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Streamflow predictions remain a challenge for poorly gauged and ungauged

catchments. Recent research has shown that deep learning methods based on

Long Short-Term Memory (LSTM) cells outperform process-based hydrological

models for rainfall-runo� modeling, opening new possibilities for prediction in

ungauged basins (PUB). These studies usually feature local datasets for model

development, while predictions in ungauged basins at a global scale require

training on global datasets. In this study, we develop LSTM models for over 500

catchments from the CAMELS-US data base using global ERA5 meteorological

forcing and global catchment characteristics retrieved with the HydroMT tool.

Comparison against an LSTM trained with local datasets shows that, while the

latter generally yields superior performances due to the higher spatial resolution

meteorological forcing (overall median daily NSE 0.54 vs. 0.71), training with

ERA5 results in higher NSE in most catchments of Western and North-Western

US (median daily NSE of 0.83 vs. 0.78). No significant changes in performance

occur when substituting local with global data sources for deriving the catchment

characteristics. These results encourage further research to develop LSTMmodels

for worldwide predictions of streamflow in ungauged basins using available global

datasets. Promising directions include training the models with streamflow data

from di�erent regions of the world and with higher quality meteorological forcing.

KEYWORDS

rainfall-runo� modeling, LSTM, deep learning, global datasets, ERA5, streamflow

prediction

1. Introduction

Streamflow Prediction in Ungauged Basins (PUB) is a major challenge in hydrology
due to a lack of streamflow observations required for calibration and validation of
hydrological models. Worldwide, the availability of streamflow observations is unbalanced
with a rather high abundance in North America and Europe and very scarce data in
African, Asian, and South American river basins. These data scarce regions would benefit
greatly from models calibrated against streamflow observations available elsewhere that
can generalize to poorly gauged or ungauged catchments. Over the last decades, the
PUB initiative (Sivapalan et al., 2003; Hrachowitz et al., 2013) highlighted the need to
transfer hydrological process understanding from gauged to ungauged catchments. This
led to the development of many methods for model regionalization (Merz and Blöschl,
2004; Götzinger and Bárdossy, 2007; Samaniego et al., 2010). However, the fundamental
underlying problem concerning hydrological similarity remains largely unresolved. As long
as there is no general andmeaningful answer, regionalization of process-basedmodels will be
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characterized by considerable uncertainties. As a consequence,
and in spite of some recent promising advances (Kumar et al.,
2013; Gao et al., 2016), it is unclear which processes, associated
parametrizations, and actual parameter values are necessary for the
most suitable representation of the hydrological processes at any
given location, as recently demonstrated by Bouaziz et al. (2021)
and Gharari et al. (2021). This complicates the transfer of calibrated
models to ungauged locations.

Data-driven approaches such as deep learning (DL) algorithms,
in contrast, quantify the relations between meteorological input
and streamflow output directly from the data without any
further assumptions. Recently, the application of Long Short-
Term Memory (LSTM) architecture developed by Hochreiter and
Schmidhuber (1997) achieved high performance for streamflow
predictions across the US (Kratzert et al., 2018; Shen, 2018; Fang
et al., 2020; Gauch et al., 2021; Lees et al., 2021), outperforming
traditional conceptual/physical models (Kratzert et al., 2018; Mai
et al., 2022; Arsenault et al., 2023). In particular, LSTM show better
out-of-sample prediction when trained on large-sample datasets
including time series of streamflow observations (outputs) and
meteorological forcing (dynamic inputs) as well as catchment
characteristics (static inputs) (Kratzert et al., 2018; Shen, 2018; Lees
et al., 2021). It can be expected that a larger training catchment
variety yields more general applicability of the relationships
between meteorological input and streamflow at the catchment
outlet, an important precondition for PUB (Fang et al., 2022).
Indeed, from a machine learning perspective, PUB entails working
in a “zero-shot” regime, i.e., performing predictions with direct
transfer learning without explicit retraining on streamflow data
from the target catchment (Oreshkin et al., 2021).

Several studies tested the transferability of LSTM models
trained on multiple catchments to out-of-sample catchments to
evaluate the suitability of this approach for PUB. Kratzert et al.
(2019a) trained an LSTM model on catchments of various climate
zones in the US and achieved high NSE values for independent,
out-of-sample US catchments. Ayzel et al. (2020) reached similarly
good performance for out-of-sample testing in Russian catchments.
Ma et al. (2021) tested the global transferability of LSTM models
to catchments with limited streamflow data for recalibration. They
pre-trained an LSTM model on US catchments, fine-tuned it for
Chilean, British, and Chinese catchments based on short time series
of a few years, and achieved good prediction performance. Ma
et al. (2021), thereby, reveal indicators for hydrological similarity,
i.e., commonalities of hydrological behavior, across continents that
is detectable with LSTM models. However, their transfer strategy
always requires local forcing and streamflow data to fine-tune
(re-calibrate) it to the catchment of interest.

All the aforementioned studies resorted to local high
spatial resolution datasets for model development, which limit
their application to other regions of the world. Developing
LSTM models using global datasets may have the potential to
facilitate transferability to catchments worldwide, particularly
in regions where no high-resolution local datasets are
available. The overall objective of this study is thus to analyze
the potential of global datasets to train LSTM models for
streamflow prediction. Specifically, we develop LSTM models
with ERA5 meteorological data and HydroMT catchment
characteristics for over 500 US catchments, and we compare

their performance with LSTM developed with local datasets. To
further investigate the differences in predictive performances
between global and local datasets, we also trained mixed
LSTM models, where global meteorological forcing was
used as inputs along with local catchment characteristics and
vice-versa.

2. Materials and methods

We perform the analysis using the Multi-Timescale LSTM
(MTS-LSTM) (Gauch et al., 2021) architecture for catchments
across the US. The MTS-LSTM can predict streamflow at sub-
daily temporal resolution of interest for applications such as flood
prediction. We chose the global ERA5 reanalysis dataset as the
meteorological forcing dataset, as it was shown to have explanatory
power for hydrological predictions comparable to that of local in-
situ observations in an analysis for US catchments (Tarek et al.,
2020). Furthermore, ERA5 has a continuous coverage since 1970
and is available on an hourly basis, a prerequisite to serve as input
for the MTS-LSTM. We resort to the HydroMT tool to retrieve
global catchment characteristics (Eilander et al., 2023).

2.1. Data

2.1.1. Streamflow data
We have chosen 516 catchments with areas of <2000 km2

distributed across the United States, covering several climate zones
with more than three decades of daily streamflow observations.
These catchments are a subset of the Catchment Attributes and
Meteorology for Large-sample Studies (CAMELS) US dataset used
by Gauch et al. (2021). As the CAMELS-US dataset only includes
streamflow observations on daily time-steps, we use the streamflow
data from the United States Geological Survey (USGS) Water
Information System, pre-processed by Gauch et al. (2021) to hourly
and daily time-series over the period from 1 October 1980 to 30
September 2018.

2.1.2. Meteorological forcing
For the local model, we employ the North American Land

Data Assimilation System Phase 2 (NLDAS-2) local meteorological
dataset, which provides hourly data for 11 different forcing
variables from 1980 to 2018, with a spatial resolution of
approximately 12 km (i.e., 0.125 degree) (Xia et al., 2012).
NLDAS-2 precipitation is based on temporal disaggregation of
daily field observations supported with disaggregation-weights
derived from hourly radar precipitation estimates (Xia et al.,
2012). For the global model, we selected the ERA5 dataset.
The ERA5 dataset is the climate reanalysis (fifth generation)
of the European Centre for Medium-Range Weather Forecasts
(ECMWF), providing atmospheric variables with global coverage.
All variables are available from 1980 to 2018 (Hersbach et al., 2020).
ERA5 has a resolution of approximately 31 km (i.e., 0.25-degree)
and provides forcing time series at hourly time steps. Table 1 shows
all 11 forcing variables included in the NLDAS-2 and ERA5 datasets
and used in the subsequent analysis.

Frontiers inWater 02 frontiersin.org

https://doi.org/10.3389/frwa.2023.1166124
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Wilbrand et al. 10.3389/frwa.2023.1166124

TABLE 1 Forcing variables available from the local dataset NLDAS-2 and the global dataset ERA5.

ID Variable Unit ID Variable Unit

1 Total precipitation mm/h 7 Potential evaporation mm/h

2 2m air temperature K 8 Convective fraction -

3 Surface pressure Pa 9 10m u wind component m/s

4 Surface downward longwave radiation W/m2 10 10m v wind component m/s

5 Surface downward shortwave radiation W/m2
11

2m specific humidity (local)
2m dew point temp. (global)

kg/kg
K

6 Convective Available Potential Energy (CAPE) J/kg

Since ERA5 does not provide specific humidity, we replaced this input with dew point temperature for the global model. Due to the interrelationship between these variables, the time series of

NLDAS-2 specific humidity and ERA5 dew point temperature are highly correlated (Pearson’s correlation of >0.9 for the studied period).

2.1.3. Catchment characteristics
Catchment characteristics describe the physical properties of

each catchment. Their use yields as static inputs yield better
model predictions, also for unseen catchments (Kratzert et al.,
2019a; Yin et al., 2021). The CAMELS-US dataset provides a range
of catchment characteristics describing climate, topography, soil,
land, cover and streamflow (Addor et al., 2017). Although the
CAMELS-US dataset is spatially limited to the US, some attributes
are derived from datasets with global coverage. Nevertheless, we
refer to all attributes derived from CAMELS-US as local catchment
characteristics. To work on a global scale, we resort to the
HydroMT tool, which employs global raster datasets to derive equal
or similar attributes as those included in the local dataset (Eilander
et al., 2023).

Table 2 shows 21 characteristics we used as static inputs for
the LSTM models along with the underlying data sources, ordered
based on the model sensitivity reported by Kratzert et al. (2019a).
Some catchment characteristics are statistics derived from the
meteorological forcing, such as the average annual precipitation
or high precipitation frequency. While these dependent attributes
repeat information that is already included in the meteorological
forcing inputs, they are usually provided to the models due to
their high sensitivity. On the contrary, we excluded some attributes
related to soil composition which have been employed in the
study by Kratzert et al. (2019a) and other studies because they
could not be retrieved from HydroMT. These attributes have
relative low sensitivity, and they repeat information contained
in the Saturated Hydraulic Conductivity catchment characteristic.
This characteristic is determined with pedo-transfer functions in
HydroMT (Imhoff et al., 2020), while CAMELS-US reports the
estimates of multiple regression relying on sand and clay fractions
from the study by Cosby et al. (1984).

Regardless of the employed dataset, we compute 21 static inputs
from the characteristics by averaging their value over the entire
catchment area and over time. Although the characteristics from
local CAMELS-US and global HydroMT are broadly consistent
across the chosen 516 US catchments (see Supplementary Figure S1
in the Supplementary material), some characteristics exhibit
significant differences in their distributions, as shown in Figure 1.
For example, the distribution of annual maximum difference
in Green Vegetation (GVF; Figure 1A) is narrower for the
global attribute, derived from SPOT/VEGETATION satellite data
(Verger et al., 2014), compared with the local attribute, derived

from the 1km land-cover product from Moderate Resolution
Imaging Spectroradiometer (MODIS). Similar observations hold
for the maximum water content (Figure 1B), derived globally from
SoilGrids (Poggio et al., 2021) and locally from STATSGO (Miller
and White, 1998). The duration of high precipitation (Gauch
et al., 2021) is approximately one order of magnitude higher when
the underlying meteorological data come from the local dataset
compared with the global one (Figure 1C).

2.2. MTS-LSTM

We use the Multi-Timescale LSTM (MTS-LSTM) as
implemented in NeuralHydrology (Kratzert et al., 2022a). By
exploiting internal gates modeled with multi-layer perceptrons,
the LSTM is able to efficiently process long time series and
recognize interactions between input/output time series across
lags of unknown duration. Due to this refined memory function,
the LSTM can account for the meteorological conditions of
the entire preceding year for predicting streamflow. LSTM-
based streamflow prediction models can work with both
meteorological inputs evolving over time and static inputs such as
the characteristics describing the catchment conditions (Kratzert
et al., 2021).

The MTS-LSTM is an architecture incorporating two
LSTM that can concurrently work across different temporal
resolutions using multiple branches. The MTS-LSTM
employed in this study predicts streamflow at daily and
hourly resolutions, using year-long historical forcing as well
as hourly forcing recorded for the past 2 weeks (Gauch
et al., 2021). By choosing this model for our experiments,
we can test the global dataset for water management
applications requiring high-frequency predictions such as
flood forecasting.

The MTS-LSTM is trained to minimize a composite loss
that includes the basin-averaged Nash-Sutcliffe Efficiency
(NSE) (Kratzert et al., 2019b) at both daily (D) and hourly
(H) time scales, as well as regularization factor to favor
predictions that are consistent across timescales (Gauch
et al., 2021). The regularization factor enforces consistency
by penalizing solutions where daily and day-averaged hourly
predictions differ significantly. The MST-LSTM loss can be written
as follows:
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TABLE 2 Corresponding catchment characteristics from the local and global datasets used as static LSTM inputs, ordered by decreasing model

sensitivity (Kratzert et al., 2019a).

ID Catchment characteristic Unit
Source

(local dataset)

Source

(global dataset)

1 Mean precipitation mm/day Daymet ERA5

2 Aridity - Daymet ERA5

3 Area km2 USGS MERIT Hydro

4 Mean elevation m USGS MERIT Hydro

5 High precipitation duration days Daymet ERA5

6 Fraction of snow - Daymet ERA5

7 High precipitation frequency d/year Daymet ERA5

8 Mean slope m/km USGS MERIT Hydro

9 Geological permeability m2 GLHYMPS GLHYMPS

10
Fraction of carbonate

sedimentary rock
- GLiM GLiM

11
Mean Potential

Evapotranspiration (PET)
kg/m2/s Daymet ERA5

12 Low precipitation frequency d/year Daymet ERA5

13 Saturated hyd. conductivity mm/h STATSGO
soilgrids,

pedo-transfer functions

14 Low precipitation duration days Daymet ERA5

15
Maximum green

vegetation fraction (GVF)
- MODIS SPOT/VEGETATION

16 Annual GVF difference - MODIS SPOT/VEGETATION

17
Annual leaf area index

(LAI) difference
- MODIS MODIS

18 Volumetric porosity - STATSGO GLHYMPS

19 Soil depth m STATSGO soilgrids

20 Maximum LAI - MODIS MODIS

21 Maximum water content - STATSGO soilgrids

FIGURE 1

Distribution of static inputs for (A) annual green vegetation fraction di�erence, (B)maximum water content, and (C) high precipitation duration of all

516 US catchments, from local (cyan) and global (orange) datasets.
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(ŷTt − yTt )
2

(σb + ǫ)2






+

1

B

B
∑

b=1

1

ND
b

ND
b

∑

t=1

(
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where B represents the number of basins; NT
b
is the number of

samples for basin b at time scale τ ; yTt and ŷTt are the observed
and predicted streamflow values, respectively; σb is the observed
streamflow variance of basin b over the entire training period,
and ǫ is a small value to guarantee stability (Gauch et al., 2021).
The first term of Eq. 1 accounts for the NSE at daily and hourly
time scales, while second represents the mean squared difference
regularization term based on the predictions at daily (ŷDt ) and
hourly (ŷHt ) scales.

2.3. Clustering of catchments

To underpin the model comparison, we cluster the 516
US basins using both local and global catchment characteristic
datasets, with the k-means algorithm. The comparison allows
us to assess whether the global dataset describes the overall
catchments in an equivalent pattern to the local one. Additionally,
the models can be evaluated per catchment cluster to derive
the values for combinations of characteristics that indicate
good (or poor) performance. We perform the clustering
following the approach of Kratzert et al. (2019b), using the
analysis on the silhouette scores to identify the optimal number
of clusters.

2.4. Experiments

We develop the global model by training the MTS-LSTM
architecture with dynamic forcing from the global dataset ERA5
and static catchment attributes derived from global datasets via
HydroMT. We test the performance of this global approach
against a baseline MTS-LSTM trained using local dynamic datasets
NLDAS-2 and static CAMELS-US attributes, as done in the study
by Gauch et al. (2021). To separate the effects of global dynamic
and global static data on model performances, we train two hybrid
models where local counterparts replace either the former or
the latter dataset. In total, we develop four different MTS-LSTM
models with four different combinations of input data, summarized
as follows:

• Global Dynamic forcing, Global Static attributes (GDGS)
• Local Dynamic forcing, Local Static attributes (LDLS)
• Global Dynamic forcing, Local Static attributes (GDLS)
• Local Dynamic forcing, Global Static attributes (LDGS)

Regardless of the above input combinations, the dynamic and
static inputs fed to the LSTMmodels are concatenated at each time
step as done in the study by Gauch et al. (2021).

TABLE 3 Values tested for hyperparameter tuning of the MTS-LSTMs to

obtain the best model configurations on the validation dataset, later used

for testing.

Hyperparameter Values

Hidden size 32, 64, 128

Dropout 0.2, 0.4, 0.6

Epochs 30, 50

Batch size 256, 2048, 6000

Values in bold delivered best overall NSE results for GDGS and GDLS; in italic the best values

for LDLS and LDGS.

2.5. Datasets and model configuration

We use data from 1980 to 2018, split into three sets as follows: a
training set from 1October 1990 to 30 September 2003, a validation
set from 1 October 2003 to 30 September 2008, and a testing
set from 1 October 2008 to 30 September 2018. We obtained the
main set of optimal MTS-LSTM hyperparameters via grid-search
for the local and global models, as shown in Table 3. We selected
the remaining hyperparameters based on the study by Gauch et al.
(2021).

2.6. Performance evaluation

All models are evaluated on the NSE, which is a widely used
measure of performance for hydrologic models. For the general
assessment of each model, we determine the mean NSE of all 516
US catchments and visualize a Cumulative Density Function (CDF)
of the NSE values of all catchments. For flood-related applications,
it is important to determine the correct timing of peaks and
estimate their magnitude. To evaluate the performance regarding
peak flows, we computed the bias of the high flow segment in the
flow duration curve (FHV) (Yilmaz et al., 2008), the peak timing
and the peak magnitude error for the daily and hourly timescales.
The peak timing error is the mean of all absolute time differences
between observed and modeled peak flows and determined for
daily and hourly results with the same method as implemented
by Gauch et al. (2021). The peak magnitude error describes the
absolute and relative differences between the observed and the
simulated peaks.

3. Results and discussion

3.1. Catchment clustering

The k-means algorithm (see Section 3.1) yields seven clusters
for the local and eight clusters for the global dataset. The
distribution of catchment clusters across the US is shown in
Figure 2. Clusters show distinct geographical distribution, with
global dataset clustering yielding an additional cluster for the
West Coast catchments. For the remainder of the study, we
will refer to the cluster numbers identified based on the global
catchment dataset (clusters 1 to 8 in Figure 2B). Table 4 provides a
description of each cluster, the number of catchment of each cluster,
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FIGURE 2

A total of 516 US catchments clustered based on their characteristics derived from (A) the local and (B) the global static datasets.

as well as the most relevant catchment characteristics, including
topography, aridity, humidity, and vegetation cover. Annual and
seasonal cumulative precipitation values are similar for the local
and global meteorological datasets, apart from regional differences
up to 20% in Western US (see Supplementary Figures S2, S3 in
the Supplementary material). Higher deviations occur for daily
and hourly precipitation values. The global dataset smooths out
daily and hourly precipitation height and captures less small-scale
rainfall events due to the coarser resolution.

3.2. Comparison of local, global, and hybrid
MTS-LSTM models

Figure 3 reports the cumulative distribution of NSE values
for all four models for daily (Figure 3A) and hourly (Figure 3B)
streamflow predictions. Regardless of the timescale, the results
show a performance drop for approximately 80% of the US
catchments when using global dynamic forcing. These lower
performances are due to the lower spatial resolution of ERA5
compared with NLDAS-2. Table 5 shows median NSE values
dropping from 0.71 of the LDLS model to 0.54 for GDGS. In
addition to the NSE performances, Table 5 compares median peak
timing and peak height metrics of LDLS and GDGS models. The
local model scores higher for all high flowmetrics. The peak timing
error is smaller (0.39 days vs. 0.45 days and 4.4 h vs. 4.9 h), and
the magnitude of peaks is closer to the observed height model
(5.77 mm/d vs. 7.75 mm/d and 0.24 mm/h vs. 0.28 mm/h). On
the contrary, the model performance is not significantly different
when using global compared with local catchment characteristics
(LDLS vs. LDGS and GDGS vs. GDLS), which can be seen by
the overlap of the cumulative density functions. This occurs for
both daily and hourly streamflow predictions. Thus, the differences
between local and global catchment characteristics do not influence
model performance. This occurs regardless of differences in the
distribution of individual characteristics (see Figure 1), as well as
the omission of soil characteristics from the static model input as
they are respected in the calculation of the hydraulic conductivity
(see Section 2.1.3).

3.3. Spatial analysis of model performances

Figure 3 shows that the cumulative NSEs of both GDGS
and GDLS models cross that of local models for NSE values
of approximately 0.8, for both daily and hourly timescales.
Figures 4, 5 provide further insights by comparing LDLS and
GDGS performances spatially on the US map and individually
(e.g., catchment by catchment). The spatial pattern of NSE values
from LDLS resembles the distribution in the study by Gauch et al.
(2021). Highest NSE values are found for the mountainous regions
in the West Alpine Highlands (cluster 4), the Marine Westcoast
(cluster 7), and North-Western US (cluster 8). Here, the GDGS
outperforms the local models with cluster median daily NSE scores
of 0.81, 0.86, and 0.84 against the lower 0.68, 0.81, and 0.80 of the
LDLS (see Figure 6A). Similar results can be observed for hourly
NSEs (Figure 6B), as well as for peak flow metrics such as FHV
(Figures 6C, D). In the Eastern US, the LDLS performs better than
the GDGS, with median daily NSEs of 0.57 vs. 0.40 for cluster 1
and 0.72 vs. 0.54 for cluster 3. Our results reflect those of the study
by Tarek et al. (2020), showing a lumped conceptual hydrological
model performing worse with ERA5 (our global dataset) compared
with a local input dataset for the Eastern US. A main difference
with respect to North-Western US is the seasonally changing
vegetation cover, which subsequently demarks regions where the
global dataset does not capture the meteorological conditions as
precisely as the local dataset. Tarek et al. (2020) also stress that
the lower performance of ERA5 in this area may result from
the higher density network, favoring dynamic forcing based on
observations (such as NLDAS-2). In the arid catchments of the
Great Central Plains, NSE values are low for both models (cluster
2: NSE of 0.40 of LDLS vs. 0.16 of GDGS). Along with overall
sparse precipitation and sudden extreme rainfall events, the long
dry periods complicate the learning process for an LSTM model,
and predictions of streamflow become unreliable (Gauch et al.,
2021). Additionally, the global dataset misses individual small-scale
rainfall events that have higher importance in very dry regions
compared with humid regions.

Overall, we observe that the global models yield highest NSE
values for most catchments of Western and North-Western US
(clusters 4, 6, 7, and 8), with a combined median daily NSEs of
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TABLE 4 Description of clusters build on global catchment characteristics (see map in Figure 2B).

Cluster
No.

basins
Notable characteristics

Geographical region /

climate zone

1 55

High soil porosity, high mean PET and

shortest high precipitation duration,

least snow, large catchments in lowlands.

Subtropical South-Eastern

Lowlands

2 65
Largest and flattest catchments,

lowest soil conductivity.
Great Central Plains

3 192
High GVF and GVF difference during the year,

same for LAI, 10% of annual precipitation as snow.
Continental West US

4 61

Smallest catchments in alpine mountain zones,

low GVF and GVF difference during the year,

highest snow occurrence (38%).

West Alpine Highlands

5 54
Highest fraction of carbonate rocks,

lowest soil porosity, lowlands.
Lower Midwest US

6 14

Lowest GVF and LAI, lowest mean prec.

and high mean PET (highest aridity index),

little snow, small catchments in montane regions.

Mediterranean California

7 47

Small and steep catchments, highest mean prec.,

highest GVF, highest soil conductivity,

10% of annual precipitation as snow,

montane/foothill regions.

Marine Westcoast,

Montane Forest

8 28

Highest amount for high precipitation events

combined with longest duration, 10% of annual

precipitation as snow, montane regions.

North-Western

Montane Forest

FIGURE 3

CDF of NSE for daily (A) and hourly results (B) of test-period for all LSTM-based models (516 catchments). The red vertical line indicates the turning

point where the models trained using global dynamic forcing (GDGS and GDLS) and outperform those trained with local dynamic forcing (LDLS and

LDGS). The gray horizontal lines demark accumulation of 50% of all catchments.

0.83 for GDGS vs. 0.78 for LDLS. These are mainly humid, surface-
runoff dominated, mountainous regions, and alpine highlands such
as in North-Western US. The climatology for this region has

shown largest differences between local and global precipitation
compared with all other US catchments (see Section 3.1). Although
local ground observations tend to underestimate precipitation in
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FIGURE 4

Spatial visualization of NSE for daily (A–C) and hourly (D–F) streamflow predictions: LDLS (A, D), GDGS (B, E), and their di�erence (C, F).

mountainous regions due to combinations of wind effects and
snowfall, the local model performs worse. Additionally, satellite
products, such as ERA5 global dataset used here, are known to
often be too coarse to capture the thermal effects of mountains and
thus misinterpret precipitation intensities (Rasmussen et al., 2012).
Nevertheless, the global dataset yields better model performances
in these mountainous regions. With respect to the catchment
features, Figure 7 shows that GDGS performs well for catchments
that are steep, with rarely occurring low precipitation, and high-
saturated hydraulic conductivity. Further insights into the effects of
catchment characteristics are available in Supplementary Figure S4
of the Supplementary material.

4. Conclusion

To develop a hydrological DL model applicable for PUB across
the globe, we require an approach that relies on meteorological

time-series inputs and catchment characteristics that have identical
physical meaning and identical derivation methods for all
catchments worldwide. This entails working with time-series from
one coherent global dataset, as well as catchment characteristics
derived from global datasets. In this study, we performed a
preliminary assessment on the suitability of a global MTS-LSTM
model trained with global dynamic forcing datasets ERA5 and
global static catchment characteristics retrieved by HydroMT
(GDGS). We compared this global model with an MTS-LSTM
trained on local datasets (LDLS) with state-of-the-art performances
(Gauch et al., 2021). On average, our results show that the global
model underperforms the local one. Nevertheless, the global model
clearly outperforms the local model for catchments in Western and
North-Western US, especially for NSE>0.8.

Our extensive analysis including hybrid models GDLS and
LDGS showed that changing the source dataset for the catchment
characteristics from local to global did not affect the model
performance significantly. We, therefore, suggest that an in-depth

Frontiers inWater 08 frontiersin.org

https://doi.org/10.3389/frwa.2023.1166124
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Wilbrand et al. 10.3389/frwa.2023.1166124

research on the choice of relevant catchment characteristics
can be beneficial to clarify the influence of different types of
characteristics as follows: a) those derived from the meteorological

FIGURE 5

Comparison of individual catchment NSE values of LDLS and GDGS.

Colors indicate catchment clusters (see Table 4). Catchments with

negative NSE are not shown here.

forcing like mean precipitation and PET; b) those redundantly
represented like the soil composition in the saturated hydraulic
conductivity; or c) those with extremely different distributions
when derived from different datasets such as the GVF fromMODIS
vs. SPOT/VEGETATION. The performance differences between
the local and global models originate from the meteorological
inputs. We observed the global model outperforming for surface-
runoff dominated catchments in humid climate and mountainous
regions.

Based on our catchment clustering, catchments with matching
characteristics can be identified worldwide. The next step is, then,
to test how well the global model performs in gauged catchments
outside of the US, similar to those high-performing clusters. These
should be treated as ungauged (i.e., pretending no streamflow
observations exist) and compared with other models suitable for
PUB.

Furthermore, we expect to obtain a more powerful global
model, with higher general validity when including data from
other continents in the training. This is particularly true for the
prediction of extreme events, which requires including high return
period events in the training to achieve better extrapolation (Frame
et al., 2022).We can identify a higher number of gauged catchments
exposed to extreme events by widening the geographical coverage.

The global forcing dataset results in a performance drop for

catchments in the Eastern US, probably caused by dampened

representation of seasonality in the meteorological forcing (Tarek

FIGURE 6

Boxplots of daily (A, C) and hourly (B, D) value of NSE and FHV for all catchments and models.
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TABLE 5 Median metrics for local and global models. Best values per timescale in bold.

Timescale Model NSE NSE<0 FHV Peak-Timing
Abs, peak

height error

Rel. peak

height error

#basins [d] or [h] [mm/d] or [mm/h] [%]

Daily LDLS 0.71 20 −15 0.39 5.77 0.41

GDGS 0.54 31 −21 0.45 7.75 0.53

Hourly LDLS 0.68 28 −12 4.4 0.24 0.46

GDGS 0.5 36 −21 4.9 0.28 0.53

FIGURE 7

NSE of GDGS with respect to catchment characteristics. The results on daily timescale for catchments with NSE>0: (A) mean slope, (B) low

precipitation frequency, and (C) saturated hydraulic conductivity. Colors indicate to catchment clusters. The plots also show regression line and

correlation coe�cient r. Plots for all 21 catchment characteristics in Supplementary Figure S1 of the Supplementary material.

et al., 2020). Therefore, for future studies, we suggest testing other

meteorological datasets [or combination of them, see Kratzert

et al. (2021)], with hourly temporal resolution as input for a

global model. The alternative datasets should be of higher spatial
resolution than ERA5, as most catchments included in our study
had an area smaller than a grid-cell of the global dataset (31x31km).
One option is the MSWEP dataset with an 11x11km grid, identified
as the best openly accessible global precipitation dataset (Beck et al.,
2019).

Another promising global forcing dataset is the EM-Earth

dataset, recently published by Tang et al. (2022) and based on in-

situ observations combined with ERA5 data. The advantages of
ERA5 are the back-extension until 1950 and the upcoming release

of future scenarios, which could potentially be transferred to the

EM-Earth dataset and enable extensive studies on climate effects
over multiple decades. However, another option is provided by

the newly released Caravan global community dataset (Kratzert
et al., 2022b), which is designed to facilitate the development of

global models. Caravan consists of global dynamic forcing based
on ERA5 Land, catchment characteristics based on HydroATLAS,
and streamflow data from multiple regional discharge datasets.

Regardless of the chosen global forcing dataset, it is
crucial to acknowledge that their dependability differs across
various regions of the world. Consequently, additional efforts
are required to validate streamflow predictions derived from
global input time series. However, we expect significant future

improvements in the reliability of global datasets, mainly due to
increased satellite density and advanced data merging algorithms,
which combine a diverse range of sources including Low-
Earth Orbit and Geosynchronous Equatorial Orbit satellites,
numerical weather prediction models, and in-situ observations
(Sun et al., 2018).
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