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Background: We investigated the association between leukocyte telomere length,
mitochondrial DNA copy number, and endothelial function in patients with aging-
related cardiovascular disease (CVD).
Methods: In total 430 patients with CVD and healthy persons were enrolled in the
current study. Peripheral blood was drawn by routine venipuncture procedure.
Plasma and peripheral blood mononuclear cells (PBMCs) were collected. Cell-free
genomic DNA (cfDNA) and leukocytic genomic DNA (leuDNA) were extracted from
plasma and PBMCs, respectively. Relative telomere length (TL) and mitochondrial
DNA copy number (mtDNA-CN) were analyzed using quantitative polymerase chain
reaction. Endothelial function was evaluated by measuring flow-mediated dilation
(FMD). The correlation between TL of cfDNA (cf-TL), mtDNA-CN of cfDNA (cf-
mtDNA), TL of leuDNA (leu-TL), mtDNA-CN of leuDNA (leu-mtDNA), age, and FMD
were analyzed based on Spearman’s rank correlation. The association between cf-
TL, cf-mtDNA, leu-TL, leu-mtDNA, age, gender, and FMD were explored using
multiple linear regression analysis.
Results: cf-TL positively correlated with cf-mtDNA (r=0.1834, P=0.0273), and leu-TL
positively correlated with leu-mtDNA (r=0.1244, P=0.0109). In addition, both leu-TL
(r=0.1489, P=0.0022) and leu-mtDNA (r=0.1929, P <0.0001) positively correlated
with FMD. In a multiple linear regression analysis model, both leu-TL (β=0.229, P=
0.002) and leu-mtDNA (β=0.198, P=0.008) were positively associated with FMD.
In contrast, age was inversely associated with FMD (β=−0.426, P <0.0001).
Conclusion: TL positively correlates mtDNA-CN in both cfDNA and leuDNA. leu-TL
and leu-mtDNA can be regarded as novel biomarkers of endothelial dysfunction.
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Introduction

Current trends in life expectancy and concomitant

demographic change (1) are leading to an ever-increasing

number of patients suffering from aging-related disease (ARD),

in which, cardiovascular disease (CVD) remains the major cause

of death in the elderly population worldwide (2). The dominant

cause of aging-related CVD is atherosclerosis (AS), which refers

to the pathological process in that intimal lipids and fibrous

elements encroach on the lumen of large arteries (3). In this

context, an accumulating body of research has highlighted that

cellular senescence in AS are characterized by telomere attrition

(4) and mitochondrial DNA depletion (5).

Indeed, telomeres and mitochondria play critical roles in

premature biological aging (6) and aging-related CVD (7). More

precisely, a telomere is a specific region of repetitive nucleotide

sequences associated with specialized proteins at the termini of

linear chromosomes. Telomeres protect the genome from

nucleolytic degradation and interchromosomal fusion, thereby

ensuring the integrity of linear chromosomes (8). Telomere

attrition occurs during each DNA replication and ultimately

triggers the senescence and apoptosis in cells. Therefore, telomere

length (TL) has been considered a biological marker of aging

(9–11). In terms of CVD, although atherosclerotic lesion

develops focally, it usually results in chronic systemic

inflammation, which increases the turnover and biological age of

vascular cells (10) and circulating cells (12). Therefore, TL can be

regarded as an individual prognostic marker for cardiovascular

risk prediction (13).

A mitochondrion is a double-membrane-bound organelle,

which can be found in most eukaryotic organisms. Mitochondria

generate the majority of adenosine triphosphate (ATP) during

aerobic respiration, thereby playing a critical role in cellular

energy production (14). ARD is attributed to the deleterious

effects of reactive oxygen species (ROS) on various cell

components (15). Since the majority of ROS are generated by the

mitochondrial electron transport chain (16), mitochondrial DNA

is more prone to damage by ROS (17). Thus, the free radical

theory was refined as the mitochondrial theory of ageing (15).

Likewise, recent studies show that mitochondrial DNA damage

widely occurs in both the vascular and circulating cells (5).

Therefore, mitochondrial DNA copy number (mtDNA-CN) can

be also regarded as an individual prognostic marker for

cardiovascular risk prediction (18).

Endothelial function reflects the production of endothelium-

derived factors that regulate cardiovascular homeostasis, such as

vascular tone, blood flow and blood pressure (19). In contrast,

endothelial dysfunction (ED) is a systemic pathological state

characterized by imbalanced vasodilation and vasoconstriction

of the endothelium (20). There is no doubt that AS is the

leading cause of CVD (3), yet, numerous studies have shown

that ED precedes the angiographic or ultrasonic evidence of AS

in aging-related CVD (21, 22). It has been shown that ED

accompanies multifactorial endothelial aging (23, 24). Beyond
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that, both telomeres and mitochondria may be essential for the

key aspects of endothelial function (25, 26). Yet, the

association between TL, mtDNA-CN and endothelial function

is still unclear.

In this regard, flow-mediated vasodilatation (FMD) is the most

widely used non-invasive approach for assessment of endothelial

function by measuring the ability of the arteries respond to

endothelium-derived nitric oxide (NO) during reactive

hyperemia. NO-dependent vasodilation can be quantified as an

index of vasomotor (endothelial) function. Furthermore, both

circulating cell-free DNA and peripheral blood mononuclear cells

(PBMCs) are widely used in aging research as they have

reasonable prognostic or diagnostic potential (27, 28). Cell-free

DNA is the fragmented double-strand DNA released from dying

cells in circulating blood (29). In contrast, PBMCs consist of

lymphocytes and monocytes, which are subsets of leukocytes

(30). In this study, we analyzed TL and mtDNA-CN from both

cell-free and leukocytic genomic DNA, and investigated the

potential relationships between TL, mtDNA-CN and endothelial

function in aging-related CVD.
Materials and methods

Study population

The WalkByLab registry (www.walkbylab.com) is an ongoing

CVD screening trial. It aims to screen, diagnose and follow up

patients with CVD in the non-metropolitan areas of the federal

state of Brandenburg, Germany. A structured multimodal risk

factor management standard has been set for measurement and

assessment of vascular function in the WalkByLab (31). More

than 1,000 participants have been examined in the WalkByLab

subcenter of Brandenburg (University Clinic Brandenburg)

from June 2018 to December 2022. Here, blood samples of 430

participants were randomly selected and used for the current

study.
Isolation of plasma and peripheral blood
mononuclear cells

Around 6 ml of peripheral blood were collected in the BD

Vacutainer EDTA Blood Collection Tube (Becton Dickinson).

Then, blood was transferred into a 50-ml conical centrifuge tube,

an equal volume of 1 × PBS was added and mixed gently. Diluted

blood was slowly layered onto the Ficoll-Paque density gradient

media (GE Healthcare) at a ratio of 4:3, and centrifuged 25 min

at room temperature (400 × g without brake). The upper layer of

plasma was collected and immediately frozen at −80°C until

genomic DNA extraction. The mononuclear cell layer was

transferred into a new conical centrifuge tube and centrifuged

10 min at 450 × g. Supernatant was removed, the cell pellet was

vortexed immediately after adding 1.5 ml erythrocyte lysis buffer
frontiersin.org

http://www.walkbylab.com
https://doi.org/10.3389/fcvm.2023.1157571
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Li et al. 10.3389/fcvm.2023.1157571
(PAN Biotech GmbH), and then incubated in the dark at room

temperature for 15 min. After washing with PBS, the cell pellet

was immediately frozen at −80°C until genomic DNA

extraction.
Cell-free and leukocytic genomic DNA
extraction

For cell-free genomic DNA (cfDNA) extraction, 2 ml frozen

plasma was thawed and centrifuged at room temperature for

10 min (20,000 × g) to remove cell debris. cfDNA was extracted

by using QIAamp DNA Blood Mini Kit (Qiagen). For leukocytic

genomic DNA extraction, frozen PBMCs pellet including 1 × 106

cells was thawed in 1 ml PBS at room temperature. Leukocytic

genomic DNA (leuDNA) was extracted by using the DNeasy

Blood & Tissue Kit (Qiagen). Quantitative analysis of genomic

DNA (gDNA) was performed by using the NanodropTM

Microvolume Spectrophotometer (Thermo Fisher Scientific).

cfDNA and leuDNA were further diluted to final concentrations

of 1 ng/µl and 10 ng/µl, respectively.
Analyses for telomere length and
mitochondrial DNA copy number

For quantitative polymerase chain reaction (qPCR)

amplification of cfDNA template, each reaction system contained

25 µl gDNA, 2 µl primer working solution, and 25 µl

PowerTrackTM SYBR Green Master Mix (Thermo Fisher

Scientific). For qPCR amplification of leuDNA template, each

reaction system contained 5 µl gDNA, 1 µl primer working

solution, 4 µl RNase/DNase-free water and 10 µl PowerTrackTM

SYBR Green Master Mix (Thermo Fisher Scientific). 60 cycles of

a two-step qPCR were performed. All of primers used in this

study were synthesized by the Eurofins Genomics Germany

GmbH. Primer sequences are shown in Table 1.

Telomere length (TL) was expressed as telomeric DNA

(teloDNA) relative to acidic ribosomal phosphoprotein PO

(36B4), 36B4 is a single copy gene and serves as internal

reference. Here, TL was calculated according to the formula:

TL = 2−ΔCT, ΔCT = CTteloDNA−CT36B4. Similarly, mitochondrial

copy number (mtDNA-CN) was expressed as mitochondrial

DNA relative to a single copy gene β2 microglobulin (B2M),

B2M is a single copy gene and serves as internal reference.

Here, mtDNA-CN was calculated according to the formula:

mtDNA-CN = 2 × 2−ΔCT, and ΔCT = CTmtDNA−CTB2M. Data
TABLE 1 List of qPCR primers sequences.

Gene Forward
TELO GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGG

36B4 CAGCAAGTGGGAAGGTGTAATCC

MITO CACTTTCCACACAGACATCA

B2M TGTTCCTGCTGGGTAGCTCT

TELO, telomeric DNA; 36B4, acidic ribosomal phosphoprotein PO; MITO, mitochondr
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were expressed as a relative level by normalizing against mean

value.
Evaluation of endothelial function by
flow-mediated dilation

Endothelial function was evaluated by measuring FMD

using AngioDefenderTM system (Everist Health). The

AngioDefenderTM enables automatic and non-invasive

measurement of brachial FMD. In brief, a proprietary software

algorithm was used to analyze the high resolution continuous

electrocardiogram-gated B-mode ultrasound imaging during

reactive hyperemia in brachial artery. The equivalence of

FMD determined by the AngioDefenderTM and the

classical ultrasound or Doppler flow based analysis has been

verified (32).
Statistical analysis

All statistical analyses were performed by using IBM SPSS26 or

R language. Clinical characteristics were given as mean ± standard

deviation (SD), relative TL and mtDNA-CN were given as mean ±

standard error of the mean (SEM). Correlation between variables

was analyzed using Spearman’s correlation coefficient. Three

multiple linear regression analysis models (stepwise method)

were used to investigate the relationship between major variables.

P≤ 0.05 was considered to indicate statistical significance.
Results

Clinical characteristics

The mean age of 430 participants was 68.9 years. Specifically, 8

(1.9%) participants were between the age of 25 and 44 years

(young age). 58 (13.5%) participants were between the age of 45

and 59 years (middle age). 226 (52.6%) participants were

between the age of 60 and 74 years (elderly age). 138 (32.1%)

participants were between the age of 75 and 89 years (senile age),

respectively.

The mean FMD of 430 participants was 7.07 (±2.50) %.

Specifically, the FMD of 111 participants were less than or equal

to 5.50% (endothelial dysfunction), mean (±SD): 4.04 (±0.99) %.

The FMD of 318 participants were more than 5.50% (normal

endothelial function), mean (± SD): 8.13 (± 1.95) %. All other

clinical characteristics are presented in Table 2.
Reverse
T TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA

CCCATTCTATCATCAACGGGTACAA

TGGTTAGGCTGGTGTTAGGG

CCTCCATGATGCTGCTTACA

ial DNA; B2M, Beta-2-Microglobulin.
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Flow-mediated dilation inversely correlates
with age

First, we analyzed the correlation between cf-TL, cf-mtDNA, leu-

TL, leu-mtDNA, FMD, and age. Here, a significant inverse correlation

existed between cf-mtDNA and age (r =−0.2207, P = 0.0031)

(Figure 1B). Besides, cf-TL slightly positively correlated with age

(Figure 1A), while both leu-TL and leu-mtDNA inversely correlated

with age (Figures 1C,D). However, these results were without any

statistical significance. Furthermore, a significant inverse correlation

existed between FMD and age (r =−0.4085, P < 0.0001) (Figure 1E).
Telomere length positively correlates with
mitochondrial DNA copy number in both
cell-free and leukocytic genomic DNA

Then, we analyzed the correlation between cf-TL, cf-mtDNA,

leu-TL, and leu-mtDNA. Here, cf-TL positively correlated with
TABLE 2 Clinical characteristics.

Characteristics n (%)
Male 221 (51.4%)

Smoking 165 (38.4%)

CAD 168 (39.1%)

PAD 174 (40.5%)

CeVD 44 (10.2%)

Hypertension 307 (71.4%)

DM 85 (19.8%)

MI 61 (14.2%)

HF 136 (31.6%)

RI 67 (15.6%)

Aspirin 177 (41.2%)

P2Y12i 51 (11.9%)

Anticoagulants 85 (19.8%)

ACEis 129 (30.0%)

ARBs 138 (32.1%)

β-blockers 194 (45.1%)

CCB 120 (27.9%)

Diuretics 129 (30.0%)

Digitalis 8 (1.9%)

Statins 222 (51.6%)

Antidiabetics/Insulins 71 (16.5%)

CAD, coronary artery disease; PAD, peripheral arterial disease; CeVD.

cerebrovascular disease; DM, diabetes mellitus; MI, myocardial infarction; HF,

heart failure; RI, renal insufficiency; P2Y12i, P2Y12 inhibitors; ACEis, angiotensin-

converting enzyme inhibitors; ARBs, angiotensin II receptor blockers; CCBs,

calcium channel blockers.

TABLE 3 Multiple linear regression analyses between leu-TL, leu-mtDNA, and

Variables Model 1

β SE P β
leu-TL 0.239 0.148 <0.0001 –

leu-mtDNA – – – 0.188

Age −0.419 0.013 <0.0001 −0.369

Model 1: variables consisted of leu-TL, cf-TL, age, and gender (male). Model 2: variabl

consisted of leu-TL, cf-TL, leu-mtDNA, cf-mtDNA, age, and gender (male). SE, standa
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cf-mtDNA (r = 0.1834, P = 0.0273) (Figure 1F). Similarly, leu-TL

positively correlated with leu-mtDNA (r = 0.1244, P = 0.0109)

(Figure 1G). Besides, positive correlations existed between cf-TL

and leu-TL, and also, between cf-mtDNA and leu-mtDNA

(Figures 1H,I). However, a significant difference was not

reached. In addition, there was a significant inverse correlation

between cf-mtDNA and leu-TL (r =−0.1548, P = 0.00396)

(Figure 1K).
Leukocyte telomere length and
mitochondrial DNA copy number positively
correlate with flow-mediated dilation

Finally, we analyzed the correlation between cf-TL, cf-mtDNA,

leu-TL, and leu-mtDNA, with FMD. Here, both leu-TL (r = 0.1489,

P = 0.0022) and leu-mtDNA (r = 0.1929, P < 0.0001) positively

correlated with FMD (Figures 1N,O). Although both cf-TL and

cf-mtDNA positively correlated with FMD, no significant

difference was reached (Figures 1L,M).
Multivariate correlates of flow-mediated
dilation

Adjusted covariates in model 1 consisted of cf-TL, leu-TL, age

and gender (male). Here, leu-TL was positively associated with

FMD (β = 0.239, SE = 0.148, P < 0.0001), while age was inversely

associated with FMD (β =−0.419, SE = 0.013, P < 0.0001).

Variates of cf-TL and gender (male) were excluded in this

stepwise model (Table 3 and Figure 2A).

Adjusted covariates in model 2 consisted of cf-mtDNA, leu-

mtDNA, age and gender (male). Here, leu-mtDNA was positively

associated with FMD (β = 0.188, SE = 0.350, P = 0.007), while age

was inversely with FMD (β =−0.369, SE = 0.015, P < 0.0001).

Variates of cf-mtDNA and gender (male) were excluded in this

stepwise model (Table 3 and Figure 2B).

Adjusted covariates in model 3 consisted of cf-TL, leu-TL,

cf-mtDNA, leu-mtDNA, age and gender (male). Here, both

leu-TL (β = 0.229, SE = 0.195, P = 0.002) and leu-mtDNA (β =

0.198, SE = 0.394, P = 0.008) were positively associated with

FMD. Again, age was inversely associated with FMD (β =

−0.426, SE = 0.016, P < 0.0001). Variates of cf-TL, cf-mtDNA

and gender (male) were excluded in this stepwise model

(Table 3 and Figure 2C).
age with FMD.

Model 2 Model 3

SE P β SE P
– – 0.229 0.195 0.002

0.350 0.007 0.198 0.394 0.008

0.015 <0.0001 −0.426 0.016 <0.0001

es consisted of leu-mtDNA, cf-mtDNA, age, and gender (male). Model 3: variables

rd error.
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FIGURE 1

Correlation analyses. (A-E) Correlation analyses between cf-TL, cf-mtDNA, leu-TL, leu-mtDNA, FMD, and age. (F-K) Correlation analyses between cf-TL,
cf-mtDNA, leu-TL, and leu-mtDNA. (L-O) Correlation analyses between cf-TL, cf-mtDNA, leu-TL, leu-mtDNA, and FMD.

Li et al. 10.3389/fcvm.2023.1157571
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FIGURE 2

Multiple linear regression analyses. (A) Multiple linear regression analysis between leu-TL, age, and FMD. (B) Multiple linear regression analysis between
leu-mtDNA, age, and FMD. (C) Multiple linear regression analysis between leu-TL, leu-mtDNA, age, and FMD.

Li et al. 10.3389/fcvm.2023.1157571
Discussion

First of all, our results showed that FMD inversely correlated

with age in the patients with CVD. Consistent with our results,

numerous studies have shown that FMD declines with age,

which is an independent determinant of endothelial function

(33–36). The endothelium is one of the largest human organs by

area alone, and it interacts with nearly every system in the body

(37). It is well accepted that age steadily impairs endothelial

function through downregulating endothelial nitric oxide

synthase (NOS) expression, inhibiting of NOS activity, and

increasing NO degradation (38). Although the pathophysiology

of age-dependent ED has not been fully revealed, a cause-and-

effect relationship between diminished NO and ED has been

confirmed (39, 40).

In addition, our results also indicate that both leu-TL and leu-

mtDNA inversely correlate with age, yet a significant difference was

not reached. One possible explanation could be that much more

elderly aged participants than young and middle aged

participants were recruited in this study. In fact, age-associated

telomere attrition is a generally accepted finding based on

numerous studies. In this regard, Nordfjäll et al. observed an

age-related blood cell TL attrition with an interval of one-decade

from 959 individuals (41). Spyridopoulos et al. demonstrated that

leu-TL correlated with the progress of CVD, and it can be shown

in all leukocyte populations, including peripheral blood stem cells

and progenitor cells (42). Furthermore, Lee et al. reported that

PBMC telomere fluorescence intensity was significantly decreased

with age in healthy cynomolgus monkeys (43).

With regard to mtDNA-CN, Mengel-From et al. observed a

tendency of fewer PBMC mtDNA-CN with aging by analyzing

1,067 subjects from a Danish cohort study (44). Furthermore,

Foote et al. reported that arterial mtDNA-CN decreased with

aging in mice (45). Indeed, because mtDNA is the major target

of aging-associated mutation, age independently affects mtDNA-

CN (46) and mitochondrial function (47).

Beyond that, an unexpected result was that cf-mtDNA

inversely correlated with age. Here, it is well known that

cf-mtDNA fragments are released extracellularly when
Frontiers in Cardiovascular Medicine 06
dysfunctional mitochondria are accumulated in senescent cells

(48). Therefore, cf-mtDNA fragments can be regarded as an

aging biomarker (49). In this regard, Pinti et al. demonstrated

that cf-mtDNA and proinflammatory cytokines increased

gradually with age, which suggested that cf-mtDNA acts as the

damage-associated molecular pattern in this context (50, 51).

Furthermore, Ampo et al. demonstrated that cf-mtDNA was

significantly increased in frail elderly subjects (52). However,

these results are in contrast with our finding from the current

study, the mechanism is still unclear.

This study showed a significant positive correlation between TL

and mtDNA-CN in both cell-free and leukocyte genomic DNA. To

the best of our knowledge, it is the first time to characterize the

intimate relationship of TL and mtDNA-CN in patients with

CVD. Specifically, higher levels of leu-TL and leu-mtDNA may

indicate physiological condition or a compensation stage (11),

while higher levels of cf-TL and cf-mtDNA may indicate

pathological condition or a decompensation stage (50, 53). Here,

a mounting number of studies have been performed to provide

evidence that TL and mtDNA are coordinately regulated (54–57).

Furthermore, co-regulation of telomeres and mitochondria play

an important role in the pathophysiology process of chronic

diseases and senescence (58, 59). Indeed, the interplay between

telomeres and mitochondria was confirmed in recent studies

(60). Therefore, the “telomere-mitochondrial axis” was proposed

(61), which may serve as a target of molecular damage in aging

(62) (Figure 3).

On the one hand, mitochondrial dysfunction leads to telomere

attrition (63). During aging, damaged mitochondria produce

indiscriminate amounts of ROS, which is known to cause

irreversible damage to DNA by oxidizing cellular constituents

(64). As a consequence, the normal redox signaling is disrupted

and oxidative stress occurs (65). Accordingly, ROS also

damages telomeric DNA. It has been shown that telomere

attrition is largely caused by the repair inefficiency of a specific

telomeric DNA single-strand (66). Therefore, mitochondrial

dysfunction contributes to telomere attrition (67, 68). Here,

Sanderson et al. demonstrated that telomere attrition in CD8+ T

cells was suppressed by a ROS scavenger (67). Besides, Liu et al.
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FIGURE 3

Vicious cycle between telomere attrition, mitochondrial dysfunction, and endothelial dysfunction. The p53 protein is a transcription factor responsible for
preserving genomic integrity (69). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a transcription factor responsible
for regulating mitochondrial biogenesis (70). In the case of telomere attrition, p53 inhibits PGC-1α, thereby leading to mitochondrial dysfunction. Vice
versa, mitochondrial-derived ROS causes telomeric DNA damage, thereby leading to telomere attrition (61, 71). Telomerase reverse transcriptase
(TERT) is the catalytic subunit of telomerase. In response to ROS, TERT is exported from the nucleus. In mitochondria, TERT binds to and protects
mtDNA, thereby improving electron transport chain function and reducing ROS generation (72). On the other hand, excessive ROS suppresses the
production of bioactive NO levels, but increases the production of by toxic peroxynitrite. Peroxynitrite uncouples endothelial NOS to form a
dysfunctional superoxide-generating enzyme (73). Taken together, both NO inactivation and NOS uncoupling are enrolled in endothelial dysfunction
(74). The Figures were partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported
license.

Li et al. 10.3389/fcvm.2023.1157571
demonstrated that telomere attrition in murine embryos was

prevented by an antioxidant (68).

The other way around, telomere attrition leads to mitochondrial

dysfunction (63). Mitochondrial content is regulated by

mitochondrial biogenesis and mitophagy (75). Since mitochondria

are sensitive to environmental cues, mitochondrial biogenesis could

also be repressed due to telomere damage (59, 71). Telomere

attrition induces DNA damage (6, 76, 77), thereby decreasing

mtDNA-CN, while increasing ROS (6), which in turn damages

both telomeres and mitochondria (59, 71). In addition, it has been

known that p53 protein is a transcription factor responsible for

preserving genomic integrity (69), and peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α) is a

transcription factor responsible for regulating mitochondrial

biogenesis (70). In the case of telomere attrition, p53 inhibits

PGC1α, thereby leading to mitochondrial dysfunction.

Furthermore, telomerase, an enzyme responsible for maintenance

of telomere length by synthesizing terminal DNA, also appears to have
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the function of protecting against oxidative stress. In contrast, amutant

telomerase induces high levels of mitochondrial ROS, and thereby

leading to mitochondrial dysfunction (78) (Figure 3).

Beyond that, this study showed that both leu-TL and leu-

mtDNA, rather than cf-TL and cf-mtDNA, are positively

associated with FMD in patients with aging-related CVD. Indeed,

levels of leu-TL and leu-mtDNA may indicate the capacities of

compensation (11). It has been demonstrated that telomeres and

mitochondria (79) from immune cells play critical roles in

peripheral arterial disease (80) and heart failure (81), respectively.

In contrast, while cf-TL and cf-mtDNA may indicate stages of

decompensation (50, 53). Therefore, both cf-TL and cf-mtDNA

have been regarded as new biomarkers in cancer diagnosis and

treatment (82–84). Yet, inverse linear correlations were not

observed between cf-TL, cf-mtDNA and FMD in our current study.

Regarding the correlation between leu-TL and FMD, similar

studies have been performed by Eguchi et al. (85) and

Nakashima et al. (86), respectively. However, a significant
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1157571
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Li et al. 10.3389/fcvm.2023.1157571
correlation between leu-TL and FMD was not confirmed in their

studies (85, 86). Nezu et al. reported that telomere G-tail length,

but not total leu-TL, positively associated with FMD (87).

Besides, Combrink et al. demonstrated that leu-TL positively

correlated with plasma nitrite/nitrate levels in a bi-ethnic

study (88), which are partially in support of our findings.

To date, former research mainly focused on telomerase activity

and endothelial function. Here, it has been reported that activation

of telomerase restored endothelial function in the human coronary

and adipose arterioles (89). In addition, Bhayadia et al.

demonstrated that endothelium-dependent vasodilation in

telomerase deficient mice was impaired, which can be further

restored by inhibiting oxidative stress (90).

It has been well accepted that endothelial function is

NO-dependent, which fulfills a wide range of biological functions

in cardiovascular homeostasis (39). NO inhibits telomere

attrition by modulating telomerase activity (91). In fact,

endothelial senescence and systemic vascular dysfunction are

results of disruption of the delicate balance between NO and

ROS (90, 92, 93). Therefore, a causal relationship between

endothelial function and TL can be speculated based on our

results (Figure 3).

Regarding the relationship between leu-mtDNA and FMD,

Fetterman et al. reported that PBMC mitochondrial DNA

damage inversely correlated to FMD in patients with diabetes

mellitus and CVD, but a significant difference was not reached

(94). In addition, Kakarla et al. demonstrated that mitochondrial

membrane protein levels were positively associated with FMD in

patients with type 2 diabetes mellitus (95).

Mitochondrial content is regulated by both mitochondrial

biogenesis and mitophagy. Upregulation of mitochondrial

biogenesis leads to increased mtDNA-CN correspondingly,

thereby resulting in an enhanced metabolic capacity (96). In

particular, endothelial mitochondrial energy production plays

an important role in of vascular tone regulation (82).

Research has shown that that mtDNA-CN negatively

correlated with the disease severity and duration in healthy

subjects (44, 97).

However, some research also indicated that mtDNA-CN

positively correlated to cancer and CVD risk (98–100). Because

the mtDNA is prone to DNA damage and susceptible to

oxidative stress, increase of mtDNA-CN may serve as a possible

compensatory mechanism to cope with mitochondrial

dysfunction (101). In this regard, it has been reported that

increased mtDNA-CN of gastrocnemius muscle was associated

with lower ankle brachial index in patients with peripheral artery

disease (100). In fact, within a certain level, ROS may increase

mitochondria abundance and mtDNA content, thereby

compensating for defective mitochondria to uphold the energy

metabolism. Once beyond a threshold, ROS causes oxidative

damage to mtDNA and elicits an irreversible apoptosis (102).

Yet, the inner link between mitochondria in immune cells and

endothelial function is still poorly understood. In conclusion,

further studies are needed to investigate the putative causal

relationship of mitochondria of immune cells and endothelial

function in patients with CVD.
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Conclusions

First, both leu-TL and mtDNA-CN positively correlate with

FMD, while FMD negatively correlates with age. Second, TL

positively correlates with mtDNA-CN in both leukocytic and

cell-free genomic DNA. In conclusion, leu-TL and leu-mtDNA

can be regarded as novel biomarkers of aging-related CVD.
Limitations

Because cfDNA is the fragmented double-strand DNA released

from dying cells in circulating blood (29), the DNA concentrations

were very low. Thus, the relevant Cq values in qPCR analysis were

comparatively high, and finally affected the reliability of this study.
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