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Background: Breast cancer (BC) survival prediction can be a helpful tool for

identifying important factors selecting the effective treatment reducing mortality

rates. This study aims to predict the time-related survival probability of BC

patients in different molecular subtypes over 30 years of follow-up.

Materials and methods: This study retrospectively analyzed 3580 patients

diagnosed with invasive breast cancer (BC) from 1991 to 2021 in the Cancer

Research Center of Shahid Beheshti University of Medical Science. The dataset

contained 18 predictor variables and two dependent variables, which referred to

the survival status of patients and the time patients survived from diagnosis.

Feature importance was performed using the random forest algorithm to identify

significant prognostic factors. Time-to-event deep-learning-based models,

including Nnet-survival, DeepHit, DeepSurve, NMLTR and Cox-time, were

developed using a grid search approach with all variables initially and then with

only the most important variables selected from feature importance. The

performance metrics used to determine the best-performing model were C-

index and IBS. Additionally, the dataset was clustered based on molecular

receptor status (i.e., luminal A, luminal B, HER2-enriched, and triple-negative),

and the best-performing prediction model was used to estimate survival

probability for each molecular subtype.

Results: The random forest method identified tumor state, age at diagnosis, and

lymph node status as the best subset of variables for predicting breast cancer

(BC) survival probabilities. All models yielded very close performance, with Nnet-

survival (C-index=0.77, IBS=0.13) slightly higher using all 18 variables or the three

most important variables. The results showed that the Luminal A had the highest

predicted BC survival probabilities, while triple-negative and HER2-enriched had

the lowest predicted survival probabilities over time. Additionally, the luminal B
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subtype followed a similar trend as luminal A for the first five years, after which

the predicted survival probability decreased steadily in 10- and 15-year intervals.

Conclusion: This study provides valuable insight into the survival probability of

patients based on their molecular receptor status, particularly for HER2-positive

patients. This information can be used by healthcare providers to make informed

decisions regarding the appropriateness of medical interventions for high-risk

patients. Future clinical trials should further explore the response of different

molecular subtypes to treatment in order to optimize the efficacy of breast

cancer treatments.
KEYWORDS

breast cancer survival prediction, breast cancer molecular subtypes, survival prediction
models, survival analysis, time-to-event machine learning models, deep learning
survival models, feature importance, AI application in breast cancer
1 Introduction

Breast cancer (BC) is the most prevalent cancer in women

worldwide, with 2.3 million new BC cases and 685,000 deaths in

2020 (1). Accurate survival prediction of BC can help healthcare

providers to better understand patients’ prognosis and prevent

unnecessary medical interventions (2).

Traditionally, BC is defined based on different clinical and

histological characteristics, including tumor grade, stage of tumor,

and hormone receptor status (3, 4). Immunohistochemistry (IHC)

receptors, i.e., estrogen receptor (ER), progesterone receptor (PR),

and human epidermal growth factor receptor 2 (HER2), are used to

categorize BC tumors into four subtypes: luminal A (ER-positive/or

PR-positive/HER2-negative), luminal B (ER-positive/or PR-

positive/HER-positive), triple negative (ER-negative/PR-negative/

HER-negative), and HER2-enriched (ER-negative/PR-negative/

HER2-positive) (5). Recent research has used IHC subtypes to

characterize BC survival, and has assessed BC survival in both

long- and short-term examinations, as each IHC subtype was found

to respond differently to adjuvant therapies. Characterizing these

markers is likely critical to improving BC patients’ survival and

treatments in clinical practice (6, 7).

The Cox regression model has been widely used to analyze

time-to-event data for the survival of BCmolecular subtypes (8–10).

As a result of the rapid development in machine learning and, in

particularly neural networks, and its applications in healthcare and

medical purposes (11–13), a number of new methods for time-to-

event predictions have been developed in recent years (14). To the

best of our knowledge DeepHit (15), DeepSurv (16), Neural multi-
ptor; PR, Progesterone

or receptor 2; IHC,

Regression; NMTLR,

d deviation; C-index,

nfidence Interval; CRC,

sity of Medical Science.
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task logistic regression (NMTLR) (17), Cox-Time (18), and Nnet-

survival (19) models have shown high performances in predicting

survival probabilities using various clinical datasets.

This study aimed to develop time-to-event survival prediction

models using a large-scale Iranian institutional BC dataset to identify

the best-performing model for BC patients. The objective of this study

was to use this model to predict survival probabilities of four molecular

subtypes over a 30-year follow-up period, in order to evaluate BC

survival outcomes in both short- and long-term intervals. Additionally,

feature importance was utilized to obtain an optimized model.
2 Materials and methods

2.1 Study design

This retrospective cohort study included 5,362 patients

diagnosed with invasive BC between 1991 and 2021 at the Cancer

Research Center (CRC) affiliated with Shahid Beheshti University of

Medical Science (SBMU) in Tehran. Data from patients who

underwent surgery followed by adjuvant treatments were

extracted from the electronic health records registered in the

Breast Cancer Registry System at the CRC. The study was

approved by the CRC and the Ethics Committee of SBMU

(IR.SBMU.RETECH.REC.1395.750).
2.2 Study population

For each patient, demographic and clinical factors related to BC

were collected. Demographic factors included age at diagnosis

(Mean ± SD = 48.83 ± 11.59), education level (higher education/

high school diploma/middle school/elementary school/illiterate),

marital status (married/not married), gravidity (the number of

times a patient has been pregnant), breastfeeding duration (0/less

than 2 years/between 2-4 years/between 4-6 years/more than 6
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years), abortion history (yes/no), and BC family history (none/1st

degree/2nd degree). Clinical and pathological factors included

morphology (invasive ductal carcinoma/invasive lobular

carcinoma), lymph vascular invasion (yes/no), tumor size (T1/T2/

T3), lymph node status (N0/N1/N2/N3), tumor histological grade

(low/intermediate/high), tumor stage (I/II/III/IV) and molecular

subtypes (subgroup 1 - ER+ or PR+/HER2+, subgroup 2 - ER+ or

PR+/HER2-, subgroup 3 - ER- and PR-/HER2+, and subgroup 4 -

ER- and PR-/HER2-), type of surgery performed (breast conserving

surgery/modified radical mastectomy), chemotherapy received

(none/adjuvant/nonadjuvanted), radiotherapy administered

(none/external/intraoperative) and hormonotherapy prescribed

(yes/no) were also used in the analysis. In total, 18 time-

independent variables were collected for each patient.

The pathological stage of BC was obtained according to the

criteria of the 7th edition of the American Cancer Committee (20).

All ER, PR, and HER2 results were identified by the IHC testing.

HER2 amplification for patients with equivocal IHC results (2+

grade) was assessed by Fluorescence in Situ Hybridization (FISH) or

Chromogenic in Situ Hybridization (CISH) analysis (21, 22). Cases

were classified as HER2 negative if their FISH or CISH test were

negative or they had an IHC score of 0 or 1+ and were classified as

HER2 positive with positive FISH or CISH test or with an IHC score

of 3+. For each patient, 1) time-independent variables, 2) the time

between the patient’s first diagnosis and the time of the patient’s

death or last visit, and 3) a label indicating the survival status of the

patient (censored or dead) were calculated.
2.3 Data quality

Prior to analysis, the dataset was assessed for quality issues.

These included multiple recorded data for some patients,

undetermined IHC status, and outdated survival status.

Additionally, some breast cancer diagnoses were incorrectly

recorded, patient ages and dates of birth were mismatched, and

the small number of male patients could lead to potential biases in

the results. To address these issues, the data was cleaned up in

several steps. First, the accuracy of patient birthdays and cancer

diagnosis age were verified and any incorrect information was

modified or removed. Cases with missing IHC status, unknown

pathology, non-invasive and non-popular BC, and patients who

developed second primary BC were excluded. Duplicate cases were

identified by checking their first name and surname, sex, and

father’s name. Patients with exactly matched records were

assigned to duplicate records and were removed automatically.

The status of patients’ survival was updated by contacting their

families. Patients who could not be reached, those who died through

non-cancer causes, and those who were alive were considered

censored, while those who died due to BC were considered dead.
1 https://github.com/havakv/pycox
2.4 Feature importance

To determine the most important prognostic variables that

affected BC survival time, the Breiman-Cutler permutation
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method was used with the random forest algorithm (23–25). The

dataset was divided into a training set of 80% (n=2864) and a test set

of 20% (n=716). The training dataset was analyzed using the

random forest algorithm, and parameters such as mtry (number

of variables to be split at each node) and node size (minimum size of

the terminal node) were adjusted based on analyzing out-of-bag

errors. The variables were then selected using the tuned random

forest with test data based on the mean decrease in accuracy. Higher

values of mean decrease in accuracy indicate greater importance of

a variable in predicting survival time. If a variable is associated with

the survival probability, this permutation will lead to a decrease in

prediction accuracy (26). All analyses were conducted using R

(4.2.1) and SPSS (version 26). P-values less than 0.05 were

considered statistically significant.
2.5 Model training and performance

Time-to-event models (i.e., DeepHit, NMTLR, Nnet-survival,

and DeepSurve and Cox-Time) available in the Pycox1 package

were used to analyze the survival data. All models were constructed

using all variables and the variables obtained from the feature

importance section.

DeepHit: this model utilizes a neural network to estimate the

joint distribution of survival time and event, while accounting for

the inherent right-censored nature of survival data. The model

utilizes a fully parametric approach to predict failure times over a

discrete set of fixed size, incorporating both survival times and

relative risks in its loss function.

Neural Multi-Task Logistic Regression (N-MTLR): this model

is an extension of the Linear Multi-Task Logistic Regression

(MTLR) technique that utilizes a deep learning architecture to

address the linearity problem in modeling nonlinear dependencies

in the dataset. The MTLR model is used to jointly model binary

labels representing event indicators at different time intervals,

allowing for the assessment of the probability of an event

occurring within each interval (27).

Nnet-survival: this model is a discrete-time survival model for

neural networks that incorporates non-proportional hazards and

can be trained with mini-batch gradient descent. The model is

theoretically justified as it uses the likelihood function as the loss

function, enabling fast training and avoiding local minimums of the

loss function.

DeepSurv: this model is an integration of the Cox proportional

hazards model with neural networks that can learn complex

relationships between an individual’s covariates and the effect of a

treatment. The model utilizes a core hierarchical structure

composed of fully connected feed-forward neural networks with a

single output node and uses the negative log partial likelihood

function to assess patients’ survival hazards.

Cox-Time: this model is an extension of the Cox proportional

hazards model that uses neural networks to parameterize the

relative risk function and employs a batch-computable loss
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function, enabling scalability to large datasets. This model

incorporates time as an additional input feature to capture its

interactions with other input features, allowing for the modeling

of complex relationships between covariates and event times, as well

as interactions between covariates and time, without being limited

by the proportionality assumption.

2.5.1 Data preprocessing
Entity embedding were implemented to one-encode the

categorical variables by using the half size of the number of

categories (28). The entire dataset was randomly divided into 80

and 20 percent exclusive sets for training and testing the models

respectively. This was achieved using the train_test_split method

from the scikit-learn2 module, with the stratified argument assigned

to molecular subtypes to ensure equal proportions were retained for

each breast cancer subtype.

2.5.2 Model design and hyperparameter tuning
With a focus on achieving the best-performing model, we tried

to develop the neural network for each model. All models used a

standard multilayer perceptron neural network as the model

architecture to learn relationships between linear and nonlinear

data. In order to develop discrete-time models, it was necessary to

categorize survival time into optimal intervals (17, 18). We

employed previous research methods (19) that were used to

determine the optimal width of time intervals for discrete-time

models (DeepHit, MLTR, Nnet-survival). Accordingly, the value of

10, which equated in approximately 36 months, was selected as the

width of time intervals.

In order to determine the optimal hyperparameters for the

neural network, a grid search was conducted using the Scikit-Learn

library. The resulting values are presented in Table 1. Each training

setup was trained with a batch size of 256 and utilized the Adam

algorithm as an optimizer function due to its efficient runtime. To

compensate for the small number of samples and having general

models, 5-fold cross-validation was used for training each setup

derived from the grid search (29). Specifically, four folds were used

for training and one fold was reserved for testing in each iteration,

resulting in five fully trained models for every combination of grid

search and training dataset. Early stopping with a patience number

of 10 was implemented to expedite the training process; if a model’s

loss score did not improve after 10 consecutive epochs, the training

process ceased and the best evaluation score was recorded for that

fold. Additionally, in each training setup, 10 percent of the four

folds were randomly selected and utilized as a validation set.

Altogether, 450 distinct trainings consisting of 5-fold cross-

validation for 90 grid search combinations were performed. The

neural network structures were implemented in Python using the

Pytorch library (Python 3.6, Pytorch 1.12.1).

The output of each model was a 10-dimensional vector, where

each element represented the predicted survival probability over
2 https://github.com/scikit-learn/scikit-learn
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each time interval (36 months). To visualize the Kaplan-Meier

curves and compare the survival probabilities of each subtype across

different time intervals, the 5-, 10- and 15-year mean survival

probabilities for all patients in each specific time interval

were calculated.

2.5.3 Performance evaluation
The performance of the five models was evaluated using the

concordance index (C-index) (30) as an evaluation metric. The C-

index is a correlation coefficient that measures the degree of

agreement between predicted survival risks and observed survival

times. A C-index value of 0.5 indicates random prediction, while a

value of 1.0 indicates excellent prediction. Additionally, the

Integrated Brier score (31) (IBS) was used to assess the models’

calibrations by indicating the mean square difference between

observed patient status and predicted survival probability, with

scores ranging from 0 to 1 and lower scores indicating better

performance. A Brier score below 0.25 is considered useful in

practice. The model with the highest C-index and IBS scores

among the five training folds of the grid search setups was

selected as the best-performing model for predicting

survival probability.
3 Results

3.1 Baseline characteristics and overall
survival rate

A total of 3580 women were included in the study, with a mean

( ± SD) age of 48.83 ± 11.59 years. 434 cases (12.1%) died during the

study period due to the BC, while 3146 cases were censored. Table 2

presents the demographic and clinical characteristics of BC patients.

The overall survival rate (95% confidence interval [CI]) was 0.47

(0.29, 0.77) with a 5-years survival rate (95% CI) of 0.89 (0.88, 0.91).

The mean survival time (95% CI) was 20.78 (19.78, 21.79) years, as

illustrated in Figure 1.
3.2 Prognosis feature importance

The most significant factors affecting survival probability were

identified by selecting the variables with the highest mean decrease

in accuracy, as shown in Figure 2. The results revealed that six

variables, including lymph vascular invasion, type of surgery, tumor

stage, lymph node status, breastfeeding duration, and age at

diagnosis (plus molecular subtypes), had the highest mean

decreases in accuracy and were therefore considered to be the

most important factors. Moreover, tumor stage, age at diagnosis,

and lymph node status (plus molecular subtypes) were identified as

the top three important variables with larger mean decreases in

accuracy compared to other variables. To categorize variables into

different molecular subtypes, the molecular subtype status was

taken into account to perform modelling along with the obtained

important factors from the random forest algorithm.
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TABLE 2 Description of variables in the dataset.

Variable Levels Total
(n=3580)

Status

P-valueCensored
(n=3146)

Deceased
(n=434)

Age at diagnosis (years) Mean ± SD 48.83 ± 11.59 48.59 ± 11.30 50.51 ± 13.38 0.005

Education Higher education 1293 (36.12%) 1188 (37.76%) 105 (24.19%) <0.001

Highschool diploma 1327 (37.07%) 1188 (37.76%) 139 (32.03%)

Middle school 402 (11.23%) 333 (10.58%) 69 (15.90%)

Elementary school 353 (9.86%) 288 (9.15%) 65 (14.98%)

Illiterate 205 (5.73%) 149 (4.74%) 56 (12.90%)

Marital status Not married 539 (15.06%) 471 (14.97%) 68 (15.67%) 0.704

Married 3041 (84.94%) 2675 (85.03%) 366 (84.33%)

Gravidity 0 426 (11.90%) 384 (12.21%) 42 (9.68%) <0.001

1-2 1320 (36.87%) 1182 (37.57%) 138 (31.80%)

3-4 1260 (35.20%) 1103 (35.06%) 157 (36.18%)

More than 4 574 (16.03%) 477 (15.16%) 97 (22.35%)

Abortion No 2466 (68.88%) 2163 (68.75%) 303 (69.82%) 0.654

Yes 1114 (31.12%) 983 (31.25%) 131 (30.18%)

Breastfeeding duration 0 585 (16.34%) 529 (16.82%) 56 (12.90%) 0.001

Less than 2 years 1308 (36.54%) 1130 (35.92%) 178 (41.01%)

2-4 years 1396 (38.99%) 1246 (39.61%) 150 (34.56%)

4-6 years 291 (8.13%) 241 (7.66%) 50 (11.52%)

More than 6 years 0 (0.00%) 0 (0.00%) 0 (0.00%)

Family history None 2601 (72.65%) 2283 (72.57%) 318 (73.27%) 0.382

1st degree 514 (14.36%) 460 (14.62%) 54 (12.44%)

2nd degree 465 (12.99%) 403 (12.81%) 62 (14.29%)

Tumor size T1 1077 (30.08%) 1006 (31.98%) 71 (16.36%) <0.001

T2 1640 (45.81%) 1447 (45.99%) 193 (44.47%)

T3 863 (24.11%) 693 (22.03%) 170 (39.17%)

Lymph node status N0 1803 (50.36%) 1678 (53.34%) 125 (28.80%) <0.001

N1 1006 (28.10%) 901 (28.64%) 105 (24.19%)

N2 528 (14.75%) 406 (12.91%) 122 (28.11%)

N3 243 (6.79%) 161 (5.12%) 82 (18.89%)

Tumor stage I 725 (20.25%) 700 (22.25%) 25 (5.76%) <0.001

(Continued)
F
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TABLE 1 Grid search hyperparameters.

Hyperparameter param-1 param-2 param-3 param-4 param-5 param-6

learning-rate 0.1 0.01 0.001 – – –

layers & nodes [32, 32] [32, 64] [32, 64, 128] [32, 64, 128, 256] [32, 64, 128, 256, 512] –

dropout 0.0 0.1 0.2 0.3 0.4 0.5
The bold values represent the tuned hyperparameters resulted from the grid search approach.
The symbol “–” means that the corresponding value or field is empty or has no data.
tiersin.org
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3.3 The prediction performance
using all variables

Table 3 presents the outcomes of models’ performances

that were developed using all variables. These results show the

optimal C-index and IBS metrics of the trained models.

According to the C-index, Nnet-survival and NMTLR models

with a score of 0.77 had the highest scores; nevertheless, the Nnet-

survival had the best overall performance in terms of IBS with a

score of 0.14. Ultimately, the Nnet-survival model was selected as

the best-performing model for predicting survival data using

all variables.

Figure 3 shows the Kaplan-Meier curves of mean survival

probability in 10-time intervals for each molecular subtype

predicted by the Nnet-survival model, which was developed by all
Frontiers in Oncology 06
variables. Table 4 displays the 5-, 10-, and 15-year predicted survival

probabilities for each molecular subtype.
3.4 The prediction performance using
important variables

With a C-index of 0.76 and an IBS of 0.18, the Nnet-survival

model demonstrated the highest performance when utilizing seven

significant variables in its development, while also achieving a C-

index and IBS score of 0.76 and 0.18 respectively when using only

the four primary variables (Table 3). Figure 4 and Table 5 display

the 5-, 10- and 15-year mean survival probabilities predicted by the

Nnet-survival model developed with the three most important

variables along with molecular subtype status.
TABLE 2 Continued

Variable Levels Total
(n=3580)

Status

P-valueCensored
(n=3146)

Deceased
(n=434)

II 1528 (42.68%) 1416 (45.01%) 112 (25.81%)

III 1160 (32.40%) 944 (30.01%) 216 (49.77%)

IV 167 (4.66%) 86 (2.73%) 81 (18.66%)

Tumor grade Low 362 (10.11%) 333 (10.58%) 29 (6.68%) 0.016

Intermediate 2044 (57.09%) 1799 (57.18%) 245 (56.45%)

High 1174 (32.79%) 1014 (32.23%) 160 (36.87%)

Molecular Subtypes Subgroup 1: ER + or PR +/HER2 + 503 (14.05%) 443 (14.08%) 60 (13.82%) <0.001

Subgroup 2: ER + or PR +/HER2 - 2175 (60.75%) 1961 (62.33%) 214 (49.31%)

Subgroup 3: ER - and PR -/HER2 + 270 (7.54%) 226 (7.18%) 44 (10.14%)

Subgroup 4: ER – and PR -/HER2 – 632 (17.65%) 516 (16.40%) 116 (26.73%)

Pathology Invasive ductal carcinoma 3358 (93.80%) 2943 (93.55%) 415 (95.62%) 0.093

Invasive lobular carcinoma 222 (6.20%) 203 (6.45%) 19 (4.38%)

Lymph vascular invasion No 2426 (67.77%) 2186 (69.49%) 240 (55.30%) <0.001

Yes 1154 (32.23%) 960 (30.51%) 194 (44.70%)

Type of surgery Breast conserving surgery 2548 (71.17%) 2358 (74.95%) 190 (43.78%) <0.001

Modified radical mastectomy 1032 (28.83%) 788 (25.05%) 244 (56.22%)

Chemotherapy None 472 (13.18%) 452 (14.37%) 20 (4.61%) <0.001

Adjuvant 2586 (72.23%) 2247 (71.42%) 339 (78.11%)

nonadjuvanted 522 (14.58%) 447 (14.21%) 75 (17.28%)

Radiotherapy None 137 (3.83%) 115 (3.66%) 22 (5.07%) <0.001

External 2937 (82.04%) 2533 (80.51%) 404 (93.09%)

Intraoperative 506 (14.13%) 498 (15.83%) 8 (1.84%)

Hormonotherapy No 714 (19.94%) 600 (19.07%) 114 (26.27%) <0.001

Yes 2866 (80.06%) 2546 (80.93%) 320 (73.73%)
fron
The frequency (percentage) was used to describe the categorical data. Numeric variables were presented using mean ± SD. The association between status (censored and deceased) and categorical
variables was evaluated using Pearson Chi-Square test. The independent test was used to compare the mean of age between groups.
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4 Discussion

This is the largest study so far in Iran, predicting survival

probabilities of BC patients in four molecular subtypes, defined by

ER, PR, and HER2 status. All models (DeepHit, NMTLR, Nnet-

survival, DeepSurve and Cox-Time) yielded very close C-index and

IBS, with Nnet-survival slightly higher using both total and the most

important variables.

The purpose of this study was to use machine learning methods

to predict the survival probability of BC patients. Previous studies

have relied on traditional models, such as the Cox regression model

(32), to analyze time-to-event data. However, the Cox model and

other parametric survival distributions are limited in their linear

and inflexible form. The linearity of the risk function in survival

applications, such as treatment recommendations for patients with

different conditions, may be very simplistic and does not provide an
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accurate estimate of survival prediction due to the presence of

complex patterns and non-linear relationships between different

variables (16).

Recent studies have employed machine learning techniques to

develop classification models that predict survivability (33–36).

These models have mainly focused on interpretability to improve

accuracy, and the outcome measure is often evaluated at a single

time point. Furthermore, dealing with censored data in survival

models based on machine learning classification models is

frequently not discussed, and the flexibility associated with

modeling the event probabilities as a function of time have been

mostly neglected (34, 37–44). Additionally, previous studies on BC

survival prediction did not consider some important issues such as

feature importance, competent pre-processing steps, and using

adequate sample size when developing their models (45, 46). In

contrast, this study conducted comprehensive data pre-processing

and variable selection procedure to develop an optimal and reliable

model. Moreover, a grid search method was used to tune the

hyperparameters of the neural network.

In this study, we utilized Random Forest feature importance to

identify the most influential variables on survival time. Random

Forest has been used for feature importance applications in many

BC surveillance studies (47–50), due to its capacity to effectively

process highly non-linear data (51, 52). We found that the six most

important variables were age at diagnosis, tumor stage, axillary

lymph node metastasis, type of surgery, lymph vascular invasion,

and breast-feeding duration. These same variables were also defined

as the most important variables in previous studies related to BC

(35, 53). Furthermore, our findings suggested that the top three

critical variables affecting survival probabilities were age at

diagnosis, stage, and axillary lymph node metastasis. This is

consistent with other studies which have demonstrated stage and

axillary lymph node metastasis as the most significant predictors of

BC prognosis (54, 55).

Subsequent studies have indicated that the chance of survival

for BC patients decreased with increasing age at the diagnosis (56).

Previous studies have demonstrated that age is an important risk

factor in BC prognosis (57–60).However, due to the lack of

consensus on different thresholds for age and the use of broad

age groups, the role of this predictor remains controversial. Some

studies have focused only on young or older women rather than all

age groups (61, 62). In this study, we avoided categorizing the

patients’ age and included all age groups. Additionally, tumor stage

is also an important prognostic factor affecting BC survival time (63,

64). A study conducted in the Netherlands, found that tumor stage

can affect overall survival in the current era of effective systemic

therapy (65). Furthermore, metastasis to axillary lymph nodes is

another chief factor affecting BC prognosis (66, 67). It has been

noted that nearly 8% to 30% newly diagnosed BC are at an advanced

stage, with extensive axillary lymph node metastasis (68). Results

from a study in China found that BC patients with lower lymph

node metastasis had more prolonged overall survival, disease-free

survival, and distant metastasis-free survival compared to patients

with more involvement of lymph node metastasis (69).

The models generated very close C-index and IBS scores trained

with all 18, seven, and four variables. Furthermore, the survival
FIGURE 1

The Overall Kaplan-Meier survival Curve with summarization of
survival times.
FIGURE 2

The Mean decrease accuracy of each variable in predicting the
survival time using random forest method.
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probabilities of molecular subtypes acquired from the Nnet-survival

model trained with the three most important variables showed

similar patterns to results from the model trained with all variables

(Supplementary Figure S1, S2). This suggests that using only the

three most important variables instead of a large number of

variables could result in a more robust and accurate model with

less complexity.

Our results showed that the luminal A subtype had the highest

predicted survival probabilities across the four molecular subtypes,

with 91%, 80%, and 60% in 5-, 10-, and 15-year follow-ups,
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respectively. Our results (Supplementary Figure S1) also showed

that the luminal B subtype followed a similar trend as luminal A for

the first five years, after which the predicted survival probability

decreased steadily and reached 77% and 50% in 10- and 15 years,

respectively. This is consistent with Christine Inwald et al.’s study,

which found that overall survival rates of luminal B (80.3%) and

luminal A (87.5%) subtypes declined over 7-year where luminal A

showed the best overall survival (70). Additionally, we found that

the survival probabilities for triple-negative and HER2-enriched

subtypes had a similar pattern with 82% in 5-year follow-up. The
FIGURE 3

The Kaplan-Meyer curves of mean survival probabilities for each molecular subtype predicted by the Nnet-survival model, using all variables, during
30 years of follow-up (Red graph: Luminal B, Blue graph: Luminal A, Green graph: HER2-Enriched, Aqua graph: Triple-Negative).
TABLE 3 Performance of five models on Breast Cancer test set.

NO. Model
All variables Using 7 important variables Using 4 important variables

C-index IBS C-index IBS C-index IBS

1 DeepHit 0.72 0.18 0.76 0.18 0.75 0.20

2 N-MTLR 0.77 0.19 0.71 0.20 0.72 0.21

3 Nnet-survival 0.77 0.14 0.76 0.18 0.76 0.16

4 DeepSurve 0.75 0.15 0.74 0.20 0.74 0.19

5 Cox-Time 0.75 0.15 0.74 0.16 0.75 0.16
The bold values represent the C-index and IBS of the best-performing model with all independent variables, the six most important variables and the three most important variables in
conjunction with molecular subtype status, as determined by feature importance analysis.
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TABLE 5 Mean survival probability of each molecular subtype in different time periods predicted by Nnet-survival model developed with three most
important variables.

NO. Molecular Subtypes 5-years survival 10-years survival 15-years survival

1 luminal B 91% 76% 65%

2 luminal A 91% 79% 69%

3 HER2-enriched 88% 76% 68%

4 Triple negative 84% 74% 66%
F
rontiers in Oncology
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The bold values represent the highest values of mean survival probabilities for each molecular subtype (luminal A, ER-positive/or PR-positive/HER2-negative; luminal B, ER-positive/or PR-
positive/HER-positive; triple negative, ER-negative/PR-negative/HER-negative; HER2-enriched, ER negative/PR-negative/HER2-positive).
FIGURE 4

The Kaplan-Meyer curves of mean survival probabilities for each molecular subtype predicted by the Nnet-survival model, using three important
variables, during 30 years of follow-up. (Red graph: Luminal B, Blue graph: Luminal A, Green graph: HER2-Enriched, Aqua graph: Triple-Negative).
TABLE 4 Mean survival probability of each molecular subtype in different time periods predicted by the Nnet-survival model developed with all
timeindependentvariables.

NO. Molecular Subtypes 5-years survival 10-years survival 15-years survival

1 luminal B 91% 77% 50%

2 luminal A 91% 80% 60%

3 HER2-enriched 82% 70% 54%

4 Triple negative 82% 72% 59%
The bold values represent the highest values of mean survival probabilities for each molecular subtype (luminal A, ER-positive/or PR-positive/HER2-negative; luminal B, ER-positive/or PR-
positive/HER-positive; triple negative, ER-negative/PR-negative/HER-negative; HER2-enriched, ER negative/PR-negative/HER2-positive).
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decreasing trend continued in both HER2-enriched and triple-

negative subtypes; however, it was more pronounced in the

HER2-enriched subtype with 70% and 54% predicted survival

probabilities in 10- and 15-year follow-up, respectively. These

findings confirm previous studies’ findings which indicated that

the HER2-enriched subtype had a worse prognosis than the

Luminal A subtype, although they were based on much shorter

follow-up times (10, 71, 72). Moreover, the triple-negative subtype

had a slight decrease with 72% predicted survival probability in 10-

year and had the least decline compared to other subtypes between

10 and 15 years of follow-up. We observed higher survival

probabilities in patients with luminal A and triple-negative

subtypes after 12 years of follow-up, which suggests that

successful therapeutic management is possible when considering

all prognostic factors. Other related studies have reported that the

mortality rate for the triple-negative subtype is initially high but

gradually decreases over time, while the mortality rate for the

luminal A subtype remains almost constant (8, 9).

Many studies have indicated that HER2-positive subtypes,

regardless of ER and PR status, are associated with a poorer

prognosis than other subtypes (7, 73, 74). Our findings showed

that HER2 is a time-relevant factor and the survival probabilities for

HER2-positive subtypes depend on both the time and ER/PR status.

It is possible that hormonal therapy (tamoxifen or aromatase

inhibitor) may have improved survival probabilities for the

luminal B subtype in the first 12 years of follow-up. Additionally,

it is conceivable that the earlier deaths of HER2-positive patients

could be attributed to the unavailability of Trastuzumab between

1991 to 2009; this drug was approved by the US FDA in 2005 and

became available in Iran in 2009 (75). Despite the advantages of

Trastuzumab and other anti-HER2 therapies, a reduction in

survival probabilities for luminal B subtype compared with

HER2-enriched after 12 years suggests that these treatments,

along with hormonal therapy, may not be reliable treatment

strategies for luminal B patients. Therefore, it is recommended

that HER2 status should be taken into greater consideration during

BC treatment periods. For example, the cases whose life expectancy

is restricted to less than five or ten years should not be evaluated by

HER2 and its common treatments.

The current study was limited by potential biases of registry-

based retrospective analyses (76). The major limitation, like any

long-term retrospective analyses, was data censorship, which was

addressed by using time-to-event survival models to model the

relationships between covariates and individual survival time

distributions. Furthermore, due to the varying coring and staining

methods used in laboratories conducting IHC tests, some

misclassification of cancer subtypes is unavoidable. Moreover, the

relatively small number of patients in late time intervals posed a

limitation to this study. As HER2 oncogene is positive in about 20%

of primary BCs (74), the number of patients with HER2-positive

subtypes decreased over time due to the decrease in total amount of

data. Additionally, the number of events in the dataset decreased

dramatically after 15 years of (Supplementary Figure S3), making it

difficult to train a reliable survival model for data in late intervals

(more than 15 years of follow-up). Despite all limitations, this study

was able to assess BC patient survival over a long-term follow-up
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period and reveal differences across BC subtypes with

greater precision.
5 Conclusions

In conclusion, we developed time-to-event deep learning

models using data from a large institutional BC dataset in Iran to

evaluate the survival prediction models. The best-performing model

was used to predict survival probability in four BC molecular

subtypes, in order to compare survival patterns over different

time intervals since diagnosis. Our findings provide healthcare

providers with the ability to determine patients’ survivability,

better understand the effect of each treatment on different

molecular subtypes and prevent unnecessary interventions for

high-risk, particularly those with HER2 positive status, based on

their molecular receptor status.
6 Recommendations for future studies

More broadly, our research is also needed to determine the

survival probabilities for each subtype in different age and stage

categories, in order to enable clinicians to make individualized

treatment decisions that could influence clinical outcomes in

patients’ short- and long-term survival. Moreover, the data used in

this study was collected from an academic center in Iran’s capital, and

therefore does not reflect the entire Iranian population. Considerably,

further research will need to be conducted to compare outcome

between patients with different backgrounds in Iran. However, the

ultimate goal is to focus on other Asian countries where such research

has barely been carried out. Additionally, existing survival models

should be translated into new prediction tools for healthcare

organizations, such as PREDICT (77), which enables the

incorporation of BC molecular status into predictions of BC

survival. Furthermore, more trials should be conducted to estimate

the benefits and risks of hormonal therapy, anti-HER2 therapy, and

chemotherapy for patients with different molecular profiles.
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SUPPLEMENTARY FIGURE 1

The comparison of Kaplan-Meyer curves of mean survival probabilities for
each molecular subtype predicted by the Nnet-survival model, using all

variables, during 30 years of follow-up. (Red graph: Luminal B, Blue graph:
Luminal A, Green graph: HER2-Enriched, Aqua graph: Triple-Negative)

SUPPLEMENTARY FIGURE 2

The comparison of Kaplan-Meyer curves of mean survival probabilities for each

molecular subtype predicted by the Nnet-survival model, using the three
important variables, during 30 years of follow-up. (Red graph: Luminal B, Blue

graph: Luminal A, Green graph: HER2-Enriched, Aqua graph: Triple-Negative)

SUPPLEMENTARY FIGURE 3

The distribution of the number of patients for each molecular subtype during
the 30 years of follow-up.
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