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Abstract

In this paper we introduce the modelwise interpolation property of a logic that

states that whenever |= ϕ → ψ holds for two formulas ϕ and ψ, then for every

model M there is an interpolant formula χ formulated in the intersection of the

vocabularies of ϕ and ψ, such that M |= ϕ → χ and M |= χ → ψ, that is, the

interpolant formula in Craig interpolation may vary from model to model. We

compare the modelwise interpolation property with the standard Craig interpo-

lation and with the local interpolation property by discussing examples, most

notably the finite variable fragments of first order logic, and difference logic. As

an application we connect the modelwise interpolation property with the local

Beth definability, and we prove that the modelwise interpolation property of an

algebraizable logic can be characterized by a weak form of the superamalgama-

tion property of the class of algebras corresponding to the models of the logic.

Keywords: interpolation, algebraic logic, amalgamation, superamalgamation.

1. The modelwise interpolation property

Interpolation properties have been intensively studied in the literature of
(algebraic) logic ever since Craig proved that in classical propositional
and first order logic, whenever |= ϕ → ψ holds for two formulas ϕ and
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ψ formulated respectively using the vocabularies (signatures) Voc(ϕ) and
Voc(ψ), then there is an interpolant formula χ formulated in the vocabulary
Voc(ϕ) ∩ Voc(ψ) such that |= ϕ→ χ and |= χ→ ψ hold.

This paper introduces the modelwise interpolation property of a logic
which states that whenever |= ϕ → ψ holds, then one can find an inter-
polant formula in every model, that is, the interpolant formula in Craig
interpolation may vary from model to model. In order to make sense of
this notion we have to work with logics that are semantically defined, e.g.
a notion of model should be built in the definition of the logic.1

We discuss the relations between the modelwise interpolation, Craig
interpolation, and local interpolation properties by providing examples in
all logically possible combinations. Most importantly, we prove that while
difference logic and the n-variable fragment of first-order logic (n ≥ 2) lack
the standard Craig interpolation property, the former has, while the latter
does not have the the modelwise interpolation property. Using the case of
difference logic as an example, we show that the modelwise interpolation
property implies the local Beth definability property for difference logic.

The modelwise interpolation property might have possible further ap-
plications in philosophy of science. Craig original interpolation property
(for first-order logic) stemmed from the question of using logic to clarify the
relationship between theoretical constructs and observed data: the inter-
polant formula gives an axiomatization of the observational consequences
of the theory in which only symbols of the observational vocabulary occur
(cf. [24]). Scientific theories are sometimes axiomatized by logics other
than classical first-order logic, for example, in [2] modal logic is used to
axiomatize relativity theory (cf. [21]). Such logics may or may not have
the Craig interpolation property. If the logic we make use has no Craig
interpolation but turns out to have the modelwise interpolation property,
and our scientific theories are formulated in this logic and evaluated in a
model, then changing our background logic from first-order logic to this
new logic still allows us to carry out arguments inside models similar to

1While providing the definitions and discussing examples, we employ a rather general
notion of a logic. But in the last section of the paper when we provide the algebraic
characterization, we adopt the Andréka–Németi–Sain approach [3, 1], cf. [20, 17, 18]
which focuses on the semantic aspects of logics. The more mainstream Blok–Pigozzi
framework (cf. [8, 10, 29, 9] and Czelakowski [14]) seems not to be (directly) applicable
as in that approach the focus is rather on the relation ⊢ between sets of formulas and is
missing the general notion of models.
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Craig’s. The previously introduced local interpolation property (the def-
inition is provided later below) was motivated by similar considerations,
however even very basic logics such as sentential logic, propositional modal
logics, finite variable fragments of first order logic, etc. do not have the
local interpolation property. Cf. the examples below. Also, the Craig in-
terpolation (resp. modelwise interpolation) has a strong connection with
Beth definability (resp. local Beth definability). The local interpolation
property does not have such connections. In this respect, the modelwise
interpolation property seems to be a “more interesting” property than the
local interpolation property. We do not pursue these philosophical issues
in this paper.

Interpolation properties of a logic are strongly related to various amal-
gamation properties of the classes of algebras corresponding to the logic.
We refer to [12], [13], [23, 22], [37], [25], [28], [35], [32], [3]. In the last
section we show that the modelwise interpolation property of an algebraiz-
able logic can be characterized by a weak form of the superamalgamation
property of the class of algebras corresponding to the models of the logic.

* * *

By a logic we understand a tuple L(P,Cn) = ⟨F,M, |=⟩, where

• P is a set, called the set of atomic formulas, and Cn is a set of logical
connectives, i.e. function symbols of finite arity.

• F , called the set of formulas, is the universe of the absolutely free
algebra generated by P in similarity type Cn.

• M is an abstract, non-empty class, called the class of models.

• |= is a relation between models and formulas: |= ⊂ M × F . For
M ∈M and ϕ ∈ F we write M |= ϕ instead of (M, ϕ) ∈ |=.

As it is standard in logic we extend the consequence relation |= to a relation
in between (sets) of formulas: For Γ, {ϕ} ⊆ F we write Γ |= ϕ if whenever
M |= Γ for a model M ∈ M , then M |= ϕ as well. When it is clear from
the context, we simply write L in place of L(P,Cn). For a formula α ∈ F ,
the vocabulary of α, Voc(α) denotes the set of atomic formulas occurring
in α, i.e. the smallest subset of P such that α belongs to the absolutely
free algebra generated by Voc(α) in similarity type Cn.
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For our main definition 1.2 below we assume that there is a distinguished
binary (derived) connective ⇝ and we write (⋆)ϕ,ψ for the property

{χ ∈ F : Voc(χ) ⊆ Voc(ϕ) ∩ Voc(ψ)} ̸= ∅ (⋆)ϕ,ψ

Recall (e.g. from [3, Def.6.13]) that the Craig interpolation property (IP⇝,
for short) is the property that whenever ϕ, ψ ∈ F for which (⋆)ϕ,ψ holds,
if |= ϕ⇝ ψ, then there exists χ ∈ F with Voc(χ) ⊆ Voc(ϕ) ∩ Voc(ψ) such
that |= ϕ⇝ χ and |= χ⇝ ψ.

Remark 1.1. The extra condition (⋆)ϕ,ψ can be satisfied in two ways: either
there is a constant connective in the language, or Voc(ϕ) ∩ Voc(ψ) is not
empty. Consider classical propositional logic with connectives {∨,¬} and
with two atomic formulas p and q. As usual, ϕ → ψ abbreviates ¬ϕ ∨ ψ.
There is no interpolant for the tautology |= p → (q → q), as Voc(p) ∩
Voc(q → q) is empty, and there are no formulas over the empty vocabulary
(we did not allowed ⊥ or ⊤ as constants in the language). However, if
(⋆)ϕ,ψ is satisfied, then |= ϕ → ψ will always have an interpolant in this
logic.

Let us now define the modelwise interpolation property.

Definition 1.2. We say that the logic L = ⟨F,M, |=⟩ has the modelwise
interpolation property (mIP⇝, for short) if for every formulas ϕ, ψ ∈ F
for which (⋆)ϕ,ψ holds, if |= ϕ → ψ, then for all models M ∈ M there
exists χ ∈ F with Voc(χ) ⊆ Voc(ϕ) ∩ Voc(ψ) such that M |= ϕ → χ and
M |= χ→ ψ.

The mIP⇝ thus differs from the IP⇝ in that the interpolant formula
may vary from model to model. Note that it is crucial for the definition of
mIP⇝ to have a notion of model built in the definition of the logic L.

Motivated by model theoretic investigations of homogeneous structures
[15, 27] the local interpolation property (lIP⇝, for short) has been intro-
duced in [16] as the property that whenever ϕ, ψ ∈ F for which (⋆)ϕ,ψ
holds, for all M ∈ M if M |= ϕ ⇝ ψ, then there exists χ ∈ F with
Voc(χ) ⊆ Voc(ϕ)∩Voc(ψ) such that M |= ϕ⇝ χ and M |= χ⇝ ψ. Notice
that the lIP⇝ differs from the mIP⇝ in that in the former the implication
ϕ ⇝ ψ is also “localized” to models, making it a rather weak property of
a logic.
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Claim 1.3. Both the IP⇝ and the lIP⇝ imply the mIP⇝.

Proof: Straightforward from the definitions.

Remark 1.4. We note that the modelwise interpolation property could be
defined for many other types of logics too. For example, one could allow
for infinite formulas, or infinite connectives, or restrictions on the syntactic
shape of formulas, etc. Adapting the definition to such cases seems to be
straightforward and thus we do not pursue such a generalization. Also, all
our examples, and in fact the most traditional propositional and first-order
logics, fit to the notion of logic given above.

In the rest of this section we give examples for logics having or not
having the discussed interpolation properties in all possible combinations.
Even thought our definitions so far were employed for logics in a very broad
sense, our examples below are all algebraizable and in fact well-studied in
the literature (except for L∞ which is algebraizable but not well-studied).
The following table summarizes the examples given below.

IP→ lIP→ mIP→

LProp ✓ ✓ ✓
LSent ✓ × ✓
L∞ × ✓ ✓
LD × × ✓
Ln, -Ln, n > 2 × × ×

Note that there are 8 theoretically possible combinations of the three logical
properties, but Claim 1.3 rules out three of them. This is why the table
above consists of 5 rows only.

Propositional logic LProp. Let P be an arbitrary set of propositional
letters. Let Cn(LProp) = {∧,¬,⊥} be the set of connectives and let F
be the set of formulas generated by P in type Cn(LProp). Models are
evaluations M : P → {0, 1} that extend to the set of formulas by the usual
M(⊥) = 0, M(ϕ∧ψ) = M(ϕ) ·M(ψ), and M(¬ϕ) = 1−M(ϕ). The validity
relation is defined as

M |= φ ⇔ M(φ) = 1. (1.1)

We use the derived connectives ∨, → and ⊤ in the standard way. By
Craig’s result, LProp has the IP→ and thus the mIP→ as well. That LProp
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has the lIP→ follows from that whenever M |= ϕ→ ψ, then either ⊥ or ⊤
is a suitable interpolant formula inside the model M.

Sentential logic LSent. The set of connectives and the set of formulas
are as in the previous case. The class of models is

M =
{
⟨W,V ⟩ : W ̸= ∅, V : P → P(W )

}
. (1.2)

For a model M = ⟨W,V ⟩, w ∈ W and a formula φ one defines M, w ⊩ φ
by

M, w ̸⊩ ⊥ (1.3)

M, w ⊩ p ⇔ w ∈ V (p) (1.4)

M, w ⊩ ϕ ∧ ψ ⇔ M, w ⊩ ϕ and M, w ⊩ ψ (1.5)

M, w ⊩ ¬ϕ ⇔ M, w ̸⊩ ϕ. (1.6)

Finally, we set

M |= φ ⇔ {w ∈W : M, w ⊩ ϕ} = W. (1.7)

Craig’s original result applies to this presentation of classical logic too, i.e.
LSent has the IP→ and thus the mIP→ too. In contrast, however, LSent
does not have the lIP→ in general. For, assume that there are (at least) two
atomic formulas p and q. Take a model M in which ∅ ̸= V (p) ⊊ V (q) ̸= W
holds for the atomic propositions p and q. Then M |= p → q holds by the
definition of truth in a model. However, Voc(p)∩Voc(q) is empty, therefore
the possible interpolant formulas are Boolean combinations of the constant
symbol ⊥. Each such formula is equivalent either to ⊥ or to ⊤, but neither
can be an interpolant in the model M, as p is not false in M, and q is not
true in M.

Difference logic LD. Difference logic is discussed e.g. in Sain [33, 34],
Venema [38], Roorda [31], but see also Segerberg [36] who traces this
logic back to von Wright. The set of connectives of difference logic is
{∧,¬, D,⊥}. The set of formulas is defined as that of propositional logic
together with the following clause: if ϕ ∈ F , then Dϕ ∈ F . The class of
models and the definition of M, w ⊩ φ are the same as in the sentential
case but we also have the case of D:
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M, w ⊩ Dϕ ⇔ (∃w′ ∈W ∖ {w}) M, w′ ⊩ ϕ. (1.8)

Truth in a model is defined in the same way as in the sentential case:2

M |= φ ⇔ {w ∈W : M, w ⊩ ϕ} = W. (1.9)

That difference logic does not have the lIP→ can be seen exactly in the
same way as in the case of sentential logic: Assuming p and q are atomic
formulas, take a model M in which p is not false, q is not true, and p implies
q, that is, ∅ ≠ V (p) ⊊ V (q) ̸= W holds. The common vocabulary of p and q
is empty. Now, every formula of difference logic over the empty vocabulary
is either true or false in a model: As for the Boolean combinations this is
straightforward. As for the difference operator, it is enough to check that
D⊥ cannot be satisfied in any world, and D⊤ is true in all worlds (provided
there are at least two worlds).

It is known that LD does not have the IP→ either (see e.g. [11]). Let
us briefly recall the argument. Let Eϕ abbreviate ϕ ∨Dϕ. The following
implication is a logical validity of difference logic:

|=LD

(
Dp ∧D¬p

)
−→

(
E(r ∧ ¬Dr) → E(¬r ∧D¬r)

)
. (1.10)

The reason is that in a model M and a world w, w ⊩ Dp∧D¬p implies that
there are at least two other worlds not equal to w, while E(r ∧ ¬Dr) →
E(¬r ∧ D¬r) expresses that if there is only one world satisfying r, then
there must be at least two different worlds satisfying ¬r. The common
vocabulary of the subformulas on the two sides of the implication is empty,
and it is not hard to check that neither ⊤ nor ⊥ nor any formulas built up
from ⊤ and ⊥ can be a global interpolant ([11] contains a detailed proof).

However, LD has the modelwise interpolation property as the following
theorem shows.

Theorem 1.5. Difference logic has the mIP→.

Proof: Suppose |= ϕ(p⃗, q⃗) −→ ψ(q⃗, r⃗) is a logical validity where the for-
mulas ϕ and ψ use the atomic formulas p⃗, q⃗ and r⃗ as denoted. We need
to find an interpolant formula using the atomic formulas q⃗ only. Write
q⃗ = ⟨q0, . . . , qn−1⟩ and p⃗ = ⟨p0, . . . , pm−1⟩. Take any model M = ⟨W,V ⟩.

2Thus, M |= ϕ is what is standardly called “global truth” in modal logic (cf. [7,
Def.1.21]).
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Two worlds v, w ∈W are said to be q⃗-equivalent (v ∼ w in symbols) if for
all i < n we have

M, v ⊩ qi ⇐⇒ M, w ⊩ qi (1.11)

Claim 1.6. If M, v ⊩ ϕ and w ∼ v, then M, w ⊩ ψ.

Proof: Assume M, v ⊩ ϕ and define a new model M′ = ⟨W,V ′⟩ on the
same set of possible worlds as follows. For a world u ∈ W let us use
the notation

u′ =


v if u = w

w if u = v

u if u ̸= v, u ̸= w,

(1.12)

that is, we exchange v with w but keep everything fixed. Define the new
evaluation V ′ by V ′(qi) = V (qi), V

′(ri) = V (ri) and

V ′(pi) = {u′ : u ∈ V (pi)}. (1.13)

Lemma 1.7. For any formula θ(p⃗, q⃗) and world u ∈W we have

M, u ⊩ θ ⇔ M′, u′ ⊩ θ.

Proof: Induction on the complexity of θ.

• For atomic propositions qi: As V ′(qi) = V (qi), if u ̸= v and u ̸= w,
then u = u′ and thus the statement holds. For u = v or u = w we
obtain the result by the assumption v ∼ w.

• For atomic propositions pi the statement follows directly from the
definition of V ′: M, u ⊩ pi if and only if M′, u′ ⊩ pi.

• For Boolean combinations the induction is straightforward.

• For formulas of the form Dθ: Assume (inductive hypothesis) that the
statement holds for θ. Then

M, u ⊩ Dθ ⇔ (∃x ̸= u) M, x ⊩ θ (1.14)

⇔ (∃x ̸= u) M′, x′ ⊩ θ (1.15)

⇔ (∃x′ ̸= u′) M′, x′ ⊩ θ (1.16)

⇔ M′, u′ ⊩ Dθ. (1.17)
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Applying the lemma to v and ϕ we obtain M′, w ⊩ ϕ. As |= ϕ → ψ
holds we get M′, w ⊩ ψ. But note that V and V ′ coincide on the elements
of q⃗ and r⃗, therefore M, u ⊩ ψ if and only if M′, u ⊩ ψ for any u ∈ W . It
follows that M, w ⊩ ψ, completing the proof of the claim.

In what follows we use the notation q1 = q and q0 = ¬q. For v ∈ W
write

χv =
∧
i<n

qεii , (1.18)

where

εi =

{
1 if M, v ⊩ qi
0 if M, v ⊩ ¬qi

(1.19)

By the claim above for each v for which M, v ⊩ ϕ holds, the equivalence
class v/∼ is a subset of {u ∈ W : M, u ⊩ ψ}. As q⃗ is finite, there are
only finitely many ∼ equivalence classes. Let v0, . . ., vℓ be representative
elements of all the different equivalence classes such that M, vi ⊩ ϕ and
write

χ =
∨
i<ℓ

χvi . (1.20)

Then M |= ϕ → χ and M |= χ → ψ, that is, χ is a desired interpolant
formula in M.

First-order logic with n variables Ln. Let Ln denote standard first-
order logic with the restriction that we are allowed to use n variables only
(n is finite). It is not hard to see that given any first-order similarity type,
Ln fits into our definition of a logic. The connectives are the standard ∧,
¬, ∃x (unary) and x = y (constant) for variables x, y, and the set P is
the set of first-order atomic formulas. Models, evaluations, |=, etc. are the
usual.

For n ≥ 2, Ln does not admit Craig’s interpolation theorem IP→, in
general.3 A proof can be found in [5, Theorem 3.5.1], here we briefly

3That is, there are similarity types for which the n-variables fragment of first-order
logic does not have the Craig interpolation. [5, Theorem 3.5.1] shows the failure of
interpolation with monadic predicates; [4] shows that interpolation still fails with one
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sketch the argument. Let n ≥ 2 and let p1, . . . , pn be unary predicates.
The formula ϕ that states that there is a one-one correspondence between
the elements of the domain of a model and the relations pi can be expressed
by the conjunction of the following formulas:

∀x
∨
i

pi(x),
∧
i

∃xpi(x), ∀x
∧
i̸=j

(pi(x) → ¬pj(x)), (1.21)

∀x∀y
(∧
i

(x ̸= y) ∧ pi(x) → ¬pi(y)
)
. (1.22)

Thus, if ϕ is true in a model M, then M has exactly n elements. Let ψ
be a similar formula using relation symbols r1, . . . , rn+1 expressing that
the model has n + 1 elements. Then clearly |= ϕ → ¬ψ, but there can
be no interpolant formula as no n-variable formula using equality only can
distinguish between n and n + 1 elements. This latter statement follows
from e.g. a standard back and forth argument to be recalled in the proof
of Theorem 1.8 below.

In the next theorem we adapt this construction4 to show that Ln does
not always have the modelwise interpolation property, for n ≥ 3. The
n = 2 case remains open.

Theorem 1.8. For n ≥ 3, Ln does not have the mIP→, in general.

Proof: Assume there are unary relation symbols p1, . . ., pn, and r1, . . .,
rn+1 and a binary relation symbol e in the similarity type.

Let ϕ(x) be the conjunction of the following formulas, having free vari-
able x, using the relation symbols e, p1, . . ., pn only:

binary and two unary relation symbols. With only two non-logical symbols the question
is open. The cases n = 0 and n = 1 can basically be reduced respectively to propositional
logic and modal logic S5; both have the Craig interpolation property. Cf. p. 107 in [3].

4We would like to thank László Csirmaz for a similar idea.
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∀y ¬e(y, y), (1.23)

∀y
(
e(x, y) →

∨
i

pi(y)
)
, (1.24)∧

i

∃y(e(x, y) ∧ pi(y)), (1.25)

∀y
(
e(x, y) →

∧
i̸=j

(pi(y) → ¬pj(y))
)
, (1.26)

∀y∀z
(
y ̸= z ∧ e(x, y) ∧ e(x, z) →

∧
i

(pi(y) → ¬pi(z))
)
. (1.27)

In a model M, eM is a simple graph, and if M |= ϕ[a] holds for a ∈ M, then
a has exactly n neighbours, as there is a bijection between the neighbours
of a and the pi’s.

Let ψ(x) be the similar formula but with the relation symbols r1, . . .,
rn+1 in place of the pi’s. Clearly, if M |= ψ[a] holds for a ∈ M, then a has
exactly n+ 1 neighbours.

As no vertex in a graph can have n and n + 1 neighbours at the same
time, we have |= ϕ→ ¬ψ. The common vocabulary of the formulas ϕ and
ψ contains the relation symbol e and the equalities only.

In what follows A and B denotes the following graphs:

A = {a, c1, . . . , cn}, eA = {(a, ci) : 1 ≤ i ≤ n} (1.28)

B = {b, d1, . . . , dn+1}, eB = {(b, di) : 1 ≤ i ≤ n+ 1}, (1.29)

that is, A is a “star” with center a, having n neighbours c1, . . ., cn; and
similarly, B is a star with center b, having n+ 1 neighbours d1, . . ., dn+1.
We assume that A and B are disjoint.

Let M be the disjoint union of the graphs A and B, and interpret the
relation symbols pi and rj as the respective neighbours of a and b:

M = A ∪B, eM = eA ∪ eB, (1.30)

pMj = {cj} for 1 ≤ j ≤ n, (1.31)

rMk = {dk} for 1 ≤ k ≤ n+ 1. (1.32)

The neighbours of a are in one-one correspondence with the pj ’s, and the
neighbours of b are in one-one correspondence with the rk’s. In this model,
we have
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ϕM = {m ∈M : M |= ϕ[m]} = {a}, (1.33)

ψM = {m ∈M : M |= ψ[m]} = {b}, (1.34)

(¬ψ)M = M ∖ {b}. (1.35)

Suppose χ is an interpolant for |= ϕ→ ¬ψ in the model M, formulated
in the language using equality and e only. As ϕM is not empty, χ cannot
be false in M. Similarly, as (¬ψ)M is non-empty, χ cannot be true in M.
Observe, that the set

I = {g : g ⊆ f for some partial isomorphism (1.36)

f : M → M with f(a) = b} (1.37)

is an n-back-and-forth system between M and M: it satisfies the properties

(i) g ⊆ f ∈ I implies g ∈ I, and

(ii) if f ∈ I and |f | < n, then for all x ∈ A (resp. y ∈ B) there is a g ∈ I
with f ⊆ g and x ∈ dom(g) (resp. y ∈ ran(g)).

Therefore, by a standard back-and-forth argument (see e.g. Theorem 2.4 in
[6]) a ∈M and b ∈M satisfy the same formulas with at most n variables.

It follows that no formula χ in the language of equality and e only can
make a distinction between the elements a and b of M: either both or none
of them satisfy χ in M. Consequently, χ cannot be the desired interpolant
formula.

In the light of Claim 1.3, Theorem 1.8 gives an alternative proof for
that Ln does not admit Craig’s interpolation theorem IP→, and that it
does not have the lIP→ either.

 Lukasiewicz’s -Ln for n > 2. Let n > 2 be finite and consider the n-
element algebra

An =
〈
{ i

n− 1
: i < n},∧,∨,¬,→, 1

〉
, (1.38)

where the operations are given by

x ∧ y = min{x, y}, x ∨ y = max{x, y}, (1.39)

¬x = 1 − x, x→ y = min{1, 1 − x+ y}. (1.40)
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 Lukasiewicz’s logic -Ln is defined as follows (cf. e.g. [30, 7.3.9]). The
connectives Cn( -Ln) = {∧,∨,¬,→,⊤} are the usual. If P is a set of
propositional variables, then the set of formulas F is generated by P using
the connectives. Write F for the absolutely free formula algebra F =
⟨F,∧,∨,¬,→,⊤⟩. The class of models is

M =
{
h : F → An : h is a homomorphism

}
. (1.41)

In a model h ∈ M , h |= ϕ holds if h(ϕ) = 1. The definition of logical
validity is then

|=-Ln
ϕ ⇐⇒ (∀h ∈M) h(ϕ) = 1. (1.42)

Assume that there are at least two atomic formulas in P . The paper
[19] showed that -Ln does not have the Craig interpolation property IP→.
A similar argument below reveals that -Ln does not have the mIP→. Then,
by Claim 1.3 then it cannot have the lIP→ either.

Truth tables show that the implication

|=-Ln
p ∧ ¬p −→ q ∨ ¬q (1.43)

holds for any propositional variables p, q ∈ P . Every formula in the empty
vocabulary is a Boolean combination of ⊥ and ⊤, and therefore is equivalent
to either ⊥ or ⊤. However, in the model where both p and q are evaluated

to ⌊n/2⌋
n−1 neither ⊤ not ⊥ can be an interpolant. This is because the truth

value ⌊n/2⌋
n−1 is neither 0 nor 1 if n > 2.

The same argument carries over to the infinite  Lukasiewicz logic -L∞.
(for this logic, see [26]).

The logic L∞. We design the logic L∞ for the sake of giving an example
for the case where the IP→ fails but the lIP→ and thus the mIP→ hold.

Let ω denote the ordered set of natural numbers and let ω∗ be the
reverse ordering. Consider the ordering ω + ω∗. We write n ∈ ω and
n ∈ ω∗ to denote that n belong to the ω or the ω∗ part of the ordering
ω + ω∗. Particularly, 0 ∈ ω is the smallest element, and 0 ∈ ω∗ is the
largest element of the ordering. Define the algebra

A =
〈
ω + ω∗, E, L,→, ci

〉
i∈ω+ω∗ , (1.44)

where E and L are the unary functions
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E(n) =

{
n if n ∈ ω

0 ∈ ω if n ∈ ω∗,
L(n) =

{
n if n ∈ ω∗

0 ∈ ω∗ if n ∈ ω,
(1.45)

the binary → is given by

x→ y =

{
0 ∈ ω∗ if x ≤ω+ω∗

y

0 ∈ ω otherwise,
(1.46)

and each ci is a constant with value i for i ∈ ω + ω∗.
The connectives of the logic L∞ are {E,L,→, ci}i∈ω+ω∗ . If P is a set of

propositional variables, then the set of formulas F is generated by P using
the connectives. Write F for the absolutely free formula algebra. The class
of models is

M =
{
h : F → A : h is a homomorphism

}
. (1.47)

For h ∈M we let the meaning function mngh to be equal to h. In a model
h ∈ M , h |= ϕ holds if h(ϕ) = 0 ∈ ω∗. The definition of logical validity is
then

|=L∞ ϕ ⇐⇒ (∀h ∈M) h(ϕ) = 0 ∈ ω∗. (1.48)

It is easy to check that the implication

|=L∞ E(p) → L(q) (1.49)

holds for any propositional variables p, q ∈ P . Every formula in the empty
vocabulary is equivalent to one of the constants ci, therefore in order to see
that L∞ has no IP→, it is enough to check that none of the constants ci
can be a (global) interpolant for the formula E(p) → L(q). Indeed, for any
ci take a model h in which h(ci) < h(Ep) or h(Lq) < h(ci) holds. Then
either h ̸|= E(p) → ci or h ̸|= ci → L(q).

However, L∞ has the lIP→ (and thus the mIP→) because in any model
h the formula ch(E(p)) is a suitable interpolant.

2. Applications

The local Beth property of a logic L states that every implicitly definable
relation is locally explicitly definable, that is, the explicit definition may
vary from model to model (see [3, Definition 6.9]). To be more precise,
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let L = ⟨F,M, |=⟩ be a logic, and write FP to denote the set of formulas
of the logic L that are generated by the propositional letters P , that is,
FP = {ϕ ∈ F : Voc(ϕ) ⊆ P}, and let ↔ be a distinguished binary
connective. For a set of propositional letters R let R′ be a disjoint copy of
R and for Σ ⊆ FR we write Σ′ to denote the formulas obtained from Σ be
replacing each r ∈ R by the corresponding r′ ∈ R′. We say that Σ ⊆ FP∪R

defines R implicitly in terms of P if and only if Σ ∪ Σ′ |= r ↔ r′ for every
r ∈ R. Further, Σ defines R locally explicitly in terms of P if for every
model M |= Σ, for all r ∈ R there is φr ∈ FP such that M |= r ↔ φr.
That is, the usual explicit definition may vary from model to model.

We show that the modelwise interpolation property implies the local
Beth definability property for a wide range of logics. In what follows we
work with logics that extend classical propositional logic in the sense that
the connectives ∧ and → are available and satisfy

|= (ϕ ∧ ψ) → θ iff |= ϕ→ (ψ → θ) iff |= ψ → (ϕ→ θ) (2.1)

The logic L is said to be consequence compact if for every Γ, {ϕ} ⊆ F ,
if Γ |= ϕ, then there is a finite subset Γ0 ⊆ Γ such that Γ0 |= ϕ. L is
conjunctive if for any ϕ, ψ ∈ F we have

{θ : ϕ, ψ |= θ} = {θ : ϕ ∧ ψ |= θ}. (2.2)

We say that L has deduction theorem if for all ϕ, ψ, θ ∈ F we have

ϕ, ψ |= θ if and only if ϕ |= ψ → θ. (2.3)

Theorem 2.1. Suppose L is consequence compact, conjunctive, and has
deduction theorem. If L has the mIP→ then it has the local Beth definability
property.

Proof: The proof is standard. Suppose that Σ ⊆ FP∪{r} defines r im-
plicitly, that is

Σ ∪ Σ′ |= r ↔ r′. (2.4)

By consequence compactness one can take a finite subset Σ0 ⊂ Σ such that
Σ0 ∪ Σ′

0 |= r ↔ r′, and by conjunctiveness if ϕ is the conjunction of the
formulas in Σ0, then

ϕ, ϕ′ |= r ↔ r′. (2.5)
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By deduction and conjunctiveness

|= (ϕ ∧ ϕ′) → (r ↔ r′). (2.6)

Using (2.1), from (2.6) we get the equivalent

|= ϕ→ (ϕ′ → (r → r′)) (2.7)

|= ϕ→ (r → (ϕ′ → r′)) (2.8)

|= (ϕ ∧ r) → (ϕ′ → r′) (2.9)

For any model M, by mIP→, there is an interpolant formula θM ⊆ FP

such that

M |= (ϕ ∧ r) → θM, and M |= θM → (ϕ′ → r′), (2.10)

hence, using (2.1) again, we get

M |= ϕ→ (r ↔ θM). (2.11)

By deduction, for every M |= Σ one has M |= r ↔ θM, that is, Σ locally
explicitly defines r.

Corollary 2.2. Difference logic LD has the local Beth definability prop-
erty.

Proof: Combine Theorems 1.5 and Theorem 2.1.

Next, we give an algebraic characterization of the modelwise interpola-
tion property in terms of amalgamation of algebras. Algebraic character-
izations of the IP and the lIP have been done respectively in the papers
[20] and [16]. The definition of logic employed so far is too general to have
an algebraic counterpart. Therefore we restrict our attention to a sub-
class of logics that are algebraizable. From now on in this section we work
with algebraizable logics as defined in the Andréka–Németi–Sain frame-
work [3]. We recall the indispensable definitions below, and for a brief and
self-contained summary we refer the reader to [3], or [20, 17].

* * *
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By an algebraizable logic we understand a tuple L = ⟨F,M,mng, |=⟩ that
satisfies the following requirements.

• ⟨F,M, |=⟩ is a logic as described at the beginning of the present paper.
That is, the set of formulas F is the universe of the free algebra F
generated by some set P of atomic formulas in similarity type Cn. M
is a non-empty class of models, and |= is a relation between models
and formulas.

• mng, called the meaning function, is a function with domain M ×F .
We write mngM(ϕ) in place of mng(M, ϕ) and require that (∀ϕ, ψ ∈
F ) (∀M ∈M)(

mngM(ϕ) = mngM(ψ) and M |= ϕ
)

=⇒ M |= ψ. (2.12)

• Compositionality: For every model M, the meaning function mngM

is a homomorphism from the formula algebra F into some algebra.

• Filter property: There are connectives ↔ (binary) and ⊤ (con-
stant) such that

M |= ϕ↔ ψ iff mngM(ϕ) = mngM(ψ) (2.13)

and

M |= ϕ iff M |= ϕ↔ ⊤. (2.14)

• Substitution property: For every model M and homomorphism
h : F → mngM(F) there is a model N (called the substituted version
of M) such that mngN = h.

• Patchwork property: Suppose M,N are models and A and B are
sets of atomic formulas. If mngM and mngN agree on formulas using
vocabulary A ∩ B, then there is a model P such that mngP agrees
with mngM on formulas over the vocabulary A, and mngP agrees
with mngN on formulas over the vocabulary B.

We note that all our examples LProp, LSent, LD and Ln are algebraiz-
able logics with a proper choice of the meaning function. For a detailed
discussion and for more examples we refer to [3]. We write

Algm(L) = {mngM(F ′) : M ∈M,F ′ is a subalgebra of F}
Alg|=(L) = {A : A ∼= F/∼K ,K ⊆M}, where ϕ ∼K ψ iff K |= ϕ↔ ψ,
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for the class of meaning algebras and the class of Lindenbaum-Tarski alge-
bras, respectively.

* * *

Let t be an algebraic similarity type. Given a set of equations e(x, y)
of type t and a t-type algebra A we write

≤A
e = {⟨a, b⟩ ∈ A×A : A |= e(a, b)} (2.15)

Many cases e(x, y) is a single equation, consider for example the Boolean
case, where x ≤ y corresponds to the equation x ∧ y = x. Note that ≤A

e

need not be a partial ordering, in general.
Next we define a variant of the superamalgamation property. The orig-

inal superamalgamation property goes back to Maksimova [23, 22] and
a slightly modified version of it has been introduced in [20]. For a class K
of algebras and a set X, FrK(X) denotes the K-free algebra generated by
X. For algebras A and B the relation A ⊆ B means that A is a subalgebra
of B.

Definition 2.3. Let e(x, y) be a set of equations. We say that K has the
SUPe (weak superamalgamation property) if for every A0, A1, A2 ∈ K with
A0 ⊆ A1 and A0 ⊆ A2 there exists A3 ∈ K such that A1 ⊆ A3, A2 ⊆ A3

and whenever the diagram below commutes (for arbitrary sets X and Y ),

FrK(X) A1

FrK(X ∩ Y ) FrK(X ∪ Y ) A0 A3

FrK(Y ) A2

h

then ∀x ∈ FrK(X) and ∀y ∈ FrK(Y ) we have(
x ≤FrK(X∪Y )

e y =⇒ (∃z ∈ A0)(h(x) ≤A3
e z and z ≤A3

e h(y))
)

(Here the embeddings between the K-free algebras are the embeddings in-
duced by the inclusion maps between the sets of generators).
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Theorem 2.4. Let L be an algebraizable logic. Assume L has a derived
binary connective ⇝ and let e(x, y) denote the equations x⇝ y = ⊤. Then

L has the mIP⇝ ⇐⇒ Algm(L) has the SUPe. (2.16)

Proof: (⇐) Assume Algm(L) has the SUPe and let ϕ, ψ ∈ F be such that
|= ϕ ⇝ ψ. We need to find, for every M ∈ M , a formula χ ∈ F with
Voc(χ) ⊆ Voc(ϕ) ∩ Voc(ψ) such that M |= ϕ ⇝ χ and M |= χ ⇝ ψ. In
what follows, FV denotes the set of formulas in F whose vocabulary is
in V . Let M ∈M be an arbitrary model, write V = Voc(ϕ), W = Voc(ψ)
and consider the following meaning algebras: A3 = mngM(FV ∪W ), A1 =
mngM(FV ), A2 = mngM(FW ), A0 = mngM(FV ∩W ). Now, |= ϕ ⇝ ψ
implies (see [3, Corollary 5.5])

Alg|=(L) |= ϕ⇝ ψ = ⊤, (2.17)

hence, considering ϕ and ψ as elements of the free algebra FrAlg(L)(V ∪W ),
we have

ϕ ≤Fr(V ∪W )
e ψ. (2.18)

We note that free algebras of Alg|=(L) and that of Algm(L) are the same
as SPAlgm(L) ⊇ Alg|=(L) (see [3, Thm 5.3]). Consider the diagram in

Definition 2.3. By SUPe there must exist z ∈ A0 such that h(ϕ) ≤A3
e z

and z ≤A3
e h(ψ). As z ∈ A0 there is χ ∈ FV ∩W with z = mngM(χ). Then

h(ϕ) ≤A3
e z implies M |= ϕ⇝ χ and z ≤A3

e h(ψ) implies M |= χ⇝ ψ.

(⇒) Assume that L has the mIP⇝. To show that Algm(L) has the SUPe,
take algebras A0, A1, A2 ∈ Algm(L) such that A0 ⊆ A1 and A0 ⊆ A2.

Lemma 2.5. For every A0, A1, A2 ∈ Algm(L) with A0 ⊆ A1 and A0 ⊆ A2

there is A3 ∈ Algm(L) such that A1 ⊆ A3 and A2 ⊆ A3.

Proof: Suppose A0, A1, A2 ∈ Algm(L) are such that A0 ⊆ A1 and A0 ⊆
A2. Let f : A1 → A1 and g : A2 → A2 be the identity mappings. Then f
and g extend to homomorphisms f̄ : FA1 → A1 and ḡ : FA2 → A2. By the
substitution property of L there are models M ∈ M and N ∈ M so that
f̄ = mngM and ḡ = mngN. By the patchwork property, for some model
D ∈ M we have mngD ↾ F

A1 = mngM and mngD ↾ F
A2 = mngN. It

follows that A1 = mngM(FA1) ⊆ mngD(FA1∪A2) and A2 = mngN(FA2) ⊆
mngD(FA1∪A2).
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Let A3 be as in Lemma 2.5. As A3 ∈ Algm(L) it is the image of the
meaning function with respect to some model M, i.e. A3 = mngM(FA3).
Then A1 = mngM(FA1), A2 = mngM(FA2) and A0 = mngM(FA0).

Consider the diagram in Definition 2.3 and suppose that for x ∈ Fr(X)
and y ∈ Fr(Y ) we have Fr(X ∪ Y ) |= x ≤e y. There are formulas ϕ ∈ FA1

and ψ ∈ FA2 such that mngM(ϕ) = h(x) and mngM(ψ) = h(y). By the
filter property, A3 |= h(x) ≤e h(y) is equivalent to M |= ϕ ⇝ ψ. Using
the mIP⇝ one finds a formula χ ∈ FA1∩A2 such that M |= ϕ ⇝ χ and
M |= χ ⇝ ψ. Clearly, z = mngM(χ) ∈ A0 and it follows that h(x) ≤A3

e z
and z ≤A3

e h(y).

The weak superamalgamation property is kind of a direct translation
of the modelwise interpolation property into an algebraic setting. Even
thought this translation is very direct, nevertheless it needed a justifica-
tion (the proof of Theorem 2.4). As the weak superamalgamation property
explicitly mentions free algebras, the correspondence might not be as strong
as one would expect. On the other hand, let us note that the algebraic char-
acterization of the regular Craig interpolation property also directly men-
tions free algebras, as it is equivalent to the superamalgamation property
of free algebras (see [20, Def.4.4] for the definition of “Free SUPAP” and
[20, Prop.4.6] for the equivalence between the Free SUPAP and the Craig
interpolation property). It is “only” certain varieties of Boolean algebras
with operators where the free superamalgamation property implies a more
general amalgamation property of the variety (for such results we also refer
to Madarász [20]). We do not yet know whether our weak superamalgama-
tion property can be strengthened in classes of algebras having additional
properties.

There are several variants of the interpolation property, such as Lyn-
don’s interpolation, uniform interpolation, etc. It could be interesting to
see to what extent the “modelwise” variants of these properties are mean-
ingful or useful. We did not make effort to investigate this systematically,
but it could serve a possible direction for further research.5

5We would like to thank the anonymous referee for suggesting us to mention such
possible further directions.
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[4] H. Andréka, I. Németi, J. van Benthem, Interpolation and Definability Prop-

erties of Finite Variable Fragments, Reports of the Mathematical In-

stitute, Hungarian Academy of Sciences, (1993).
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