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Tuberculosis and lung cancer are, in many cases, correlated diseases that can 
be  confused because they have similar symptoms. Many meta-analyses have 
proven that there is a greater chance of developing lung cancer in patients who 
have active pulmonary tuberculosis. It is, therefore, important to monitor the 
patient for a long time after recovery and search for combined therapies that 
can treat both diseases, as well as face the great problem of drug resistance. 
Peptides are molecules derived from the breakdown of proteins, and the 
membranolytic class is already being studied. It has been proposed that these 
molecules destabilize cellular homeostasis, performing a dual antimicrobial and 
anticancer function and offering several possibilities of adaptation for adequate 
delivery and action. In this review, we  focus on two important reason for the 
use of multifunctional peptides or peptides, namely the double activity and no 
harmful effects on humans. We review some of the main antimicrobial and anti-
inflammatory bioactive peptides and highlight four that have anti-tuberculosis 
and anti-cancer activity, which may contribute to obtaining drugs with this dual 
functionality.
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1. Introduction

1.1. Tuberculosis

Tuberculosis, a disease caused by Mycobacterium tuberculosis (Mtb), usually affects the lungs 
but can also affect other sites (extrapulmonary tuberculosis; Gradmann, 2006). First contact 
occurs when the bacillus is inhaled and it reaches the lungs. It may then be eliminated by the 
immune system, contained in a state of latency, or initiate an active infection. The outcome 
differs for each individual, depending on the immune status of the host (Ankrah et al., 2018). 
Common symptoms are coughing with sputum and sometimes blood, chest pain, weakness, 
weight loss, fever, and night sweats. These symptoms are often mild for many months, leading 
to delays in treatment and increasing the risk of spreading the infection to others (Bloom and 
Murray, 1992).
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Until the COVID-19 pandemic, tuberculosis was considered the 
leading cause of death from a single infectious agent. According to the 
report by the World Health Organization, 5.8 million people were 
diagnosed with the disease in 2020, a lower number than in 2019, 
probably affected by the pandemic, but the figure rose again in 2021 to 
6.4 million. With the drop in the number of diagnoses and, 
consequently, treatment, the number of deaths increased, to officially 
1.4 million deaths in 2021. These data are a consequence of several 
factors associated with the COVID-19 pandemic: the health system was 
less capable of receiving tuberculosis cases, people had limited mobility 
and the symptoms of the disease and COVID were similar. It is believed 
that 10.6 million people contracted tuberculosis in 2021, a significantly 
higher number than those diagnosed. Most of these cases occurred in 
Southeast Asia (45%), Africa (23%) and the Western Pacific (18%). 
Men were the most affected by the disease (56.5% of total cases), 
followed by women (32.5%) and children (11%; WHO, 2022).

1.2. Lung cancer

Lung cancer (LC) is another serious disease that affected 2.2 
million people in 2020 (11.4% of all cancers), killing 1.7 million, about 
18% of all cancer deaths in the world (Globocan, 2020). Currently, this 
type of cancer has a poor prognosis and adverse clinical outcomes, 
mainly because of its late diagnosis, ineffective treatment and tumor 
cell resistance. There are about 2.09 million cases and 1.76 million 
deaths every year (Arrieta et al., 2022). It is the second most common 
diagnosis in men and women, after prostate and breast cancer. Most 
LC cases occur at a mean age of 70 years and men are more affected 
than women (Chaitanya Thandra et  al., 2021). Table  1 lists some 
microorganisms present in the tumor microenvironment, as well as 
their possible interactions with cancer cells.

To understand the entire pathophysiology of LC, one must 
understand the contributions of the tumor microenvironment (TME) 
and the host immune responses, which are interconnected with each 
step of the tumorigenesis of each cancer subtype (Salehi-Rad et al., 2020). 

The TME is the environment where the tumor is located and is formed 
by various types of cells, like immune and stromal cells. Additionally, the 
TME is composed of extracellular matrix molecules and a variety of 
cytokines produced by the tumoral cells (Altorki et al., 2019; Wu et al., 
2021). This microenvironment can define the cells present within the 
tumor, as well as the cytokines and the interactions that may occur. For 
example, macrophages and neutrophils are involved in the mechanism 
of immune escape and lung cancer development. These cells produce a 
proinflammatory background that strongly affects the carcinogenesis 
and the immune-response efficiency (Altorki et al., 2019; Madeddu et al., 
2022). The extracellular matrix is composed of collagens, proteoglycans 
and glycosaminoglycans, and it mediates the interaction between the 
cells in the TME. This interaction can promote carcinogenesis (Altorki 
et al., 2019). The TME is also important for the evasion of immune 
recognition. Lung cancers can alter the composition of TME to establish 
an immunosuppressive environment, by increasing the abundance of 
inhibitory molecules, such as TGT-β, IL-6 and PGE2 (Salehi-Rad et al., 
2020). The genomic profile is defined by the progressive accumulation 
of mutations in oncogenes and tumor suppressor genes, from dysplasia 
and pre-neoplasia to metastatic cancer (Hanahan and Weinberg, 2011). 
Intrinsic genomic alterations within premalignant or neoplastic cells can 
reprogram the composition of the TME to facilitate carcinogenesis. Still, 
chronic inflammation caused by extrinsic factors, such as unresolved 
infections, can induce the lung TME to develop cancer progression 
(Dubinett, 2015). Detailed genomic profiling of LC has revealed 
significant heterogeneity among patients, and this has important clinical 
implications for the evolution of the cancer genome and acquired 
resistance to therapy (Salehi-Rad et al., 2020).

There are two main types of LC, called ‘small cell’ (approximately 
15%) and ‘non-small cell’ (the remaining 85%). The most frequently 
found, non-small cell (NSCLC), is most associated with smoking but is 
also found in people who have never smoked, with a slightly different 
genomic landscape. This LC type includes subtypes with treatment and 
prognoses that are often similar, the main subtypes being 
adenocarcinoma, squamous cell carcinoma and large cell carcinoma. 
The small cell type (SCLC), in most cases, is a high-grade 
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neuroendocrine tumor. This type is characterized by fast growth and 
metastasis, as compared with NSCLC type, and a poor clinical outcome 
in general (Gazdar et al., 2017; American Cancer Society, 2019). As it 
is a highly heterogeneous disease, molecular characterization is claimed 
to improve the understanding of tumor pathogenesis and thus define a 
personalized treatment plan (De Castro et al., 2019).

Some factors facilitate the development of this carcinoma, such as 
age, tobacco smoking and tuberculosis (Chaitanya Thandra et  al., 
2021). Several types of studies have shown that there is a positive 
correlation between the incidence of tuberculosis and LC, and the 
simultaneous occurrence of these features has increased. Tuberculosis 
patients have a 50% increased chance of developing LC. Those with a 
history of tuberculosis for more than 20 years are 2.5 times more likely 
to develop this disease (Sun et al., 2022). Therefore, these patients must 
be monitored to prevent the development of this type of cancer, since 
the prognosis of the disease can also be affected (Arrieta et al., 2022).

1.3. Tuberculosis and lung cancer correlation

Many studies have demonstrated the relationship between chronic 
inflammation and cancer development. In 1863, Rudolf Virchow first 

identified the correlation between inflammation and cancer when 
he noticed that there were leukocytes in neoplastic tissues (Balkwill 
and Mantovani, 2001). Experimental evidence has proved that lung 
carcinoma can be triggered by chronic Mtb infection (Nalbandian 
et al., 2009). Furthermore, the most recent meta-analysis we found 
demonstrates that pre-existing active pulmonary TB increases the 
relative risk of LC, mainly squamous cell carcinoma (3,570), followed 
by adenocarcinoma (2,605) and small cell carcinoma (2,118). It also 
exhibits an increased risk of 2,746 for other histological types of 
LC. The authors of this meta-analysis searched for articles and 
abstracts published from 1987 to 2021 in different databases, and they 
concluded that a patient with a history of active pulmonary TB should 
be followed up for a longer time after the cure of pulmonary TB than 
patients with no such history (Abdeahad et al., 2022). Another study 
also showed that the incidence of LC was higher in patients with 
tuberculosis, with a significant increase in mortality in TB cancer 
patients (Kiri et  al., 2009; Liang et  al., 2009). In this regard, it is 
important to highlight that TB treatment usually takes 6–9 months of 
combined drug therapy. During this period, TB infection causes 
severe lung inflammation, which could be  related to a chronic 
inflammatory process that has been linked to several stages of 
carcinogenesis (Liu et al., 2020).

TABLE 1 Microorganisms present in LC patients (oncobiome of lung cancer patients).

Microorganism Interaction References

Mycobacterium tuberculosis Suspected initiation and proliferation, colonization
Pilaniya et al. (2016), Cameron et al. (2017), Mao et al. 

(2018), Poore et al. (2020)

Staphylococcus genera. Species like epidermis and aureus Colonization Cameron et al. (2017), Poore et al. (2020)

Propionibacterium acnes Colonization Poore et al. (2020)

Ralstonia spp. Colonization Poore et al. (2020)

Pseudomonas Suspected initiation and proliferation, colonization Poore et al. (2020)

Acinetobacter Colonization Cameron et al. (2017), Poore et al. (2020)

Haemophilus influenzae Colonization Laroumagne et al. (2011), Mao et al. (2018)

Enterobacter spp. Colonization Laroumagne et al. (2011), Mao et al. (2018)

Escherichia coli Colonization Laroumagne et al. (2011), Mao et al. (2018)

Granulicatella Colonization Yan et al. (2015), Cameron et al. (2017), Mao et al. (2018)

Abriotrophia Colonization Yan et al. (2015), Mao et al. (2018)

Streptococcus Colonization
Yan et al. (2015), Cameron et al. (2017), Mao et al. 

(2018), Tsay et al. (2018)

Capnocytophaga Colonization Hosgood et al. (2014), Yan et al. (2015), Mao et al. (2018)

Selenomonas Colonization Yan et al. (2015), Mao et al. (2018)

Veillonella Colonization
Hosgood et al. (2014), Yan et al. (2015), Mao et al. 

(2018), Tsay et al. (2018), Zhao et al. (2021)

Neisseria Colonization Yan et al. (2015), Cameron et al. (2017), Mao et al. (2018)

Legionella Metastasis Yu et al. (2016), Mao et al. (2018)

Thermus Colonization Yu et al. (2016), Mao et al. (2018)

Enterococcus Colonization
Cameron et al. (2017), Zhuang et al. (2019), Zhao et al. 

(2021)

Akkermansia muciniphila Suspected initiation Zhao et al. (2021)

Rhodococcus erythropolis Colonization Cameron et al. (2017)

Stenotrophomonas maltophilia Colonization Cameron et al. (2017)

Acidovorax Suspected initiation and colonization Greathouse et al. (2018)
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Although both diseases affect the same anatomical unit of the 
lung, some researchers do not believe that there is clear pathogenesis 
between them, but rather that tuberculosis is just another direct risk 
factor for LC, among other widely known factors (Qin et al., 2022). As 
both diseases affect the same organ, the symptoms are very similar, 
and although it is harmful for a cancer patient to receive tuberculosis 
treatment (or vice versa), it is even more dangerous for a patient with 
both diseases to receive treatment for only one of them, as the other 
disease worsens without treatment (Malik et al., 2022).

The immune system plays an important role in cancer prevention; 
however, cancer cells can still act by preventing or inhibiting antitumor 
responses. Innate and adaptive immunities work by eliminating or 
suppressing viral infections that can induce a tumor, preventing the 
maintenance of an environment that favors the emergence of a tumor 
or identifying tumor cells and eliminating them (Shroff et al., 2022).

1.4. Tuberculosis infection and lung cancer 
development

Mtb is an intracellular pathogen able to infect human mononuclear 
phagocytes, spending most of its life cycle in macrophages (Vasava 
et al., 2017). In addition to other very important immune cells, in the 
initial phase of Mtb infection, the bacillus is phagocytosed by alveolar 
macrophages (AM). These cells are then activated and they adopt a 
pro-inflammatory phenotype, recruiting more immune cells to the site 
of infection, among other interstitial macrophages (IM), which 
decrease oxidative phosphorylation, the main way of obtaining energy 
from AM (Tukiman, 2022). This type of energy acquisition is mainly 
fueled by the oxidation of fatty acids, which are abundant in lung 
tissue, but this makes the environment even more conducive to 
infection by mycobacteria, which also use fatty acids as a carbon 
source (Sheedy and Divangahi, 2021). IM also increases aerobic 
glycolysis, as in the Warburg effect, providing biosynthetic precursors 
necessary for rapid cell growth and proliferation (Macintyre and 
Rathmell, 2013). The Warburg effect has been described to explain the 
origin and functioning of cancer cells, and it includes the generation 
of pro-inflammatory cytokines and antimicrobial molecules, in 
addition to reactive oxygen and nitrogen species (ROS and RNS; 

Shi et al., 2016a). This mechanism is part of the attempt to eliminate 
the infection, so if aerobic glycolysis is inhibited at this stage of the 
infection, the resulting immunological changes lead to an increase in 
Mtb survival, mainly due to the reduction in pro-inflammatory IL-1β 
levels (Gleeson et  al., 2016). Inflammatory cells produce many 
cytokines and chemokines that form an attractive environment for 
tumor development, promoting the formation of new blood vessels 
from existing ones, in addition to facilitating genomic instability 
(Coussens and Werb, 2002). In chronic inflammation, by producing 
ROS and RNS, most phagocytic cells induce DNA damage in 
proliferating cells due to the consequent production of peroxynitrite 
(Maeda and Akaike, 1998). If DNA damage occurs continuously and 
repeatedly, it may result in permanent genomic alterations, such as 
point mutations, deletions or rearrangements (Coussens and Werb, 
2002; Figure 1).

In the early stage of this infection, activation of the immune 
response with type T helper cells (Th1) and the production of IFN-γ 
and TNF-α are the most prominent protective mechanisms for 
intracellular mycobacterial killing. With the progression of the 
infection and the interaction between mycobacteria and immune cells, 
the formation of granulomas occurs. These granulomas are 
characterized by an extremely hypoxic and inflammatory internal 
region, maintained by glycolysis to kill the bacilli, and a less 
inflammatory peripheral region, consequently favoring the survival of 
the bacillus (Tukiman, 2022). Granulomas can lead to caseous lesions 
and cavity formation, in the latter case being extremely infectious as 
it is the consequence of lung tissue destruction with the formation of 
macroscopic open spaces that contain numerous bacilli and connect 
with the large airways, facilitating efficient expectoration of the 
bacteria (Younga and Verreck, 2012). The granuloma is characterized 
by glycolysis in the central region and oxidative phosphorylation in 
the peripheral region. These granulomas normally contain live 
mycobacteria, myeloid and lymphoid cells (Nalbandian et al., 2009). 
However, the Warburg effect was found to be reduced in the nucleus 
of the granuloma, suggesting that the bacillus can modulate the host’s 
defense mechanism to survive (Shi et al., 2016a,b). In line with this 
finding, Shi et  al. (2016a) suggested the search for therapeutic 
compounds that have the potential to enhance the Warburg effect on 
infected macrophages to combat Mtb (Shi et al., 2016a).

FIGURE 1

Pathway triggered after infection that can result in cancer cells. The figure was created by Biorender.com, partly generated using Servier Medical Art, 
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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Finally, LC originating from the dysregulated chronic 
inflammation can also foster abundant expression of growth factors 
and cytokines, such as transforming growth factor beta (TGF-b) and 
interleukin (IL)-1b, IL-4, IL-6, IL-8, IL-10, and IL-22, which activate 
multiple tumorigenic pathways, such as cyclooxygenase 2 (COX-2) 
and nuclear factor kappa B subunit (NF-kB) to promote tumorigenesis 
(Dubinett, 2015). More importantly, TB also causes extensive 
pulmonary fibrosis, which is associated with the production of TGF-Β, 
IL-4 and IL-13 (Heitmann et al., 2014; George et al., 2015). Conversely, 
LC can decrease local immunity and reactivate a latent infection, or 
even increase the chances of an exogenous infection, so it is worth 
paying close attention to these diseases (Dobler et al., 2017).

An important epithelial growth factor produced by the 
mycobacteria in the early stages of tumor formation is epiregulin. In 
inflammatory macrophages, its production can be beneficial, as it helps 
to repair tissue damage; however, with the presence of persistent live 
pathogens, such as Mtb, this adaptive response is directed against the 
host, providing in this case, a potent growth factor for pre-malignant 
cells (Nalbandian et al., 2009). High levels of expression of this gene 
have been found in several cancer cell lines (Baba et al., 2000).

The effect of pulmonary TB on the epidermal growth factor 
receptor (EGFR) in patients with lung adenocarcinoma (LAC) was 
investigated in 2019, and a significantly higher mutation frequency 
was found than in patients without tuberculosis (Hwang et al., 2019). 
Mutations in this gene, which originally encodes proteins for cell 
proliferation and survival, are the most frequent in LAC (Jett and Carr, 
2013), and TB-induced overexpression of epiregulin conferred 
invasive properties on cancer cells (Zhang et al., 2008).

Most lung damage resulting from an Mtb infection is the result of 
an intense inflammatory immune response. It has been proposed that 
this damage has different levels of severity depending on the variability 
of the genes that encode or regulate the host’s immune responses, but 
this hypothesis has not yet been proven (Ravimohan et al., 2018). In 
2009, an Mtb genetic locus that specifically controls tissue damage and 
progression of pulmonary tuberculosis, sst1, was identified as an 
important genetic modifier that could lead to lung tumor formation 
(Nalbandian et al., 2009). Chai et al. (2020) demonstrated that TB and 
LAC share 65 similar signature genes, but emphasized the MK167 
gene, which encodes Ki-67, a protein expressed exclusively in 
proliferating cancer cells (Chai et al., 2020). The MK167 gene was 
equally increased in TB and LAC groups, and it is an important 
mediator for Mtb-induced proliferation, migration and evasion of 
tumor cells. It was also discovered that this gene is regulated by an 
effector protein that can promote tumor development by regulating 
cell proliferation and migration when it enters the host cell nucleus 
(Wang et  al., 2017). Chai et  al. (2020) further suggested that the 
mechanism that the mycobacteria use to spread more efficiently in LC 
patients is through infected tumor cells, as they obtained positive 
mobility results in migration and invasion assays (Chai et al., 2020).

Cao et  al. (2019) hypothesized that Mtb infection mediated 
immune response and facilitated tumor metastasis through the PD-1/
PD-L1 signaling pathway (Cao et  al., 2019). Mtb also reprograms 
macrophages during granuloma formation by inducing expression of 
E-cadherin into epithelioid morphology, a process analogous to 
epithelial-to-mesenchymal transition (EMT; Cronan et  al., 2016; 
Ahmad et al., 2022). Further, Mtb upregulates transcription factors that 
induce EMT, a hallmark of carcinogenesis and metastatic progression 
(Hofman and Vouret-Craviari, 2012; Gupta et  al., 2016). Some 

important up-regulated genes, such as MYBL2, BRCA-1, UBE2C, 
CHEK-1, CDN2A and PCNA, are common in LC and TB, mostly 
associated with cell cycle, checkpoints and apoptosis (Cao et al., 2019).

1.5. Membranolytic peptides

Peptides are molecules derived from proteins that can be obtained 
by hydrolysis, like bioactive peptides, or isolated from animal protein 
fluids (constitutive or induced) as a natural defense mechanism 
(Silveira et al., 2021). Membranolytic peptides can be responsible for 
destabilizing the cellular homeostasis of microorganisms, such as 
antimicrobial peptides (AMPs), and tumor cells, such as anticancer 
peptides (ACPs). The history of peptides began in 1922 when 
lysozyme was discovered (Fleming, 1922). Through proteomic 
characterization, lysozyme turned out to possess various AMPs with 
potential bactericidal activity (Ibrahim et al., 2011). AMPs are broad-
spectrum biomacromolecules that, for the most part, are capable of 
interacting with various receptors on the cell membrane or wall, 
causing intra-and extracellular imbalance and later leading to death.

This type of peptide generally has less than 100-mers and is 
characterized by rapidly interacting with the pathogenic agent at low 
concentrations, decreasing the rate of induction or generation of 
resistance. Roque-Borda et al. (2021a) reported that the use of the 
antimicrobial peptide Ctx(Ile21)-Ha has great activity against 
Pseudomonas aeurigonosa and Acinetobacter baumannii, two of the 
deadliest bacteria in the world according to the WHO priority list 
(Roque-Borda et al., 2021b). It is known that these two bacteria can 
be more dangerous and deadly when they have genes for resistance to 
carbapenems since these drugs are used as the last lines of treatment. 
Da Costa de Souza et al. (2022) showed that AMPs are capable of 
eliminating A. baumannii and P. aeurigonosa quickly and efficiently, 
avoiding selective pressure and even generating better potential 
inhibition than conventional drugs. Although they are good alternatives 
because they act through interaction with microbial membranes, many 
AMPs have poor pharmacological profiles, and alternatives are being 
studied to overcome these barriers, like the chemical modification and 
synthesis of new peptides (Moradi et al., 2016).

The mechanism of action can be  modified by targeting the 
bacterial membranes—producing differences in different cellular lipid 
compositions—or non-membrane, with intracellular targets (Preethi 
and Anbarasu, 2022). Thus, some modifications might result 
increasing antimicrobial potency, like disulfide bonds (Ravishankar 
et  al., 2016), hydrophobicity (Chen et  al., 2007), conformational 
freedom (Li et al., 2011) and N-Methylation (Montaser et al., 2011), 
but there are natural antimicrobial peptides with potential activity 
against Mtb infection (Preethi and Anbarasu, 2022). Accordingly, 
many AMPs could also eliminate cancer cells, their main objective 
being membrane receptors differentiated from those of healthy cells. 
ACPs can be  classified into two large groups where their main 
differentiation is damage against healthy mammalian cells (Papo and 
Shai, 2005).

Studies on the antimicrobial effect of AMPs have also indicated a 
possible alternative when applied synergistically with some 
conventional drugs, sensitizing resistant bacteria or opening the way 
for the entry of obsolete drugs. Thus, a sequence M(LLKK)2M in 
combination with rifampicin was reported to act against resistant 
strains, and some strategies shown by the same authors indicated that 
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the addition of cysteines in the sequence did not affect the activity, as 
compared with the addition of methionines (Khara et al., 2014).

The immunomodulatory capacity of AMPs is obviously one of the 
most favorable factors in the treatment of an infectious or 
immunosuppressive disease (Jin and Weinberg, 2019). AMPs can 
stimulate various molecules present in the immune system, such as 
chemokines, to respond to disease. Naturally, the production of AMPs 
occurs through the stimulation of abnormal factors such as 
inflammation, autoimmune diseases or co-infections (Magana et al., 
2020). Previous studies have shown that the use of these peptides 
applied as oral additives or in localized infections was able to neutralize 
the disease or control the spread of pathogenic agents (Molchanova 
et al., 2017). The use of AMP Ctx(Ile21)-Ha had a great effect against 
resistant Salmonella enteritidis when pH-responsible coated 
microparticles were applied orally in chicks (Roque-Borda et al., 2021a) 
and pigs or wild-type peptide in beef cattle nutrition (Silveira et al., 
2021). These studies revealed that the antimicrobial peptide was able to 
cross the intestinal barrier and eliminate pathogenic bacteria from 
systemic organs (liver > spleen > intestine; Roque-Borda et al., 2022b). 
In addition, depending on its microencapsulating characteristics, the 
peptide was capable of acting against many other intestinal infectious 
bacteria such as Salmonella typhimurium, Salmonella enteritidis, 
Salmonella Heidelberg, Salmonella Infantis (isolated from symptomatic 
chickens), and Escherichia coli (Roque-Borda et al., 2023).

The application of AMPs in the treatment of bacterial infections 
would imply their use against clinical isolates, multi-and extensively 
drug-resistant (M or XDR) strains such as GL13K, which had excellent 
activity against Acinetobacter baumannii MDR and XDR (Gorr et al., 
2022), or Chex1-Arg20 hydrazide, which was also effective against the 
formation of biofilms of the same bacterial genus (Li et al., 2022). The 
formation of biofilms is another major problem when opportunistic 
bacteria try to restrict the passage of drugs and thus prevent their 
action against themselves, for which they produce various compounds 
based on proteins, polysaccharides and exogenous DNA; this process 
allows the biofilm to be more aggressive and in many cases untreatable 
(De Pontes et al., 2022). The alpha-helical structure and beta-sheet 
distribution of this peptide, as well as that of other peptides, would 
be related to its antimicrobial activity and its broad spectrum. This is 
the case of Chex1-Arg20 hydrazide rich in proline (De Pontes et al., 
2022). An important group of natural AMPs belongs to the 
bacteriocins from the innate immunity of living beings; some bacterial 
communities produce them to protect themselves from other invading 
bacteria (Simons et al., 2020).

An interesting proposal for drug discovery and design is the use 
of bioinformatics tools, such as molecular docking, that predict the 
possible sequences with the best peptide-receptor interaction. 
Receptors are molecules that can be present in the bacterial membrane 
or in some specific component generated by its own resistance and are 
capable of being recognized by AMPs for possible degradation or 
elimination (Ali et al., 2017). Some studies have shown that molecular 
docking followed by an in silico ADMET study would help reduce 
costs and study time, since its prediction would facilitate the faster 
discarding of inactive molecules (Rampogu et al., 2018; Xiong et al., 
2021). It was shown that this tool makes it possible to obtain promising 
sequences for various diseases and that many of these sequences can 
be found within macromolecules such as proteins or enzymes. Some 
enzymes produced by bacteriophages intensify the selective activity 
against MDR bacteria, and certain AMPs were found within these 

structures, which after their isolation and application demonstrated 
excellent activity (David et al., 1980). Thus, the lysine B fraction of 
bacteriophage D29 was a great source of AMPs when its composition 
was studied in silico, and it showed a high interaction with Mtb and 
cancer cell-specific receptors (Snyder et al., 2018; Dulberger et al., 
2020). Table 2 shows the potential characteristics of antimicrobial 
peptides applied against strains of M. tuberculosis and potential 
candidates for new drugs.

In addition to Tables 2, 3 lists recent examples of peptides with 
activity against other intracellular pathogens, showing that this field 
of study is wide and offers many candidates for new drugs.

AMPs tend to have good antimicrobial activity, but many of them 
have low selectivity since they interact mainly with the ionic charges 
of the bacterial membrane compounds (Magana et  al., 2020). 
However, it has been reported that their structural modification could 
generate better antimicrobial selectivity and decrease its cytotoxicity. 
Table 4 shows the factors for and against AMPs, since there are several 
parameters to be considered for a possible scaling strategy. AMPs tend 
to have multiple mechanisms of action, which allows them to 
be membranolytic or not at the same time, an effect that can occur 
when AMPs are dependent on concentration, size or structure (Zhang 
R. et al., 2020). Alternatively, unconventional amino acids have been 
used to generate mimetic peptides, where hybrid combinations or 
unusual amino acids are used, which will generate molecules such as 
peptoids (α and β), β-peptides, α-peptide/β-peptoids, α/Υ N-acylated 
N-aminoethyl peptides (AApeptides), oligoacyllysines (OAKs), 
among others (Molchanova et al., 2017).

Due to the large number of reports on antimicrobial resistance, 
induced by selective pressure, crossed or naturally acquired, a possible 
return to the pre-antibiotic era is anticipated. This would also indicate 
a possible reaction in response to conventional cancer treatment and 
a higher rate of deaths caused by opportunistic infections. In this 
review, we focus on an important reason for the use of multifunctional 
peptides or peptides with double activity and no harmful effects on 
humans, such as Epinecidin-1 and its analogs. These peptides had 
excellent antibacterial activity against various pathogens and an 
anticancer effect (Neshani et al., 2019). Some articles have reported 
the potential of AMPs and ACPs, showing that many of them were 
initially AMPs and were transformed into ACPs through the use of 
analogs (Table 5).

Some mechanisms of action based on the internalization of AMPs 
that are not directly related to the disruption of the membrane in cells 
are classified as (i) inhibitors of biosynthesis and metabolism of 
nucleic acids, (ii) inhibitors of biosynthesis and of protein metabolism, 
(iii) inhibitors of protein folding, (iv) protease inhibitors, (v) inhibitors 
of cell division, (vi) inhibitors of cell wall biosynthesis and (vii) 
binding peptides of lipopolysaccharide (Le et al., 2017). Histatins, 
Bactencin 7, and Apidaecin are examples that show that lipids or fatty 
acids can help with the translocation of AMPs within the cell 
membrane, which will depend on their beta or alpha-helix structure; 
mediated by stereospecific receptors, AMP can be  located in the 
cytoplasm to exert their antimicrobial action (Le et  al., 2017). 
However, this effect can limit the action of AMPs since their broad-
spectrum activity can generate some type of cytotoxic or 
immunological response. Specifically in Mtb, the most widely used 
and promising strategies are focused on the search for new inducers 
of autophagy (Arranz-Trullén et al., 2017). Some prominent AMPs in 
cell permeability with intramacrophage activity against Mtb are those 
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TABLE 2 Antimicrobial bioactive peptides against M. tuberculosis.

AMP MIC in M. 
tuberculosis 

(μM)

Cytotoxicity 
(μM)

Highlights References

IP-1 32
HEK293T and MEF: 

50
It induces autophagy of infected macrophages

Coyotl et al. (2020), De Pontes 

et al. (2022)

B1CTcu5 5.54 THP1: 6.62–662 It induces cavitation of the mycobacterial cell wall. Abraham et al. (2020)

NZX 6.3 Monocytes: >100 It reduces the bacterial load within 5 days of treatment. Mustafa et al. (2022)

S760 0.018 Macrophages: 100
Produced by lactic acid bacteria, it has immunomodulation 

action.
Sharma et al. (2019)

1PNB * -
It is a competitive inhibitor against glucose-1-phosphate 

thymidylyltransferase of M. tuberculosis.
Mustafa et al. (2022)

LL-37 1.11′
Eukaryotic cells: down 

to15
It resides in lysosomes and disrupts the mycobacterial cell wall Deshpande et al. (2020)

Ub2 * J774 A.1: 500
In addition to proteases and lipases in the lysosomal lumen, it can 

promote mycobacterial killing.

Alonso et al. (2007), Singh et al. 

(2019)

Hcl2 3.72 THP-1: 99.3
It is derived from the cytochrome c oxidase subunit 3 and 

disintegrates the mycobacterial cell wall.
Samuchiwal et al. (2014)

VpAmp1.0 17.4 Red blood cells: 9.2
This AMP is derived from the venom glands of the scorpion 

Vaejovis punctatus.
Ramírez-Carreto et al. (2015)

VpAmp1.1 5.4 Red blood cells: 33.7 It is a variant of VpAmp1.0, with better biological activities. Ramírez-Carreto et al. (2015)

VpAmp2.0 21.4 Red blood cells: 167 It is a variant of VpAmp1.0, with better biological activities. Ramírez-Carreto et al. (2015)

VpAmp2.1 13.6 Red blood cells: 103.5 It is a variant of a peptide derived from Vaejovis punctatus. Ramírez-Carreto et al. (2015)

Buforin I > 12,2 HSF: 331 e 6,620
It is derived from Bufo bufo gargarizans; it has antibacterial and 

antifungal activity.

Portell-Buj et al. (2019), 

Roshanak et al. (2021)

Mastoparan 43.3
Hemolytic activity: 

331
It is derived from Vespula lewisii; it has antibacterial activity.

Portell-Buj et al. (2019), Rungsa 

et al. (2022)

Histatin 5 *
MMP-2 and MMP-9: 

0.57 and 0.25

It is secreted by parotid and submandibular glands; it has 

antibacterial, antiviral and antifungal activity.

Gusman et al. (2001), Portell-Buj 

et al. (2019), Ikonomova et al. 

(2020)

Magainin I * HT29: 74.9
It is derived from Xenopus laevis; it has antibacterial and antiviral 

activity.

Portell-Buj et al. (2019), Hassan 

et al. (2021)

Magainin II * PBMC: 132
It is derived from Xenopus laevis; it has antibacterial, antiviral and 

antifungal activity.

Horváti et al. (2017), Portell-Buj 

et al. (2019)

Cecropin PI * PBMC: 1324 It is derived from Ascaris suum; it has antibacterial activity.
Han et al. (2011), Portell-Buj 

et al. (2019)

Cecropin A > 44 Erythrocytes: 1118.78
It is derived Hyalophora cecropia; it has antibacterial and antiviral 

activity.

Wei et al. (2016), Portell-Buj et al. 

(2019)

Cecropin B * RAW264.7: > 25
It is derived Antheraea pernyi; it has antibacterial and antifungal 

activity.

Wang et al. (2018), Portell-Buj 

et al. (2019)

Melittin > 45.7 PBMC: 0.941
It is derived from Apis mellifera; it has antibacterial, antiviral and 

antifungal activity.

Horváti et al. (2017), Portell-Buj 

et al. (2019)

HNP1 * Kidney cells: 29 Synergistic activity with LL-37.
Kalita et al. (2004), Drab and 

Sugihara (2020)

Callyaerin A 2
THP-1 and MRC-5: 

<10
It is derived from Callyspongia aerizusa Daletos et al. (2015)

Callyaerin B 5 THP-1 and MRC-5: <5 It is derived from Callyspongia aerizusa Daletos et al. (2015)

Callyaerin C 40
THP-1 and MRC-5: 

<100
It is derived from Callyspongia aerizusa Daletos et al. (2015)

Laterosporulin10 0.31–4.0
Blood cells >20 and 

mammalian cells >30

Bacteriocins from Lactobacillus, Bacillus, Paenibacillus and 

Brevibacillus sp.
Baindara et al. (2016)

*Values just in μg/mL without molar mass in the reference.
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derived from human neutrophils, such as 1, 2, 3 (hNP1-3), lipocalin-2 
and human cathelicidin, which are usually expressed when Mtb begins 
its extracellular multiplication (Gutsmann, 2016). These AMPs 
agglomerate in the bacterial cell wall, producing lesions through the 
formation of warts, but they also enter the cytoplasm, neutralizing 
bacterial DNA synthesis. Likewise, in recent years, have been reported 
on the multiple mechanisms of action against intramacrophagic 
pathogens, even Mtb with defensins, cathelicidins, hepcidin, NK-lysin, 
granulysin and ubiquitin, among others, demonstrating that AMPs 
can be selective and effective against resistant strains (Schlusselhuber 
et al., 2013; Baindara et al., 2016; Moussouni et al., 2019; Abraham 
et al., 2020; De Singulani et al., 2021).

Defensins play an important role in the innate immunology of the 
lung because the production of these AMPs has been reported to 
increase when there is colonization of Mycobacterium (Gutsmann, 
2016). For example, the human β-defensins (hBD 1 or 2) can cross 
macrophages and phagosomes and inhibit bacterial growth. It has 
even been shown that their application combined with vitamin D 
significantly increased the inhibition percentage (Nickel et al., 2012); 
in the same way, prevention or prophylactic effect was achieved by 
combining defensins with L-isoleucine (Rivas-Santiago et al., 2015). 
However, it has already been demonstrated that hBD 2 can induce the 
proliferation of lung cancer cells through ABCG2 in a dose-and time-
dependent manner (Gao et  al., 2016; Ghosh et  al., 2019). 

Laterosporulin10 is an AMP isolated from Brevibacillus sp. that has 
been shown to have excellent cellular permeation properties in 
macrophages and activity against Mtb (Baindara et al., 2016), but 
which at the same time induces cell apoptosis in cancer cells (HeLa 
cells; Baindara et al., 2017).

Some selectivity strategies have generated positive effects in 
relation to the hemolytic activity of the AMP and the inclusion of fatty 
acids is a double-edged sword since these substances can improve 
their antimicrobial activity in the chain but, in turn, increase their 
cytotoxicity or hemolytic activity. Some authors have reported that 
fatty acids between 8 and 10C may be more active and selective against 
resistant bacteria, as well as less toxic (Zhong et al., 2020). Nevertheless, 
these factors must be  carefully studied as they depend on the 
hydrophobicity of the AMP and the total load that is handled. It was 
previously reported that the hemolytic activity and the hydrophobicity 
are easily predictable when the HPLC profiles are evaluated. They may 
be predicted by using the retention time and the % of acetonitrile, 
which may help to analyze the potential of different AMPs 
(Frederiksen et al., 2021). One of the advantages of including fatty 
acids is the ease of permeation of molecules within human cells. For 
this reason, this strategy can be  initially generated with in silico 
molecular prediction studies with different virtual platforms. The first 
step would be to narrow down and select the best candidates with 
antimicrobial or anti-Mtb activity, as described in https://webs.iiitd.

TABLE 3 Some antimicrobial bioactive peptides against other intracellular pathogens.

AMP Intracellular Pathogen References

A11 S. typhimurium Sengkhui et al. (2023)

AMP1 E, coli, K. pneumoniae, A. junii, E. faecalis and P. aeruginosa Chaudhary et al. (2023)

AMP2 K. pneumoniae, A. junii, E. faecalis and P. aeruginosa Chaudhary et al. (2023)

AMP3 K. pneumoniae, A. junii, E. faecalis and P. aeruginosa Chaudhary et al. (2023)

AvBD Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus pseudintermedius Yang et al. (2018)

LEAP2 A. hydrophila, E. coli, P. aeruginosa, S. enterica, and S. aureus Chen et al. (2023)

P36 P. aeruginosa Pandit et al. (2022)

PLNC8 αβ Staphylococcus spp. Wiman et al. (2023)

TABLE 4 Strengths, weaknesses, opportunities, and threats (SWOT) analysis of peptides with therapeutic properties (Fosgerau and Hoffmann, 2015).

Strengths Weaknesses Opportunities Threats

 • Good safety, tolerability 

and effectiveness.

 • Potency and high selectivity.

 • Predictability in metabolism.

 • Less time to market.

 • Decreased attrition rates.

 • Standardized synthetic 

procedures.

 • Physically and chemically unstable.

 • Susceptible to oxidation 

and hydrolysis.

 • A propensity to aggregate.

 • Fast elimination and short half-life.

 • Generally not used for 

oral administration.

 • Low permeability of the membrane.

 • Discovery of novel peptides, including 

fragmentation of proteins.

 • Created sequences that are optimized and 

focused libraries.

 • Building a formulation.

 • In addition to parenteral, other modes 

of administration.

 • Multipurpose peptides and conjugates.

 • Immunogenicity.

 • New developments in proteomics, 

genomics and 

customized medicine.

 • Many patents are about to expire.

 • Cost and 

reimbursement conditions.

 • Growing need for new medications 

in terms of safety and effectiveness.

 • Physicochemical instability and aggregation can be overcome using nanocarriers and/or nanoprotectants (Roque-Borda et al., 2022b).

 • The oral application of AMPs can be potentiated using encapsulations or changing the L amino acids to unusual and D-amino acids, since several of them have been reported 

to tolerate the presence of proteases (Lu et al., 2020).

 • The cell permeability of AMPs can be modified by the inclusion of fatty acids or cell-penetrating sequences (Zhang J. et al., 2020).

 • It has been shown that several AMPs would not be mutagenic, which paves the way for new peptide-based drugs. The AMES test is usually used and corroborated with the 

comet assay (Hajisharifi et al., 2014).
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TABLE 5 Anti-inflammatory bioactive peptides.

Peptide LC cell lines Cytotoxicity 
(IC50)

Type/
Structure

Highlights References

Smp24

A549, H3122, 

PC-9, and H460: 

4.06 to 7.07 μM

MRC-5: 14.68 μM AMP
The peptide was able to kill A549 cells through the cell 

membrane, mitochondrial and nuclear destruction.

Nagaraj et al. 

(2022)

P-113 and its 

derivatives

H1975, A549 and 

PC 9 21.32 to 

>200 μM

NR AMP

AMPs induce the death of immunogenic cells derived from 

cancer lines and release potent danger-associated molecular 

patterns.

Cheah et al. 

(2022)

NKTP-3 A427 NR
Cell-permeable 

Cyclic D-peptide

Dual-targeting (NRP1 and KRASG12D) peptide for therapy of 

LC.

Zhou et al. 

(2022)

BR2-2xPPD

A549, PC9-6 M, 

PC9-GR and PC9-

ER (resistant cell 

lines): 2.5 μM

BEAS-2B and 

HaCaT: non-toxic

Cell-penetrating 

peptides (CPP)

CPPs induced cell cycle arrest by inhibiting the expression of 

cyclin D1 and CDK2 genes in A549 wild-type epidermal 

growth factor receptor cells.

Kaewjanthong 

et al. (2022)

P7

A549 and H1975, 

A549/CD133+ 

cells: 50 ηM.

NR
Peptide-drug 

conjugate

Docetaxel-P7 induced unfolded protein response and 

subsequent apoptosis by degrading Hsp90, while awakening 

and killing the dormant cancer stem cells.

Jiang Y. et al. 

(2022)

D-LAK-120A

A549, H358, H1975, 

and HCC827: 4 to 

5.5 μM

Healthy lung cell 

line: 8.40 μM
AMP

D-LAK-120A inhibited cancer cell proliferation via both 

membranolytic and non-membranolytic pathways. AMP 

significantly inhibited colony formation and cancer metastasis 

in vitro.

Patil and Kunda 

(2022a)

EIP103
A549: 1 μM and 

H446: 10 μM.
DC2.4: non-toxic

Targeting peptide 

+ CPP

Peptides that can specifically target nucleus receptor LC and 

improve the anti-tumor efficacy.

Jiang M. et al. 

(2022)

Mastoparan A549: 1.3 μM NR
Peptide-drug 

conjugate

Significantly higher cell counts were found in G2-M phase after 

treatment with mastoparan-alendronate sodium 

nanoconjugates.

Alhakamy et al. 

(2022)

ACPP-p21Ras 

scFv

A549, SW480, 

U251 and Huh7
BEAS-2B CPP Potential antitumor drug for Ras gene-driven LC Du et al. (2022)

Peptide from 

circPPP1R12A-

73aa protein

A549 and H1299 BEAS-2B NR
NSCLC cell proliferation was promoted by circPPP1R12A-73aa 

translated from circPPP1R12A through the AKT pathway.

Zhao et al. 

(2022)

d-peptide VAP A549-luc NR
Conjugate 

peptides

The D peptide modification markedly enhanced the tumor-

targeting efficiency of nanodisks, thereby improving the anti-

tumor properties of non-small cell LC efficacy of the drug 

delivery system.

Song et al. 

(2022)

CIGB-552 peptide
NCI-H460, A549 

and TC-1 (in vivo)
NR

Antitumoral 

peptide

The results demonstrated a clear synergic effect between 

37.5 μM of CIGB-552 and 5 μM of cisplatin under a 

concomitant scheme, on proliferation inhibition, cell cycle 

arrest, apoptosis induction and oxidative stress response.

Gomez 

Rodriguez et al. 

(2022)

CP7 A549: 14.94 μg/mL NR Targeting peptide

In vivo experiments proved that siRNA/liposome-PEG-CP7 has 

excellent tumor targeting and tumor inhibition function in 

tumor-bearing mice.

Dong et al. 

(2022)

Nisin ZP
A549: 132.4 μM 

H1299: 137.3 μM
HEK293: > 300 μM AMP

The cell cycle arrest suggested accumulation of cells in initial G0/

G1 phase, which ultimately culminated in apoptotic cell death of 

NSCLC cells regardless of p53 tumor protein expression.

Patil and Kunda 

(2022b)

cRGD polypeptide LL/2 NR
Conjugate 

peptides

It exhibited good tumor-targeting capability, good biodegradability 

and biocompatibility. Combined treatment displayed enhanced 

anti-tumor and anti-metastatic ability in LC therapy.

Zhang et al. 

(2022)

Laterosporulin10 

(LS10)

MCF-7, HEK293T, 

HT1080, HeLa and 

H1299: <10 μM

Prostate 

epithelium cells 

(RWPE-1): 

>15 μM

AMP

Laterosporulin10 is an anticancer bacteriocin that, at low and 

high doses, induces the death of cancer cells by apoptosis and 

necrosis, respectively. In light of the study’s overall findings, 

AMP is an anticancer peptide that may be further developed for 

medicinal uses.

Baindara et al. 

(2017)
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edu.in/raghava/antitbpred/ (Usmani et al., 2018), then analyze their 
hemolytic activity (Salem et al., 2022) and finally perform molecular 
docking with cell membrane proteins (Roque-Borda et al., 2023).

Another alternative would be the inclusion of cell-penetrating 
peptides (CPPs), making them hybrid and trying not to alter the net 
charge and hydrophobicity. CPPs can enter human and/or animal cells 
to interact with molecules internally, so many AMPs may also have 
permeation capacity, being able to be AMP or CPP at the same time 
(Xie et al., 2020). An example of hybridization was reported for Iztli 
Peptide 1, designed using a fraction of the Saccharomyces cerevisiae α 
pheromone sequence (cationic AMP) and a short CPP (without 
antimicrobial activity). This study showed that the hybrid AMP was 
capable of penetrating cells regardless of endocytosis, which paved the 
way for the design of new multiple-action molecules with improved 
cellular compatibility (Rodriguez Plaza et al., 2014). It was previously 
reported that the inclusion of arginines or their replacement with 
tryptophans could modify the behavior of AMPs by converting them 
into CPPs while maintaining their antimicrobial activity and their 
target cell selectivity (Kardani et al., 2019).

Nanotechnology as a drug delivery tool has taken on great 
importance during the application and transport of promising AMPs 
against intracellular bacteria, since many times their size and 
biocompatibility permeate cell membranes or easily cross them without 
generating an immediate immune response (Roque-Borda et  al., 
2022a). Nanoparticles (NP) are promising agents mostly for 
intramacrophage or phagosome antimicrobial action, since their 
construction implies the design of specific targets for their controlled 
release, so that large but not excessive drug concentrations can 
be  administered (Gharatape et  al., 2016). Some previous studies 
reported the use of polymers modified on their surface with 
biomacromolecules or antibodies for the recognition of proteins 
expressed only by tumor cells, or release conditions in slightly acidic 
environments that are characteristic of cancer cells (Richards et al., 
2017; Marques et al., 2020). NPs can also enter infected macrophages 
and release AMPs to exert their action, especially when they do not have 
cell-penetrating characteristics (Tenland et al., 2019; Meng et al., 2023).

2. Discussion

Lungs have historically been considered sterile in health and were 
initially omitted from the list of priority organ systems in the Human 
Microbiome Project (HMP), but subsequent studies by metagenomic 
analysis have since demonstrated that the lower respiratory tract is 
replete with diverse communities of bacteria both in health and disease 
(Dickson et  al., 2013; Liu et  al., 2020) containing about 10 to 100 
bacteria per 1,000 human cells (Sze et al., 2012). Due to the importance 
of inflammation and cancer, the presence of microorganisms can 
be  related to the initiation and/or progression of cancer. Some 
microorganisms have already been detected in patients with lung 
cancer. Most microorganisms colonize the tumor microenvironment, 
which can induce the production of inflammatory molecules (Molina-
Romero et al., 2019). As shown in Table 1, some gut microbiota-related 
microorganisms are present in lung cancer patients.

The respiratory tract and gut can communicate with each other 
via some anatomical processes such as micro-aspiration and 
inhalation (Zhao et  al., 2021). Other studies have pointed to the 
existence of a gut-lung axis (GLA) that can interfere with the immune 

responses and change the course of respiratory diseases (Enaud et al., 
2020). For example, the severity of Mtb infection may be correlated 
with gut microbiota (Namasivayam et al., 2018). Still, some AMPs can 
be  delivered to the gut by means of living therapies previously 
designed using probiotic bacteria (Geldart et  al., 2016). These 
therapies are advantageous because probiotics help to maintain the 
host’s health and they are a novel approach to lung-directed treatment 
against TB infection (Gareau et al., 2010; Mejía-Pitta et al., 2021). 
Gut-related microorganisms in lung cancer can be classified into two 
types of relationship, namely their presence in the tumor 
microenvironment or a dysbiosis in the gut microbiome. Some 
microorganisms such as Bifidobacterium have been reported to 
be potential biomarkers of lung cancer, due to their decline in the gut 
microbiota (Zhuang et  al., 2019; Zhao et  al., 2021). These 
characteristics of the gut microbiota in lung cancer patients may affect 
therapy effectiveness and prognosis.

The relationship between TB and LC is the subject of much debate. 
The chronic inflammation caused by the colonization of active Mtb can 
be one of the mechanisms increasing the probability of developing this 
carcinoma. Chronic inflammation caused by this infection has been 
linked to cell dysplasia, as well as squamous LC (Broussard et al., 2009; 
Skowroński et  al., 2015). LC can be  promoted by persistent local 
inflammation, which contributes to damage of the pulmonary 
epithelium, and the cytokines released can induce the proliferation of 
lung epithelial cells (Ballaz and Mulshine, 2003). The main reason for 
describing this relationship is the development of carcinoma from TB 
scars (Brenner et al., 2011; Cukic, 2017). This relationship may be based 
on some mechanisms and interactions. For example, TB-related chronic 
inflammation can induce genetic mutations (Vento and Lanzafame, 
2011). A close association between metastatic squamous cell carcinoma 
(SCC) and TB lesions has been demonstrated (Nalbandian et al., 2009). 
Lung parenchyma is involved in both TB and LC (Bhatt et al., 2012). The 
production of inflammatory cytokines can be  related to cancer 
development (Cicėnas and Vencevičius, 2007; Engels et al., 2009). The 
development of the granulomas in an Mtb infection may generate a 
microenvironment predisposed to malignant transformation. This 
microenvironment may lead to changes in the epithelium of the lung 
caverns, calcified lymph nodes and old scars in the bronchi (Cukic, 
2017). Still, the pneumocytes are infected and activated, with the 
induction of autophagy, secretion of pro-inflammatory mediators and 
cell death as outcomes (Rodrigues et al., 2020). Polverino et al. (2016) 
demonstrated that ligands of proliferation are more highly expressed in 
patients with both chronic inflammation and non-small lung cancer 
cells than in patients with only chronic inflammation or cancer. The 
expression of these ligands can be related to the progression of both, 
inflammation and cancer (Polverino et al., 2016).

It is important to note that cancer and TB can mimic each other 
at clinical, biological and radiological levels. This can be hazardous for 
the patient. A patient with LC but diagnosed with TB will receive 
chemotherapy to no effect. In fact, this therapy would deteriorate the 
patient’s response. On the other hand, receiving treatment for TB 
when the patient has cancer could lead to a complication and eventual 
death of the patient. Even in a concomitant condition, when a patient 
is correctly diagnosed with LC but also has TB, the healing process can 
be complicated (Malik et al., 2022).

Some reports have indicated that AMPs would be  able to 
recognize different cancer cell receptors for efficient molecular 
targeting (Figure 2). Therefore, they could be a relevant alternative to 
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the use of AMPs, for application against cancer and could be a relevant 
alternative against bacteria (Zhang et al., 2019).

Kunda (2020) compiled different applications of these peptides 
against an unchained proliferation of non-small cell LC, because AMPs 
can develop similar mechanisms of action against bacteria; these peptides 
may interact with negatively charged molecules of cancer cells such as 
phosphatidylserines, negative glycoproteins and glycosaminoglycans, i.e., 
highly expressed in the presence of oncocells. One of the main problems 
with the use of AMPs in the treatment of cancer is their cellular 
non-specificity, which could damage healthy cells at the same time 
(Hilchie et  al., 2019). However, there are already some strategies to 
improve the peptide sequence by obtaining specific target analogs that 
could generate better action and fewer side effects (Yang et al., 2022). 
Table 6 shows the main AMPs that have been relevant in the last three 
years, with potential anti-Mtb and anticancer activity. The results show 
that few studies have proven the activity for both diseases, but it is 
possible to obtain drugs with double function and activity.

Derived by the endogenous cationic peptide Brevinin-1 family, 
the B1CTcu5, of amphibian origin, was able to inhibit Mtb in culture, 
as well as intracellular conditions, by permeabilizing the thick cell 
wall of Mtb to impart bactericidal activity without causing any 
damage to the macrophages. B1CTcu5 can mimic the environment 
by adopting an alpha-helical conformation in the membrane. This 
characteristic contributes to the activity against prototype Gram-
negative and Gram-positive bacteria. The hydrophobic interaction 
between amphipathic AMP and the cell membrane makes a specific 
peptide–lipid complex, which may produce alterations in the 
bacterial membrane, such as thinning, pore formation, altered 
curvature and localized perturbations (Abraham et al., 2020).

A recent example is LL-37, an endogenous AMP derived from 
Cathelicidin. It is also an endogenous cationic peptide expressed in 
human immune cells, with activity against extra and intracellular Mtb, 
mainly through the disruption of the bacterial cell wall upon binding, 
causing disintegration and rapid rupture within minutes. Moreover, other 
results the same group showed that LL-37 is internalized by macrophages 
and localized within the membrane of early endosomes labeled with 
antigen 1 protein (Deshpande et al., 2020). Other findings suggested that 
by “nonclassical” mechanisms, vitamin D contributes to protection 
against TB and can act in combination with LL-37 (Martineau et al., 
2007). For lung cancer, studies have shown that LL-37 increased 
tumorigenicity and significantly larger tumor mass in human lung cancer 
cells (von Haussen et al., 2008), but analogs have significantly improved 
cytotoxicity against cancer cell line A549 cells (Tzitzilis et al., 2020).

Finally, in addition to the activities mentioned in Table 6, a recent 
study suggests a combination of amphipathic α-helical N-terminal 
region of cecropin A and hydrophobic N-terminal of the bee venom 
melittin, known as CP26. This combination is a 26-amino acid long 
β-helical peptide with activity against both susceptible (H37Rv) and 
MDR strains of Mtb (Rivas-Santiago et al., 2013), but this combination 
of peptides has not yet been studied against lung cancer.

The antimicrobial peptides can also be  designed to combat 
bacteria and cancer cells through re-engineering into anticancer 
peptides. Both bacteria and cancer cells possess an electronegative 
surface that the peptides can break because they are cationic 
amphiphiles. Aronson et  al. (2020) tested this hypothesis with an 
AMP originally designed to kill M. tuberculosis and found a powerful 
result against ovarian cancer, opening new paths to study alternatives 
that are also potent against lung cancer (Aronson et al., 2020).

FIGURE 2

Some anticancer mechanisms of antimicrobial peptides with known activity against Mycobacterium tuberculosis. The figure was created by Biorender.
com, partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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3. Conclusion

The most debated hypothesis is that an Mtb infection can trigger 
such a complex inflammatory environment in the lung that it 
unintentionally induces normal cells to differentiate into cancer cells, 
initiating lung cancer. Many researchers are studying this link, but 
more experimental data are needed to establish a clear mechanism 
between the diseases, especially through the study of clinical-human 
samples. A few other researchers suggest the opposite, namely that 
there is a predisposition to Mtb infection precisely because of a 
depressed immune system and tissue affected by the growth of cancer 
cells, but these studies have not found an accurate mechanism proving 
this relationship.

Regardless of the disease that initially affected the patient, 
diagnostic methods for differentiating them are extremely 
necessary because they have similar symptoms, confusing and/or 
masking the secondary disease, which, in turn, can go untreated or 
treated incorrectly, thus worsening the clinical scenario. In 
addition, there is a need for new treatment alternatives that combat 
both diseases developed in the same organ, so that there is no 
unnecessary overlapping of drugs, causing greater toxicity or even 
antagonistic effects.

We report on four alternatives of antimicrobial peptides with 
current relevance, which were able to show activity against the 
mycobacteria as well as against lung cancer. Examples of peptides 
from the same class with action on TB and LC have been presented. 
However, no derivative or analog has yet been found that manages 
to act on both diseases for concomitant treatment, which opens up 
a field of study with infinite possibilities for alterations and 
combinations. These alternatives need more investment and 

further studies to prove the dual activity and develop dual-function 
drugs that minimize the abandonment of therapy when pulmonary 
diseases coexist.
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TABLE 6 AMPs with proven anticancer activity and activity against Mycobacterium tuberculosis.

AMPs Potential anti-cancer/Mtb activity References

Melittin

Melittin is an AMP with relevant characteristics that have been very useful against several cancer cell lines, and it is currently 

advancing in the clinical phase. Importantly, it induced G1 cell cycle arrest and apoptosis in Chago-K1 human bronchogenic 

carcinoma cells and inhibited the differentiation of THP-1 cells into tumor-associated macrophages; also via inhibition of 

miR-183, it induced NSCLC apoptosis. Previous studies in clinical isolates of Mtb revealed that it has a slight bactericidal 

activity.

Tipgomut et al. (2018), 

Portell-Buj et al. (2019)

Cecropins

Cecropins are an important family of peptides, many of them found in insects. They were first isolated from Hyalophora 

cecropia. Some peptides derived from Dichotomius satanas and Onthophagus curvicornis dung beetles exhibited anti-Mtb 

activity but Satanin-1 also had in vitro antitumor activity against THP1 cells, indicating that it may be used as an anticancer 

agent. Some authors described its effective activity against bladder cancer, and it did not show cytotoxicity in murine fibroblasts.

Suttmann et al. (2008); 

Henao Arias et al. (2021)

Cathelicidins

Cathelicidins are a large group of AMPs, many of which are produced by humans. A study reported that modulating the 

expression of these peptides would be efficient during treatment against MDR Mtb. The authors recommended some 

exogenous dehydroepiandrosterone, phenylbutyrate, or histone deacetylase inhibitors, which promote the production of 

cathelicidins and human beta-defensins 2 and 3. Another clinical study performed in Zambia indicated the use of vitamin D in 

combination with LL-37 for preventive use. Likewise, some LL-37 analogs were able to kill A459 cancer cells from human lung 

adenocarcinoma. Some studies have shown the potential of LL-37 in immunomodulation in macrophages in response to 

malignant tumors, preventing proliferation and regulating apoptosis. These results show that AMPs have potential anticancer 

activity for possible clinical uses and feasible development of a new drug for preventive or effective treatment.

Chen et al. (2018), 

Tzitzilis et al. (2020), 

Marin-Luevano et al. 

(2021), Rao Muvva et al. 

(2021), Rodríguez-Carlos 

et al. (2021), Lungu et al. 

(2022)

Brevinins

Brevinins are AMPs isolated from frogs from different parts of the world. B1CTcu5 from the skin secretion of Clinotarsus 

curtipes was found to be non-toxic and to eliminate intracellular Mtb. These results have led to the option of using the cyclic 

forms of AMPs by inducing the formation of disulfide bridges, thus increasing their activity; this strategy can be considered 

favorable under oxidizing conditions. At the same time, Brevinin-2R1 showed a semi-selective activity that kills cancer cells by 

a mechanism involving the lysosomal-mitochondrial death pathway, important data for the development of new drugs and the 

discovery of new treatment pathways.

Ghavami et al. (2008), 

Abraham et al. (2020)
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