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Introduction

With climate change and population growth, the ratio of food production to demand is

increasingly shrinking. Plants and their production are crucial for retaining the

sustainability for the natural ecosystem and human food security (Qiao et al., 2022).

Rapid development and technology progress in robotics and artificial intelligence (AI),

plant phenotyping and precision agriculture start to play an important role in intelligent

plant phytoprotection, soil protection, reducing chemicals and labor cost, and ensuring

food supply (Qiao et al., 2022). Plant phenotyping refers to obtaining the observable

characteristics or traits jointly affected by their genotypes and the environment, and is

formed during plant growth and development from the dynamic interaction between the

genetic background and the physical world in which plants develop (Li et al., 2020).

Precision agriculture helps to maximize efficiency of soil and water usage, with the

objective of minimizing loss and waste. It also increases the yield of crops, as well as reduce

the variability and input costs (Cisternas et al., 2020).

In recent years, researchers have made a significant progress in developing various AI

methods, sensor technologies and agricultural robots for planting and monitoring plants

(Weyler et al., 2021; Lottes et al., 2020; Hu et al., 2022 and Su et al., 2021), as shown in

Figure 1. A significant number of plant morphological, physiological, and chemical

parameters can be rapidly and conveniently measured using AI (Li et al., 2020).

Additionally, the integration of AI and robotics technologies enables real-time

monitoring of plants in complex field and controlled environment (Atefi et al., 2021). By

probing the complex physiology of plants through plant phenotyping, higher quality plant
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seeds can be obtained (Watt et al., 2020). Moreover, during plant

protection processes, the application of pesticides and fertilizers can

be reduced, ultimately contributing to a more sustainable

agricultural environment (Vélez et al., 2023).
Plant phenotyping

As an effective tool and process, plant phenotype is an essential

part of modern, intelligent, and precise agricultural production.

Various physiological and morphological parameters about plants

are acquired by various sensors such as RGB cameras, lidar and

multiple and hyperspectral cameras to serve as decision-making

basis for real-time and future plant management (Rivera

et al., 2023).

Shen et al. proposed a new backbone network ResNet50FPN-

ED for the conventional Mask R-CNN instance segmentation to

improve the detection and segmentation capability of grape clusters

in complex field environments. The average precision (AP) was

60.1% on object detection and 59.5% on instance segmentation. Sun

et al. proposed a multi-scale cotton boll localization method called

MCBLNet based on point annotation, which achieved 49.4%

average accuracy higher than traditional point-based localization

methods on the test dataset. Based on an improved YOLOv5 model,

Wang et al. proposed a fast and accurate litchi fruit detection

method and corresponding software program. The results showed

that the mean average precision (mAP) of the improved model was

increased by 3.5% compared with the original model, and the

correlation coefficient R2 between the application test and the

actual results of yield estimation was 0.9879. Based on imaging

technology, Li et al. performed three-dimensional reconstruction,

point cloud preprocessing, phenotypic parameter analysis, and stem

and leaf recognition and segmentation of corn seedlings in

sequence, paving a new path for maize phenotype research. Li et

al. proposed a Germination Sparse Classification (GSC) method

based on hyperspectral imaging to detect peeled damaged fresh

maize. The results show that the overall classification accuracy rate

of this method in the training set is 98.33%, and the overall

classification accuracy rate of the test set is 95.00%.
Plant disease detection

Pests and diseases occur irregularly and are harmful in plant

growth and production. It is critical to detect pests and diseases in

time for taking necessary actions. Recent advances in computer

vision makes it a popular approach to accomplish this task (Guo

et al., 2023).

Aiming at the problem of rapid detection of field crop diseases,

Dai et al. proposed a novel network architecture YOLO V5-CAcT.

They deployed the network on the deep learning platform NCNN,

making it an industrial-grade crop disease solution. The results

showed that in 59 categories of crop disease images from 10 crop

varieties, the average recognition accuracy reached 94.24%, the

average inference time per sample is 1.56 ms, with a the model

size of 2 MB. To quantify the severity of leaf infection, Liu et al..
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proposed an image-based approach with a deep learning-based

analysis pipeline. They utilized image data of grape leaves infected

with downy mildew (DM) and powdery mildew (PM) to test the

effectiveness of the method. Experimental results showed that the

DM and PM segmentation accuracies in terms of mean IOU of the

proposed method in the test images were more than 0.84 and

0.74, respectively.

Cotton is an important economic crop, and its pest

management has always been paid attention to. Fu et al. proposed

a quantitative monitoring model of cotton aphid severity based on

Sentinel-2 data by combining derivative of ratio spectral (DRS) and

random forest (RF) algorithms. The overall classification accuracy is

80%, the kappa coefficient is 0.73, and the method outperforms four

conventional methods. In order to facilitate easy deployment of

deep convolution neural network models in mobile smart device

APPs, Zhu et al. use pruning algorithms to compress the models.

VGG16, ResNet164 and DenseNet40 are selected as compressed

models for comparison. The results show that when compression

rate is set to 80%, the accuracies of compressed versions of VGG16,

ResNet164 and DenseNet40 are 90.77%, 96.31% and 97.23%,

respectively. In addition, a cotton disease recognition APP on the

Android platform is developed, and the average time to process a

single image is 87 ms with the test phone.
Robotics and UAVs in smart farming

With the rapid development and popularization of mobile

robots and unmanned aerial vehicles (UAVs), they have been

increasingly deployed for agricultural applications for automated

operations to avoid dangerous, repetitive and complicated manual

operations (Vong et al., 2022 and Vélez et al., 2023).

Aiming at the harvesting problems faced in precision

agriculture, Zheng et al. designed a robot gripper by studying the

picking problem of clustered tomatoes. The results show that in the

simulation environment, the gripper can smoothly grasp the

medium and large tomatoes with diameter of 65∼95 mm, and all

of them meet the minimum damage force condition during

grasping operation. In terms of crop management such as robotic

spraying and fertilization, Hu et al. proposed LettuceTrack, a

multiple object tracking (MOT) method for detection and

tracking of individual lettuce plant by building unique feature.

The method is designed to avoid multiple spray of the same

lettuce plant. In order to solve the problem of vibration

deformation caused by corn harvester working, an improved

empirical mode decomposition (EMD) algorithm was provided

by Fu et al. to decrease noise and non-stationary vibration in the

field. The results show that the proposed model could reduce noise

interference, restore the effective information of the original signal

effectively, and achieve the accuracy of 99.21% when identifying the

vibration states of the frame.

UAVs could be used to monitor crop health, soil moisture

levels, and identify areas that require irrigation or fertilization. With

the use of advanced sensors and cameras, drones can capture

sensing data and conduct surveys that provide farmers with

valuable insights into crop growth and yield (Zhang et al., 2023).
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Moreover, various aspects of the guidance, navigation, and control

of UAV when applied to agriculture started to be investigated to

allow real-time crop management with fleets of autonomous UAVs.

Huang et al. proposed a distributed control scheme to solve the

collision avoidance problem in multi-UAVs systems. Numerical

simulation results show that the method can effectively control

multiple UAVs to complete the plant protection task within a

predetermined time. Li et al. proposed a solution for field wheat

lodging identification. Drones are used to obtain 3D point cloud

data of wheat, which is processed with neural network to obtain the

recognition result of wheat lodging. The results show that the F1

scores of the classification model are 96.7% for filling, 94.6% for

maturity, respectively.
AI and sensors in agro-ecological
environment

Plant growth and agricultural production can be unstable,

since they are greatly affected by their environment. A good

ecological environment including forest, land and water resources

is the basis of sustainable development. Researchers are paying

more attention to applying artificial intelligence and sensor

technology to ecological systems, and making further

contributions to sustainable plant protection by sensing and

monitoring ecosystem (Maharjan et al., 2022).

Zheng et al. conducted research on forest fire hazard identification

methods. They proposed an improved forest fire recognition

algorithm for fire recognition by fusing backpropagation (BP)

neural network and SVM classifier. They constructed a forest fire

dataset and tested it with different classification algorithms. The results

show that the proposed method achieves an accuracy rate of 92.73%,

which proves the effectiveness of the algorithm. Based on smooth

channels and ecological channels with different shapes, Zhou et al.

proposed a method of arming ultrasonic sensors to obtain channel
Frontiers in Plant Science 03
flow velocity. The results show that the method simplifies the

arrangement of sensors in channel flow, and improves the accuracy

of the flow measurement method. The method is helpful to promote

the construction of ecological channels.
Conclusions

Sustainable agricultural development requires efforts from

multiple perspectives. Human beings need to create a good

ecological environment including water resources, forests and soil

to ensure that plants grow in a healthy environment. A more

reasonable arrangement of sensors and the use of artificial

intelligence can monitor environmental changes in real time, so

that farmers can make more optimum control measures. In

addition, plant phenotypes will play a more important role in

future agriculture, including plant breeding and plant parameter

acquisition. AI and robotics technologies have been increasingly

integrated into plant protection, fertilization and harvesting to

pursue higher food quality and yield.

Varieties AI methods, intelligent agricultural robots and

equipment have been proposed and proven to be efficient in

laboratories as well as on agricultural fields. Deployment of these

methods and robots during real agricultural production, while

enabling the entire process at a lower cost, is upcoming challenges

for both researchers and agricultural industry. Furthermore, multi-

robot collaboration including ground-to-air cooperation will shape a

better smart agricultural system, and build a sustainable and circular

agricultural system for future farming.
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FIGURE 1

AI, sensors and robotics based dynamic 3-D plant phenotyping and
precision agriculture framework.
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