in this study, a sensible step is to validate the

classifier on a similar but independent dataset. This allows you to

assess whether the classifier is overfitted to the original data and

hence its applicability to different datasets. However, with no access

to an alternative existing dataset, surrogate datasets were created

using the original data. These partial datasets were created by

removing one subject in turn from each scanning session; therefore,

1 http://www.nitrc.org/projects/bnv

creating 113 new datasets, across the three scanning sessions (n =

37 Afternoon, n = 38 Evening, and n = 38 Morning).

For each of these new datasets the methodology as outlined

above was completed. With accuracy now given as the percentage

of correctly labeled subjects calculated from a leave-one-out cross

validation analysis on N-1 subjects. Changing the number of

subjects will effect the MCC created using NBS both in terms of

the size as well as the specific edges included. This will in turn

affect the classification of networks in step one and two through the

significance of MCCs changing when a subject is removed, as well

as the different number of edges affecting step three of the classifier.

Given the overlap between the partial and full datasets

we expect the accuracy levels to be consistent. Indeed, any

discrepancies in the accuracy when a single subject is removed

could indicate potential problems with the classifier or that some

characteristics of the participant’s data are inherently different

and influential.

2.10. Varying the threshold for significance

The dysconnected networks that are created using NBS are

considered significant if their p-value is less than the significance

threshold, α = 0.05, such that p < 0.05 indicates significance.

The threshold of 0.05 is somewhat arbitrary and selected due to the

consistent use of this threshold throughout literature. However, the

classification pipeline is not solely concerned with the significance

of the dysconnected networks, rather whether or not information

about chronotype is embedded within them such that classification

can occur. Therefore, the threshold for significance was varied in

the range [0, 1] in steps of 0.01 to understand its effect on the

success of the classifier. This is similar to NBS Predict, however

within NBS Predict the p-value of the dysconnected network is

not even calculated as feature selection is considered irrespective

of family-wise error.

The effect of changing the significance threshold was

considered for both the original datasets as well as the partial

datasets, as mentioned in Section 2.9.

Note that a significance threshold of zero guarantees that every

network is non-significant; therefore every classification is unclear

due to step one. A non-zero but low significance threshold would

result in the majority of subjects being classified due to step

one—the significance of the network. As the significance threshold

increases step two will be used for classification and finally once

the significance threshold is high enough such that all 4 networks

(EtE ,EtL , LtE , LtL ) are all significant then step three—the number

of edges—is used. After reaching the significance level such that

all four dysconnected networks are considered significant, the

accuracy will remain constant for all significance levels higher than

this. Therefore, the choice of significance threshold equates to the

contribution each step of the classifier makes.

2.11. Summary of main steps

A summary of themain steps of themethodological pipeline are

given below starting with the creation of functional networks:
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1. For each participant a 70 × 70 functional network is calculated

where each ROI is a node in the network and Tikhonov Partial

Correlation is the functional connectivity measure used to

calculate the pairwise connection between ROIs.

2. A single test subjectm is selected and initially labeled an ECP.

(a) Similar to NBS a 70 × 70 t-statistic matrix is then calculated,

such that each element is the result of a t-test comparing

edge weights for the two groups with Subject m considered

an ECP.

(b) The t-statistic matrix is then thresholded such that a

minimum connected component is created i.e., all 70 ROIs

are still connected but a higher threshold will remove at least

1 ROI. The threshold is denoted tmE and the suprathreshold

network is called a dysconnected network, denoted EmtE and

via the approach in NBS the dysconnected network will have

an associated FWE corrected p-value.

3. Test subjectm is then labeled an LCP.

(a) As in NBS a 70 × 70 t-statistic matrix is then calculated,

such that each element is the result of a t-test comparing

edge weights for the two groups with Subject m considered

an LCP.

(b) The t-statistic matrix is then thresholded such that a

minimum connected component is created i.e., all 70 ROIs

are still connected but a higher threshold will remove at least

1 ROI. The threshold is denoted tmL and the suprathreshold

network is called a dysconnected network, denoted LmtL , and

via the approach in NBS the dysconnected network will have

an associated FWE corrected p-value.

4. Step 1: If neither EmtE nor LmtL are significant the test subject is

labeled unclear. If EmtE is significant and LmtL is not significant the

test subject is labeled an ECP. If LmtL is significant and EmtE is not

significant the test subject is labeled an LCP. If both are deemed

to have a significant size compared to a null distribution, then

further steps are needed.

5. Step 2 if required:

(a) Similarly to above the dysconnected networks EmtL and L
m
tE
are

created by labeling test subjectm an ECP and using threshold

tmL and by labeling test subjectm an LCP and using threshold

tmE , respectively.

(b) If neither EmtL nor L
m
tE
are significant the test subject is labeled

unclear. If EmtL is significant and LmtE is not significant the

test subject is labeled an ECP. If LmtE is significant and EmtL
is not significant the test subject is labeled an LCP. If both

are deemed to have a significant size compared to a null

distribution, a further step is needed.

6. Step 3 if required: If all four dysconnected networks are

significant then the label is determined by considering the

number of edges in each dysconnected network, with more

edges taken as an indication of correct labeling, see Figure 1 for

all possible comparisons.

3. Results

Prior to applying the NBS method, we considered a more

traditional connectivity-based approach where graph metrics

TABLE 1 The number of ECPs and LCPs that are classified at each step of

the classification pipeline is presented in the table as well as the accuracy

of the classification.

ECP LCP Total

Step one 10 14 24

Step two 1 1 2

Step three 5 7† 12

Accuracy % 100 95.5 97.3

The † denotes Subject 36 who was incorrectly labeled at step three of the classifier.

calculated from the FNs of each subject were compared

at the group-level for differences between the two extreme

chronotypes. No significant differences were found as shown in

Supplementary Section 4, which is consistent with results found

independently by Farahani et al. (2021, 2022). In addition, for

completeness a comparison to NBS Predict was performed, with

the results given in Supplementary Section 5.

3.1. Classifier performance

Having selected the t-statistic thresholds tmE and tmE the classifier

can be used as presented in Section 2.7. The results for each of

the three scans under the two contrasts are presented below. In

addition, the classifier labels assigned to each Subject are given in

Table 2.

3.1.1. Afternoon scanning session
For the contrast ECP > LCP, Subject 22 was mislabeled as an

ECP on step one while all other subjects were labeled as unclear by

step one, resulting in an accuracy of 0%. For the contrast ECP <

LCP, accuracy was 0% with all subjects being classified by step one.

3.1.2. Evening scanning session
For the contrast ECP < LCP, every subject was labeled as

unclear by step one, due to EmtE and LmtL being non-significant for

all subjects, resulting in an accuracy of 0%.

For the contrast ECP > LCP, 97.37% accuracy was achieved

due to only Subject 36 being misclassified as an ECP. The resulting

subnetwork when all subjects are correctly labeled (i.e., NBS as

presented in Zalesky et al. (2010) is used with t-statistic threshold

1.692) is given in Figure 4 and its topology is considered in Table 3.

The breakdown of howmany ECPs and LCPs were classified at each

step is presented in Table 1.

3.1.3. Morning scanning session
For the contrast ECP > LCP every subject was labeled as

unclear by step one, due to EmtE and LmtL being non-significant for

all subjects, resulting in an accuracy of 0%. For the contrast ECP <

LCP accuracy was 0%, with all subjects being classified by step one.
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TABLE 2 The labels assigned by the classifier for the di�erent scanning sessions and contrasts.

Subject
Afternoon

ECP < LCP

Afternoon

ECP > LCP

Evening

ECP < LCP

Evening

ECP > LCP

Morning

ECP < LCP

Morning

ECP > LCP

1 UNC UNC UNC ECP UNC UNC

2 UNC UNC UNC ECP LCP UNC

3 UNC UNC UNC ECP UNC UNC

4 UNC UNC UNC ECP UNC UNC

5 LCP UNC UNC ECP UNC UNC

6 LCP UNC UNC ECP UNC UNC

7 LCP UNC UNC ECP UNC UNC

8 UNC UNC UNC ECP UNC UNC

9 UNC UNC UNC ECP UNC UNC

10 LCP UNC UNC ECP LCP UNC

11 NA NA UNC ECP UNC UNC

12 UNC UNC UNC ECP UNC UNC

13 UNC UNC UNC ECP LCP UNC

14 UNC UNC UNC ECP UNC UNC

15 UNC UNC UNC ECP UNC UNC

16 LCP UNC UNC ECP UNC UNC

17 UNC UNC UNC LCP UNC UNC

18 UNC UNC UNC LCP UNC UNC

19 UNC UNC UNC LCP ECP UNC

20 UNC UNC UNC LCP ECP UNC

21 UNC UNC UNC LCP UNC UNC

22 UNC ECP UNC LCP UNC UNC

23 ECP UNC UNC LCP UNC UNC

24 UNC UNC UNC LCP UNC UNC

25 UNC UNC UNC LCP UNC UNC

26 ECP UNC UNC LCP ECP UNC

27 UNC UNC UNC LCP ECP UNC

28 UNC UNC UNC LCP UNC UNC

29 UNC UNC UNC LCP UNC UNC

30 UNC UNC UNC LCP UNC UNC

31 ECP UNC UNC LCP UNC UNC

32 UNC UNC UNC LCP UNC UNC

33 UNC UNC UNC LCP UNC UNC

34 UNC UNC UNC LCP UNC UNC

35 UNC UNC UNC LCP UNC UNC

36 ECP UNC UNC ECP ECP UNC

37 ECP UNC UNC LCP ECP UNC

38 ECP UNC UNC LCP UNC UNC

Accuracy(%) 0 0 0 97.7 0 0

Balanced accuracy(%) 0 0 0 100% 0 0

Percentage classified ECP or LCP (%) 29.7 2.7 0 100 23.7 0

Here, Subjects 1–16 are ECPs while 17–38 are LCPs, as labeled using non-imaging data. In addition, accuracy, balanced accuracy and the percentage given an ECP or LCP label are provided.
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3.2. How the t-statistic threshold impacts
classifier performance

As can be seen from Table 2, the performance of the classifier

was strongly dependent on the time of day that the scan was

taken, with accuracy differing greatly between the Evening and

other scanning sessions. Since the accuracy of the classifier for

the Afternoon and Morning scans was restricted by dysconnected

networks being non-significant at step one of the classifier, when

the percolation threshold was used, we now consider the accuracy

of the classifier when selecting a single t-statistic threshold,

varying over the range [0, 4.5] in increments of 0.01. This relaxes

the requirement of all ROIs contributing to the network when

choosing the t-statistic threshold for defining the dysconnected

network and allows the classifier to be used within a classification

framework of understanding if differential information exists

with a larger enough effect for classification to occur and if

so how the performance of the classifier varies with the t-

statistic threshold. Under these conditions, the classifier is the

simplified version presented when tmE = tmL = tm where tm

is preselected.

First, we consider the accuracy values when applying the

classifier for the three scanning sessions and two contrasts when

varying the t-statistic threshold value. These results are presented

in Figure 2. The highest accuracy values for the Afternoon scanning

session occur for lower t-statistic thresholds near 2.2 when ECP

< LCP (∼97%). The contrast ECP > LCP does not result in any

non-zero accuracy values. For the Evening scanning session, non-

zero accuracy exclusively occurred for the ECP > LCP contrast.

For this contrast, non-zero accuracy occurs between 0.71 and 2.28

with accuracy peaking at 97%. In the Morning scanning session,

non-zero accuracy was only seen for the ECP < LCP contrast,

with t-statistic thresholds near 2.2 and 2.7 with accuracy ∼90% for

both thresholds.

In Table 3, we display the topologies of four distinct

dysconnected networks corresponding to the regions of non-zero

accuracy in Figure 2. In addition, Figures 3–6, visualize the four

dysconnected networks using glass brains. For the Evening [ECP

> LCP] scan the threshold of 1.692 is chosen as it is the percolation

threshold when all subjects are correctly labeled as in Section 3.1.2.

Since non-zero accuracy did not occur for the Afternoon [ECP

> LCP], Evening [ECP < LCP], nor the Morning [ECP > LCP]

scanning sessions, no topological features from these scans are

considered. Due to the overlap in the t-statistic thresholds that

produce high accuracy near at 2.2 in the Morning [ECP < LCP]

and Afternoon [ECP < LCP] scanning session, these dysconnected

networks at threshold 2.19 were compared for similarity. Notably,

only one edge is present in both networks linking nodes 48 (LECN)

and 64 (Visuospatial).

It is important to note that we do not use this approach to

construct a classifier or select a parameter for future datasets,

due to the issue of multiple comparisons introduced by varying

the threshold over a wide range. The purpose of presenting

these results is to provide insight into the somewhat unintuitive

differences observed, dependent on time of day, and to understand

if differential information does exist in scanning sessions other than

the Evening when the MCC assumption is removed.

3.3. Investigating the stability of the
classifier

So far the results of the classifier for the original datasets have

been presented. However, to validate the classifier it is important

to understand how the classifier performs on the partial datasets,

created by sequentially leaving out participants. Therefore, the

results of using the classifier, as presented in Section 2.9, on each

of the new datasets created by removing one subject in turn, from

both the training set and the test set, are presented below.

3.3.1. Afternoon scanning session
The percentage of subjects who are labeled correct, incorrect,

and unclear when a particular subject is removed is shown in

Supplementary Tables 5, 6 for the contrasts ECP > LCP and ECP

< LCP, respectively.

For the contrast ECP > LCP accuracy was zero for all

subjects due to the majority of subjects classified as unclear. When

comparing these results to the corresponding column in Table 2

we see a high consistency, as all but one subject was classified

as unclear.

For the contrast ECP < LCP there are certain subjects (5, 6,

7, 10, 16, 23, 26, and 38) whose removal has a positive effect on

the accuracy of the classification. Indeed, except for Subject 38, the

accuracy is higher than random chance (50%) and in some cases

the classifier would be considered high performing. For example,

the removal of Subject 16 sees accuracy go from 0% up to 81%.

When comparing the results to the corresponding column

in Table 2 we see a high correspondence between the incorrectly

labeled subjects in Table 2 and those subjects whose removal sees a

high accuracy, especially for the ECP cohort.

3.3.2. Evening scanning session
Tables 4, 5 show the percentage of subjects who were

labeled correct, incorrect, and unclear when a particular subject

was removed, for the contrasts ECP > LCP and ECP <

LCP, respectively.

For the contrast ECP < LCP no subject was correctly labeled

due to almost all subjects being classified as unclear. When

comparing these results to the corresponding column in Table 2,

we see extremely high consistency.

For the contrast ECP > LCP there are certain subjects (7, 8,

9, 16, 18, 19, 22, 25, 30, 32, and 34) whose removal results in a

decrease in accuracy below random chance and far below the 97.3%

seen for the full dataset. In addition, the mean accuracy of the

other subjects is 79.68%—a reduction from the average of 97.3%.

However, it is worth noting that the removal of Subject 36—the

only subject incorrectly classified in the original dataset—sees an

increase in accuracy from 0 to 76%.

The low or zero accuracy for those 11 subjects is mainly due to

the majority of the subjects being classified as unclear. There was no

clear link to differences in the non-imaging data (e.g., actigraphy,

DLMO, CAR, etc.) that could provide a reason for these subjects

having such a clear influence on the classifier’s performance.
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FIGURE 2

Stacked bar charts showing the fraction of subjects classified correctly, incorrectly and unclear, respectively (blue, red, yellow) when successively

selecting the t-statistic threshold from the range [0, 4.5] in increments of 0.01. The dashed lines indicate the percolation threshold for correct

labeling as found using Section 2.6.

TABLE 3 Table showing key topological features of four dysconnected networks.

Scanning session Threshold
Number

of edges

Number

of nodes
Accuracy (%)

Average

node degree

Highest node

degree (node)

Afternoon [ECP < LCP] 2.19 55 53 97.3 1.57± 1.22 5 (1)

Evening [ECP > LCP] 1.69 146 70 97.3 4.17± 2.03 10 (60)

Morning [ECP < LCP] 2.19 53 48 92.1 1.51± 1.29 4 (34, 48, 53, 59)

Morning [ECP < LCP] 2.79 6 7 94.7 0.17± 0.54 2 (14, 26, 52, 55, 64)

3.3.3. Morning scanning session
The percentage of subjects who were labeled correct, incorrect,

and unclear when a particular subject was removed is shown in

Supplementary Tables 7, 8 for the contrasts ECP > LCP and ECP

< LCP, respectively.

For the contrast ECP > LCP all subjects were classified as

unclear, which is consistent with the corresponding column in

Table 2 where all subjects were classified as unclear.

For the contrast ECP < LCP there are certain subjects (3, 10,

13, 20, 26, 27, 29, 34, 36, 38) whose removal has a positive effect on

the accuracy of the data. In the case of Subjects 3, 10, 13, 20, 26,

27, and 38 their removal produces accuracy’s higher than random

chance (50%). For example, the removal of Subject 13 sees accuracy

go from 0% up to 76%.

When comparing the results to the corresponding column

in Table 2 we see a correspondence between the subjects whose

removal sees a high accuracy and incorrectly labeled subjects in

Table 2. However, Subjects 3 and 38 were not misclassified in

Table 2 whilst Subjects 2, 19, 36, and 37weremisclassified in Section

3.1.3 but their removal had no discernible effect on the classifier.
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FIGURE 3

Dysconnected network produced using NBS for the Afternoon scanning session using ECP < LCP and t-statistic threshold 2.19. The top row from

left to right are the lateral view of the left hemisphere, top view and the lateral view of the right hemisphere. The middle row from left to right are the

medial view of the left hemisphere, bottom view and the medial view of the right hemisphere. The bottom row shows the anterior side on the left

and posterior on the right. The interconnected networks (ICNs) 1–12 are given in Supplementary Table 1.

FIGURE 4

Dysconnected network produced using NBS for the Evening scanning session using ECP > LCP and t-statistic threshold 1.692. Subfigure information

is the same as Figure 3.
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FIGURE 5

Dysconnected network produced using NBS for the Morning scanning session using ECP < LCP and t-statistic threshold 2.19. Subfigure information

is the same as Figure 3.

FIGURE 6

Dysconnected network produced using NBS for the Morning scanning session using ECP < LCP and t-statistic threshold 2.79. Subfigure information

is the same as Figure 3.
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TABLE 4 Evening [ECP > LCP] results for the partial datasets.

Subject

removed
Accuracy Unclear Misclassified

Balanced

accuracy

1 0.65 0.14 0.22 0.67

2 0.97 0.03 0 0.98

3 0.78 0.08 0.14 0.79

4 0.78 0.11 0.11 0.80

5 0.95 0.03 0.03 0.94

6 0.84 0.03 0.14 0.85

7 0 0.76 0.24 0

8 0 0.81 0.19 0

9 0 0.73 0.27 0

10 0.73 0.08 0.19 0.75

11 0.65 0.16 0.19 0.65

12 0.70 0.14 0.16 0.71

13 0.81 0.19 0 0.82

14 0.81 0.08 0.11 0.80

15 0.95 0.05 0 09.5

16 0 0.78 0.22 0

17 0.70 0.08 0.22 0.72

18 0.41 0.32 0.27 0.36

19 0 0.78 0.22 0

20 0.86 0.05 0.08 0.87

21 0.95 0 0.05 0.94

22 0.43 0.41 0.16 0.38

23 0.86 0.05 0.08 0.87

24 0.81 0.03 0.16 0.88

25 0 0.81 0.19 0

26 0.84 0.08 0.08 0.85

27 0.68 0.05 0.27 0.68

28 0.59 0.16 0.24 0.60

29 0.92 0.03 0.05 0.92

30 0.43 0.38 0.19 0.38

31 0.86 0.03 0.11 0.87

32 0 0.78 0.22 0

33 0.76 0.11 0.14 0.76

34 0 0.81 0.19 0

35 0.86 0.05 0.08 0.87

36 0.76 0.19 0.05 0.76

37 0.62 0.19 0.19 0.61

38 0.81 0.05 0.14 0.82

Average 0.60 0.25 0.15 0.60

The fraction of correct, unclear, and incorrect classifications when one subject was removed.

TABLE 5 Evening [ECP < LCP] results for the partial datasets.

Subject

removed
Accuracy Unclear Misclassified

Balanced

accuracy

1 0 1 0 0

2 0 1 0 0

3 0 1 0 0

4 0 1 0 0

5 0 1 0 0

6 0 1 0 0

7 0 1 0 0

8 0 1 0 0

9 0 1 0 0

10 0 1 0 0

11 0 1 0 0

12 0 1 0 0

13 0 1 0 0

14 0 1 0 0

15 0 1 0 0

16 0 1 0 0

17 0 1 0 0

18 0 1 0 0

19 0 1 0 0

20 0 1 0 0

21 0 1 0 0

22 0 1 0 0

23 0 1 0 0

24 0 1 0 0

25 0 1 0 0

26 0 0.97 0.03 0

27 0 1 0 0

28 0 1 0 0

29 0 1 0 0

30 0 1 0 0

31 0 1 0 0

32 0 1 0 0

33 0 1 0 0

34 0 1 0 0

35 0 1 0 0

36 0 1 0 0

37 0 1 0 0

38 0 1 0 0

Average 0 1 0 0

The fraction of correct, unclear, and incorrect classifications when one subject was removed.
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3.4. How the significance threshold impacts
classifier performance: partial datasets

Due to the sensitivity of the classifier, both in terms of

removing subjects resulting in increased accuracy in the Morning

and Afternoon scanning session [ECP < LCP] and the reduction

in accuracy in the Evening scanning session [ECP > LCP], the

influence of the choice of significance threshold was investigated.

It is worth noting that the initial investigation into the

classifier’s sensitivity to the removal of subjects focused on the

subjects themselves. Therefore, an investigation into the metadata

of subjects who were misclassified or whose removal led to high

differences in accuracy was undertaken. However, as seen in

Supplementary Section 7, the metadata is unable to provide an

answer for the classifiers’ sensitivity.

Figure 7 shows boxplots for all of the n accuracies when one

subject in turn has been removed from the training and test set for

all possible values of the significance threshold α. In addition, the

mean and standard deviation for each α value are shown. Figure 8

shows the mean value for the percentage of subjects labeled correct,

incorrect, and unclear for each α value.

As can be seen from Figure 7 there is an optimum value of α for

each of the scanning sessions, selected as the point where the ratio

between accuracy and standard deviation is highest.

However, it is only in the Evening [ECP > LCP] scan that the

value of α which results in the maximum accuracy matches the

value of α which produces the minimum standard deviation. This

occurs at α = 0.08 resulting in a mean accuracy of 75.25% showing

that there is the possibility to optimize the significance threshold for

α and that selecting the traditional significance level of α = 0.05

may be too conservative when there are additional steps of the

pipeline that help to prevent misclassification, through the ability

to label a test subject unclear.

3.5. How the significance threshold impacts
classifier performance: original datasets

To understand how changing the significance threshold affects

the performance of the classifier when considering the original

datasets, the results when varying the significance between [0, 1] in

increments of 0.01 are shown below.

Figure 9 shows a stacked barchart showing the distribution of

correct, incorrect, and unclear classification of each possible value

of α when ranging from 0 to 1 in increments of 0.01 for the original

full datasets. The maximum accuracy of 97% occurs for the Evening

[ECP > LCP] scan for α in the range 0.04–0.07. Comparing

Figures 7–9, we see similar trends with accuracy increasing with

increasing α up to a point specific to each scan and then steadily

declining to a plateau once α is high enough. Table 6 shows the

values of α for which the maximum accuracy occurs.

4. Discussion

To the best of our knowledge, this is the first study explicitly

aiming to classify an individual’s chronotype using rs-fMRI

data. While previous studies (Horne and Norbury, 2018; Facer-

Childs et al., 2019, 2021) have identified differences in functional

connectivity associated with chronotype, the question of whether

these differences are sufficient to identify a participant’s chronotype

solely from fMRI data has not been asked. Following the creation

of FNs, NBS is used as the base for a classifier. The classifier

is innovative through its evaluation of whether an ECP or LCP

classification of the test subject leads to a clearer differentiation

between the two classes in a group-level comparison.

In addition, the classifier was presented alongside a principled

way to select the t-statistic thresholds, a criticism of NBS.

This focused on the two percolation thresholds resulting from

the two different chronotype labelings a test subject can be

assigned. Through concentrating on edges located in dysconnected

subnetworks there is evidence that rs-fMRI data does contain

enough information to distinguish between ECPs and LCPs.

However, this is true only for the Evening [ECP> LCP] scan where

we see a high classification accuracy of 97.3% when applying the

percolation thresholds.

The high level of accuracy is predominantly due to step one

of the classifier, which compares the significance of the MCCs

EmtE and LmtL . This step contributed almost one third of the correct

classifications, as seen in Table 1. Since the MCC, when all subjects

are correctly labeled, covers all 70 ROIs with only 146 edges

(Table 3), it suggests that the key differences between the FNs

of extreme chronotype are sparse and distributed during the

evening. This indicates that any influences of chronotype and

time of day are impacting the brain relatively globally, which is

plausible given that they are driven by systemic circadian and

sleep drives. This work and others (Facer-Childs et al., 2019, 2021)

suggest that the impact of chronotype on functional networks is

relatively subtle, at least within the cortical regions that provide

the majority of the data. It would be reasonable to assume

that a classifier based on a more focused investigation of for

example the suprachiasmatic nucleus of the hypothalamus as the

mammalian primary circadian pacemaker would be more sensitive

to chronotype differences. However, its small size generally

prevents a very specific investigation of its function (Schmidt

et al., 2009; Vimal et al., 2009). For the Evening [ECP > LCP]

contrast the primary resting state networks were all involved,

while the node with the highest degree was in the visual cortex

(Supplementary Table 1). Some diurnal variation in visual cortex

responsiveness has previously been observed (Vimal et al., 2009).

However, regional variation in the sensitivity of cortical and

subcortical areas to chronotype and time of day remains an area

in need of further investigation.

This may explain why neither the seed-based approach in

Fafrowicz et al. (2019), nor the graph metric approach in Farahani

et al. (2021) and Farahani et al. (2022) could find significant

differences between extreme chronotypes. Since the effect of

chronotype is subtle and seen only through the group level

comparison of specific edges using a contrast to compare between

ECPs and LCPs, this would be lost in many graph metric

approaches, which average over many nodes or the entire network

reducing the focus on key edges. On the other hand, seed-based

approaches that rely on contrasts may identify differences (Facer-

Childs et al., 2019, 2021), but the focus on specific seeds could limit

the ability to identify the distributed effect seen in the Evening [ECP

> LCP] scan.
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FIGURE 7

For each value of significance, in the range 0 to 1 in increments of 0.01, a boxplot for the accuracy when removing each subject is shown as the

mean accuracy (red, dashed) and the standard deviation (green, dashed, and dotted). The median of the boxplot is given by the black dot while values

considered outliers (greater than 2.7 standard deviations away from the mean) are depicted by small blue circles.

Meanwhile, the five results of 0% accuracy for the chosen

thresholds raises questions about why the classifier’s performance

is so optimized for the Evening scan and why scans at other time

points seem to have no ability to differentiate between ECPs and

LCPs. Some variation in the accuracy of the classifier is to be

expected because there are known diurnal variations in the graph

metrics calculated from FNs in the morning when compared to

the evening. Indeed, in Farahani et al. (2021) and Farahani et al.

(2022) when ECPs and LCPs were pooled into one group Farahani

et al. found significant time of day differences between the morning

and evening scanning sessions in small-worldness, assortativity

and network synchronization for certain density based thresholds.

Therefore, it is likely that the variation in accuracy throughout

the day is reflecting dynamic changes in the FNs of extreme

chronotypes. Also, Fafrowicz et al. (2019) found significant time of

day effects when seeding in multiple areas of the brain. In addition,

chronotype is known to affect behavioral outcomes in the two

groups differently over the course of the day. For instance, Facer-

Childs et al. (2019) found that patterns of subjective sleepiness

as measured using KSS for the two extreme chronotypes have an

inverse relationship therefore the underlying network dynamics

associated with such changes is likely to be reflected in times

where the FNs of the two groups show stark changes and times of

more similarity.

A key assumption in the presented classifier pipeline is that all

ROIs provide valuable information and the effect of chronotype

is therefore distributed throughout the brain. However, due to

the poor performance across the different scanning session this
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FIGURE 8

Stacked bar chart showing the mean fraction of subjects classified correctly, incorrectly, and unclear, respectively (blue, red, yellow) when removing

one subject in turn and varying across the threshold for significance.

assumption seems unsuitable for theMorning andAfternoon scans.

Previous studies using the same data (Facer-Childs et al., 2019,

2021) have suggested that the differences in FC associated with

chronotype and time of day can be restricted to individual nodes, or

even sub-portions of individual nodes. The optimal way to define a

node (and related issues such as the optimal number of nodes to

use etc.) therefore remains an issue and its impact on the classifier

requires further research (Song et al., 2016; Korhonen et al., 2017,

2021).

The choice of the t-statistic threshold was investigated to

understand how the restriction of the MCC assumption resulted

in 0% accuracy in the other 5 cases. In addition, we wanted

to understand if the conclusion from Table 2 that the rs-FNs

of extreme chronotypes only contain differentiable information

in the Evening is true or the result of the MCC assumption.

Therefore, the classifier was then used within a classification

framework to understand if differential information exists. Figure 2

shows that when the threshold selection process is relaxed it

is possible at all three times of the day—under one contrast—

to find a t-statistic threshold that results in a highly accurate

classifier for distinguishing between ECPs and LCPs. This expands

the results presented in Section 3.1, which focus on a specific

threshold. However, we restricted our recommendations to

cases where a principled approach could be taken to defining

the threshold, rather than highlighting situations where good

classification accuracy could be achieved with an arbitrary

threshold. Clearly, the high classification accuracy resulting from

the classification framework supports the view that chronotype

classification can be undertaken with rs-fMRI data, although

further work is needed to develop the statistical methods to
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FIGURE 9

The fraction of subjects classified correctly, incorrectly, and unclear, respectively (blue, red, yellow) when varying across the threshold for

significance.

achieve this without the use of arbitrary thresholds or issues of

multiple comparisons.

Despite the problem of statistical significance arising from

multiple comparisons, Figure 2 does offer some insights into

the effect of chronotype over the day, within this dataset

despite the inability to determine parameter choices for future

datasets. For instance, the contrast resulting in high accuracy,

when varying the t-statistic threshold, changes over the course

of the day. Simplistically, this generally follows the pattern of

high classification accuracy occurring when the chronotype with

increased tiredness, as measured using KSS (Facer-Childs et al.,

2019), has a higher FC in the contrast. Hence, the contrast

ECP > LCP performs better in the evening when ECPs are

likely to be more tired than LCPs. Similar logic follows for

the Morning scan, when forcing LCPs to awaken before their

natural sleep pattern for an 08 : 00 scanning session will result in

increased tiredness for that cohort. Finally, the contrast ECP <

LCP produces non-zero accuracy in the Afternoon. However, the

range of t-statistic thresholds, which produce non-zero accuracy,

is smaller in the Afternoon compared to the Morning. This

could be associated to the greater similarity in KSS scores in the

two groups at this time. This may suggest that the classification

is driven by tiredness (or Process S within the two process

model (Borbély and Achermann, 1999) rather than chronotype

(related to Process C) per se. Within a real-world setting, and not

only in relation to rs-fMRI data, differentiating the impacts of

sleep homeostasis and circadian drive is difficult. Future studies

using laboratory based constant routine or forced desynchrony

protocols (Duffy and Dijk, 2002; Kyriacou and Hastings, 2010)

could help to understand how sleep drive and circadian phase
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TABLE 6 Table showing the values of α which give the highest accuracy

with the accuracy values given in brackets.

ECP > LCP ECP < LCP

Afternoon 0.24–0.26 (57%) 0.09–0.11 (68%)

Evening 0.04–0.07 (97%) 0.45–0.47 (63%)

Morning 0.47, 0.49, 0.50 (74%) 0.08–0.1 (68%)

are differentially manifested in rs-fMRI data and brain networks

more broadly.

Furthermore, the t-statistic thresholds producing high accuracy

could provide an insight into how chronotype affects the brain

throughout the day. Indeed the size of the dysconnected networks

producing high accuracy is markedly different throughout the day.

The large range of t-statistic thresholds in the Evening start at

0.71, representing a dense distributed effect, while the highest

peak in accuracy near 1.7 suggests a sparse but distributed effect.

In contrast, in the Afternoon and Morning the high t-statistic

thresholds near 2.2 suggest a focal effect concentrated on specific

subsets of the brain’s FN. Finally, the second peak in the Morning

near 2.8 is focused on only 7 nodes and therefore represents a highly

spatially specific impact on the brain. More detailed investigation

of the spatial distribution of network changes as a function of

time of day and chronotype would help to develop these ideas

and provide a more specific understanding of how the brain

in impacted.

The change in the range of t-statistic thresholds that result

in high accuracy explains why the classifier only saw results of

97.3% for Evening [ECP > LCP] scan, and 0% for the other

scans and contrasts. This is because it is the only combination

where the percolation threshold when all subjects are correctly

labeled, shown by the dashed line in Figure 2, falls directly within

the range of t-statistic thresholds that consistently sees non-zero

accuracy. For the other five combinations this is not the case.

This indicates that the assumption of connectedness, the focus on

MCCs and the conventional choice of α = 0.05, is suitable for

the Evening [ECP > LCP] scan, while a different combination

of parameters needs to be used to optimize accuracy for the

other scans. Given our results and the discussion above, other

approaches could be developed to extract the information needed to

provide good classification accuracy in theMorning andAfternoon.

Therefore, our work would suggest that differential information

is present in the data and a time of day effect is seen not only

through the change in contrast, which produces high accuracy,

but the size of the dysconnected network. As this conclusion

is based on an analysis with a large number of comparisons

we suggest that the clustering of the thresholds which produce

high accuracy results provides support for this claim. Indeed

the high accuracy clusters around specific thresholds, which may

indicate a real range of maximal difference, beyond random effect.

This is because if the high accuracy was merely due to chance

from testing enough thresholds then the distribution of highly

accurate thresholds would not be clustered together but would

be more uniformly distributed across the t-statistic thresholds

and contrasts.

In addition, the stability of the classifier was investigated,

through the creation of additional surrogate datasets using a leave-

one-out approach. This approach was taken in the absence of an

independent dataset for validation, however it should be noted

that while offering some insight into the stability such surrogate

datasets cannot truly recreate the level of variability that would

be seen in a fully independent dataset. It is clear from the results

across all 3 scanning session, as seen in Supplementary Tables 5–8

and Tables 4, 5, that the classifier is highly sensitive to the removal

or inclusion of certain subjects. In the case of the Afternoon and

Morning scanning sessions the removal of certain subjects led to

a considerable increase in accuracy, while in the Evening scanning

session subject removal has the opposite effect, reducing accuracy,

aside from Subject 36.

We see that when comparing the results from the partial

datasets to the original datasets there is a correspondence between

improved accuracy when incorrectly labeled subjects in Table 2 are

removed. This may indicate that these subjects have properties

closer to the other chronotype, and hence why their removal

improves the classifier. Similarly, we might hypothesize that the

near-zero accuracy resulting from the removal of subjects in the

Evening scanning session could be because they have properties

which clearly identify them as their phenotype and hence their

removal reduces the accuracy of the classifier. However, this

hypothesis was not supported by differences in the metadata as

shown in Supplementary Section 7. Similarly, the metadata offers

no insight into why, for example, Subject 36 was misclassified in the

Evening [ECP > LCP] scan. Further work is needed to understand

the subtleties of the links between resting brain function measured

with fMRI and more established markers of chronotype.

Furthermore, it was observed that a large proportion of the

subjects were classified as unclear due to non-significant networks

occurring at the traditional 0.05 significance level when the number

of subjects was reduced by one. To investigate if differentiable

information is present when using higher significance thresholds

an investigation into the significance threshold was also completed.

The accuracy of the classifier as well as the standard deviation of

the n different dataset’s accuracy for each significance threshold are

presented in Figure 7. An optimal choice of significance threshold

could be selected for each scanning session and contrast to

maximize the accuracy across the n datasets and minimize the

standard deviation. This relationship is the clearest for the Evening

scanning session and indeed using α = 0.08 shows the improved

ability to differentiate chronotypes in the Evening scanning session.

For the other scanning sessions and contrasts this relationship is

not as distinct, but an optimal ratio between these two factors could

be located. Directly relating the parameter choice for significance

to the classifier’s stability offers a solution for how to improve the

classifier’s performance in future datasets.

When comparing the optimal significance thresholds seen in

Figure 7 for the partial datasets, to the optimal values in Table 6 for

the original datasets, we clearly see that α = 0.05 is too conservative

for n− 1 subjects compared to n subjects. One possible explanation

for this is that the number of subjects is quite low and reducing the

size further removes important information. Indeed, the reduction

in the optimum value for α decreases for the Evening [ECP> LCP]

for 38 subjects (0.04–0.07) compared to when 1 subject has been
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removed (0.08), indicating that as the number of subjects increases,

the stability of the classifier increases. However, it is reasonable

to assume this trend will not continue indefinitely and that there

will be an optimum number of subjects in the training set such

that they provide enough information for classification, while also

allowing the test subject to have enough influence that changing

their label will have an effect on the t-statistic. This highlights that

the classifier is reliant on the fact that changing the label of one

subject will lead to a detectable impact on the t-statistics, while

also having a large enough training set to ensure there is enough

distinction between the two cohorts. This approach is optimized to

smaller datasets, where mislabeling one subject will have a greater

influence. If the number of subjects increased sufficiently (n → ∞)

it is reasonable to assume the dysconnected networks produced will

be the same irrespective of the labeling of the test subject. At that

stage this classifier would be redundant and NBS could be used in

its traditional form.

For both the partial datasets in Figure 8 and the original

datasets in Figure 9, we see the optimal values of the significance

threshold follow a time of day effect similar to that observed in

Figure 2. Indeed, we clearly see high differences in the optimal

value of α for the different contrasts in the Evening and Morning

scan with the optimal significance threshold range being lower

when the contrast aligns with the group who are experiencing

increased tiredness as measured using KSS (Facer-Childs et al.,

2019). In the Afternoon, while there is a difference in the optimal

parameter choice between the two contrasts in agreement with KSS,

the difference between the optimum α value in the two contrasts is

smaller, which again could be associated to both groups having a

more similar state of tiredness.

This pattern matches studies where excitability, as measured

through transcranial magnetic stimulation, is higher when

participants are more tired (Huber et al., 2012; Ly et al., 2016).

In addition, Petkov et al. (2014) showed that the propensity of

people with epilepsy to transition into a seizure state is greater

for networks with a higher mean degree, which are therefore

considered more excitable. If we view higher FC as a proxy for

larger mean degree then the pattern of scanning session, contrast

and accuracy would be linked to excitability and consequently

tiredness of the two chronotype groups. This suggestion remains

to be investigated in more detail, potentially with studies involving

explicit sleep deprivation.

Overall, we have provided evidence that when using this

classification framework that differentiable information exists in

the rs-FNs of extreme chronotypes and this changes over the

day. However, to support the use of the classifier as presented in

Section 3.1 additional research would be required. For instance, this

study is limited by the small sample size, therefore future larger

independent datasets would be required in order to validate the

conclusions about the time of day effects and to ensure the accuracy

of the Evening [ECP > LCP] scan is not over-optimistic. However,

larger levels of recruitment may be hindered due to the multiple

scanning sessions and the extreme chronotypes required by the

protocol. In addition, due to the nature of the classifier considering

one test subject at a time and determining if an ECP or LCP label

is most suited for this subject, the classifier naturally uses a leave-

one-out cross-validation approach. However, it should be noted

that a leave-one-out approach can result in high variability and

over-fitting may occur.

In addition, optimizing the parameters of the classifier, which

include two thresholding choices, should be the aim of future

research. Both the value at which to threshold the t-statistic matrix

and the threshold for significance must be selected. In both cases

the selection of this value is somewhat arbitrary, and typically

determined by convention. By varying over these thresholds

it becomes clear that there is differentiable and important

information present in the Afternoon and Morning scanning

sessions and that optimizing these parameters will improve the

accuracy and importantly the sensitivity of the classifier to new

datasets. Further research is needed to understand how a rigorous

selection process or different underlying assumptions could result

in selecting objective thresholds that optimize accuracy for the

Morning or Afternoon scanning session. Such research may also

develop new ways in which fMRI can be used in the study of

chronotype as well as lead to greater insight into the impact of

chronotypes on brain FNs. This study also motivates the future

use of other methods for quantifying brain function to investigate

human chronotype. For instance, assessing the pipelines’ suitability

for use with EEG data would be a natural extension, especially

since MCCs were originally shown to be useful at detecting subtle

effects on FNs from EEG recordings (Vijayalakshmi et al., 2015).

This may result in the Morning and Afternoon scans having non-

zero accuracy for the percolation thresholds, offer other interesting

insights or simply increase the practicality of recording sessions in

relation to cost and location. However, compared to fMRI, EEG has

limited spatial sampling of the brain, and a lack of sensitivity to

deep brain structures, which are known to be important to sleep

and circadian regulation.

Furthermore, this study allowed subjects to sleep using their

preferred schedule for 2 weeks prior to the scans. It is currently

unknown if the differentiation and accuracy seen at the three

scanning times would stay the same if LCPs were constrained to

a more traditional work schedule or if high accuracy would occur

at a different time of the day. It seems likely that with the additional

sleep pressure associated with conforming to the societal day, LCPs

would be more easily differentiable from ECPs.

In conclusion, we have shown that extreme early and late

chronotypes have differentiable information in their rs-fMRI

data that can be used to classify them. Indeed, this classifier

demonstrates that two groups of participants whose differences

are relatively subtle (i.e., not based on a clinical diagnosis) can

be differentiated using rs-fMRI, when traditional seed-based and

connectivity-based methods have struggled.

Through this study we have proposed a classifier and

investigated its sensitivity and robustness to changes in parameters

and the training set. In an ideal scenario the removal of individual

subjects would have a negligible effect on the classification accuracy.

However, we found the accuracy of the classifier to be strongly

dependent on individual participants, although these participants

did not appear to be unusual based on the physiological and

behavioral data we had available.We found conditions under which

this could be mitigated by altering a combination of the threshold

for the t-statistic, significance threshold for the dysconnected

network and contrast being used. For future chronotype datasets it
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is recommended to use a contrast which reflects the tiredness of the

two groups at the time of the scan, while issues around the optimal

thresholds for significance and t-statistic thresholds remain to be

clarified for scans other than the evening.
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