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Nitrate reductase is required
for sclerotial development
and virulence of
Sclerotinia sclerotiorum
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1Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology
and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes,
School of Plant Protection, Anhui Agricultural University, Hefei, China, 2College of Agronomy, Anhui
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Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot (SSR) on more

than 450 plant species, is a notorious fungal pathogen. Nitrate reductase (NR) is

required for nitrate assimilation that mediates the reduction of nitrate to nitrite

and is the major enzymatic source for NO production in fungi. To explore the

possible effects of nitrate reductase SsNR on the development, stress response,

and virulence of S. sclerotiorum, RNA interference (RNAi) of SsNR was

performed. The results showed that SsNR-silenced mutants showed abnormity

in mycelia growth, sclerotia formation, infection cushion formation, reduced

virulence on rapeseed and soybean with decreased oxalic acid production.

Furthermore SsNR-silenced mutants are more sensitive to abiotic stresses

such as Congo Red, SDS, H2O2, and NaCl. Importantly, the expression levels of

pathogenicity-related genes SsGgt1, SsSac1, and SsSmk3 are down-regulated in

SsNR-silenced mutants, while SsCyp is up-regulated. In summary, phenotypic

changes in the gene silenced mutants indicate that SsNR plays important roles in

the mycelia growth, sclerotia development, stress response and fungal virulence

of S. sclerotiorum.

KEYWORDS

Sclerotinia sclerotiorum, nitrate reductase, SsNR, sclerotial development, infection
cushion, virulence
Introduction

Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic pathogen that causes white

mold disease on many crops, including rapeseed, soybean, sunflower, peanut, and other

economically important crops (Bolton et al., 2006). Sclerotinia stem rot (SSR) is one of the

most important diseases on rapeseed in China, which causes significant yield losses and

economic damage. SSR accounts for an estimated 10–30% of yield losses and may

reach 80% in certain years. This fungus produces black sclerotia to overcome cold
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winters and survival in the field for many years (Adams and Ayers,

1979). When the average temperature is cool (8–14°C) during the

flowering period of rapeseed, the prolonged humid or wet

conditions are conducive to carpogenic germination of sclerotia-

producing apothecia to release ascospores for infection and favor

disease development. Under the new policy guidelines and the

increasingly negative effects of traditional chemical control,

elucidating the molecular mechanism of pathogenesis of S.

sclerotiorum may provide important information for the effective

control SSR of oilseed.

Currently, most studies mainly focus on the mechanism of action

of pathogenic factors, such as hydrolase and oxalic acid (OA) secreted

by S. sclerotiorum during infection. Cutinases secreted by S.

sclerotiorum degrade the cuticle of host plants, promoting

penetrating the epidermis cells. SsCut, a cutinase produced by S.

sclerotiorum, could cause plant cell necrosis and induce host plant

resistance (Zhang et al., 2014). Many plant cell wall degradation

enzymes (PCWDEs) and proteases, including cellulases,

hemicellulose, pectinases, xylanases, and aspartyl protease secreted

by S. sclerotiorum to degrade host cell wall, and pectinases have

received attention, especially polygalacturonases (PGs).

S. sclerotiorum has 183 PCWDEs (including lignase), among

which 33 are pectin degradation enzymes (Amselem et al., 2011;

Lyu et al., 2015; Seifbarghi et al., 2017). In addition, SsXyl1 (endo-

onosine-1, 4-xylanase) is involved in the pathogenesis (Yu et al.,

2016). Aspartate protease SsAp1 was significantly expressed during

the early stage of infection on Brassica napus and Phaseolus vulgaris

(Oliveira et al., 2015; Seifbarghi et al., 2017). OA plays an important

role in the process of infecting host plants; the oxaloacetic acid

hydrolase (OAH1, EC 3.7.1.1) deletion mutant, although able to

infect the host plants, only causes smaller necrotic leaf lesions

(Liang et al., 2015b; Xu et al., 2015).

Besides, many genes also participate in the pathogenesis of S.

sclerotiorum, such as NADPH oxidase (SsNox1 & SsNox2) related

to ROS production and the accumulation of oxalic acid (Kim et al.,

2011). Ss-Ggt1 (g-glutamyl transpeptidase) is involved in the

formation of infection cushions (Li et al., 2012), Cu/Zn

superoxide dismutase SsSOD1 deficient resulting in significantly

decreased virulence (Veluchamy et al., 2012; Xu and Chen, 2013).

Forkhead-box transcription factor SsFKH1 regulates the

development of the infection cushion, and silenced mutants

produce small disease spots on tomatoes (Fan et al., 2017; Cong

et al., 2022). However, elicitor SsPemG1 negatively regulated the

pathogenicity of S. sclerotiorum (Pan et al., 2015). Moreover,

secreted proteins play important roles in the penetration and

regulation of plant immunity response, including SsCm1, ssv263,

SSITL, Ss-Caf1, SsCVNH, SsSSVP1, Ss-Rhs1, SsCP1, and SsCut1

(Djamei et al., 2011; Liang et al., 2013; Zhu et al., 2013; Xiao et al.,

2014; Lyu et al., 2015; Lyu et al., 2016a; Yu et al., 2017; Pan et al.,

2018; Yang et al., 2018; Gong et al., 2022). Furthermore, SsSSVP1

and SsCP1 have been identified as effectors and target host QCR8

and PR1, respectively (Lyu et al., 2016a; Yang et al., 2018).

Nitrogen metabolism in fungi is a strictly regulated process that

allows fungi to have the ability to utilize other nitrogen sources

when the desired substrate is insufficient (Bolton and Thomma,

2008). Nitrate reductase (NR) is required for nitrate assimilation in
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fungi that mediates the reduction of nitrate to nitrite and have been

confirmed in Aspergillus nidulans, Neurospora crassa, and

Aspergillus fumigatus (Johnstone et al., 1990; Okamoto et al.,

1991; Amaar and Moore, 1998). NR is widely distributed in

ectomycorrhizal (ECM) fungi to utilize nitrate as an N source

even though the nitrate supply is very low (Nygren et al., 2008).

While NR-silenced in mycorrhizal fungus Laccaria bicolor resulted

in the inhibition of symbiosis with Populus (Kemppainen et al.,

2009). The nitrate reductase (NR) gene (niaD) is required for nitric

oxide (NO) production in A. nidulans during conidiation (Marcos

et al., 2016; Franco-Cano et al., 2021), while nitrate reductase NIA1

is essential for nitrate assimilation and dispensable for

pathogenicity in Magnaporthe oryzae (Samalova et al., 2013).

Here, we characterized an NR gene in S. sclerotiorum and

applied RNAi technology to reveal the function of SsNR in S.

sclerotiorum. We show that SsNR is associated with mycelium

growth and pathogenesis and that SsNR knockdown results in

defective infection cushion formation.
Materials and methods

Fungal strains and culture conditions

The Sclerotinia sclerotiorum wild-type strain FXGD2, preserved

at the Fungus Laboratory of Anhui Agricultural University, was

cultured on PDA. SsNR-silenced mutants were cultured on PDA

containing 180 mg/mL hygromycin B at 25°C in the dark. S.

sclerotiorum strains were cultured on PDA at 25°C for 3–5 days

in the dark, and mycelium was collected to extract genomic DNA

and RNA. The extraction procedure of total RNA of S. sclerotiorum

was based on the instruction of E.Z.N.A.TM Total RNA Kit I from

(Omega Bio-Tek, Atlanta, USA), and the extracted RNA was treated

with RNAse-free DNAse I (TaKaRa Biotechnology, Dalian, China).
Gene cloning and bioinformatics analysis

BLASTp searches were performed from the S. sclerotiorum

genome database at National Center for Biotechnology Information

(NCBI). A homolog of nitrate reductase (NR) was retrieved from the

S. sclerotiorum genome and was named SsNR (SS1G_01885). The

ORF of SsNR was amplified using primer SsNR-F/SsNR-R (Table S1),

then cloned into pMD19-T for sequencing. ClustalX 2.1 (Larkin et al.,

2007) was used for multiple sequence alignment of the SsNR and its

homologs, and the phylogenetic tree was reconstructed by MEGA11

using maximum likelihood method (Tamura et al., 2021). The

conserved motifs of the nitrate reductase family were analyzed at a

web resource SMART (Letunic et al., 2021).
Nucleotide acid extraction and quantitative
reverse transcription-PCR

Total RNA was extracted from S. sclerotiorum strains according

to the instruction of E.Z.N.A.TM Total RNA Kit I (Omega Bio-Tek,
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USA), and contaminant genomic DNA was removed with RNAse-

free DNAse I (TaKaRa, Dalian, China). qRT-PCR was performed

using SYBR Green RT-PCR Kit (TaKaRa, Dalian, China) to analyze

the expression level of SsNR during mycelium growth and sclerotia

formation and to confirm the SsNR-silenced mutants with house-

keeping gene b-tubulin (SsTub, SS1G_04652) as reference gene. For

gene expression of pathogenicity-related genes SsGgt1 (SS1G_14127),

SsSmk3 (SS1G_05445), SsSac1 (SS1G_07715) and SsCyp

(SS1G_06284) in SsNR-silenced mutants, total RNA was extracted

from strains and transcribed into cDNA for qRT-PCR using CFX96

thermal cycler (Bio-Rad, CA, USA). For each gene, qRT-PCR was

repeated at least twice with three biological replicates.
Construction of RNAi vector and
transformation of S. sclerotiorum

pSilent-1, which carries a hygromycin resistance cassette, was used

for hairpin RNA expression of SsNR (Nakayashiki et al., 2005). Two

fragments amplified from cDNA using SsNR-H-L/SsNR-X-R and SsNR-

K-L/SsNR-S-R (Table S1) were ligated into pSilent-1 respectively, to

generate pSilent-SsNR. Plasmids of pSilent-SsNR were transferred into

protoplasts of FXGD2 with polyethylene glycol (PEG)-mediated

transformation (Rollins, 2003). Hygromycin-resistant colonies on RM

were transferred to new PDA plates containing 45 mg/mL hygromycin B,

and transformants of pSilent-1 were used as control. To confirm all

putative transformants, Primers Hyg-F and Hyg-R were used to amplify

the partial sequence of the hygromycin resistance gene.
Mycelia growth, sclerotia, and formation of
infection cushions

For mycelia growth and sclerotia formation, wild-type, SsNR-

silenced transformants and mock strains were inoculated on PDA

plates at 25°C for 2 d or 15 d. For infection cushion formation, agar

plugs of all strains were inoculated onto the surfaces of glass slides

and incubated at 25°C with 100% relative humidity, the number of

infection cushion were counted at 24 h. All experiments were

repeated three times independently.
Determination of stress tolerance

For stress tolerance assay, fresh mycelium plugs of wild-type,

SsNR-silenced transformants and mock strains were cultured on

MM medium containing Congo Red (2 mg/mL), SDS (0.01%),

sorbitol (1.2 M), NaCl (1 M), and H2O2 (4 mM), respectively.

Colony diameters were measured every 12 h, and sclerotia

formation was observed at 7 days. Experiments were repeated

three times with three biological replicates.
Quantification of oxalic acid

Strains were cultured on MM medium containing 0.01%

bromophenol blue for qualitative analysis of oxalic acid
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production. For quantification of oxalic acid, mycelium plugs of

different strains were cultured in 100 mL YSPU medium at 25°C for

5 days, and the content of oxalic acid secreted in YSPU was

measured by KMnO4 titration method (Baker, 1952). This

experiment was repeated three times.
Pathogenicity assay

Rapeseed and soybean plants were used for the pathogenicity assay

of S. slcerotiorumwild-type, SsNR-silenced and mock strains. Detached

leaves were inoculated withmycelia plugs (F=5mm) from themargins

of actively growing colonies on PDA in an incubator at 18°C and 100%

relative humidity. Disease severity was calculated by lesion percentage

of leaf and lesion size. These experiments were repeated three times,

and each replicate was performed with three leaves.
Statistical analysis

All experiments were repeated three times. Microsoft Office 365

and SPSS v22.0 were used for statistical analysis. Statistical analysis

was performed using Student’s t-test and one-way analysis of

variance (ANOVA).
Results

SsNR is a putative nitrate reductase

A nitrate reductase SsNR was identified from the S. scelrotiorum

genome, and the ORF of SsNR is 2733 bp in length, encoding 910

amino acids. SsNR, like other nitrate reductases, has five functional

domains: Oxidored_molyb structural domain (122-298 aa), Mo-

co_dimer structural domain (326-475 aa), Cyt-b5 structural domain

(541- 613 aa), FAD_binding_6 structural domain (645-751 aa) and

NAD_binding_1 structural domain (771-895 aa) (Figure 1A).

Phylogenetic analysis indicated that orthologs of SsNR are widely

distributed in fungi and plant (Figure 1B).
SsNR is essential for mycelium growth and
sclerotial development

qRT-PCR was used for SsNR expression analysis during hyphal

growth and six stages of sclerotial formation: (S1) initiation, (S2)

condensation, (S3) enlargement, (S4) consolidation, (S5)

pigmentation, and (S6) maturation (Li and Rollins, 2009). Our qRT-

PCR results showed that SsNR is highly expressed from S1 to S6. The

transcript level increased by 1060%, 1124%, 717%, 96%, 98%, and

1888%, respectively, indicating that SsNR might be involved in the

sclerotial development of S. sclerotiorum (Figure 2). We performed

PEG-mediated transformation. We obtained 82 transformants that

could grow on PDA-containing hygromycin. SsNR-silenced mutants

were confirmed by qRT-PCR, and two mutants (NR12 and NR66)

were chosen for analysis in which the expression of SsNR decreased by
frontiersin.org
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76.5% and 66.3%, respectively (Figure 3A). SsNR-silenced mutants

exhibited slower mycelial growth compared to wild-type and mock

strain (Figure 3B). The wild-type andmock strain produced sclerotia in

6 days post-inoculation, but SsNR-silenced mutants produced few

sclerotia or did not form scerotia, indicating that SsNR was involved

in mycelium growth and sclerotial development (Figure 3B).
Frontiers in Plant Science 04
SsNR is involved in response to Congo red,
SDS, NaCl, and H2O2

To check the potential role of nitrate reductase in the cell wall

and membrane integrity of S. sclerotiorum, SsNR-silenced mutants

were cultured on MM containing Congo Red (2 mg/mL) and SDS
A

B

FIGURE 1

Functional domain identification and phylogenetic tree reconstruction. (A) Functional domains of SsNR were identified by searching SMART
containing an Oxidored_molyb, Mo-co_dimer, Cyt-b5 domain, FAD_binding_6 domain, and NAD_binding_1. (B) Phylogenetic tree reconstructed
using the maximum likelihood (ML) method with 1,000 bootstraps.
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FIGURE 2

qRT-PCR analysis of the expression of SsNR in different stages of S. sclerotiorum. S0 = the hyphal stage of S. sclerotiorum; S1 = the initiation stage
of sclerotial development; S2 = condensation stage; S3 = enlargement stage; S4 = consolidation stage; S5 = pigmentation stage; S6 = maturation
stage. The expression level of SsNR cDNA measured by qRT-PCR was standardized with the housekeeping gene S. sclerotiorum b-tubulin. The
abundance of cDNA from S0 samples was assigned a value of 1. Bars indicate standard error. Statistical significance is indicated: **, P < 0.01.
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(0.01%), respectively. Under Congo Red treatment, the colony

diameter of SsNR-silenced mutants is about 1.85 and 2.72 cm,

much smaller than the wild-type (4.93 cm) and mock strain

(4.67 cm). Similarly, SsNR-silenced mutants grew much slower

than wild-type and mock strain on an SDS-amended medium.

The colony diameters of wild-type, mock strain and SsNR-silenced

mutants (NR12 and NR66) were 5.75, 5.45, 3.3, and 4.1, respectively

(Figure 4). These results showed that SsNR is required for cell

wall integrity.

We also detect the response of different strains to other stress

-including chemicals, such as sorbitol, NaCl, and H2O2. The results

showed that colony morphology of SsNR-silenced mutants did not

change on MM containing sorbitol and that the mycelium growth

and sclerotial development were not affected, indicating that SsNR

is not associated with osmotic pressure (Figure 4). NaCl at 1 M

could significantly inhibit mycelium growth of SsNR-silenced

mutants compared to wild-type and mock. Likewise, in SsNR-

silenced mutants grown on MM containing H2O2, the diameter

of the colony was much smaller (3.1 and 4.6 cm) compared to wild-

type (6.0 cm), indicating that SsNR has the function of tolerance to

H2O2 (Figure 4).
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SsNR is associated with hyphal branching
and infection cushion development

For SsNR-silenced mutants that exhibited abnormal colony

morphology, we detected the hyphal tip under a microscope to

determine whether SsNR affects hyphal growth (Figure 5A). The result

showed that the hyphal branching of SsNR-silencedmutants increased in

the number of tips, and the hyphal diaphragm was shortened compared

to the wild-type. The infection cushions played important roles during

penetration of S. sclerotiorum; we detected the number of infection

cushions produced by different strains on hydrophobic surfaces that the

SsNR-silenced mutants produce less and smaller infection cushions

compared to WT (Figures 5B, C). These results indicated that SsNR

plays an important role in infection cushions formation.
SsNR is required for virulence and oxalic
acid accumulation

For SsNR is associated with mycelium growth, we also

performed a pathogenicity assay on detached leaves of rapeseed
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FIGURE 3

SsNR-silenced impaired hyphae growth and sclerotia development. (A) qRT-PCR analysis of the expression of SsNR in WT, SsNR-silenced
mutants and mock. Statistical significance is indicated: **, P < 0.01. (B) Colony morphology of WT, SsNR-silenced mutants and mock cultured on
PDA at 25°C. Photos were taken at 2 dpi, and the sclerotia of WT, SsNR-silenced mutants and mock cultured on PDA at 25°C. Photos were taken
at 10 dpi.
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and soybean plants. The results showed that SsNR-silenced mutants

could produce lesions on leaves of both rapeseed and soybean

(12.64%~13.12% and 44.36%~56.50%), but the lesion size of

mutants was much smaller (3.28%~4.73% and 14.39%~15.72%)

than wild-type and mock strains, indicating that SsNR is required

for infection of S. sclerotiorum (Figure 6).
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Oxalic acid plays an important role in pathogenicity during

infection. All strains were cultured on a medium containing

bromophenol to determine the OA in wild-type and SsNR-

silenced mutants. The diameters of the yellow zone produced by

silenced transformants NR12 and NR66 were about 2.3 and 4.1 cm,

respectively, which were significantly smaller than those of the wild-
FXGD2 NR12 NR66 MOCK
C

on
go

 R
ed

SD
S

So
rb

ito
l

N
aC

l
H

2O
2

FIGURE 4

Tolerance of WT, SsNR-silenced mutants and mock to different chemicals. The phenotype of WT, SsNR-silenced mutants and mock grown on MM
supplemented with 2 mg/mL Congo Red, 0.01% SDS, 1.2 M Sorbitol and 1 M NaCl and 4 mM H2O2. Photos were taken at 1 dpi, 5 dpi, 7 dpi, 2 dpi,
and 7 dpi, respectively.
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type (5.7 cm) and mock control (5.6 cm) (Figure 6). Also, the

concentration OA of all strains were determined by KmnO4

titration, results showed that OA concentration of NR12 and

NR66 were 16.65 mg and 36.9 mg in 100 ml medium,

respectively, while those of wild-type and mock strain were 97.35

mg and 97.05 mg, respectively (Figure 6). These results showed that

SsNR is important for OA production.
Regulation of the expression of
pathogenicity-related genes of
S. sclerotiorum

To invest igate whether SsNR-s i lencing affects the

transcriptional expression levels of other pathogenicity-related

genes, Ggt1, Sac1, Smk3, and CYP, were analyzed by qRT-PCR.

The results showed that the expression levels of Ggt1, Sac1, and

Smk3 in SsNR-silenced mutants were decreased by 96%~98%, 65%
Frontiers in Plant Science 07
~74%, and 56%~72%, respectively. At the same time, the expression

level of CYP was increased by 230%~440% (Figure 7).
Discussion

Nitrate reductase is an enzyme that catalyzes the reduction of

nitrate to nitrite and is the major enzymatic source for NO production

in fungi (Cánovas et al., 2016). The nitrate reductase SsNR of S.

sclerotiorumwas studied using sequence analysis and RNAi technology

which could be a good approach for gene function analysis in this

fungus (Lyu et al., 2016a; Rana et al., 2021). SsNR-silenced mutants

exhibited altered phenotypes, including hyphal growth and sclerotia

development. We performed a pathogenicity assay on detached leaves

of rapeseed and soybean plants; although the SsNR-silenced mutants

could penetrate the host cell, they produced smaller lesions than WT.

SsNR-silenced mutants exhibited increased hyphal branching tips

and shortened hyphal diaphragm, and diminished sclerotia
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FIGURE 5

Mycelial growth and infection cushion formation of SsNR-silenced mutants. (A) Hyphal branching and tips stained of all strains were observed under a
light microscope. (B) Infection cushions stained of all strains were observed under a light microscope. (C) Number of infection cushion produced by all
strains. Bar = 100 mm, hyphae and infection cushions were by Calcofluor white (CFW) (10 mg/mL). Statistical significance is indicated: **, P < 0.01.
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development (Figure 3). These results indicated that mycelium growth

might be related to sclerotia development, and these phenomena are

also observed in knockout or knock downmutants of other genes, such

as Sop1, Ss-Sl2, SsFkh1, SCD1, and THR1 (Yu et al., 2012; Lyu et al.,

2016b; Fan et al., 2017; Yue et al., 2018). Also, endogenous small RNAs

may regulate genes controlling sclerotial development (Xia et al., 2020).

Nitrate reductase SsNR-silenced mutants may affect nitrogen

metabolism and protein synthesis, which might cause abnormal

hyphal growth and sclerotia formation. An infection cushion (or
Frontiers in Plant Science 08
compound appressorium) is required for infection, which is the

primary means of infection initiation by S. sclerotiorum to breach the

cuticle layer of the host epidermal cell (Huang et al., 2008). SsNR-

silenced mutants produced less infection cushion on parafilm. SsNR

could regulate the development of infection cushion accomplished with

decreased virulence (Figure 5). Several genes have been reported in

regulating infection cushion development, such as Sac1, Ss-caf1, Ss-

oah1, Ss-odc2, and Smk3 (Jurick and Rollins, 2007; Li et al., 2012; Xiao

et al., 2014; Liang et al., 2015a; Liang et al., 2015b; Bashi et al., 2016),
oilseed soybean
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FIGURE 6

SsNR is required for virulence and accumulation of oxalic acid in S. sclerotiorum. (A) Morphology of WT, SsNR-silenced mutants and mock grown on
MM supplemented with 0.01% bromophenol blue. Photos were taken at 2 dpi. (B) The diameters of the yellow zone produced by WT, SsNR-silenced
mutants and mock (2 dpi). (C) Oxalic acid concentration of WT, SsNR-silenced mutants and mock cultured in liquid medium 5 days. (D) The
percentages of lesion area produced by WT, SsNR-silenced mutants and mock-inoculated on detached leaves of oilseed rape and soybean (48 hpi).
Statistical significance is indicated: **, P < 0.01.
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meanwhile Ggt1, Sac1, and Smk3 are downregulated in SsNR-silenced

mutants, indicating that SsNR is involved in the expression of infection

cushion development-related genes in fine-tuning the infection cushion

formation process during penetration of S. sclerotiorum.

OA is important for infection of S. sclerotiorum primarily in

acidifying the microenvironment in infection (Xu et al., 2018), in

addition to other roles, including chelation with Ca2+, regulation

stomatal closure, inhibition of reactive oxygen species (ROS)

bursting, promotion of apoptosis, and repression autophagy of

plant cell (Rollins and Dickman, 2001; Guimaraes and Stotz, 2004;

Williams et al., 2011; Kabbage et al., 2013; Uloth et al., 2015;

Derbyshire et al., 2022). OA production of SsNR-silenced mutants

decreased compared to WT; we proposed that SsNR may play an

important role in OA accumulation, implying that SsNR regulated

the pathogenicity of S. sclerotiorum through oxalic acid secretion. For

decreased OA concentration, SsNR-silenced mutants produced fewer

infection cushions and impaired function of OA during plant-

Sclerotinia interaction, causing debilitation in virulence. Moreover,

cell wall integrity (CWI) is required in fungi to adapt to perturbing

conditions, including osmotic pressure, heat, oxidative stress, and

antifungals (Dichtl et al., 2016). SsNR-silenced mutants were more

sensitive to Congo Red, SDS, and NaCl than the wild type, indicating

impaired CWI. Reactive oxygen species (ROS) played important roles

in plant immunity (Qi et al., 2017), while SsNR-silenced mutants

showed more sensitivity to H2O2 compared to WT resulting in

decreased virulence in plants (soybean and rapeseed). Similar

results were obtained in the tea leaf spot which is caused by

Didymella segeticola, the antimicrobial kasugamycin inhibits the

pathogen by binding to NR, disturbing fungal metabolism with

changes in hyphal growth and development (Jiang et al., 2022).
Conclusion

SsNR is essential for normal mycelium growth, sclerotia

development, and virulence by regulating OA production and
Frontiers in Plant Science 09
expression of pathogenesis-related genes involved in the infection

of S. sclerotiorum.
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