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Introduction

Tissue-resident macrophages (TRMs) are specialized myeloid cells that adapt to the local

microenvironment and perform both core macrophage functions, such as phagocytosis and

immune surveillance, as well as tissue-specific roles (Troutman et al., 2021). The identity of

TRMs is established by a combination of their ontogeny (or lineage) and the surrounding

tissue environment that provides distinct signaling cues to educate TRMs toward more

specialized functions, such as synaptic pruning by microglia (Butovsky and Weiner, 2018;

Prinz et al., 2019; Troutman et al., 2021; Paolicelli et al., 2022). Mechanistically, signal-

induced transcription factor activity leads to tissue-specific chromatin remodeling and

enhancer activation superimposed on core macrophage gene expression programs (Lavin

et al., 2014; Troutman et al., 2021). However, human cell-based experimental systems

to probe individual subtypes of TRMs, such as those of brain macrophages, as well as

delineate the molecular mechanisms underlying TRM specialization are largely lacking.

In this Opinion, we propose a platform of induced pluripotent stem cell (iPSC)-derived

neuroimmune organoids to establish the diversity of human cell-based brain TRM models

and study their roles in tissue homeostasis and disease.

Brain macrophage identity and diversity

The brain macrophage population is composed of parenchymal microglia and border-

associated macrophages (BAMs), also known as central nervous system (CNS)-associated

macrophages (CAMs), that together maintain homeostasis of the CNS and its surrounding

tissues (Gosselin et al., 2017; Butovsky and Weiner, 2018; Kierdorf et al., 2019; Prinz

et al., 2019; Troutman et al., 2021). Microglia develop from the yolk sac erythromyeloid

progenitors during primitive hematopoiesis and populate the brain parenchyma early in

development (Butovsky and Weiner, 2018; Ginhoux and Garel, 2018; Paolicelli et al.,

2022). Although the microglial population is maintained by cell proliferation with no

input from peripheral myeloid cells under homeostatic conditions, microglia display

substantial spatial and temporal heterogeneity (Grabert et al., 2016; Butovsky and Weiner,

2018; Friedman et al., 2018; Hammond et al., 2019; Young et al., 2021; Paolicelli

et al., 2022). For example, cerebellar microglia exhibit increased debris clearance as

compared to forebrain microglia as well as depend on colony-stimulating factor 1 (CSF-1)
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signaling, whereas forebrain microglia survive CSF-1 depletion

(Ayata et al., 2018; Kana et al., 2019). Moreover, lipid-droplet-

accumulating microglia arise in aging, whereas disease-associated

microglia (DAM) are characteristic of Alzheimer’s disease (AD)

(Deczkowska et al., 2018; McQuade and Blurton-Jones, 2019;

Marschallinger et al., 2020; Silvin et al., 2022). BAMs comprise

macrophages at the boundaries of the CNS, including meninges,

vasculature, and the choroid plexus (Kierdorf et al., 2019;

Mildenberger et al., 2022). Like microglia, BAMs originate from

yolk sac erythromyeloid progenitors although the dynamics of

BAM subtype specification andmaintenance vary (Goldmann et al.,

2016; Utz et al., 2020; Masuda et al., 2022). Whereas meningeal

and choroid plexus macrophages are established prenatally,

perivascular macrophages attain their full identity postnatally,

when the Virchow-Robin space of their residence is established

(Masuda et al., 2022). Moreover, while meningeal and perivascular

macrophages are stably maintained into adulthood, choroid plexus

macrophages are gradually replaced by peripheral bone marrow-

derived cells (Goldmann et al., 2016; Prinz et al., 2019; Van

Hove et al., 2019). BAMs also exhibit transcriptional heterogeneity,

presumably indicating functional specialization to support their

tissues of residence (Mrdjen et al., 2018; Li et al., 2019; Van

Hove et al., 2019). The importance of tissue-specific signaling for

maintaining distinct TRM populations in the brain is exemplified

by microglial but not BAM dependence on tumor growth factor β

(TGF-β) signaling (Thion and Garel, 2020; Utz et al., 2020; Brioschi

et al., 2023). Importantly, TGF-β signaling promotes expression of

the spalt-like transcription factor 1 (SALL1), a master regulator of

microglia identity. SALL1 is not expressed in other macrophage

populations except for Kolmer’s epiplexus cells that populate the

choroid plexus and might, in fact, be a subtype of microglia

(Butovsky et al., 2014; Buttgereit et al., 2016; Van Hove et al., 2019;

Troutman et al., 2021; Brioschi et al., 2023). Interestingly, culturing

microglia ex vivo leads to downregulation of SALL1 expression and

a substantial loss of microglia gene expression signatures (Gosselin

et al., 2017).

Species-specific divergence of murine
and human microglia

It is well-established that murine and human microglia exhibit

considerable species-specific divergence, hindering therapeutic

development targeting microglia (Smith and Dragunow, 2014;

Galatro et al., 2017; Geirsdottir et al., 2019). For example, human

microglia exhibit higher transcriptional heterogeneity than do

murine microglia as well as distinct immune function- and

aging-associated gene expression signatures (Galatro et al., 2017;

Geirsdottir et al., 2019). Moreover, risk factor genes implicated

in brain diseases, such as AD, that are associated with microglial

functions are poorly conserved between rodents and humans

(Mancuso et al., 2019; Wightman et al., 2021). A key microglial

surface receptor triggering receptor expressed on myeloid cells 2

(TREM2) shares <60% of amino acid identity between murine and

human variants (Mancuso et al., 2019). Likewise, gene expression

programs of mouse DAM and human AD microglia (HAM)

implicated in AD progression share few similarities with each other

(Srinivasan et al., 2020). Given these species-specific differences

between murine and human myeloid cell biology, there is a

great need to develop robust human cell-based models that could

faithfully recapitulate human brain macrophage biology.

Human iPSC-derived macrophages
and microglia

Since its inception, the iPSC technology has offered an almost

unlimited access to in vitro models of human brain cells that

are otherwise difficult to obtain from primary human brain

tissue (Takahashi et al., 2007; Yu et al., 2007; Shi et al., 2017;

Li et al., 2018; Li and Shi, 2020; Tong et al., 2021). Various

protocols to differentiate macrophage- and microglia-like cells

(iMGs) from iPSCs have been developed (Abud et al., 2017;

Lee et al., 2018; McQuade et al., 2018; Pocock and Piers, 2018;

Hasselmann and Blurton-Jones, 2020; Tang et al., 2022; Washer

et al., 2022). Notably, iPSC differentiation into iMGs entails

mesodermal specification and transition of the differentiating

cells through an erythromyeloid-like progenitor, reminiscent of

primitive hematopoiesis (Buchrieser et al., 2017; Lee et al., 2018).

Embryonic-like origin of iMGs indicates their applicability to

study microglial and BAM biology, especially given that peripheral

macrophages arising via definitive hematopoiesis do not fully

attain microglial identity when transplanted into the mouse brain

and exhibit distinct gene expression profiles, such as high levels

of apolipoprotein E (APOE) expression (Bennett et al., 2018).

However, embryonic iMG ontogeny is insufficient to establish their

brain macrophage identity. Indeed, iMGs cultured in isolation

exhibit limited expression of key microglial markers SALL1 and

the transmembrane protein 119 (TMEM119), indicating that

such iMGs have not yet attained bona fide microglial identity

(Hasselmann et al., 2019). To overcome this limitation, iMGs

have been successfully transplanted into the rodent brain to derive

chimeric mouse models (Hasselmann et al., 2019; Mancuso et al.,

2019; Svoboda et al., 2019; Fattorelli et al., 2021). Transplanted

iMGs exhibit complex morphology and increased expression of

key microglial genes, including SALL1 and TMEM119, indicating

the presence of correct intrinsic programs in iMGs that can be

activated by the appropriate environment (Hasselmann et al.,

2019). Although chimeric mouse models enable studying the

interactions between human microglia and mouse brain cells, the

implications of modeling human-to-mouse cell-to-cell interactions

remain to be clarified. It is thus highly desired to develop human

cell-based three-dimensional (3D) models of the brain tissue,

so that iMGs could both mature to attain their full identity

and establish interactions with other brain cell types that are of

human origin.

Achieving iPSC-derived brain
macrophage diversity using
regionally-patterned neuroimmune
brain organoids

Brain organoids (BOs) are iPSC-derived 3D self-organizing

assemblies of brain cell types and are used to model human
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brain development and disease (Lancaster and Knoblich, 2014).

Given that myeloid cells arise from the mesoderm, whereas BOs

are derived from the neuroectodermal lineage, various strategies

to obtain iMG-containing neuroimmune organoids have been

developed (Abud et al., 2017; Ao et al., 2021; Popova et al.,

2021; Xu et al., 2021; Cakir et al., 2022). A simple and well-

controlled approach to introduce iMGs into BOs involves iMG

differentiation from iPSCs followed by iMG seeding onto BOs and

infiltration into the neural tissue, although other protocols have

been developed as well (Abud et al., 2017; Xu et al., 2021; Cakir

et al., 2022; Zhang et al., 2023). So far, neuroimmune organoids

have primarily been established using BOs derived by unguided

differentiation, which yields organoids resembling a mixture of

multiple brain regions, as well as using cortical BOs (Abud et al.,

2017; Ao et al., 2021; Xu et al., 2021; Cakir et al., 2022; Jin

et al., 2022). Carefully crafted guided differentiation approaches

can be used to obtain BOs that resemble distinct brain regions

and associated tissues, such as the forebrain, cerebellum, retina,

choroid plexus, and others (Lullo and Kriegstein, 2017; Pellegrini

et al., 2020; Sridhar et al., 2020; Nayler et al., 2021; Lee et al., 2022).

Introduction of iMGs into such regionally-patterned BOs would

provide a distinct environment to educate iMGs, so that diverse

brain macrophage populations may be established (Figure 1). For

example, cortical, cerebellar, retinal, and spinal cord neuroimmune

organoids may be used to educate iMGs toward different microglia

subtypes, whereas choroid plexus neuroimmune organoids may

promote the identity of choroid plexus macrophages. Moreover,

3D blood-brain barrier (BBB) spheroids and in vitro BBB

models may be used to educate iMGs toward perivascular

macrophage identity (Cho et al., 2017; Blanchard et al., 2020).

Having established regionally-patterned neuroimmune organoids

with their distinct iMG populations, in-depth analysis of iMG

morphology, functionality, response to stimulation, and gene

expression programs would reveal how tissue residency promotes

iMG specialization and how it compares to that of in vivo brain

macrophage specialization. Do iMGs exhibit increased phagocytic

activity in cerebellar neuroimmune organoids as compared to iMGs

in cortical neuroimmune organoids? Do iMGs resemble distinct

choroid plexus macrophage states, including Kolmer’s epiplexus

cells, in choroid plexus neuroimmune organoids? Do iMGs regulate

cerebrospinal fluid production in choroid plexus neuroimmune

organoids? These and other questions could be addressed by

using the diverse neuroimmune organoid platform to elucidate the

homeostatic roles of brain macrophages.

Modeling inflammation and brain
diseases using neuroimmune
organoids

In addition to studying the homeostatic roles of brain

macrophages, neuroimmune organoids can be used to reveal

macrophage phenotypes in the context of brain diseases (Figure 1).

As the sole immune cells of the brain parenchyma, microglia

mount an inflammatory response upon stimulation, which may

be protective under normal conditions, but becomes excessive and

detrimental in a diseased brain, causing widespread inflammation

(Lyman et al., 2014). Indeed, neuroinflammation is considered

a hallmark of AD and other brain diseases (Lyman et al.,

2014; Kinney et al., 2018; Leng and Edison, 2021). Exposing

neuroimmune organoids to bacterial-derived lipopolysaccharide,

amyloid β, physical injury, or virus infection leads to iMG

activation, indicating a common response to an inflammatory

stimulus (Abud et al., 2017; Ao et al., 2021; Xu et al.,

2021; Cakir et al., 2022). Regionally-patterned neuroimmune

organoids may be derived from iPSCs of patients carrying

disease mutations or genetic risk factors, such as APOE4, and

tailored to define iMG roles in distinct processes associated with

disease progression. For example, how do iMGs respond to

vascular amyloid seeding in perivascular neuroimmune organoids,

mimicking cerebral amyloid angiopathy characteristic of AD?

Importantly, neuroimmune organoids may help clarify how

activated microglia shift from playing protective roles at early

stages of neurodegenerative diseases to exacerbating tissue damage

by sustained pro-inflammatory cytokine secretion and gliosis as

the disease progresses (Deczkowska et al., 2018; Kinney et al.,

2018; Leng and Edison, 2021). Another common feature of

neurodegenerative diseases is the breakdown of the BBB, leading

to peripheral monocyte-derived macrophage infiltration into the

brain (Fani Maleki and Rivest, 2019; Silvin et al., 2022). To model

peripheral macrophage infiltration, neuroimmune organoids may

be co-cultured with primary monocyte-derived macrophages

isolated from the donors’ blood. In this way, the interactions

between brain-resident microglia and peripheral macrophages

as well as their different roles in disease progression may be

clarified. Indeed, a recent study indicates that the transcriptional

cluster of DAM in neurodegeneration is, in fact, comprised of

protective parenchymal microglia and detrimental inflammatory

macrophages infiltrating into the brain (Silvin et al., 2022).

Therefore, elucidating the contributions of different macrophage

populations to disease progression may inform therapeutic

development targeting neuroinflammation.

Discussion

Signaling from the tissue microenvironment is indispensable

for establishing the TRM identity. Therefore, developing an array

of iPSC-derived neuroimmune organoids resembling different

brain regions and structures will provide a platform for studying

brain macrophage diversity using iMGs. Moreover, neuroimmune

organoids will enable modeling of human-specific cell-to-cell

interactions between iMGs and other brain-resident cell types, so

that novel molecular pathways that establish brain macrophage

identity, specialization, and dysfunction in disease may be

uncovered. We anticipate that the iPSC-derived iMG and organoid

platforms will be widely applied to better define microglia and

BAM states, perform high-throughput drug screening, and clarify

disease-associated phenotypes. It will be important to compare

any findings obtained from neuroimmune organoids to the

transcriptomes of primary human brain macrophages to determine

whether iMGs in neuroimmune organoids faithfully recapitulate

human macrophage biology (Bian et al., 2020). Harnessing the

human iPSC-based neuroimmune organoid technology will be

especially beneficial for studying polygenic and sporadic diseases,
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FIGURE 1

Organoid models for studying brain macrophage diversity. The identity of parenchymal microglia and border-associated macrophages is established

by a combination of ontogeny and niche-specific environment that further educates brain macrophages to acquire tissue-relevant functionality.

Incorporating induced pluripotent stem cell-derived macrophages into brain organoids patterned toward di�erent brain regions may reveal

niche-specific contributions to macrophage identity and function as well as enable disease modeling. BBB, blood-brain barrier; B-CSF barrier,

blood-cerebrospinal fluid barrier; CSF, cerebrospinal fluid.
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such as AD, that cannot be easily recapitulated in animal models.

In addition to the neuroimmune organoids discussed in this

Opinion, further advances to the BO technology may enable

modeling of meningeal structures and their resident dural and

leptomeningeal macrophages (Kierdorf et al., 2019; Mildenberger

et al., 2022), defining the roles of peripheral immune cells (Pasciuto

et al., 2020; Zhang et al., 2022; Chen et al., 2023) and non-

cellular factors (Chen et al., 2021; Liu et al., 2022) in microglia

development and disease, and clarifying the transcriptomic and

functional sexual dimorphism of microglia (Hanamsagar et al.,

2017; Thion et al., 2018; Kelava et al., 2022). Finally, the same

principles of using specialized neuroimmune organoids to establish

a distinct iMG environment could also be applied to brain tumor

organoids to better define the diversity and function of microglia

and macrophages in the context of brain cancer (Hambardzumyan

et al., 2016; Keane et al., 2021).
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