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Abstract

We study a dynamic model of collective action in which agents interact and learn through a
co-evolving social network. We consider two alternative scenarios that differ on how agents
form their expectations: while in a “benchmark” agents are assumed completely informed of
the prevailing state, in the other context agents shape their expectations through a combination
of local observation and social learning à la DeGroot. We completely characterize the long-run
behavior of the system in both cases and show that only in the latter scenario (arguably the
most realistic) there is a significant long-run probability of successful collective action within
a meaningful time scale. This, we argue, sheds light on the puzzle of how large populations
can “achieve” collective action. Finally, we illustrate the empirical potential of the model by
showing that it can be efficiently estimated for the so-called Egyptian Arab Spring using large-
scale cross-sectional data from Twitter.
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1. Introduction

Social networks provide the structure through which people interact and communicate when fac-
ing problems of collective action, e.g., addressing social emergencies, staging peaceful protests,
or igniting violent riots. Nowadays, a large fraction of such social interaction is carried out vir-
tually, through online social media such as Facebook, Twitter, or Instagram. This, in principle,
makes it possible to collect massive data on the operation of large-scale social networks, which
in turn opens up rich possibilities for an integrated theoretical and empirical study of collective-
action problems in large populations. To develop theoretical and empirical methods that can
be used to handle and better understand this type of data on collective-action phenomena is,
in a nutshell, the main objective of this paper.

The approach we pursue to study the problem has, therefore, a theoretical and an empirical
side to it. On the theoretical front, we model the situation as a population game played on an
evolving network in which each agent decides whether or not to join the collective action (e.g.,
a social riot) on the basis of:
(a) the observation of the actions chosen by her network neighbors;
(b) the belief she holds on the average action chosen by the rest of the population.

While, in general, the beliefs in (b) could be induced by some arbitrary expectation-formation
function of the current state of the system, only two concrete alternatives will be formally
studied here and compared:
(b.1) agents have perfect information on the average action of all others;
(b.2) they form individual beliefs by combining the information they gather locally from their

neighbors on the actions they choose (see (a)) and the beliefs they hold.

Alternative (b.1) is the classical formulation considered by the evolutionary learning literature
in games, which may be described as of complete information. In contrast, alternative (b.2)
presumes that not just observation but also social learning (i.e., the process by which the beliefs
of others can influence one’s own) is constrained by the current social network.

In this context, a primary aim of our theory is to shed light on the following fundamental
issue: How does a large population, connected through a dynamic social network, manage to
achieve collective action? In particular, this question speaks to one of the several paradoxes
associated with Gordon Tullock (see Tullock, 1971) – one that derives from the “puzzle” of how
large populations achieve the form of collective action that underlies massive social protests (or
“revolutions”). It has been succinctly explained by Shadmehr [2021] as follows:

“... societies are large, and one person’s effect on the success of the revolution is
negligible while participating in a revolution is costly so that revolutions should not
occur.”

In addressing this issue, we shall argue that, from a modeling viewpoint, the received as-
sumption of complete information embodied by (b.1) above is not as useful as (b.2) for our
purposes. One of the reasons for this claim is of a general nature: if the population is large, the
limited (local) information embodied by (b.2) is so much more plausible. For, in a large context,
the assumption that individuals have an accurate perception (even if only approximate) of the
current state of affairs can hardly be judged “realistic”.

There are, however, two additional reasons supporting (b.2) that bear more specifically on
our objective of shedding light on how collective action can arise in large populations. The first
one derives from the fact that, under (b.1), our theoretical analysis of the model will show that,
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in order for any significant degree of collective action to arise, there has to be a large fraction of
the population (more than half) that displays a high propensity/bias for it. Thus, heuristically,
we could describe the situation as one in which collective action requires that the population
include a majority of “militants.” Instead, under (b.2), we find that, even when the set of such
biased militants is small, clusters of local collective action can arise and persist in the long run.

In contrast, the second reason is explicitly dynamic in that, instead of comparing the long-run
(stationary) predictions of the model, it focuses on the expected time required by the process to
approximate such long-run predictions. Under (b.1), we find that even when the model predicts
that collective action can succeed in the long run, the expected time required for it to materialize
to any significant extent is inordinately long. Specifically, it grows exponentially in population
size, hence yielding a mostly irrelevant long-run prediction in large contexts. Instead, (b.2)
induces much shorter and thus meaningful expected times, even when the population is large.
Thus, somewhat paradoxically, our theoretical framework leads to the conclusion that more
local (network-bound) information greatly facilitates collective action. Intuitively, this happens
because, under such limited information, it is much easier for local cliques to form as robust
seeds for collective action, upon which sizable collective action can gradually unfold in a time
scale that grows only slowly with populations size.

From a methodological viewpoint, the first key step in our analysis of the model is to obtain
a full characterization the long-run behavior of the evolutionary process, as captured by the
induced limiting probability distribution over possible states. This characterization has two
important implications: one on the development of the theory, and another on its empirical
application.

On the theoretical side, it allows us to conduct an exhaustive comparative analysis of the
effect of the different forces (parameters) at work. For example, we can answer the following
type of questions. What is the comparative importance of observation and learning (recall
(b.2)) in shaping agents’ beliefs? What is the effect of individual heterogeneity – and, possibly,
homophily – in the formation of the social network? Does easier/cheaper connectivity – and
hence a more dense network – help coordination on collective action? What is the impact of the
agents’ tendency towards local conformity (the desire to have their behavior aligned with that
of their neighbors)? And of global conformity (i.e., behavioral alignment with the population
at large)?

On the empirical side, our characterization of the limiting distribution of the process in
closed form (i.e. as an explicit function of the parameters) is also particularly fruitful. In
essence, it means that the theory directly provides a likelihood function that can be used for
the structural estimation of the model. And then, of course, such an estimation may serve
both to test the theory and to apply it to the study of specific real-world instances of collective
action. This is what we do in the second part of the paper, where we bring our theory to the
analysis of a “big” data set on the massive social protests sparked by the so-called Arab Spring
in Egypt.

Specifically, we rely on Twitter data on tweeting and networking by 225,578 users during the
military backlash that, in June 2013, toppled the Morsi government. This information is used
for two important purposes. First, we trace the underlying social network, identifying inter-
agent links with those bilateral relationships that show reciprocal influence. Second, we rely on
state-of-the-art machine-learning techniques in the field of Natural Language Processing (NLP)
to infer the agents’ characteristics (e.g., their gender, political bias, or religious affiliation) as
well as ongoing beliefs and behavior (in particular, their support of, or opposition to, the social
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movement of anti-military protest).

Given the large size of our data set, conventional maximum-likelihood methods are not
feasible, and neither are the simulation-based approaches proposed in the literature [Badev,
2021; Hsieh et al., 2020; Hsieh et al., 2022; Mele, 2017]. Therefore, we rely on the so-called
maximum composite likelihood estimation approach [Lindsay, 1988; Varin et al., 2011], apply-
ing suitable computational techniques that combine sparse-matrix and case-control procedures.
The estimates thus obtained are fully in line with the theory and also provide an intuitive
understanding of the context being studied. For example, we find that both social learning
and local observation are significant components of belief formation (the former having a higher
weight than the latter). Such endogenously generated expectations are one of the important
forces driving behavior. The other force derives from the inherent costs or risks, as well as
benefits and ambitions, that agents anticipate when deciding whether or not to contribute to
collective action. In our model their net effect is captured by a single (fixed) parameter and is
therefore exogenous. As part of our econometric exercise, this parameter is estimated from our
data and it turns out to have a positive sign. This suggests that, in the Egyptian revolt against
the military, the population perceived, on average, that the intrinsic costs and risks entailed
were more than offset by the corresponding benefits of joining in.

Our estimated model further allows us to analyze counterfactual scenarios where we can
study the impact of changes in the fundamental parameters of the model on rioting behavior.
As an illustration, we focus on the following two cases: (i) we examine the role of linking costs
in affecting rioting behavior; (ii) we analyze how biasing the beliefs towards a specific action
can influence the rioting outcome. In case (i), we observe that a reduction of the linking cost
by 20% yields an increase in the fraction of rioting agents by 15%. This shows that as linking
and exchanging information via the network becomes more costly (e.g., by interrupting or
blocking social media), fewer links are being formed, coordination among agents becomes more
difficult, and fewer agents participate in the protest as a consequence. This finding illustrates
and quantifies the importance of online social networks in the formation of protest movements
or riots and the emergence of collective action. In case (ii), we contemplate the possibility of
a government influencing the belief updating equations of the agents biasing it towards the
preferred action of the government (status quo). Our results show that while such a belief
manipulation (say, “propaganda”) does not affect the network density it has a drastic effect on
rioting, reducing the fraction of rioting agents by up to 30%. These findings highlight that the
manipulation of information can mitigate the formation of collective action, but it also shows
that it cannot suppress it entirely.

We conclude this Introduction with a brief discussion of the relationship between our re-
search and existing literature, theoretical and empirical. On the theoretical front, we may
highlight three different strands of work. One is the extensive research that has been conducted
on coordination games in networks. For fixed networks, the problem was studied, for example,
by Blume [1993], Brock and Durlauf [2001] and Morris [2000], while the analysis was extended
to co-evolving endogenous networks by Jackson and Watts [2002] and Goyal and Vega-Redondo
[2005]. A second strand is the booming recent research on learning in networks (cf. Golub and
Sadler [2016] for a survey). As a small sample, we may refer to the influential contributions by
Acemoglu et al. [2014], DeMarzo et al. [2003], and Jackson and Golub [2010]. While the former
paper adopts a Bayesian approach to the problem, the latter two build upon the bounded-
rationality framework proposed by DeGroot [1974]. The latter approach – which posits that
agents update their beliefs by linearly combining their own with those of their network neigh-
bors – heavily inspires our learning formulation and has received some experimental support
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(c.f. Chandrasekhar et al. [2015]). Thirdly, we refer to the literature that, in line with the semi-
nal work of Granovetter [1978], models the behavior of individuals facing a problem of collective
action as a threshold phenomenon. Two interesting theoretical contributions whose strategic
(equilibrium) analysis of social protests and “revolutions” display such a threshold behavior can
be found in the papers by Chwe [2000] and Barberà and Jackson [2020]. Our approach to mod-
eling collective action incorporates many of the signature features of the three aforementioned
strands of literature – coordination, (DeGroot) learning, and threshold behavior. As already
advanced, it is their integration into a unified framework that turns out to yield new theoretical
insights into the problem of collective action.

Turning now to the empirical literature, our paper builds upon the recent body of work
that has developed econometric methods designed to study the co-determination of networks
and actions in social contexts, addressing the difficult identification/endogeneity issues entailed
(see, for example, the recent papers by Goldsmith et al [2013], Hsieh et al. [2016], and Johns-
son and Moon [2021]). The are also a few papers, such as those by Boucher [2016], and the
aforementioned [Badev, 2021; Hsieh et al., 2020; Hsieh et al., 2022; Mele, 2017] that apply these
methods to carry out, as in our case, structural estimation of an underlying theoretical model.
As already explained, however, their econometric methods are computationally unfeasible in
dealing with the large data sets that are our primary concern.

Next, we refer to the recent literature that shares with this paper its focus on the role of
social media in facilitating collective action – in particular, in supporting massive events of
social protest. An early study of the phenomenon was undertaken by González-Bailón et al.
[2011], who study the role that Twitter had in the surge of the anti-austerity mobilizations
that took place in Spain in May 2011. They show that the induced online network played an
important role in the recruitment process by means of local “contagion.” Another good example
is the paper by Acemoglu et al. [2016], which focuses on the same instance of social protests as
we do – the Egyptian Arab Spring – and finds support for the conclusion that a rise in Twitter
activity preceded the triggering of social protests.

In a similar vein but with a different methodological perspective, the recent paper by
Enikolopov et al. [2020] studies the wave of social protests that took place in Russia in 2011.
Their main contribution is to identify a causal positive relationship between differences in the
degree of social media penetration and the extent of social protest. Interestingly, they also
show that the main basis for this effect is not the wider access to information the social me-
dia provide; instead, they highlight “... the importance of horizontal information exchange on
people’s ability to overcome the collective action problem.” This is in line with the importance
that our own analysis attributes to the social network as a channel for the exchange of infor-
mation across neighbors. For, as already explained (recall items (a)-(b) above), our approach
is grounded on the idea that agents gather information “horizontally,” not only observing the
neighbors’ actions but also learning/exchanging their beliefs.

The key role played by the network in shaping people’s beliefs is also highlighted by the
experimental evidence studied in the interesting paper by Cantoni et al. [2019]. The primary
contribution of their paper is, in their words, “... to isolate the causal effect of variation in
beliefs regarding others’ protest participation on one’s own protest participation.” In their ex-
perimental context, this conclusion is reached through targeted interventions that selectively
affect agents’ beliefs. In our case, where we base our analysis on Twitter (non-experimental)
data, our approach to identifying agents’ attitudes and beliefs is based on an extensive appli-
cation of the state-of-the-art techniques developed by the field of Natural Language Processing
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(NLP), used in combination with the Arabic pre-trained language model AraBERT.1

The rest of the paper is organized as follows. Section 2 presents the theoretical framework
(the game-theoretic setup, the law of motion for actions and links, and the different belief
formation scenarios). Section 3 undertakes the formal analysis of the model, characterizing
the long-run behavior of the system for each of two scenarios considered (global and local
information) and comparing their implications. Section 4 summarizes the data used in our
application of the model to the Egyptian Arab Spring, while in Section 5 we conduct the
econometric analysis, discuss the estimation results, and perform a parameter-recovery exercise
that provides support to our econometric approach. Section 6 carries out various types of
counterfactual analysis that illustrate the role of some of the forces at work and also serve to
explore the effect of possible interventions. Section 7 concludes the main body of the paper,
while in Appendix A we include the formal proofs of all our theoretical results. Then, in various
Supplementary Appendices, we include the following material: in Supplementary Appendix
B we discuss some extensions of the model; in Supplementary Appendix C we rely on the
predictions of the model for finite noise to check its consistency with numerical simulations;
in Supplementary Appendix D we provide a complete characterization of the stochastically
stable states for finite populations; in Supplementary Appendix E we describe the historical
conditions that help contextualize our data; Supplementary Appendix F provides additional
details for the data construction; and Supplementary Appendix G performs a robustness check
for our estimation results.

2. The Model

For the sake of clarity, we divide the presentation of the model into three parts. First, in
Subsection 2.1 we introduce the basic interaction setup, i.e., we describe what are the primitives
that define the interaction, induce the payoffs, and characterize the state of the system. Then, in
Subsection 2.2 we specify the dynamic, i.e., the law of motion of actions and links that changes
the state over time. Naturally, this dynamic is crucially dependent on the beliefs agents hold.
Subsection 2.3 explains alternative formulations on how such beliefs are formed, depending on
the information agents have access to.

2.1. Basic Setup

Consider a population N = {1, . . . , n}, conceived as large, which is involved in a problem of
collection action. For concreteness, we interpret it to represent some instance of social protest
and call it a “riot.” Each individual i ∈ N must choose an action si, which is a dichotomous
decision of whether to join the riot or not. Formally,2 it is convenient to identify joining the riot
with +1 and not doing so with −1. Thus an action profile for the whole population is given by
a vector s = (s1, . . . , sn)

⊤ ∈ S = {−1,+1}n whose cardinality is given by #({−1,+1}n) = 2n.

1Natural Language Processing is a branch of the Artificial Intelligence literature that applies machine-learning
methods to text and is becoming widely used in social sciences. Among the growing number of overview articles
that can be checked as suitable references, we can list Gentzkow et al. (2017) for its application to economics, or
Grimmer and Brandon [2013] who focus on political science, Evans and Aceves [2016] on sociology, or Humphrey
and Wang [2017] on marketing. On the other hand, specifically concerning AraBERT, see Antoun et al. [2020].

2This is also the customary convention adopted in the analysis of the classical Ising model [cf. Grimmett,
2010].
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The population is also connected through bilateral links as given by the current social net-
work G. Any such network can be represented by its adjacency (binary) matrix A = (aij)

n
i,j=1,

where each entry aij (i, j = 1, 2, . . . , n) is either 1 or 0 if i is either connected to j or not (with
the convention that aii = 0). For simplicity, we shall consider undirected networks, which
means that the matrix A is symmetric, i.e., aij = aji for all i, j ∈ N . The set of all undirected
networks of size n is denoted by Gn.3

Given any action profile s and an adjacency matrix A, we expand on the classical interaction
models studied by Brock and Durlauf [2001] and Blume et al. [2011] and posit that each agent
i ∈ N holds some point belief ψi ∈ [−1,+1] on the average action chosen by every other agent in
the population. Then, assuming that agent i observes perfectly the action sj chosen by each of
her (immediate) network neighbors j (i.e. those j with aij = 1), her expected payoff is defined
as follows:

πi(s, G) = si

n∑
j=1,j ̸=i

(ρψi + θaijsj)︸ ︷︷ ︸
interaction effect

+ γisi︸︷︷︸
idiosyn.

bias

− κsi︸︷︷︸
action
cost

−
n∑

j=1,j ̸=i
aijζij︸ ︷︷ ︸

link costs

(1)

where:
• ρ ∈ (0, 1) is the parameter modulating a force towards global conformity with her

expectation ψi of the average (population-wide) action;
• θ ∈ (0, 1) is a parameter capturing a force towards local conformity with the

accurately perceived actions sj of her network neighbors (i.e. those j s.t. aij = 1);
• γi ∈ {−1,+1} is i’s idiosyncratic characteristic shaping her bias for either action;
• κ ≥ 0 is a common cost for choosing action si = +1 (e.g., the effort/risk of rioting);
• ζij ≥ 0 is the linking cost between agents i and j.

We propose the following interpretation of the payoff structure (1). Its first term, the
interaction effect, captures the genuinely strategic part of the model and has two components:
a global and a local one. The global component, whose weight on payoffs is parametrized by
ρ, embodies the essence of the collective-action problem faced by the population, as perceived
by agent i. Thus, identifying the aggregate action of all other agents j ̸= i with the support
for collective action provided by the rest of the population, that aggregate magnitude can also
be conceived (when suitably normalized)4 as the probability that player i attributes to the
collective effort being successful. Of course, the probability of failure is then symmetrically
determined, which in turn allows a quantification of the relative strength of agent i’s incentives
to be aligned with the more likely outcome.5 The second local component of the interaction
effect, whose weight is parametrized by θ, reflects the classical assumption commonly made
in network setups: agents like to have their behavior well aligned with that of their network
partners/friends. As we shall see, the main role played by this local-conformity component in
our model is to provide a simple basis to guide agents’ networking (linking) behavior.

3To understand how the analysis could be adapted if links are taken to be directed, see Supplementary
Appendix B.1. However, here we consider undirected links, as it is standard in the social networks literature on
peer effects, and we leave the detailed analysis of directed networks to future work.

4Specifically, consider the following affine transformation: 1
2
+ 1

2(n−1)

∑n
j ̸=i sij . Alternatively, one could also

use other monotone non-affine transformations, but this would render the model significantly less tractable.
5In principle, one could also introduce an additional term in (1) that only depends on the probability of success

for collective action per se, i.e. on the aggregate support it receives. But then, since the relative impact on this
magnitude of any single individual would be negligible when the population is large, so would be the effect it
would have on payoffs and thus on behavior. In view of these considerations, we choose to dispense with such a
component for the sake of modeling simplicity.
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The next two terms in (1) – i.e. the idiosyncratic bias and the action cost– introduce
different types of asymmetries between the two actions. The first one is associated to the fixed
type γi ∈ {+1,−1} of agent i and provides a clear meaning to the notion of type in our context:
every agent has a bias in favor of the action that matches her type. In contrast, the second source
of action asymmetry induced by κ is intrinsically associated to the action choice of the agent,
independently of her type. The fact that we speak of it as a “cost” implicitly suggests that κ
is positive and therefore presumes that the support for collective action (+1) bears an intrinsic
disutility. Our model, however, allows for the possibility that agents may have a substantial
preference for rioting that exceeds any costs. This would be captured by some κ < 0. In fact,
as we shall find in Section 5, the Egyptian Arab-Spring evidence considered by our empirical
application of the model yields such a negative estimate for this parameter.

Finally, the last term in (1) includes linking costs ζij for the bilateral link that may formed
or maintained between any given pair of agents, i and j. Type heterogenenity is taken to have
an impact of these costs as follows:6

ζij = ζ1 −
ζ1 − ζ2

2
(1− γiγj) =

{
ζ1, if γi = γj

ζ2, if γi ̸= γj
(2)

with 0 ≤ ζ1 < ζ2. The above formulation entails that agents with the same idiosyncratic
preferences enjoy a lower linking cost, hence inducing a bias/preference for connections between
individuals of the same type. This phenomenon, known as homophily, has been shown to be
a quite common feature in human nature, long highlighted by sociologists [cf. Lazarsfeld and
Merton, 2014; McPherson et al., 2001], and recently studied by economists as well [see e.g.,
Currarini et al., 2009].

2.2. Dynamics

In our model, both action and linking choices are endogenous variables and define the state of
the system, ω = (s, G) ∈ Ω, as it changes over time. For technical tractability, we model time
continuously and denote it by t ∈ [0,∞). The dynamics consist of three components: action
adjustment, link creation, and link removal, which will be separately defined below. Naturally,
these adjustments will be assumed to depend on the expected payoffs perceived by the agents at
the time of their adjustment. This requires specifying how each agent i forms her beliefs ψi on
the average action of others, 1

n−1

∑n
j ̸=i aj . For the moment, we formulate this in abstract terms

and simply postulate that, for each i, her beliefs are related to the prevailing state through a
function ψi : Ω → [−1,+1]. Different concrete possibilities for the functions ψi(·) are considered
below, in Subsection 2.3.

As customary in the evolutionary literature, expected payoffs will be assumed to be subject
to persistent random noise. This noise can be motivated as the result of a number of different
(non-exclusive) factors. One possibility, proposed e.g., by Brock and Durlauf [2001], is that the
game is subject to shocks, which are observed by the agents but not by the modeler. Another
option is to suppose that the noise captures agents’ uncertainty about the payoff (and hence
behavior) of others. Finally, a third motivation that has been highlighted by evolutionary game
theory [cf. Blume, 1993; Kandori et al., 1993; Young, 1993] is that agents make mistakes or

6For an extension of the model that allows for endogenous (i.e. action-dependent) linking costs, see Appendix
B.2. There we show that this extension induces the same functional form as in (1), up to a shift in parameter θ.
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simply experiment with some exogenous probability.

Mathematically, the evolutionary adjustment of actions and links defines a stochastic process
that induces a probability measure over the set of state paths of the form (ωt)t∈R+ , ωt ∈ Ω,
where each state ωt = (st, Gt) consists of a vector of agents’ actions st ∈ {−1,+1}n and a
network Gt ∈ Gn. Its law of motion can be described as follows.7

In every time interval of infinitesimal length, [t, t+∆t), t ∈ R+, the following subprocesses
simultaneously operate:

Action adjustment: At rate χ > 0, every agent i ∈ N is randomly given an independent
opportunity to change her current action sit ∈ {−1,+1} to the alternative s′i. Upon
receiving this opportunity, the action change is implemented if, and only if, the agent
perceives it profitable in terms of the expected payoffs specified in (1) and an additive
random shock εit. Thus, the probability that any given agent i switches from action sit to
s′i is given by:

P
(
ωt+∆t = (s′i, s−it, Gt)|ωt = (sit, s−it, Gt)

)
=

χ P
(
πi(s

′
i, s−it, Gt;ψi(st, Gt))− πi(sit, s−it, Gt;ψi(st, Gt)) + εit > 0

)
∆t+ o(∆t)

(3)

Link adjustment: At rate λ > 0, every pair of agents ij are randomly given an independent
opportunity to either form a link if they are not connected, or remove a link if they are
currently connected. Upon receiving this opportunity, the link is established/maintained if,
and only if, both agents perceive it as beneficial in terms of the expected payoffs specified
in (1) and an additive random shock εij,t. Thus, the probability that any such link ij is
formed is given by:

P (ωt+∆t = (st, Gt ± ij)|ωt−1 = (s, Gt)) =

λ P
[
{πi (st, Gt ± ij;ψi(st, Gt))− πi(st, Gt;ψi(st, Gt)) + εij,t > 0} ∩

{πj(st, Gt ± ij;ψi(st, Gt))− πj(st, Gt;ψi(st, Gt)) + εij,t > 0}
]
∆t+ o(∆t),

(4)

where Gt ± ij denotes the network Gt with the link ij added (+) or removed (−).

Throughout we shall make the assumption that all random shocks are independently and
logistically distributed with mean zero and the same scale parameter η ≥ 0. Therefore, its
cumulative distribution function F (·) is given by eηx

1+eηx and we can write the action-adjustment
rule (3) in the following explicit form:8

P(ωt+∆t = (s′i,s−it, Gt)|ωt = (si, s−it, Gt))

= χ P
(
−εit < πi(s

′
i, s−it, Gt;ψi(st, Gt))− πi(sit, s−it, Gt;ψi(st, Gt))

)
∆t+ o(∆t)

= χ
eη πi(s

′
i,s−it,Gt;ψi(st,Gt))

eη πi(s
′
i,s−it,Gt;ψi(st,Gt)) + eη πi(si,s−it,Gt;ψi(st,Gt))

∆t+ o(∆t).

And, proceeding analogously for the link adjustment rule (4), we arrive at the following corre-

7The adjustment process has some similarity to that of Hsieh et al. [2022], time being measured continuously
and revision opportunities arriving as a Poisson process [cf. Sandholm, 2010].

8Note that if z is logistically distributed with mean 0 and scale parameter η, then the random variable ε = −z
has a distribution function Fε(·) given by Fε(y) = 1− Fz(−y) = eηy

1+eηy .

8



sponding expressions for link adjustment

P (ωt+∆t = (st, Gt ± ij)|ωt = (st, Gt)) =λ
eη πi(st,Gt±ij;ψi(st,Gt))

eη πi(st,Gt±ij;ψi(st,Gt)) + eη πi(st,Gt;ψi(st,Gt))
∆t+ o(∆t)

=λ
eη πj(st,Gt±ij;ψi(st,Gt))

eη πj(st,Gt±ij;ψi(st,Gt)) + eη πj(st,Gt;ψi(st,Gt))
∆t+ o(∆t),

where note that the link-adjustment probabilities are identical for the two agents involved in
any link change (be it creation or removal) because, given the logistic noise formulation, the
corresponding change in payoffs induced by it is the same for both of them.

2.3. Beliefs

To complete the description of the model, we now introduce the two different belief-formation
scenarios that we shall consider and contrast. One embodies the classical formulation considered
by much of the evolutionary literature of learning in games: at each point in the process,
agents are completely informed of all the payoff-relevant features of the current state of the
process. These features include, specifically, the average support for collective action provided
by the rest of the population (i.e., the average action). For conciseness, this first scenario
is labeled Global Information (GI), and is simply captured by the belief-formation mapping
ψGI =

(
ψGIi

)
i∈N : Ω → [−1, 1]n that, for each ω = (s, G) ∈ Ω, is defined as follows:

ψGIi (ω) =
1

n− 1

n∑
j=1,j ̸=i

sj (i = 1, 2, . . . , n). (5)

Thus, for every t, the beliefs pit = ψi(ωt) held by each agent i ∈ N coincide with the “true”
average action chosen by the rest of the population.

In the alternative scenario, which we label Local Information and Learning (LIL), we sup-
pose that agents gather information locally on the overall average support for collective from a
combination of:
(a) the observation of that support among their network neighbors;
(b) the learning derived from interacting with those same neighbors.

The observation of the local average action posited in (a) derives from our assumption that every
agent directly observes the actions {sj : aij = 1} of her network neighbors and, naturally, know
their degree di =

∑n
j ̸=i aij . On the other hand, the local interaction/learning in (b) is modeled

along the lines of the well-known framework proposed by DeGroot [1974].9 More specifically,
we posit that given the state ωt = (st, Gt) = [(s1t, s2t, ..., snt)

⊤, Gt] prevailing at any given time
t in the evolutionary adjustment process, there is a sequence of learning rounds, indexed by

9See also Berger [1981], Jackson and Golub [2010], Golub and Jackson [2012] and DeMarzo et al. [2003].
Chandrasekhar et al. [2015] and Grimm and Mengel [2015] provide empirical evidence that individuals that
attempt to learn the underlying state of the world in a network are well described by DeGroot-type models.
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u = 0, 1, 2, ..., where the point beliefs put = (pu1t, p
u
2t, ..., p

u
nt) are updated as follows:

pu+1
it = φ

1

dit

n∑
j=1

aij,tsjt︸ ︷︷ ︸
local average

actions

+(1− φ)
1

dit + 1

puit + n∑
j=1

aij,tp
u
jt


︸ ︷︷ ︸

local average
beliefs

(i = 1, 2, ..., n) (6)

where the first term in (6) is assumed to be zero if dit = 0, and φ ∈ (0, 1) is the updating weight
given to local observation while the complementary value (1 − φ) is the weight given to social
learning. Such social learning reflects the simple idea that agents update their beliefs by mixing
uniformly their own previous beliefs and those of their network neighbors.

In line with the assumption made for the GI scenario, let us postulate that, also for the
LIL scenario, the belief-updating adjustment formalized above occurs very fast and reaches a
stationary point p⋆t . It can be easily confirmed that such a stationary point always exists and
is unique. To see it, let us write (6) in compact matrix form as follows:

pu+1
t = φD−1

t Atst + (1− φ)D̂−1
t Ât p

u
t (7)

where Dt ≡ diag(d1t, . . . , dnt) is the diagonal matrix of agents’ degrees at t, D̂t ≡ In +Dt with
In being the identity matrix, Ât ≡ In +At, and pt and st are interpreted as column vectors of
agents’ beliefs and actions. Then, the induced stationary beliefs are given by:

p∗
t = φ

[
In − (1− φ)D̂−1

t Ât

]−1
D−1
t Atst (8)

which is a well-defined expression since the matrix D̂−1
t Ât is row-stochastic and φ > 0.10

Thus, in sum, the LIL scenario is characterized by the belief-formation mapping ψLIL =(
ψLILi

)
i∈N : Ω → [−1, 1]n that, for each ω = (s, G) ∈ Ω, is defined as follows:

ψLIL(ω) = φ
[
In − (1− φ)D̂−1Â

]−1
D−1As, (9)

where A and D specify, respectively, the adjacency matrix of the network G and its corre-
sponding diagonal matrix of agents’ degrees while, as before, Â ≡ In +A and D̂ ≡ In +D.

3. Theoretical Analysis

In this section we conduct the theoretical analysis of the model, proceeding in parallel with the
two belief-formation scenarios considered, GI and LIL. The overall analysis is also carried out
in two steps. First, in Subsection 3.1, we describe the invariant probability distributions that
summarize the long-run behavior of the process in each alternative scenario. Then, in Subsection
3.2 we compare the long-run predictions (for small noise) of the two contexts, paying special
attention to the following key questions: (i) when does collective action arise with significant

10Of course, this would not be the case for the extreme value of φ = 0, for which we would arrive at the
customary DeGroot model. In it, actions play no role and stationary beliefs – if they exist – depend on the
starting ones p0 in a way that reflects the architecture of the social network.
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probability, even when the population is large; (ii) what is, in expected terms, the delay involved
in arriving at such a state of affairs.

3.1. Long-run Behavior

In order to characterize the long-run behavior of the system, we shall show that its adjustment
process (on both actions and links) can be described in terms of a suitable potential – a strict
potential function in the case of GI, and an approximate one for LIL.

Starting with the GI scenario, the key point to note is that, given the belief-formation
mapping ψGI =

(
ψGIi

)
i∈N defined in (5), the function Φ : Ω → R given by:

Φ(ω) =

n∑
i=1

(γi − κ)si +

n∑
j=1,j ̸=i

1
2

[
ρsiψ

GI
i (ω) + aij(θsisj − ζij)

] (10)

which can be rewritten as

Φ(ω) =

n∑
i=1

(γi − κ)si +
1
2

ρsi(n− 1)ψGIi (ω) +
∑
j ̸=i

aij(θsisj − ζij)

 (11)

is a potential for the expected payoff function given in (1) under belief-formation rule ψGI . This
means that, for any change in a single component of the state (an action or a link) involving
any particular agent i, the change on the expected payoffs πi(·;ψGIi (·)) experienced by this
agent matches exactly the corresponding change displayed by the function Φ(·). Formally, the
following two conditions must hold ∀i, j ∈ N , G ∈ Gn, s ∈ S and s′i ∈ Si = {−1,+1}:

let ω = (si, s−i, G), ω
′ = (s′i, s−i, G) ∈ Ω;

then, Φ(ω′)− Φ(ω) = πi(ω
′;ψGIi (ω))− πi(ω;ψ

GI
i (ω)),

(12)

and
let ω = (s, G), ω′ = (s, G± ij) ∈ Ω;

then, Φ(ω′)− Φ(ω) = πi(ω
′;ψGIi (ω))− πi(ω;ψ

GI
i (ω))

= πj(ω
′;ψGIj (ω))− πj(ω;ψ

GI
j (ω)),

(13)

where G± ij stands for the network given by G with the link ij added (+) or deleted (−).

To understand intuitively why the function Φ(·) defined in (11) satisfies (12)-(13), it is
useful to think of it as adding the payoffs attained by all individuals in any given state ω, with
the important caveat that all those payoffs derived from interaction (i.e. from coordination or
link formation) are split equally between the two agents involved. In view of this feature, the
additivity and agent symmetry displayed across the different payoff components readily yields
the desired match between: (a) the change in individual payoffs experienced by the agent(s)
involved in any action or link revision, (b) the corresponding potential change. For the sake of
completeness, this conclusion is stated in the following result, whose formal proof is included in
Appendix A.

Proposition 1. Given beliefs ψGIi (·), the function Φ(·) given in (10) defines a potential for
the agents’ expected payoffs πi(·;ψGIi (·)) for each i ∈ N , as specified in (1); that is, conditions
(12)-(13) hold.
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The previous result leads to a number of interesting consequences. A standard one is that
the noiseless best-response (“myopic”) adjustment of actions and links converges, almost surely,
to the unique equilibrium (stationary point) where the potential is maximized.11 In terms of
our model, such an adjustment process corresponds to the limit situation where the persistent
noise introduced in our adjustment subprocesses (3) becomes vanishingly small, i.e., η → ∞.
But even for any arbitrary η (i.e., possibly small, inducing large noise), the existence of a
potential allows one to obtain a sharp (probabilistic) prediction about the long-run behavior of
the induced stochastic process. For, as stated by our next result, an adaptation of arguments
used in standard models of statistical physics (spelled out in Appendix A) delivers the following
result.

Proposition 2. Consider the stochastic process (ωt)t∈R+ defined by (3)-(5), where the additive
shocks perturbing agents’ payoffs are i.i.d. logistically distributed with parameter η > 0 and
the belief-formation rules of the global-information scenario apply, i.e., they are given by the
function ψGIi (·). Then, this process induces an ergodic Markov chain whose unique invariant
distribution µη, defined on the measurable space (Ω,F), is determined for every ω = (s, G) ∈ Ω
as follows:

µη(ω) =
eηΦ(ω)∑

ω′∈Ω e
ηΦ(ω′)

=
eηΦ(s,G)∑

G′∈Gn

∑
s′∈{−1,+1}n e

ηΦ(s′,G′)
. (14)

The previous proposition provides an explicit solution of the model in the GI scenario by
specifying, in closed form, how the probability distribution µη that characterizes the long-run
behavior of the process depends on the noise level modulated by η and all other parameters of
the model. The empirical validity of the theoretical prediction embodied by (14) is illustrated in
Supplementary Appendix C.1 through numerical simulations. Specifically, Figure C.1 focuses
on the average degree and average action, tracing how they are affected by changes in the
linking cost ζ, a key parameter of the model. We find that the dependence on ζ exhibited
by the simulations is well aligned with the theory, closely approximating the mean degree and
mean action prescribed by the corresponding distribution µη(· ; ζ).

Next, we turn to conducting a parallel analysis for the LIL scenario, where beliefs are
governed by the mapping ψLIL defined in (9). To this end, as a counterpart of the potential
posited in (11), we propose a function Φ̃ : Ω → R that, for all ω = (s , G) ∈ Ω, is given by:12

Φ̃(ω) =
n∑
i=1

(γi − κ)si + ρsi(n− 1)ψLILi (ω) + 1
2

∑
j ̸=i

aij(θsisj − ζij)

 . (15)

The function Φ̃ is, of course, much more complicated than Φ in that, in contrast with the
previous case, the belief-formation mapping ψLIL embedded in it is not network-free – that is,
it relies on information about the whole network architecture prevailing at each possible state
ω. Because of this, Φ̃ fails to be separately linear in the different components of the state (i.e.
actions and links), which prevents us from relying on the methodological approach used for the
GI scenario to claim that it is strict potential. In what follows, however, we formulate (and

11Alternatively, this equilibrium can be viewed as a Nash equilibrium of a corresponding complete-information
game where actions and linking proposals are chosen independently by the agents, the links being created and
maintained only by consensus of the agents involved.

12Note that, in contrast with Φ, the function Φ̃ does not include the “equal-splitting factor” of 1/2 affecting
the individual expected payoffs anticipated from global interaction. The reason for it will be discussed when we
explain in more detail – see item (c) below – our approach to studying the LIL scenario.
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later support, numerically and econometrically) the conjecture that it works well as a useful
approximation for a strict potential function in the LIL scenario. Thus, for want of a better
term, we call it a quasi-potential.

A preliminary step in motivating the aforementioned conjecture is based on the following
observations:

(a) Consider any single-component change from a state ω to another state ω′, after which
the corresponding beliefs remain unaltered (i.e., ψLIL(ω) = ψLIL(ω′)). Then, the payoff
change perceived by an agent i ∈ N involved in the adjustment exactly matches the
change displayed by Φ̃ – that is, πi(ω′, ψLILi (ω))− πi(ω, ψ

LIL
i (ω)) = Φ̃(ω′)− Φ̃(ω).

(b) Consider a state ω where the social network is sparse (roughly, most of the possible
links are absent) but agents typically have a sizable degree (still much lower than the
population size). Then, one may expect that any single-component revision toward some
other state ω′ should induce individual belief changes ψLILj (ω′)−ψLILj (ω) that are small
and, furthermore, should affect significantly only those agents j who are close in the
network to an agent i involved in the change.

(c) In view of (a)-(b), an adaptation of the considerations underlying the construction of the
potential for the GI scenario suggests that the equal-splitting factor of 1/2 correcting for
double counting should be applied only to the payoffs resulting from local interaction.
Instead, for the payoffs agents expect from global interaction, the mostly limited and local
nature of agents’ belief adjustments render it unnecessary, as an approximation, to account
for the aforementioned correction.

The combination of all three observations above suggests that, if the population is large
and the noise small, the changes over time of the function Φ̃(ωt) must be largely dominated by
the payoff changes experienced by those agents who revise their decisions (on actions or links)
at each point in time. Thus, since our model prescribes that such payoff changes are always
perceived (with some noise) as non-negative, the overall adjustment process should display a
monotonically increasing trend for the quasi-potential Φ̃ over time. To illustrate the point, we
show in the left panel of Figure 1 a typical trajectory for small noise. Furthermore, in the right
panel of Figure 1 we show that the relative differences between the changes in the quasi-potential
and the changes in payoffs are small and get smaller the closer the process is to the stationary
state. This indicates that the quasi-potential Φ̃ exhibits a behavior similar to that established
for the GI scenario in terms of the potential Φ (cf. Proposition 1).

Next, motivated by the previous considerations, we formulate the following conjecture: un-
der LIL, the long-run behavior of the process is well described (approximately) by a probability
distribution with the same format arising for the GI scenario in terms of the potential Φ (cf.
Proposition 2). That is, we posit that the entailed stochastic process induces a limiting distri-
bution that is well approximated by the distribution µ̃η defined, for every ω = (s, G) ∈ Ω, as
follows:

µ̃η(ω) =
eηΦ̃(ω)∑

ω′∈Ω e
ηΦ̃(ω′)

=
eηΦ̃(s,G)∑

G′∈Gn

∑
s′∈{−1,+1}n e

ηΦ̃(s′,G′)
. (16)

We provide support for (16) through two different routes. The first one is the most direct. It
involves comparing the long-run average values of key variables obtained from extensive numer-
ical simulations with the corresponding mean values derived from the distribution µ̃(·) given in
(16). As an illustration, in Figure C.2 in Supplementary Appendix C.2, we describe results that
reproduce, for the LIL scenario, the very good match between theory and simulations that are
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Figure 1: The left panel shows a typical trajectory of the quasi-potential, Φ̃(ω), under the dynamics outlined
in Subsection 2.2. The quasi-potential is increasing and reaches a plateau when the process converges to the
stationary state, with the inset showing the initial transition. The right panel shows the difference between
changes in the quasi-potential when a link changes (∆Φ̃ = Φ̃(s, G ± ij,ψLIL(s, G ± ij)) − Φ̃(s, G,ψLIL(s, G)))
and marginal payoffs (∆π = πi(s, G ± ij, ψLIL

i (s, G)) − πi(s, G, ψ
LIL
i (s, G))) divided by marginal payoffs, or

when an action is adjusted (comparing changes in the quasi-potential, ∆Φ̃ = Φ̃(s′i, s−i, G,ψ
LIL(s′i, s−i, G)) −

Φ̃(s, G,ψLIL(s, G)), with changes in payoffs, ∆π = πi(s
′
i, s−i, G, ψ

LIL
i (s, G))−πi(s, G, ψ

LIL
i (s, G))), over the time

evolution of the stochastic process. We observe that the relative differences of the changes in the quasi-potential
and the changes in payoffs are small and get smaller the closer the process is to the stationary state.

obtained for GI context (shown in Figure C.1 in Supplementary Appendix C.1). Specifically,
they show that, as the linking cost ζ changes over a wide range, the mean degree and mean
action predicted by µ̃(·) trace closely the average values of these variables that result from the
simulations.

The second route explored in support of our theory for the LIL scenario is more indirect
but provides an interesting complementary perspective on the issue. For, by involving our
econometric methodology, it is also reassuring for our empirical strategy (not only in the LIL
scenario but in the GI one as well). This approach will be explained in detail in Subsection 5.3
once the econometric analysis has been presented and applied to our data in Subsections 5.1
and 5.2. Here, we only provide a brief advance of the main conclusions.

The analysis starts with the generation of artificial data obtained by simulating the dynamics
of our process according to the rules posited in our theoretical model. And, as mentioned, we
do it for both informational scenarios, i.e., either assuming that the agents have global or local
information. Then, we apply our composite-likelihood econometric approach to such artificially
generated data and obtain (highly significant) estimates for all of the parameters involved in the
model. Finally, we contrast the estimated parameters with the ones actually used to generate
the data and find that they are very close in both scenarios. This suggests two related points.
First, it indicates that the composite-likelihood approach underlying the econometric analysis
is an effective estimation procedure for both informational scenarios (of course, as long as we
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choose the the same scenario for the generation of the data and the estimation exercise). Second,
it provides additional support to the claim that not only the (strict) potential approach used
for the GI scenario, but also the (approximate) one used for the LIL context, both capture the
essential features of the long-run behavior of the system. Only if this is indeed the case can
one reasonably justify that they represent useful bases to conduct the econometric estimation
in both cases.

3.2. Achieving Collective Action

In this subsection we compare the two informational scenarios, GI and LIL, from a standpoint
that speaks directly to what we have labeled “The Tullock paradox”. How can we understand
that collective action (e.g., a massive social protest) does sometimes arise, even when the pop-
ulation is very large and, therefore, the coordination problem they face is hard and risky? As
we have advanced, our contribution to understanding this issue involves modeling the context
as one where individuals’ information about the current state is not global but local, and such
local information is updated through a process of social learning mediated through the network.

More concretely, our analysis of the problem approaches it from two different angles. In one
of these, we ask how likely it is that, if the noise is small, collective action may materialize in
the long run within each informational scenario. In contrast, the alternative viewpoint focuses
on comparing not just the long-run predictions in both scenarios but asks “how long is the long
run” in each case (and therefore how relevant it really is). As we show in this section, for each of
these alternative approaches to the question, the LIL-based framework provides a substantially
stronger basis than that based on the GI assumption for understanding the rise of collective
action in large populations.

To study the problem, we pursue a methodology, commonly used in evolutionary theory
(see e.g., the seminal work of Kandori et al. [1993] and Young [1993]), that starts by identifying
the support of the long-run distribution of the process when the noise level becomes vanishing
small – in our context, this amounts to studying the limit η → ∞. Under GI, whose invariant
distribution µη is given by (14), that support includes the states ω = (s, G) ∈ Ω such that
limη→∞ µη(s, G) > 0. Usually, these are called the Stochastically Stable States (SSS) of the
process. On the other hand, for the LIL scenario, we carry out a similar exercise on the
counterpart distribution µ̃η given by (16). Since in this case this distribution is based on what
we have called a quasi-potential, the states ω = (s, G) ∈ Ω such that limη→∞ µ̃η(s, G) > 0 are
called the Stochastically Quasi-stable States (SQS).

In our context, where the long-run distributions µη(·) and µ̃η(·) have an exponential form,
it is clear that the SSS and SQS are those that maximize the corresponding potential Φ(·)
and quasi-potential Φ̃(·), respectively. That is, for the GI scenario, and writing Φ(ω) for
Φ(ω,ψGI(ω)) to simplify the notation, we have:

lim
η→∞

µη(s, G)

{
> 0, if Φ(s, G) ≥ Φ(s′, G′), ∀s′ ∈ {−1,+1}n, G′ ∈ Gn,
= 0, otherwise

(17)

and the counterpart conditions for the LIL scenario in terms of limη→∞ µ̃η(·) and the quasi-
potential Φ̃(·).

The SSS and SQS are completely characterized for all parameter configurations by, respec-
tively, Propositions D.1 and D.2 in Supplementary Appendix D. Figures 2 and 3 illustrate
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Figure 2: Simulation results for the GI scenario on the average degree of the network d̄ (left panel) and the
average action s̄ (right panel) for varying values of θ and η, using the “next reaction method” for simulating
a continuous time Markov chain [cf. Anderson, 2012; Gibson and Bruck, 2000]. The circles represent averages
obtained across 1000 Monte Carlo runs under the following parameters: n = 10, η ∈ {1, 10, 100}, λ = χ = ξ = 1,
and ρ = 0.1. The thresholds ζ1 and ζ2 are indicated with a vertical dashed line. As η becomes large, for θ < ζ1 the
network is empty (Kn), for ζ1 < θ < ζ2 the network is partitioned into two type-homogeneous cliques (completely
connected subnetworks, denoted by Kn+ and Kn−n+), and for ζ2 < θ it is complete (Kn).

graphically how the long-run average degree d̄ and average action s̄ change as η grows, i.e.,
as the noise becomes progressively smaller, hence approximating stochastically (quasi-)stable
values. We observe that, despite the fact that the diagrams pertain to contexts with a relatively
small population (n = 10), the displayed functions approach a step-like form as η grows. This
points to the sharp selection patterns (on actions and network) that is predicted in extreme
form by our theory when the noise is small and population large (cf. Propositions 3-6).

For the sake of focus, rather than explaining in detail the aforementioned general results,
here in the main text we restrict our discussion to the most interesting context where:

(a) the linking costs are not “prohibitive,” i.e., ζ1 < θ;
(b) the population is large, i.e., we make n→ ∞.

Note that if (a) does not hold, then linking costs are so large that they deter agents from forming
links and the network becomes empty. This, in effect, brings us back to the classical setup in
the study of collective action, where the problem is not embedded in a social network and hence
renders our approach essentially redundant. On the other hand, the reason for focusing on the
limit context given by condition (b) is that it directs attention to a context where, being the
population large, the collective-action problem is truly challenging. This is indeed the context
where, explained in the Introduction, the Tullock Paradox is most acute. Formally, the way in
which we capture these large-population considerations is to formulate our stability notions on
the limiting distribution obtained when the population grows unboundedly. More precisely, in
the GI scenario we shall focus on the set of what we call the Limit Stochastically Stable States
(LSSS), defined as follows:

Ω∗ = {ω = (s, G) : lim
n→∞

lim
η→∞

µη(ω) > 0}, (18)
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while for the LIL scenario, we shall consider what we label the Limit Stochastically Quasi-stable
States (LSQS) in the following set:

Ω∗∗ = {ω = (s, G) : lim
n→∞

lim
η→∞

µ̃η(ω) > 0}. (19)

As it turns out, the characterizations of the two sets defined in (18) and (19) depend on the
fraction of individuals of type+1 in the population, which we denote by ν+ ≡ n+/n. Specifically,
we find that they are qualitatively different if the limit fraction ν+ is lower or higher than 1/2.
It is helpful, therefore, to state separate results characterizing the sets given in of the for each
of these two cases. Considering first the GI scenario, the set of LSSS in the set Ω∗ are as stated
in the following two propositions.

Proposition 3. Assume all agents form their beliefs as prescribed by the function ψGI(·) defined
by (5) and suppose θ > ζ1. Let n→ ∞ and assume 0 < limn→∞ ν+ < 1/2. Then we have:

(a) If θ < ζ2 the unique LSSS has the network segmented into two cliques,13 Kn+ and
Kn−n+, with no cross-links and including all agents of types +1 and −1, respectively. The
action profile in the LSSS has all agents i ∈ N choosing the action si = −1.

(b) If θ > ζ2 the unique LSSS is given by the complete graph Kn with all agents choosing
the action si = −1.

Proposition 4. Assume all agents form their beliefs as prescribed by the function ψGI(·) defined
by (5) and suppose θ > ζ1. Let n→ ∞ and assume 1/2 < limn→∞ ν+ < 1. Then we have:

1. Suppose κ > 2ν+ − 1.
(a) If θ < ζ2 the unique LSSS has the network segmented into two cliques, Kn+ and

Kn−n+, with no cross-links and including all agents of types +1 and −1, respectively.
The action profile in the LSSS has all agents i ∈ N choosing the action si = −1.

(b) If θ > ζ2 the unique LSSS is given by the complete network Kn with all agents
choosing the action si = −1.

2. Suppose κ < 2ν+ − 1.
(a) If θ < ζ2 the unique LSSS has the network segmented into two cliques, Kn+ and

Kn−n+, with no cross-links and including all agents of types +1 and −1, respectively.
The action profile has all agents i ∈ N choosing the action si = +1.

(b) If θ > ζ2 the unique LSSS is given by the complete network Kn with all agents
choosing the action si = +1.

Propositions 3 and 4 completely characterize the SSS for arbitrarily large n when the network
is not empty (i.e., under the assumption that θ > ζ1). The contrast between these two results
is intuitive and instructive. A key consideration in both cases is whether or not θ > ζ2. If this
inequality holds, all links are profitable between any two agents if, independently of their type,
they are action-coordinated. Naturally, this always leads to a LSSS with a complete network.14

The differences in this case, therefore, can only pertain to the action profile associated with such
a complete network. If the number of +1 types is less than half (as in Proposition 3), there is

13Recall that a clique is a completely connected subnetwork. In general, we use the notation Km to denote a
clique of size m, whereas Km denotes an empty network with m nodes

14In principle, one could conceive a “relatively” stable configuration where the population is partitioned into
type-homogeneous components. These components, however, are not in this case robust against the creation of
cross links, which leads to a single component and eventually action uniformity and link completeness.
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Figure 3: Simulation results for the LIL scenario on the average degree of the network d̄ (left panel) and the
average action s̄ (right panel) for varying values of θ and η, using the “next reaction method” for simulating
a continuous time Markov chain [cf. Anderson, 2012; Gibson and Bruck, 2000]. The circles represent averages
obtained across 1000 Monte Carlo runs under the following parameters: n = 10, η ∈ {1, 10, 100}, λ = χ = ξ = 1,
φ = 0.5, and ρ = 0.1. The stochastically stable states in the limit of large η correspond to Propositions 5 and 6,
respectively. The thresholds ζ1 and ζ2 are indicated with a vertical dashed line. As η becomes large, for θ < ζ1
the network is empty (Kn), for ζ1 < θ < ζ2 the network is partitioned into two type-homogeneous cliques (Kn+

and Kn−n+), and for ζ2 < θ it is complete (Kn).

no “critical mass” for the costly action +1, and every player ends up choosing −1, irrespectively
of the cost κ ≥ 0 of action +1. (Note that, since the network is complete, there is no way to
support any extent of action diversity in the population.) Instead, if such a critical mass exists
(i.e., the number of +1 types is more than half – and still we have θ > ζ2) – Proposition 4
establishes that whether action −1 or action +1 is chosen uniformly by the population depends
on the cost κ of action +1. If high enough (i.e., κ > 2ν+ − 1), then the costless action −1 is
selected in the vanishing-noise limit; otherwise, it is the action +1.

A quite different situation arises if θ < ζ2. In this case, no link between two agents is
profitable whenever they are of different types, even if they are choosing the same action.
Then, the two-clique arrangement in type-homogeneous cliques is the most robust one, and
therefore it is the configuration that prevails in every LSSS. Concerning actions, on the other
hand, the population profile displayed at the LSSS depends on three parameters: the cost κ
of action +1, the fraction of agents who display the corresponding type +1, and the strength
of the global conformity parameter ρ. A sufficient condition to have all n+ agents choose the
action +1 is that κ < 1 − ρ(1 − ν+). This condition, however, is not necessary. Specifically,
if ρ > 2, it can be readily checked that there are κ > 1 − ρ(1 − ν+) such that, if ν+ > 1/2,
not only the agents of type +1 choose action +1 but also those of type −1.15 Since no such a
possibility exists when ν+ < 1/2, in this case the inequality κ < 1− ρ(1− ν+) is both necessary
and sufficient for action +1 to be played as the LSSS.

Returning to Figure 2, we find an illustration of the fact that the pattern of network ar-

15Note that ρ > 2 implies that 1 − ρ(1 − ν+) < 2ν+ − 1 and therefore we can have κ that satisfies both
κ > 1− ρ(1− ν+) and κ < 2ν+ − 1.
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chitecture and action choice predicted by Propositions 3 and 4 matches the pattern displayed
by a numerical simulation of the process for a finite population. Specifically, we observe that,
as θ varies across the three regions marked by the linking costs ζ1 and ζ2, both the average
action in the population and the network architecture (either complete or segmented into two
cliques) are well approximated (not just qualitatively but also quantitatively) by the theoretical
predictions of the model, if the noise is small enough (η = 100).

Next, we turn to the counterpart of the previous results for the LIL scenario and the set Ω∗∗

of LSQS. Again, we find it useful to separate the conclusions obtained when the limit fraction
ν+ of agents of type +1 is either lower or higher than 1/2. type +1.

Proposition 5. Assume all agents form their beliefs as prescribed by the function ψLIL(·) given
by (9) and suppose θ > ζ1. Let n→ ∞ and assume 0 < limn→∞ ν+ < 1/2. Then we have:

1. If θ < ζ2 the unique LSQS has the network segmented into two cliques, Kn+ and Kn−n+,
with no cross-links and including all agents of types +1 and −1, respectively. The action
profile in the LSQS has all agents choosing the action si = γi if κ < 1 while if κ > 1 all
agents in both cliques choose the action si = −1

2. If θ > ζ2 then the unique LSQS is given by the complete network Kn with all agents
choosing the action si = −1.

Proposition 6. Assume all agents form their beliefs as prescribed by the function ψLIL(·) given
by (9) and suppose θ > ζ1. Let n→ ∞ and assume 1/2 < limn→∞ ν+ < 1. Then we have:

1. Suppose κ > 2ν+ − 1.
(a) If θ < ζ2 the unique LSQS has the network segmented into two cliques, Kn+ and

Kn−n+, with no cross-links and including all agents of types +1 and −1, respectively.
The action profile in the LSQS has all agents choosing the action si = γi if κ < 1
while if κ > 1 all agents in both cliques choose the action si = −1.

(b) If θ > ζ2 then the unique LSQS is given by the complete network Kn with all
agents choosing the action si = −1.

2. Suppose κ < 2ν+ − 1.
(a) If θ < ζ2 the unique LSQS has the network segmented into two cliques, Kn+ and

Kn−n+, with no cross-links and including all agents of types +1 and −1, respectively.
The action profile in the LSQS has all agents choosing the action si = γi.

(b) If θ > ζ2 then the unique LSQS is given by the complete network Kn with all
agents choosing the action si = +1.

In analogy with what was shown in Figure 2 for the GI scenario, Figure 3 illustrates that the
simulation results for finite populations and small noise in the LIL scenario are well aligned with
the theoretical predictions stated in Propositions 5-6. The issue then arises as to how, in general,
these latter predictions for the LIL scenario contrast with those obtained by Propositions 3-4
for the GI scenario. To address this question, a useful route to take is to compare the parameter
regions where, in each model, the corresponding condition of stochastic (quasi-)stability leads
to states where there is a sizable level of collective action. Or, to be more specific, let us focus
on the regions where the fraction of the population contributing to collective action includes
at least the agents more inclined to such a contribution, i.e., those of type +1. Then we find
that while the condition κ < 1 is always necessary for both scenarios (i.e., action +1 cannot
be too costly), under LIL it is also sufficient. Instead, in order to attain the indicated target
for collective action under GI we need two additional conditions. One is that the individuals
of type +1 are a majority of the population (i.e., represent more than 50% of it). A second
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Figure 4: Comparing the two limit stochastically stable and quasi-stable states predictions with ζ1 < θ < ζ2 for
the GI model (left panel) and the LIL model (right panel).

condition is that κ < 2ν+−1. This inequality is obviously more stringent than simply requiring
that κ < 1, except for the extreme case where ν+ = 1, i.e., when essentially all individuals in
the population are of type +1. For a graphical description of the situation, the reader can refer
to Figure 4.

The previous discussion highlights the point that a model of collective action where agents
have limited information and learn from their peers is not only more realistic but also expands
significantly the range of circumstances (parameters) for which such an outcome is predicted
to eventually materialize. This seems a useful first step towards addressing, for example, what
we have labeled the Tullock Paradox – i.e. the puzzle that, despite apparently considerable
difficulties, revolutions (a form of collective action) sometimes succeed even when the population
involved is large. But the problem can also be studied from a genuinely dynamic viewpoint that
is complementary to such long-run analysis. This approach shifts the focus from the limiting
behavior of the process to the speed at which such long-run outcome is reached. Even though a
formal analysis of the question is beyond the scope of this paper, in what follows we provide some
illustrative simulations that convey the main gist of the following idea, namely, that the LIL
framework also provides some basis to understand why collection can arise within a reasonably
short time scale.

The simulations were conducted for parameter configurations that, both in the GI and
LIL frameworks, deliver long-run predictions (as given by Propositions 4 and 6) that involve
substantial collective action (at least 50% of the population chooses action +1). Then, from
initial conditions at which both the network as well as collective action start from tabula rasa
– the social network is empty, and action −1 is chosen by everyone in the population – we ask
the following questions: What is the expected time required to reach such a sizable level of
collective action? How does this expected time change as the population size grows?

Figure 5 describes the simulation results that explore the former questions for a typical
configuration of parameters that meet the conditions described above. (Specifically, they satisfy
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Figure 5: The convergence times, τ∗, to a configuration with at least half of the population choosing action +1
for different population sizes (n) starting from an empty network, Kn, where all agents choose action si = −1
for the GI and the LIL models. The circles represent averages obtained across 1000 Monte Carlo runs under the
following parameters: n = 5, . . . , 100, η = 1, λ = χ = ξ = 1, κ = 0.1, φ = 0.5, θ = 0.02, ζ1 = 4, ζ2 = 8 and
ρ = 3/n. The inset shows the same figure but with the y-axis in the log scale.

that ζ1 < θ < ζ2, ν+ > 1/2 and κ < 2ν+ − 1.) The plot traces how the average delay, measured
by the number of individual adjustments involved, depends on the population size n for both
the GI and LIL scenarios. It shows a sharp contrast between these two alternative contexts.
Specifically, we find that the average delay in the former case is much higher than in the latter,
even if the population size n is relatively small – thus, for n = 100, the difference spans more
than 5 orders of magnitude. This indicates that, even when the GI scenario also yields the
prediction that a substantial level for collective action will be achieved in the long run, actually
reaching this level takes much more “time” (adjustment instances) than in the LIL context.
This is yet an additional reason why the theoretical framework that posits local information
and local learning appears as a better one to understand how collective action arises in large-
population contexts. For it is not only that the LIL scenario supports collective action in the
long run under a significantly wider set of circumstances, and it does so by relying on a more
realistic behavioral assumption – it also provides a much more limited time scale (hence a more
plausible dynamic basis) for how the population reaches that situation.

4. Data

The empirical application of our model uses online social network data from Twitter focussing
on riots and demonstrations in Egypt during the Arab Spring in 2013 [cf. Borge-Holthoefer
et al., 2015; Magdy et al., 2016]. Our decision to use Twitter stems from it serving as the
the main social networking platform for opinion exchange over Egypt’s Arab Spring [cf. Clarke
and Kocak, 2020]. The empirical analysis leverages protest-related tweets surrounding the so-
called Second Egyptian Revolution, where the incumbent Islamist president, Mohamed Morsi,
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is ousted the military returns to power.16

We collected around 6 million Arabic language tweets based on data from Magdy et al.
[2016] and Borge-Holthoefer et al. [2015] and focus on the period between July 4, 2013, when
the military overthrew the regime of president Morsi, and August 19, 2013, when the scales of
demonstrations and the volumes of tweets reached a saturation point.17 Using information on
the number of protests from the Armed Conflict Location and Event Data Project [ACLED,
2019] over the same sampling period, we find a significant concurrence of Twitter message
volumes and real-world protests.18

4.1. Sample Selection & Network Construction

Our analysis focusses on users that have posted more than two tweets that are either retweets
or include mentions of other users, and have less than the 90th percentile of followers (2,918
followers). Focussing on accounts with at least two interactions with other users is designed
to allow the network connections to play a role in the content a user chooses to post. It also
provides us with a large enough sample of tweets for each user to use their tweet text classify
them by their political affiliation and gender. Restricting users based on the number of followers
is designed to remove accounts of politicians, celebrities, and the accounts of news and other
media sources. The resulting estimation sample consists of 225,578 users.

The theoretical model constructed in Section 2 employs the notion of bilateral, undirected
and unweighted links to represent a social network. We construct our counterpart empirical
social network to match these features. Bidirectional and undirected links between Twitter
users are constructed using retweets of original tweets and the use of @-mentions within tweets.
In particular, we define a connection between two users A and B to exist when (i) A has either
retweeted or @-mentioned user B, and (ii) B has either retweeted or @-mentioned user A. This
notion of bidirectional links between users on social media can be conceptually thought of as
“strong ties” [Shi, 2014].

4.2. From Text to Quantitative Measurement

The remainder of our empirical data is constructed using tools from Natural Language Pro-
cessing [Ash and Hansen, 2023; Gentzkow et al, 2017; Grimmer, Roberts and Stewart]. In
particular, we create three variables from the text of each user’s tweets: (i) is a user “rioting”
(i.e. are the pro- or anti miliatry intervention)? (ii) the political affiliation of each user (Secular

16A more detailed account of the historical context can be found in Supplementary Appendix E. In particular,
our analysis covers Phase IV of the Egyptian Arab Spring discussed in Supplementary Appendix E.2.

17Supplementary Appendix F.1 describes the data collection process in more detail. In addition to the date
window featuring the largest scale of demonstrations over this phase of Egypt’s Arab Spring driving our decision
on the time horizon to focus our study rests on when the tweets originally collected by Borge-Holthoefer et al.
[2015] identify protest relevant tweets. Borge-Holthoefer et al. [2015]’s data collection process stops updating
the search terms used to identify and collect protest related tweets in mid-August 2013. As the hashtags and
keywords used by protesters continue to evolve, their collection process no longer includes all relevant tweets.

18The Pearson correlation coefficient between the two indices, ACLED and Twitter, is positive and given by
0.32. Note that we only have information on the number of protests from ACLED but not their size. This will
likely lead to an underestimate of the correlation between the actual protest participation and the protest-related
Twitter messages.
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vs Islamist), and (ii) the gender of each user.19 The construction of each variable is treated as
binary classification problem where we infer each user’s trait from the text of each user’s tweets
[Rao et al., 2010]. The underlying idea is that the tweets written by a Twitter user contain
words, phrases and ways of writing are predictive of their stance on the military intervention,
political affiliation and gender.

Our approach leverages the latest generation of pre-trained BERT language models [Devlin
et al., 2018]. The pre-trained model is then “fine-tuned” for the each of the three specific clas-
sification tasks mentioned above.20 Since pre-trained language models are built from building
a general understanding from a diverse set of text inputs, the fine-tuning apprach can achieve
good performance even when only a small number of training samples are provided [Ash and
Hansen, 2023].

We create three fine-tuned models using a pre-trained BERT language model developed for
Arabic, “AraBERT” [Antoun et al., 2020].21 AraBERT is the dominant pre-trained language
models for the Arabic language and has state of the art performance across a large range of
Arabic language tasks [Abdul-Mageed et al, 2021].22 The base AraBERT model is trained on
over 200 million lines of Arabic text using a transformer architecture identical to the “baseline”
English language BERT model. For each fine-tuning task, we add a feed-forward Softmax
classification layer the top of the AraBERT encoder output. Classifier and the pre-trained model
weights from AraBERT are trained jointly during fine-tuning to maximize the log-probability of
correct class assignment. Tweets are cleaned through a two step procedure before being passed
across AraBERT: (i) words are segmented using the “Farasa segmenter” [Abdelali et al., 2016]
and (ii) training a “SentencePiece” tokenzier [Kudo and Richardson, 2018].23 Each fine-tuned
AraBERT model uses a probability threshold of 0.5 when predicting classes. After fine-tuning
we use the model to predict on all tweets in the estimation sample.

4.3. Classifying Tweets: Pro- vs. anti-military intervention

We want to identify which users are rioting. However, tweets don’t explicitly tell us a user’s
stance.24 We therefore build a classifier that identifies the pro- vs. anti-military intervention
disposition of a user from the user’s tweets texts and take this as an indication of the willingness

19See Hinds and Joinson. [2018] for a systematic review of using digital footprints to reveal demographic
attributes.

20See Bana [2022]for another recent example of fine-tuning a BERT model in ecomomics, albeit in a different
setting. He fine-tunes a BERT model to predict salaries from the text of job postings.

21The decision to use an Arabic specific language model like AraBERT as opposed to a cross-lingual model
such multilingual BERT, ‘mBERT’ [Devlin et al., 2018] and those developed by Conneau et al [2020] is due to
the different morphologic structure of Arabic when compared to Latin based languages where the multi-lingual
approach is more common.

22We use the ‘v2‘ AraBERT model using a maximum sequence size of 128 tokens and a batch size of 16. We
set the learning rate to 2e-5 and train each model for 4 epochs [Tamkin et al., 2020; Zhang et al., 2020]. The
model from the fourth epoch is used for prediction purposes in all tasks. Fine-tuning tasks are implemented in
PyTorch.

23Segmenting Arabic words is a building block of Arabic NLP that helps recover meaning by reducing lexical
sparsity and simplifying syntactic analysis.

24Stance detection differs from sentiment analysis. Stance refers to the expression of someone’s judgement
(expressed in text) towards a given idea, in our case the military intervention, thus stance detection aims to
predict a user’s position on the idea. In contrast, sentiment analysis outputs whether the text uses sentiment
laden words that are positive, negative or neutral in tone to classify a piece of text as such. See Aldayel and
Magdy [2021] for a detailed review of the stance detection literature.
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a) b) c)

Figure 6: The top panels show the classifier confusion matrices for action and political affiliation, while the
bottom panels show the corresponding classifier performances (F1-scores and accuracies). The left column a)
shows the action classifier (anti-MI vs. pro-MI), the middle column b) the political affiliation classifier (Islamist
vs. secular), and the right column c) the gender classifier (male vs. female).

of an individual to riot or protest. We follow the convention that action +1 identifies anti-
military intervention and −1 as pro-military intervention.

As training data, we use 4,150 hand-classified tweets into pro- or anti-military intervention
by two human coders proficient in Arabic. To check consistency, 1,000 tweets are the same
for both coders. We obtained as a consistency measure Cohen’s κ = 0.67. This indicates
a sufficiently strong agreement between the two coders (whereby agreement due to chance is
factored out).

We then build a binary classifier of tweets (pro- or anti-military intervention) using fine-
tuned AraBERT model. We use 80% of the and annotated tweets as training data for fine-tuning
and the remaining 20% to validate model performance on unseen data. The out-of-sample
performance is shown in the bottom left panel in Figure 6. The action classifier has a high
accuracy (representing the number of correctly classified data instances over the total number
of instances) with the corresponding confusion matrix used to compute the accuracy shown in
the top right panel in Figure 6. Also, the F1-score (the harmonic mean of precision and recall)
is high. This shows that our classifier performs well in classifying the users’ actions from the
tweets’ texts. The classifier is then applied to all tweets in the estimation sample. Our stance
detection algorithm’s out of sample performance is similar to those in the existing literature
[Darwish et al, 2018; Qiu et al., 2015; Rajadesingan and Liu, 2014].

4.4. User Characteristics: Political affiliation

Egyptian society is politically polarized between secularists and Islamists since well before the
onset of the Arab Spring. The two dominant sides are an ‘Islamist’ group that supports the
Muslim Brotherhood and then-incumbent president Morsi and a ‘Secularist’ group that endorsed
religious tolerance.25 The Islamist camp is known to support the Muslim Brotherhood whilst

25Despite the associations made between political Islamism and religious Islamism by western media over the
Arab spring the connection between the two, although postively correlated, is more subtle. See Weber et al.
[2013] for a further discussion.
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Figure 7: The fraction of Islamist versus secular users over the sample period.

the Secular ’opposition’ stands against the Brotherhood and their ideology. Which of these
groups a Twitter user identifies with is likely to influence their stance on Morsi’s removal from
power via the military intervention, i.e whether they are rioting.

We leverage the text of tweets to infer the political ideology of Twitter users using a su-
pervised classification algorithm. We utilize an already annotated sample of 20,886 Egyptian
Twitter users and their political affiliations provided by Weber et al. [2013] to finetune an
AraBERT model aimed at predicting whether tweets are written by an Twitter user with either
Islamist or Secular views. In practice, we build a training sample by matching the classified
users in Weber et al. [2013] to users in our sample.26 The matched users are randomly split
80/20 into training/test samples for the AraBERT finetuning. All tweets by a user allocated to
the test (training) sample are used in the parameter fine-tuning (evaluation). The fine-tuned
AraBERT model predicts whether an individual tweet is written by an Islamist or Secularist.
To aggregate these predictions from individual tweets up to the user level we use a “majority
vote” over their tweets to predict their political affiliation. For example, a user with three
secular tweets and five Islamist tweets is classified as a political Islamist.

Out of sample performance of the political affiliation classifier at the Twitter user level is
reported in the middle panel of Figure 6. The high F1-score and accuracy, together with the
corresponding confusion matrix shown in the top middle panel in Figure 6 indicate that the
classifier succeeds at identifying political affiliation from user tweets.

Figure 7 shows the fraction of Islamist versus secular users over the sample period. Note
that in our sample, the majority of agents are Islamists, and that is why the action +1, which
is protesting again the military intervention, dominates (around 73%, see also Table 1). Figure
8 shows the users’ political affiliations and links between them based on a “snowball” sample of
a randomly drawn user and her neighbors, neighbors’ neighbors, etc. of the original network of
users [Goodman, 1961]. A clear separation between densely connected clusters of users with the

26Further details about the construction of the training data are available in Supplementary Appendix F.2.
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Figure 8: Users’ political affiliations and links based on a “snowball” sample of a randomly drawn user and her
neighbors, neighbors’ neighbors, etc. of the original network of users [Goodman, 1961].

same political affiliation can be seen with only a few links across these clusters.27 This indicates
that users are mainly connected with other users with the same political views.

4.5. User Characteristics: Gender

Like many countries in the Middle East, Egyptian society features prevalent gender roles rooted
in of cultural norms stemming from religious beliefs and historical traditions. These norms may,
in our context, lead to differences in the propensity to protest between male and female users
and disparities in the structure and dynamics of networks between genders. As a result, we
build a classification model to identify protester’s gender from their tweets.

To classify the gender of Twitter users we proceed analogously to our approach on political
affiliation, finetuning a third AraBERT model at the tweet level before aggregating up to a

27The hierarchical structure illustrated in the network is mainly due to the nature of the “snowball” sampling
procedure.
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user level prediction. For training data we source the gender classification of subset of Egyptian
Twitter users from Weber et al. [2013], who provides gender classifications alongside the political
affiliations utilized above. Because tweets about riots might not be sufficiently informative about
a user’s gender, we augment the protest relevant tweets with a larger sample of tweets written
by these users. To do so, we extract the most recent 3200 tweets from each of the users in
Weber et al’s data that match our data from the public Twitter API.28

Users are split 80/20 into a traning/test sample split with all tweets of each user being
used in the the finetuning process. AraBERT predictions are again at the tweet level and we
aggregate to predict a user’s gender using majority vote. For example, if a user has three “male”
tweets and five “female” tweets classify a user as female. The out-of-sample performance of our
gender classifier at the user level is shown in the bottom right panel in Figure 6. High F1-score
and accuracy score, along with the confusion matrix (shown in the top right panel in Figure
6) indicate that the classifier does peforms well at predicting gender from text. Our model’s
performance a achieves similar level to other recently developed Arabic-based BERT models
that have been fine-tuned for predicting gender from Arabic text [Abdul-Mageed et al, 2021;
Zhang and Abdul-Mageed, 2019].

Table 1 provides summary statistics of the variables used in the empirical analysis. In our
sample, 74.24% of users have the action been identified as one, and the majority are male and
Islamist, with an average of 0.83 connections and 472 followers.

Table 1: Summary statistics.
mean s.d. max min

Action 0.4848 0.8746 1 -1
Female 0.0974 0.2965 1 0
Islamist 0.6157 0.4864 1 0
Number of followers 472.7100 569.1000 2918 1
Degree 0.8313 2.1345 47 0
Number of nodes 225,578
Number of links 93,762

5. Empirical Analysis

5.1. Identification and Estimation Method

The stationary distributions corresponding to the GI and LIL scenarios in (14) and (16) are
known as Gibbs measures (or the Gibbs random field; see cf. Grimmett, 2010; Wainwright
and Jordan, 2008), which provide us with a probability (likelihood) measure for estimating
unknown structural parameters in the potential functions (11) and (15) from the empirical data
described in Section 4. Before proceeding with the details of estimation, we first reduce the
dimensionality of unknown parameters in the model by specifying the idiosyncratic preference
γi and the linking cost ζij in (11) and (15) as functions of observed and unobserved individual

28The API pull was implemented in December 2020. 3200 tweets is the maximum allowed via Twitter’s Public
API.
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characteristics:
γi = x⊤

i β + τzi, (20)

and

ζij = ϕ0 +

K∑
k=1

hk(xik, xjk)ϕk − zi − zj , (21)

where xi is a K × 1 vector of exogenous regressors including individual gender, political affilia-
tion, and log number of Twitter followers, while β are the corresponding unknown parameters.
The variable zi represents the individual random effect which captures unobserved individual
heterogeneity and is assumed to be identically and independently normally distributed with
mean zero and variance σ2z , i.e., zi ∼ N (0, σ2z). The function hk(xik, xjk) in ζij can be either
an indicator function (1(xik = xjk)) when xik is a dummy variable or a distance function
(|xik−xjk|) when xik is continuous, reflecting homophily (or heterophily). The higher values of
random effects zi and zj in ζij lead to a lower linking cost, capturing the extent of inter-agent
heterogeneity due to unobservables [Dzemski, 2019; Graham, 2017; Jochmans, 2018]. We denote
the unknown parameters in ζij by ϕ = (ϕ0, ϕ1, · · · , ϕK).

There are two main identification issues regarding our model specification. First, the noise
parameter η in the logistic disturbance ε of (14) and (16) is not separately identifiable from
other parameters in the (quasi) potential function, a commonly known problem in discrete
choice models. Therefore, as common in this literature, we set η to one during estimation.
Second, in the GI potential given by (11), we capture the global conformity effect ρ through the
“leave-one-out” sum of actions,

∑n
j ̸=i sj . When the sample size n is large, the leave-one-out sum

has only a negligible variation at the individual level and therefore the coefficient ρ is hardly
disentangled from the rioting cost κ. To deal with this identification problem, we replace the
“leave-one-out” sum with the constant (n−1)s̄ in (11), where s̄ = 1

n

∑n
j=1 sj is the sample mean

of actions, and drop κ for the GI scenario. To mark this modification, we denote the coefficient
in front of (n − 1)s̄ in this modified model by ρ̃. A similar problem does not appear in the
LIL scenario of (15) because the global conformity effect can be identified through variations on
the individual belief ψLILi . It is also worth mentioning that identification of individual random
effect zi is made possible by exploiting variations on link decisions, ai1, ai2, ai3, · · · of agent i in
a similar manner as an individual fixed effect in panel data. More specifically, as zi appears in
all link decisions of agent i, we can identify zi from the conditional probability,

µ(aij = 1|s, G−ij) =
exp(θsisj − ϕ0 −

∑K
k=1 hk(xik, xjk)ϕk + zi + zj)

1 + exp(θsisj − ϕ0 −
∑K

k=1 hk(xik, xjk)ϕk + zi + zj)
.

Given zi is identified, we can also identify the coefficient τ in γi in (20).

The main challenge to the estimation of the Gibbs measures in (14) and (16) comes from the
appearance of a normalizing constant in the denominator, which involves the evaluation of the
(quasi) potential function over all possible networks G ∈ Gn and action profiles s ∈ {−1,+1}n.
When the network size is large, this normalizing constant becomes intractable, and thus directly
calculating the likelihood for conventional frequentist or Bayesian estimation is not possible.29

The most commonly used methods to tackle such estimation challenges include the composite
likelihood approach [Lindsay, 1988; Varin et al., 2011],30 the Monte Carlo simulated likelihood

29Note that there are 2n possible action profiles s and 2(
n
2) possible networks G with n agents.

30In general, the composite likelihood for y = (y1, · · · , yn) can be written as f(y) =
∏R

r=1 p(yAr |yBr ) where
observations are divided into R blocks and the block Br = N \ Ar with N = {1, 2, · · · , n} denotes the index
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approach [Geyer and Thompson, 1992], the Bayesian exchange algorithm [Møller et al., 2006;
Murray et al., 2006] with exact sampling, or the Bayesian double Metropolis-Hastings algorithm
[Badev, 2021; Hsieh et al., 2020; Hsieh et al., 2022; Liang, 2010; Mele, 2017]. Given the enormous
sample size faced in the present study, the latter simulation-based methods are not feasible, and
therefore we adopt the composite likelihood method to estimate our model.31 The composite
likelihood for our model is defined as

µ(s|G)µ(G|s), (22)

where µ(s|G) and µ(G|s) represent the conditional likelihood function of the action given the
network and the network given the actions, respectively. We first look at µ(s|G). Under the GI
scenario, it is

µ(s|G) =
exp

(∑n
i=1(x

⊤
i β + τzi + ρ̃(n− 1)s̄)si +

θ
2

∑n
i=1

∑n
j ̸=i aijsisj

)
(G)

, (23)

where (G) =
∑

s∈{−1,+1}n exp(
∑n

i=1(x
⊤
i β+τzi+ρ̃(n−1)s̄)si+

θ
2

∑n
i=1

∑n
j ̸=i aijsisj). Similarly,

under the LIL scenario,

µ̃(s|G,ψLIL) =
exp

(∑n
i=1(x

⊤
i β + τzi + κ+ ρ(n− 1)ψLILi )si +

θ
2

∑n
i=1

∑n
j ̸=i aijsisj

)
(G)

, (24)

where (G) =
∑

s∈{−1,+1}n exp(
∑n

i=1(x
⊤
i β+ τzi+ κ+ ρ(n− 1)ψLILi )si+

θ
2

∑n
i=1

∑n
j ̸=i aijsisj).

Since the conditional likelihood functions in (23) and (24) still contain intractable normalizing
constants, we also replace them with the composite likelihood function. Considering first the
GI instance in (23), the conditional probability of agent i choosing action si = 1, given all other
agents’ actions s−i and network G, is given by

µ(si = 1|s−i, G) =
µ(si = 1, s−i|G)

µ(si = 1, s−i|G) + µ(si = −1, s−i|G)

=
exp(x⊤

i β + τzi + ρ̃(n− 1)s̄+ θ
∑n

j ̸=i aijsj)

exp(x⊤
i β + τzi + ρ̃(n− 1)s̄+ θ

∑n
j ̸=i aijsj) + exp(−x⊤

i β − τzi − ρ̃(n− 1)s̄− θ
∑n

j ̸=i aijsj)

=
exp(x⊤

i β + τzi + ρ̃(n− 1)s̄+ θ
∑n

j ̸=i aijsj)

2cosh(x⊤
i β + τzi + ρ̃(n− 1)s̄+ θ

∑n
j ̸=i aijsj)

. (25)

Similarly, the conditional probability of agent i choosing action si = −1 is

µ(si = −1|s−i, G) =
exp(−x⊤

i β − τzi − ρ̃(n− 1)s̄− θ
∑n

j ̸=i aijsj)

2cosh(x⊤
i β + τzi + ρ̃(n− 1)s̄+ θ

∑n
j ̸=i aijsj)

. (26)

set of y. The well-known pseudo likelihood proposed by Besag [1974, 1975] and Strauss and Ikeda [1990] for the
spatial processes refers to a special case where the block Ar contains just a singleton.

31Several theoretical results on the asymptotic consistency of the composite likelihood estimation for the Gibbs
measure are available in the literature [see e.g., Bhattacharya and Mukherjee, 2018; Chatterjee, 2007; Comets,
1992; Ghosal and Mukherjee, 2020]. Moreover, the simulation results in Varin et al. [2011], Zhou and Schmidler
[2009], Hughes et al. [2011], and Friel [2012] show that the composite likelihood method permits reliable inference
when the sample size is not too small, and the network dependence is moderate. Since our sample size is indeed
very large, and the estimated network effects shown in Subsection 5.2 are not particularly large, the composite
likelihood method is arguably an adequate estimation method to be used for our analysis.
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Therefore, the composite likelihood of action profile s, conditional on network G, is given by
n∏
i=1

µ(si|s−i, G) =
n∏
i=1

µ(si = 1|s−i, G)
1+si

2 µ(si = −1|s−i, G)
1−si

2 . (27)

In the LIL scenario, the composite likelihood of replacing µ̃(s|G,ψLIL) is given by
n∏
i=1

µ̃(si|s−i, G,ψLIL) =
n∏
i=1

µ̃(si = 1|s−i, G,ψLIL)
1+si

2 µ̃(si = −1|s−i, G,ψLIL)
1−si

2 , (28)

where

µ̃(si = 1|s−i, G,ψLIL) =
exp(x⊤

i β + τzi + κ+ ρ(n− 1)ψLILi + θ
∑n

j ̸=i aijsj)

2cosh(x⊤
i β + τzi + κ+ ρ(n− 1)ψLILi + θ

∑n
j ̸=i aijsj)

.

We next look at the conditional likelihood function of network G on given action profile s,

µ(G|s) =
n∏
i=1

n∏
j>i

µ(aij |s, G−ij) =
n∏
i=1

n∏
j>i

exp(aij(θsisj − ϕ0 −
∑K

k=1 hk(xik, xjk)ϕk + zi + zj))

1 + exp(θsisj − ϕ0 −
∑K

k=1 hk(xik, xjk)ϕk + zi + zj)
.

(29)

Since network links are conditionally (pairwise) independent, (29) shows that the conditional
likelihood of G can be represented by the product of conditional probabilities of aij ’s. Note
that even though the network links are conditionally independent given the actions, they are
not unconditionally independent due to the interdependence of actions in the presence of the
peer effect (θ ̸= 0). This is an important feature of our model that distinguishes it from
an inhomogeneous random graph model [Bollobas et al., 2007]. Although computing (29) is
feasible, in the case of a large network it can still be very demanding. To further alleviate the
computational burden, we adopt the so-called case-control approach of Raftery et al. [2012],
which allows us to reduce the computational cost associated with (29) from O(n2) to O(n). To
explain the idea, we consider the log-likelihood function based on (29)

ℓ(G|s) =
n∑
i=1

ℓi(ai.|s, G−i), (30)

where ai. denotes the ith row of matrixA and ℓi(ai.|s, G−i) ≡
∑n

j>i lnµ(aij |s, G−ij). To calculate
ℓi(ai.|s, G−i), it is useful to divide the observations in ai. into the groups of edges (“cases”) and
non-edges (“control”) and perform the following decomposition

ℓi(ai,.|s, G−i) =
n∑
j>i

aij(θsisj − ζij)− ln(1 + exp(θsisj − ζij))

=
∑

j>i,aij=1

(θsisj − ζij − ln(1 + exp(θsisj − ζij))) +
∑

j>i,aij=0

(− ln(1 + exp(θsisj − ζij)))

= ℓi,1 + ℓi,0. (31)

In (31), ℓi,1 and ℓi,0 stand for the log-likelihood from edges and non-edges respectively. When
the network links are sparse, the quantity ℓi,0 can be viewed as a population total statistics.
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This population total can be estimated by a random sample of the population,

ℓ̃i,0 =
ni,0
mi,0

mi,0∑
r=1

(− ln(1 + exp(θsisr − ζir))), (32)

where ni,0 is the total number of zero’s in the ith row of the upper triangular part of matrix
A, and mi,0 is the number of samples selected from zero entries in the ith row of the upper
triangular part of the matrix A. ℓ̃i,0 is an unbiased estimator of ℓi,0 given the random samples.
When the network size is large, we can choose a small mi,0 to compute ℓ̃i,0 and thus reduce the
amount of computation needed.32

An additional computational issue concerning the composite likelihood function of (22) is
that one needs to integrate over the random effects z = (z1, · · · , zn) in order to obtain the
likelihood for observed data, i.e., µ(s|G)µ(G|s) =

∫
µ(s|G, z)µ(G|s, z)f(z)dz. The frequentist

approach typically uses Gaussian quadratures or Monte Carlo integration to evaluate such a like-
lihood function. However, given a high-dimensional integration, performing these methods can
still be cumbersome. As an alternative approach, Bayesian Markov Chain Monte Carlo (MCMC)
estimation has shown to be effective for estimating nonlinear models with random effects [Zeger
and Karim, 1991]. Thus, in this paper, we apply the Bayesian MCMC approach to estimate
the unknown model parameters Θ = (θ, ρ,β⊤, τ, κ,ϕ, σ2z) and unobserved random effects z with
the posterior distribution p(Θ, z|s, G) derived based on the composite conditional likelihoods in
(22). We specify the prior distributions as follows: θ ∼ N (0, σ2θ), ρ ∼ N (0, σ2ρ), β ∼ N (0,Σβ),
τ ∼ N (0, σ2τ ), κ ∼ N (0, σ2κ), ϕ ∼ N (0,Σϕ), zi ∼ N (0, σ2z), and σ2z ∼ IG

(
ν0
2 ,

χ0

2

)
, where N and

IG are normal and inverse gamma conjugate priors. We choose the hyperparameters to make
the prior distributions relatively flat and cover a wide range of parameter space. Specifically, we
set σ2θ = σ2ρ = σ2τ = σ2κ = 10, Σβ = 10·I|β|, Σϕ = 10·I|ϕ|, ν0 = 2.2 and χ0 = 0.1. Given the above
prior distributions and the composite likelihood function of (22), we can derive the joint poste-
rior distribution of Θ and z. Since it is difficult to simulate draws from this high-dimensional
joint posterior distribution, we implement the Metropolis-Hastings-within-Gibbs algorithm to
simulate draws sequentially from the conditional posterior densities in the following steps:

1. simulate the random variable zi using the Metropolis-Hastings (M-H) algorithm based on
p(zi|s, G,Θ) for i = 1, . . . , n.

2. simulate σ2z using the conjugate inverse gamma conditional posterior distribution.
3. simulate θ using the M-H algorithm based on p(θ|s, G, z,Θ \ θ).
4. simulate ρ using the M-H algorithm based on p(ρ|s, G, z,Θ \ ρ).
5. simulate β using the M-H algorithm based on p(β|s, G, z,Θ \ β).
6. simulate τ using the M-H algorithm based on p(τ |s, G, z,Θ \ τ).
7. simulate κ using the M-H algorithm based on p(κ|s, G, z,Θ \ κ).
8. simulate ϕ using the M-H algorithm based on p(ϕ|s, G, z,Θ \ ϕ).

We collect the draws from 30,000 iterations according to the above steps, drop the first 5,000
iterations for burn-in, and compute the posterior mean and the posterior standard deviation
from the converged draws as our estimation results which will be discussed in the following
section.

32In this study, we set mi,o = 100+5
∑

j ̸=i aij to obtain the empirical results in Subsection 5.2 and simulation
results in Subsection 5.3. To check the robustness of the empirical results with respect to the choice of mi,o, we
have also tried mi,o = 1000 + 5

∑
j ̸=i aij and found the results in Supplementary Appendix Tables G.1 and G.2

are qualitatively unchanged.
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5.2. Estimation Results

The estimation results of the GI and LIL scenarios are reported in Tables 2 and 3, respectively.
In each table, column (1) presents the estimation results with individual random effects –
capturing unobserved heterogeneity – and column (2) presents the results without individual
random effects. Our first finding is that both the local and global interaction effects measured
by θ and ρ are, as expected, positive and significant in both columns. Comparing, however, the
two columns we can see that the estimates of the local spillover effect (θ) and other coefficients
are biased when failing to control for individual unobserved heterogeneity through the inclusion
of random effects. In particular, the estimate of the local spillover effect (θ) in the GI scenario
is upward biased by 32%; and in the LIL scenario it is upward biased by 126%; together with a
27% downward bias on the estimate of the global conformity effect in the LIL scenario. This bias
stems from individual-specific factors that affect both, rioting behavior and network formation
(correlated effects) that cannot be accounted for in the model without random effects [cf. Hsieh
et al., 2016]. We further analyze the direction of this bias in Subsection 5.3 with artificial data
by comparing the models with and without random effects. The fact that the global conformity
effect (ρ) is significant in Table 3 provides a strong motivation for the belief-based formulation
process under local information. We therefore use the LIL scenario as the benchmark model for
the different counterfactuals analyzed in Section 6.

Moreover, we obtain an estimate of the weighting parameter φ for the belief updating
in (6) equal to 0.0961, which suggests that, in general, the weight that agents put on local
average beliefs is more than nine times larger than the weight put on local average actions in
updating their own beliefs. Such an importance given to beliefs by our estimates motivates us,
in Subsection 6.2, to study a counterfactual in which we explore how the manipulation of beliefs
towards a specific action impacts overall rioting behavior.

The results also confirm that various sources of heterogeneity, as captured by the idiosyn-
cratic preference γi, play a prominent and intuitive role in rioting decisions. Specifically, we
find that females are less likely to support (or possibly attend) riots. On the contrary, popular
individuals (who have more followers on Twitter) and Islamists (who are major supporters of
Morsi) are more likely to support or attend riots. The individual random effects also show a
positive effect, as captured by the estimate of τ . In the LIL scenario, we obtain a negative
estimate of κ. This suggests that, in the Egyptian revolt against the military that we study,
the population perceived, on average, that the intrinsic costs and risks entailed were more than
offset by the corresponding benefits of joining in. Finally, in terms of the linking costs, our
estimation results show a high constant cost and a clear homophily pattern in which similar
characteristics (e.g., same gender or similar religiousness) lower those costs.

In Table 3, columns (3) and (4) further report estimation results obtained when we omit
the local spillover effect and the global conformity effect, respectively. These results show that
when one of the two aforementioned effects is omitted, the other effect is confounded, leading
to an upward estimation bias. This finding illustrates the importance of controlling for both
local and global interaction effects simultaneously, as they both play an indispensable role in
determining people’s collective actions.

5.3. Parameter Recovery Analysis

In this section, we describe a Monte Carlo simulation study that attains a two complementary
objectives. On the one hand, it demonstrates that the proposed Bayesian MCMC estimation
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Table 2: Estimation results for the global information (GI) scenario.

with random w/o random
effects effects
(1) (2)

Local spillover (θ) 0.1732∗∗∗ 0.2287∗∗∗
(0.0031) (0.0020)

Global conformity (ρ̃) 3.09e-6∗∗∗ 3.07e-6∗∗∗
(9.16e-8) (7.76e-8)

Individual preference

Female (β1) -0.0633∗∗∗ -0.0636∗∗∗
(0.0103) (0.0072)

Islamist (β2) 0.1026∗∗∗ 0.1054∗∗∗
(0.0054) (0.0046)

(Log) followers (β3) 0.0117∗∗∗ 0.0088∗∗∗
(0.0016) (0.0015)

Random effect (τ) 0.0057∗∗∗ –(0.0006)
Linking cost

Constant (ϕ0) 14.7484∗∗∗ 12.5889∗∗∗
(0.0195) (0.0077)

Same gender (ϕ1) -0.1661∗∗∗ -0.1908∗∗∗
(0.0134) (0.0082)

Same religiousness (ϕ2) -0.0762∗∗∗ -0.0033
(0.0080) (0.0058)

Diff. in followers count (ϕ3) 0.0871∗∗∗ 0.0986∗∗∗
(0.0033) (0.0022)

Variance of random effect (σ2
z) 2.1568∗∗∗ –(0.0178)

Sample size (# of nodes) 225,578

Notes: For the purpose of identification, we replace ρ
∑n

j ̸=i sj with
ρ̃(n − 1)s̄ and drop κ in the GI scenario. The parameter estimates
reported in this table are the posterior mean and the posterior stan-
dard deviation from the Bayesian MCMC sampling. The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density
interval (HDI) of the corresponding draws does not cover zero.
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Table 3: Estimation results for the local information and learning (LIL) scenario.

with random w/o random w/o local w/o global
effects effects spillover conformity
(1) (2) (3) (4)

Local spillover (θ) 0.0705∗∗∗ 0.1596∗∗∗ – 0.2289∗∗∗
(0.0035) (0.0028) (0.0026)

Global conformity (ρ) 2.37e-6∗∗∗ 1.72e-6∗∗∗ 3.03e-6∗∗∗ –(5.03e-8) (3.86e-8) (3.22e-8)
Weight of local observation (φ) 0.0961∗∗∗ 0.0805∗∗∗ 0.1066∗∗∗ –(0.0051) (0.0041) (0.0035)
Individual preference

Female (β1) -0.0553∗∗∗ -0.0542∗∗∗ -0.0564∗∗∗ -0.0613∗∗∗
(0.0096) (0.0078) (0.0074) (0.0081)

Islamist (β2) 0.1136∗∗∗ 0.1178∗∗∗ 0.1104∗∗∗ 0.1060∗∗∗
(0.0061) (0.0048) (0.0053) (0.0049)

(Log) followers (β3) 0.0057∗∗∗ 0.0034∗∗ 0.0089∗∗∗ 0.0087∗∗∗
(0.0020) (0.0015) (0.0016) (0.0015)

Random effect (τ) 0.0054∗∗∗ – – –(0.0003)
Rioting cost (κ) -0.2965∗∗∗ -0.3054∗∗∗ -0.2805∗∗∗ 0.3348∗∗∗

(0.0110) (0.0089) (0.0091) (0.0092)
Linking cost

Constant (ϕ0) 14.7964∗∗∗ 12.5633∗∗∗ 12.5194∗∗∗ 12.5921∗∗∗
(0.0229) (0.0093) (0.0096) (0.0103)

Same gender (ϕ1) -0.1708∗∗∗ -0.1930∗∗∗ -0.2012∗∗∗ -0.1934∗∗∗
(0.0146) (0.0094) (0.0092) (0.0094)

Same religiousness (ϕ2) -0.0784∗∗∗ -0.0048 0.0065 0.0024
(0.0095) (0.0062) (0.0063) (0.0066)

Diff. in followers (ϕ3) 0.0876∗∗∗ 0.0992∗∗∗ 0.1003∗∗∗ 0.0984∗∗∗
(0.0031) (0.0025) (0.0026) (0.0028)

Variance of random effect (σ2
z) 2.2477∗∗∗ – – –(0.0211)

Sample size (# of nodes) 225,578

Notes: The parameter estimates reported in this table are the posterior mean and the posterior
standard deviation from the Bayesian MCMC sampling. The asterisks ***(**,*) indicate that
the 99% (95%, 90%) highest posterior density interval (HDI) of the corresponding draws does
not cover zero.
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based on the composite likelihood function of (22) and the case-control approach described in
Subsection 5.1 can indeed recover true parameter values. As an interesting side effect of this
exercise, we also confirm the direction of estimation bias observed in Tables 2 and 3 when
individual unobserved heterogeneity (random effect) is ignored. On the other hand, the Monte
Carlo simulations also provide support to the conjecture that underlay our theoretical analysis of
the LIL scenario. More specifically, it shows that limit distribution µ̃η(·) defined in (16) provides
a good approximation of the invariant behavior of the process under limited information and
therefore can be suitably use as likelihood for estimation in this context.

We set the number of Monte Carlo repetitions to 300. In each repetition, we generate
the artificial networks Gt and the action profiles st through a data generating process (DGP)
that mimics the dynamic process introduced in Subsection 2.2 for a setup with a number of
nodes n = 3, 000. In such a DGP, we generate the individual types γi from a expression of
the form βxi + τzi, where the variables xi represent observed individual characteristics that
are generated from a mixture of normal distributions (specifically, two-fifths of the values are
generated from a N (−4, 36) and three-fifths from N (4, 36)), while the variables zi represent
unobserved individual random effects generated from a standard normal distribution, i.e. zi ∼
N (0, 1). The coefficients β and τ are set to 0.5. Then, the linking costs are determined through
the expression ζij = ϕ0 + h(xi, xj)ϕ1 − zi − zj , where we set h(xi, xj) = |xi − xj | and the
coefficients ϕ0 and ϕ1 are fixed equal to 2 and 1, respectively. The true values of the local
spillover effect θ and the global conformity effect ρ are set to 0.05 and 0.001 respectively, and
the parameter η of the logistic disturbance is normalized to 1. Finally, for the LIL scenario, we
fix the true rioting cost parameter κ to 1.5 and the belief weight φ to 0.5.

To generate the artificial data, we implement an iterative process that simulates the choice
of individual network links and actions with the corresponding conditional probabilities. That
is, in each iteration an individual is chose at random the option to update her network links or
action – and, in the LIL scenario, as well her beliefs – conditionally on the network links and
actions chosen by others in the previous iteration. We run this iterative process sufficiently long
and treat the overall realization of the network and action profiles from this iterative process as
our artificial data.

Next, we describe the implementation of this iterative process in more detail. On the
one hand, to update the networking decisions of any given individual i, we use the following
conditional probability for her network links ij:

µ(aij = 1|s, G−ij) =
exp(aij(θsisj − ϕ0 − |xi − xj |ϕ1 + zi + zj)

1 + exp(θsisj − ϕ0 − |xi − xj |ϕ1 + zi + zj)
.

And, in order to speed up the simulation, we rely on the conditional independence of network
links,33 to update the choice of all i’s links {aij}nj=1 synchronously. On the other hand, to update
the action choice si of any given individual i, the details of course depend on the scenario under
consideration. For the GI scenario, we use the following conditional probability for each action
si:

µ(si = 1|s−i, G) =
exp(βxi + τzi + ρ

∑
j ̸=i sj + θ

∑n
j ̸=i aijsj)

2cosh(βxi + τzi + ρ
∑

j ̸=i sj + θ
∑n

j ̸=i aijsj)
,

33As explained in Subsection 5.1, it is important to bear in mind that the network links are not unconditionally
independent due to the interdependence of actions in the presence of a positive spillover effect θ.

35



where note that, in order to avoid the identification problem discussed in Subsection 5.1, we do
not include the rioting cost κ in the GI scenario. Instead, to simulate the choice of action si for
the LIL scenario, we use the following conditional probability for action choice:

µ̃(si = 1|s−i, G,ψLIL) =
exp(βxi + τzi − κ+ ρ(n− 1)ψLILi + θ

∑n
j ̸=i aijsj)

2cosh(βxi + τzi − κ+ ρ(n− 1)ψLILi + θ
∑n

j ̸=i aijsj)
,

where ψLILi is generated from the induced stationary beliefs given in (9). Overall, the itera-
tion procedure described executes the dynamic process formulated in Section 2.2 for rates of
adjustment that lead individuals to update their network links and actions with equal frequency.

For estimation, we implement the Bayesian MCMC sampling with 30,000 iterations and drop
the first 5,000 iterations in the burn-in phase. The results for the GI scenario are summarized
in Table 4 and the results for the LIL scenario in Table 5. The values reported in the tables
are the mean and standard deviation of parameter estimates calculated across repetitions. In
both tables, we see that the estimation exercise can successfully recover the true parameter
values when considering the full econometric model with random effects (which is the true
DGP). Moreover, in line with the pattern observed in our empirical study, when random effects
are ignored the estimate of the local spillover θ is upward biased whereas that of the global-
conformity parameter ρ is downward biased.

Table 4: Simulation results of the global information (GI) scenario.
with random effects w/o random effects

DGP Mean Std. Mean Std.
Local spillover (θ) 0.0500 0.0593 0.0108 0.1451 0.0072
Global conformity (ρ) 0.0010 0.0009 0.0004 -0.0003 0.0002
Individual preference
Individual characteristic x (β) 0.5000 0.5059 0.1285 0.4155 0.0677
Random effect (τ) 0.5000 0.4510 0.1911 – –
Linking cost
Constant (ϕ0) 2.0000 2.0145 0.0666 1.5291 0.0091
Diff. in characteristics |xi − xj | (ϕ1) 1.0000 1.0145 0.0064 0.8808 0.0034
Variance of random effect (σ2

z) 1.0000 1.1045 0.0353 – –
Number of nodes 3000
MC repetitions 300
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Table 5: Simulation results of the local information and learning (LIL) scenario.
with random effects w/o random effects

DGP Mean Std. Mean Std.
Local spillover (θ) 0.0500 0.0543 0.0127 0.0740 0.0067
Global conformity (ρ) 0.0010 0.0013 0.0005 0.0007 0.0003
Weight of local obsev. (φ) 0.5000 0.6002 0.1833 0.6197 0.1685
Individual preference
Individual characteristic x (β) 0.5000 0.5439 0.2022 0.5441 0.2020
Random effect (τ) 0.5000 0.5596 0.2631 – –
Rioting cost (κ) 1.5000 1.6224 0.7728 1.8748 0.7777
Linking cost
Constant (ϕ0) 2.0000 1.9493 0.0660 1.4656 0.0084
Diff. in characteristics |xi − xj | (ϕ1) 1.0000 1.0138 0.0057 0.8845 0.0032
Variance of random effect (σ2

z) 1.0000 1.0998 0.0351 – –
Number of nodes 3000
MC repetitions 300

6. Counterfactual Analyses

Building upon the estimation results obtained for the LIL scenario in Subsection 5.2, we have
performed various counterfactual analyses in order to investigate the effect of changing specific
single parameters of the model, while keeping the remaining ones at their estimated values
in column (1) of Table 3. The impact of these changes on the different outcome variables is
assessed through the corresponding invariant distribution µ(·) that are generated from the same
iterative process described in Subsection 5.3. In what follows, we describe our results for two
specific implementations. In the first one, we examine the role of linking costs in affecting rioting
behavior. In the second, we study how biasing beliefs towards a specific action can influence
the extent of rioting.

6.1. Linking Costs and Rioting Behavior

During the protests against the Egyptian government, mobile phone operators were instructed
to suspend services in selected areas, with internet access being blocked and mobile phone and
text messaging services disabled or working only sporadically [Kravets, 2011]. These interven-
tions by the government were aimed at suppressing protests by making it harder for people
to communicate and coordinate via online social media. Similar interventions have also been
undertaken in other countries (e.g. China), where social media platforms such as Facebook,
YouTube, and Twitter were domestically blocked, so that users could use them only indirectly
via a VPN service [Willnat et al., 2015]. We can operationalize such attempts at hamper-
ing communication as an increase in the linking cost and explore what is its effect on rioting
behavior, according to our estimated model.

For our counterfactual exercise we change the value of the estimate of cost parameter ϕ0,
which is the constant term in the linking cost in (21), over the range of [-20%, 20%] with 11
evenly distributed grid points. For each grid point, we simulate the network and action profiles
300 times and compute the average fraction of rioting agents together with the average network
degree in the new equilibrium. The right panel in Figure 9 shows the average degree over varying
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Figure 9: Changes in the fraction of rioting agents, |{i : si = +1}|/n (left panel), and the average degree, d̄ (right
panel), over percentage changes in the linking cost ϕ0. We plot the mean and 95% interval from 300 simulation
repetitions.

ϕ0. As expected, we can see that the linking cost ϕ0 has a substantial effect on the average
degree so lowering the linking cost gives rise to a much denser network structure. The left panel
in Figure 9 shows the fraction of rioting agents over varying ϕ0. We observe that a reduction
of ϕ0 by 20% yields an increase in the fraction of rioting agents by 15%. Conversely, this
indicates that as linking and exchanging information via the network becomes more costly (e.g.,
by interrupting or blocking social media), fewer links are being formed, coordination among
agents becomes more difficult, and fewer agents participate in the protest as a consequence.
This finding illustrates and quantifies the importance of the role of online social networks in the
formation of protest movements or riots and the emergence of collective action.

6.2. Belief Manipulation and Rioting Behavior

Governments often use manipulation of the information available on social or other media to
distort the users’ view [cf. Edmond, 2013; Zhuravskaya et al., 2020]. For example, King et al.
[2017] document the massive effort of the Chinese government to post content on social media
that is mainly devoted to supporting positive views about the state. Similar efforts have been
documented in Egypt [El-Khalili, 2013].

In our second counterfactual analysis, we examine the effectiveness of manipulating the
beliefs of the agents to mitigate rioting behavior. We introduce a government influencing the
belief updating in (6) as follows:

pu+1
it = (1−Ψ)

φ 1

dit

n∑
j=1

aij,tsjt + (1− φ)
1

dit + 1

puit + n∑
j=1

aij,tp
u
jt

+Ψg, (33)

where Ψ ∈ [0, 1] and g = −1 is supposed to be the preferred action of the government (no
rioting). As in the previous section, for each of the points in an evenly distributed grid for Ψ
in the range of [0,1], we simulate repeatedly the evolutionary process and then compute the
average fraction of rioting agents and the average network degree resulting from the induced
invariant distributions. The corresponding changes in those magnitudes for varying levels of the
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Figure 10: Changes in the fraction of rioting agents, |{i : si = +1}|/n (left panel), and the average degree,
d̄ (right panel), over the strength of propaganda Ψ. We plot the mean and 95% interval from 300 simulation
repetitions.

influence of propaganda, Ψ, are plotted in Figure 10. Our results show that while propaganda
(belief manipulation) does not affect the network density – which remains roughly stable – it has
a very significant effect on rioting, reducing the fraction of rioting agents by up to 30%. It does
not succeed, however, to reduce rioting below 40% of the population, even when propaganda is
the only source of belief updating (i.e. when Ψ = 1). In line with the recent literature on the
phenomenon [cf. Azzimonti and Fernandes, 2022; Gu et al., 2017], these findings illustrate the
effect that the manipulation of information may have on the formation of collective action, but
also point to its limitations.

7. Conclusion

In this paper we have introduced a model of collective action (e.g. protest participation) in
a large population where the social network co-evolves with actions and beliefs. We provide
a complete characterization of the equilibrium action choices, beliefs, and networks, and show
that there are conditions in the environment (in particular, on action costs and the profile of
individual characteristics) under which a significant degree of collection arises in the long-run
equilibrium of the model. We also show that those conditions are substantially affected by the
assumptions being made on the extent of information the agents have about the state of the
system. Somewhat paradoxically, they turn out to be considerably stronger (and hence less
plausible) if one assumes that the population is fully informed about the current state than
under the more realistic assumption that the agents have only local information and also learn
from their network neighbors. In the second part of the paper, we bring our model to the data
by relying on large-scale Twitter data during the Arab Spring on social unrest in Egypt. We
perform a structural estimation of the model parameters and use random effects to capture the
unobserved component in the idiosyncratic preferences of the agents for retaining the status
quo. We jointly estimate (and disentangle) the local peer effect and the global force towards
conformity effect in the agents’ decisions, and show that both are significant. Moreover, we
find that ignoring endogeneity in the network formation process may bias the estimates of
these two effects. It must be acknowledged, however, that while our empirical analysis is made
possible due to the availability of massive data gathered from social media, it is also limited
by the fact that the information gathered about online behavior on these platforms translate
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only imperfectly into the actions materializing (e.g. in actual protest participation) in the real
world.

References
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H. (2016). Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the 2016 conference of the North American chapter
of the association for computational linguistics: Demonstrations, 11-16.

Abdul-Mageed, M. and Elmadany, A, and Nagoudi, E.M.B., (2022). ARBERT & MARBERT:
Deep Bidirectional Transformers for Arabic Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing , 7088–7105.

Acemoglu, D., K. Bimpikis„ and A. Ozdaglar (2014). Dynamics of information exchange in
endogenous social networks. Theoretical Economics, 9(1):41–97.

Acemoglu, D., S. Johnson, A. Kermani, J. Kwak, and T. Mitton (2016). The value of connec-
tions in turbulent times: Evidence from the United States. Journal of Financial Economics
121(2):368 – 91.

ACLED (2019). Armed Conflict Location and Event Dataset (ACLED). Center for the Study
of Civil War, International Peace Research Institute, Oslo (PRIO).

Aldayel, A., and Magdy, W. (2021). Stance detection on social media: State of the art and
trends Information Processing & Management, 58(4).

Anderson, D. F. (2012). An efficient finite difference method for parameter sensitivities of
continuous time Markov chains. SIAM Journal on Numerical Analysis, 50(5):2237–2258.

Angeletos, G.-M. and Pavan, A. (2007). Socially optimal coordination: Characterization and
policy implications. Journal of the European Economic Association, 5(2-3):585–593.

Antoun, W., F. Baly, and H. Hajj (2020). Arabert: Transformer-based model for Arabic lan-
guage understanding. arXiv preprint arXiv:2003.00104.

Ash, E. and Hansen, S. (forthcoming). Text Algorithms in Economics. Annual Review of
Economics.

Azzimonti, M. and Fernandes, M. (2022). Social media networks, fake news, and polarization.
European Journal of Political Economy, 102256.

Badev, A. (2021). Nash equilibria on (un)stable networks. Econometrica, 89(3):1179-1206.
Bana, S.H. (2022). work2vec: Using Language Models to Understand Wage Premia. Working

Paper.
Barbera, P. (2015). Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation
Using Twitter Data. Political Analysis 23, 76-91.

Barberà, S. and Jackson, M. O. (2020). A model of protests, revolution, and information.
Quarterly Journal of Political Science, 15(3): 297–335.

Berger, R. L. (1981). A necessary and sufficient condition for reaching a consensus using DeG-
root’s method. Journal of the American Statistical Association, 76:415–418.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of
the Royal Statistical Society: Series B (Methodological), 36(2):192–225.

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical Society:
Series D (The Statistician), 24(3):179–195.

Bhattacharya, B. and Mukherjee, S. (2018) Inference in Ising models. Bernoulli, 24(1):493–525.
Blume, L. (1993). The statistical mechanics of strategic interaction. Games and Economic

Behavior, 5(3):387–424.
Blume, L., Brock, W., Durlauf, S., and Ioannides, Y. (2011). Identification of social interac-

tions, volume 1B of Handbook of Social Economics, Chapter 18, 853–964. Elsevier BV, The
Netherlands: North-Holland.

Bollobás, B. and Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous
random graphs. Random Structures & Algorithms., 31(1):3–122.

Borge-Holthoefer, J., Magdy, W., Darwish, K., and Weber, I. (2015). Content and network
dynamics behind Egyptian political polarization on Twitter. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing, 700–711. ACM.

Boucher, V. (2016). Conformism and self-selection in social networks. Journal of Public Eco-
nomics, 136: 30–44.

40



Brock, W. and Durlauf, S. (2001). Discrete choice with social interactions. The Review of
Economic Studies, 68(2):235–260.

Cantoni D., D. Y. Yang, and N. Yuchtman. Are protests games of strategic complements
or substitutes? Experimental evidence from Hong Kong’s democracy movement. Quarterly
Journal of Economics 134(2):1021–1077.

Chandrasekhar, A. G., H. Larreguy, J. P. and Xandri (2020). Testing models of social learning
on networks: Evidence from a lab experiment in the field. Econometrica, 88 (1):1–32.

Chatterjee, S. (2007). Estimation in spin glasses: A first step. The Annals of Statistics, 35
(5):1931–1946.

Chwe, M. S.-Y. (2000). Communication and coordination in social networks. The Review of
Economic Studies, 67(1):1–16.

Clarke, K., and Kocak, K. (2020). Launching revolution: Social media and the Egyptian
uprising’s first movers. British Journal of Political Science, 50(3):1025–1045.

Comets, F. (1992). On consistency of a class of estimators for exponential families of Markov
random fields on the lattice. The Annals of Statistics, 20(1):455–468.

Conneau, A, Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzman, F., Grave,
E., Ott, M., Zettlemoyer., and Stoyanov (2020). Unsupervised Cross-lingual Representation
Learning at Scale. Arxiv print, arXiv:1911.02116.

Currarini, S., Jackson, M., and Pin, P. (2009). An Economic Model of Friendship: Homophily,
Minorities and Segregation. Econometrica, 77(4):1003–1045.

Darwish, K., Magdy, W., Rahimi, A., Baldwin, Y., and Abokhodair (2018). Predicting Online
Islamaphobic Behaviour After the Paris Attacks The Journal of Web Science.

DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association,
69(345):118–121.

DeMarzo, P., Vayanos, D., and Zwiebel, J. (2003). Persuasion Bias, Social Influence, and
Unidimensional Opinions. Quarterly Journal of Economics, 118(3):909–968.

Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint, arXiv:1810.04805.

Dzemski, A. (2019). An empirical model of dyadic link formation in a network with unobserved
heterogeneity. The Review of Economics and Statistics, 101(5):763 – 776.

Earl, J. and Kimport, K. (2011). Digitally enabled social change: Activism in the internet age.
MIT Press.

Edmond, C. (2013). Information manipulation, coordination, and regime change. The Review
of Economic Studies, 80(4):1422–1458.

Enikolopov, R., Makarin, A., Petrova, M., et al. (2016). Social media and protest participation:
Evidence from Russia. Econometrica, 88(4):1479–1514.

Evans, J.A. and P. Aceves (2016). Machine translation: mining text for social theory. Annual
Review of Sociology, 42:21–50.

Friel, N. (2012). Bayesian inference for Gibbs random fields using composite likelihoods. in
Proceedings of the 2012 Winter Simulation Conference (WSC), 1–8.

Gentzkow, M., B. T. Kelly, and M. Taddy (2017).
Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for
dependent data Journal of the Royal Statistical Society: Series B (Methodological), 54(3):657–
683.

Ghosal, P. and Mukherjee, S. (2020). Joint estimation of parameters in Ising model The Annals
of Statistics, 48(2):785–810.

Gibson, M. A. and Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems
with many species and many channels. The Journal of Physical Chemistry A, 104(9):1876–
1889.

Goldsmith-Pinkham, P. and G.W. Imbens (2013). Social networks and the identification of peer
effects. Journal of Business & Economic Statistics, 31(3): 253–264.

Golub, B. and Jackson, M. (2012). How homophily affects the speed of learning and best-
response dynamics. The Quarterly Journal of Economics, 127 (3):1287–1338.

Golub, B. and E. Sadler (2016). Learning in social networks. In Bramoulle, Y., A. Galeotti,
and B. Rogers (eds.), Oxford Handbook of Economic Networks, Oxford: Oxford University
Press.

González-Bailón, S., Borge-Holthoefer, J., Rivero, A., and Moreno, Y. (2011). The dynamics of

41



protest recruitment through an online network. Scientific Reports, 1(1):1–7.
Goodman, Leo A. (1961). Snowball sampling. The Annals of Mathematical Statistics, 148-170.
Goyal, S. and Vega-Redondo, F. (2005). Network formation and social coordination. Games

and Economic Behavior, 50(2):178–207.
Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity.

Econometrica, 85(4):1033–1063.
Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology,
83(6):1420–1443

Grimm, V. and Mengel, F. (2015). An experiment on belief formation in networks. University
of Essex, Working Paper.

Grimmer J. and Brandon, M.S. (2013). Text as data: The promise and pitfalls of automatic
content analysis methods for political texts. Political Analysis, 21(3):26–297.

Grimmer J., Roberts, M., and Stewart, B. (2022). Text as data: A New Framework for Machine
Learning and the Social Sciences. Princeton University Press.

Grimmett, G. (2010). Probability on Graphs. Cambridge University Press.
Gu, L., Kropotov, V., and Yarochkin, F. (2017). The fake news machine. How propagandists
abuse the Internet and manipulate the public. Pobrane. Trend Micro Incorporated.

Hinds, J., and Joinson, A.N (2018). What demographic attributes do our digital footprints
reveal? A systematic review. PLOS One, 13(11).

Hsieh, C.-S. and L.F. Lee (2016). A social interactions model with endogenous friendship
formation and selectivity. Journal of Applied Econometrics, 31(2):301–319.

Hsieh, C.-S., Lee, L.-f., and Vincent, B. (2020). Specification and estimation of network forma-
tion and network interaction models with the exponential probability distribution. Quanti-
tative Economics, 11(4):1349–1390.

Hsieh, C.-S., König, M. D. and Liu, X. (2022) A Structural Model for the Coevolution of
Networks and Behavior The Review of Economics and Statistics, 104(2):355–367.

Humphrey, A. and R. J.-H. Wang (2017). Automated text analysis for consumer research.
Consumer Research, 44(6):127–1306.

Hughes, J. and Haran, M. and Caragea, P. C. (2011). Autologistic models for binary data on a
lattice. Environmetrics, 22(7):857–871.

Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik A: Hadrons
und Nuclei, 31(1):253–258.

Jackson, M. and Golub, B. (2010). Naive learning in social networks: Convergence, influence
and wisdom of crowds. American Economic Journal: Microeconomics, 2(1):112–149.

Jackson, M. and A. Watts (2002). On the formation of interaction networks in social coordina-
tion games. Games and Economic Behavior, 41(2):265–291.

Jochmans, K. (2018). Semiparametric analysis of network formation. Journal of Business &
Economic Statistics, 36(4):705–713.

Johnsson, I. and H. Moon (2021). Estimation of peer effects in endogenous social networks:
Control function approach. The Review of Economics and Statistics, 103(2): 328–345.

Kandori, M., Mailath, G., and Rob, R. (1993). Learning, mutation, and long run equilibria in
games. Econometrica, 61(1):29–56.

Kudo, K., and Richardson J. (2018). Sentencepiece: A simple and language independent sub-
word tokenizer and detokenizer for neural text processing. arXiv preprint, arXiv:1808.06226.

El-Khalili, S. (2013). Social media as a government propaganda tool in post-revolutionary Egypt.
First Monday.

King, G. and Pan, J. and Roberts, M. E. (2017). How the Chinese government fabricates social
media posts for strategic distraction, not engaged argument. American Political Science
Review, 111(3):484–501.

Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models. Springer.
Kravets, D. (2011). Internet down in Egypt, tens of thousands protest in “Friday of Wrath”.
Wired.com ThreatLevel Blog, URL: https://www.wired.com/2011/01/egypt-internet-down/.

Lazarsfeld, P.F. and R.K. Merton (1954). Friendship as a social process: a substantive and
methodological analysis. In M. Berger (ed.), Freedom and Control in Modern Society, New
York: Van Nostrand.

Liang, F. (2010). A double Metropolis-Hastings sampler for spatial models with intractable

42



normalizing constants. Journal of Statistical Computation and Simulation, 80(9):1007–1022.
Lindsay, B. (1988). Composite likelihood method. Contemporary Mathematics, 80(1):221–239.
Magdy, W., Darwish, K., Abokhodair, N., Rahimi, A., and Baldwin, T. (2016). #ISISisNo-
tIslam or #DeportAllMuslims?: Predicting unspoken views. In Proceedings of the 8th ACM
Conference on Web Science, 95–106.

McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). Birds of a feather: Homophily in
social networks. Annual Review of Sociology, 27:415–444

Mele, A. (2017). A structural model of dense network formation. Econometrica, 85(3):825–850.
Mesbahi, M. and Egerstedt, M. (2010). Graph theoretic methods in multiagent networks. Prince-
ton University Press.

Møller, J and Pettitt, A. N. and Reeves, R. and Berthelsen, K. K. (2006). An efficient
Markov chain Monte Carlo method for distributions with intractable normalising constants.
Biometrika, 93(2):451–458.

Monderer, D. and Shapley, L. (1996). Potential Games. Games and Economic Behavior,
14(1):124–143.

Morris, S. (2000). Contagion. The Review of Economic Studies, 67(1):57–78.
Murray, I. and Ghahramani, Z. and MacKay, D. J. C. (2006). MCMC for doubly-intractable
distributions. In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial
Intelligence, 359–366. AUAI Press.

Norris, J. R. (1998). Markov Chains. Cambridge University Press.
Pauli, F., Racugno, W., and Ventura, L. (2011). Bayesian composite marginal likelihoods.

Statistica Sinica, 149–164.
Phan, D. and Semeshenko, V. (2008). Equilibria in models of binary choice with heterogeneous
agents and social influence. European Journal of Economic and Social Systems, 21(1):7–37.

Priante, A., Ehrenhard, M. L., van den Broek, T., and Need, A. (2018). Identity and collective
action via computer-mediated communication: A review and agenda for future research. New
media & society, 20(7):2647–2669.

Qiu, M., Sim., Y., Smith, N.A., Jiang, J. (2015). Modelling User Arguments, Interations and
Attributes for Stance Prediction in Online Debate Forums. Proceeedings of the 2015 SIAM
International Conference on Data Mining, 855–863.

Raftery, A. E., Niu, X., Hoff, P. D., and Yeung, K. Y. (2012). Fast inference for the latent space
network model using a case-control approximate likelihood. Journal of Computational and
Graphical Statistics, 21(4):901–919.

Rajadesingan, A., Liu, H. (2014). Identifying Users with Opposing Opinions in Twitter Debates.
International Conferece on Social Computing, Behavioural-Cultural Modelling and Prediction,
153–160.

Rao, D., Yaraowsky, D., Shreevats, A., and Gupta, M. (2010). Classifying Latent User At-
tributes in Twitter. Proceedings of the 2nd International Workshop on Search and Mining
User Generated Contents, 37–44.

Sandholm, W. (2010). Population Games and Evolutionary Dynamics. MIT Press.
Shadmehr, M. (2021). Tullock’s Paradox, Hong Kong experiment, and the strength of weak
states Quarterly Journal of Political Science, 16(3):245–264.

Shi, Z., Rui, H. and Whinston, A.B. (2014). Content Sharing in A Social Broadcasting Envi-
ronment MIS Quarterly, 38:123–142.

Strauss, D. and Ikeda, M. (1990). Pseudolikelihood estimation for social networks Journal of
the American Statistical Association, 85(409):204–212.

Tamkin, A, Singh, T., Giovanardim D., and Goodman., N. (2020). Investigating transferability
in pretrained language models,. arXiv preprint arXiv:2004.14975.

Tullock, G. (1971). The paradox of evolution Public Choice 11, 89–99.
Varin, C., Reid, N. and Firth, D. (2011). An overview of composite likelihood methods. Statistica

Sinica, 21(1):5–42.
Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305.

Weber, I., Garimella, V. R. K., amd Batayneh, A. (2013). Secular Vs. Islamist Polarization
in Egypt on Twitter. In Proceedings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, 290–97.

Willnat, L., Wei, L., and Jason A. M. (2015). Politics and social media in China, In Routledge
Handbook of Chinese Media, 199–220.

43



Yedidia, J. S., Freeman, W. T., andWeiss, Y. (2001). Advances in Neural Information Processing
Systems, chapter Generalized belief propagation, 689–695. MIT Press, Cambridge, MA.

Young, H. P. (1993). The evolution of conventions. Econometrica, 61(1):57–84.
Zeger, S. L. and Karim, M. R. (1991). Generalized linear models with random effects; a Gibbs
sampling approach. Journal of the American Statistical Association, 86(413):79–86.

Zhang, T., Wu, F., Katiyar, A., Weinberger, K.Q., and Artzi, Y. (2020). Revisiting few-sample
BERT fine-tuning,. arXiv preprint arXiv:2006.05987.

Zhang, C., and Abdul-Mageed, M. (2019). BERT-Based Social Media Author Profiling,. arXiv
preprint arXiv:1909.04181.

Zhou, X. and Schmidler, S. C. (2009). Bayesian parameter estimation in Ising and Potts models:
A comparative study with applications to protein modeling. Working paper, Department of
Statistical Science, Duke University, Durham, NC.

Zhuravskaya, E., Petrova, M. and Enikolopov, R. (2020). Political effects of the internet and
social media. Annual Review of Economics, 12:415–38.

44



Appendix

A. Proofs

Proof of Proposition 1. First note that, for any vector of beliefs ψGI ∈ [−1, 1]n, any state
ω = (s, G), any pair of agents i, j ∈ N , and action choice s′i ∈ Si by agent i, the following
equalities hold:

Φ(s′i, s−i, G,ψ
GI(s′i, s−i, G))− Φ(s, G,ψGI(s, G))

= γi(s
′
i − si) + θ(s′i − si)

n∑
j=1

aijsj + ρ(s′i − si)

n∑
j ̸=i

pi − κ(s′i − si)

= πi(s
′
i, s−i, G;ψ

GI
i (s, G))− πi(s, G;ψ

GI
i (s, G))

and

Φ(s, G± ij,ψGI(s, G± ij))− Φ(s, G,ψGI(s, G))

= ±(θsisj − ζij)

= πi(s, G± ij;ψGIi (s, G))− πi(s, G;ψ
GI
i (s, G))

= πj(s, G± ij;ψGIj (s, G))− πj(s, G;ψ
GI
j (s, G))

which confirms (12)-(13), as desired.

Proof of Proposition 2. Define the triple (Ω,F ,P) to be the probability space over sample paths
representing our process (where Ω is the state space and F the suitable smallest σ-algebra).
Since, in our case, the process is Markov, we start by introducing the one-step transition matrix
P(t) : Ω2 → [0, 1] specifying the probability of a transition from a state ω ∈ Ω prevailing at t to
a state ω′ ∈ Ω after some small time interval of length ∆t. If ω′ ̸= ω, this probability is given
by P(ωt+∆t = ω

′|ωt = ω) = q(ω,ω′)∆t+o(∆t), where q(ω,ω′) is the transition rate from state
ω to state ω′. In our case, since the Markov process is time-homogeneous, the transition-rate
matrix (or infinitesimal generator) Q = (q(ω,ω′))ω,ω′∈Ω is independent of time. Given the
postulated adjustment rules, it has the following form:

q(ω,ω′) =



χ eηΦ(si,s−i,G)

eηΦ(si,s−i,G)+eηΦ(s′
i
,s−i,G)

if ω′ = (s′i, s−i, G) and ω = (s, G),

λ eηΦ(s,G+ij)

eηΦ(s,G+ij)+eηΦ(s,G) if ω′ = (s, G+ ij) and ω = (s, G),

λ eηΦ(s,G−ij)

eηΦ(s,G−ij)+eηΦ(s,G) if ω′ = (s, G− ij) and ω = (s, G),

−
∑

ω′ ̸=ω q(ω,ω
′) if ω′ = ω,

0 otherwise.

(34)

where with have denoted by Φ(ω) for Φ(ω,ψGI(ω)) to simplify the notation. The matrix Q
satisfies the Chapman-Kolmogorov forward equation d

dtP(t) = P(t)Q and therefore we can write
P(t) = I +Q∆t + o(∆t). Furthermore, the stationary distribution µη : Ω → [0, 1] is then the
solution to µηP = µη and can be equivalently computed as µηQ = 0 [cf. Norris, 1998].

Note that the embedded discrete-time Markov chain is irreducible and aperiodic, and thus is
ergodic and has a unique stationary distribution. Hence, also the continuous-time Markov chain
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is ergodic and has a unique stationary distribution. The stationary distribution solves µηQ = 0
with the transition rates matrix Q = (q(ω,ω′))ω,ω′∈Ω of (34). This equation is satisfied when
the probability distribution µη(ω) satisfies the detailed balance condition [cf. Norris, 1998]

µη(ω)q(ω,ω′) = µη(ω′)q(ω′,ω), (35)

for all ω,ω′ ∈ Ω. Observe that the detailed balance condition is trivially satisfied if ω′ and ω
differ in more than one link or more than one action level. Hence, we consider only the case
of link creation G′ = G + ij (and removal G′ = G − ij) or an adjustment in action s′i ̸= si for
some i ∈ N . For the case of link creation with a transition from ω = (s, G) to ω′ = (s, G+ ij)
we can write the detailed balance condition as follows

1

η eηΦ(s,G) eηΦ(s,G+ij)

eηΦ(s,G+ij) + eηΦ(s,G)
λ =

1

η eηΦ(s,G+ij) eηΦ(s,G)

eηΦ(s,G) + eηΦ(s,G+ij)
λ.

This equality is trivially satisfied. A similar argument holds for the removal of a link with a
transition from ω = (s, G) to ω′ = (s, G− ij) where the detailed balance condition reads

1

η eηΦ(s,G) eηΦ(s,G−ij)

eηΦ(s,G−ij) + eηΦ(s,G)
λ =

1

η eηΦ(s,G−ij) eηΦ(s,G)

eηΦ(s,G) + eηΦ(s,G−ij)λ.

For a change in the agents’ actions with a transition from ω = (si, s−i, G) to ω′ = (s′i, s−i, G)
we get the following detailed balance condition

1

η eηΦ(si,s−i,G) eηΦ(s′i,s−i,G)

eηΦ(si,s−i,G) + eηΦ(s′i,s−i,G)
χ =

1

η eηΦ(s′i,s−i,G) eηΦ(si,s−i,G)

eηΦ(si,s−i,G) + eηΦ(s′i,s−i,G)
χ.

Hence, the probability measure µη(ω) satisfies a detailed balance condition of (35) and therefore
is the stationary distribution of the Markov chain with transition rates q(ω,ω′).

Proof of Propositions 3 and 4. The potential function is given by

Φ(s, G) =
n∑
i=1

γisi +
1

2

n∑
i=1

n∑
j=1

aij(θsisj − ζij) +
ρ

2

n∑
i=1

n∑
j ̸=i

sisj − κ
n∑
i=1

si

=

n∑
i=1

γi + ρ

2

n∑
j ̸=i

sj − κ

 si +
1

2

n∑
i=1

n∑
j=1

aij(θsisj − ζij).

With the linking cost in (2) the potential function can be written as

Φ(s, G) =
n∑
i=1

γi + ρ

2

n∑
j ̸=i

sj − κ

 si +
1

2

n∑
i=1

n∑
j=1

aij

(
θsisj − ζ1 +

ζ1 − ζ2
2

(1− γiγj)

)
. (36)

Note that only the last term in (36) depends on the network G (through the entries of the
elements aij of its adjacency matrix A). In particular, the term

∑n
i=1

∑n
j=1 aijsisj is maximized

over si, sj ∈ {−1,+1} for aij = 1 iff si = sj . The term
∑n

i=1

∑n
j=1 aij(θsisj − ζ1 + (ζ1 − ζ2)(1−

γiγj)/2 is maximized over si, sj ∈ {−1,+1} for aij = 1 iff si = sj = γi = γj if ζ1 < θ < ζ2 and
si = sj if ζ2 < θ. If θ < ζ1 then aij = 0 and we obtain the empty network, Kn. To summarize,
the candidate networks and action profiles that maximize the potential must be either complete,
Kn, empty, Kn, or composed of two disconnected cliques, Kn1 ∪Kn−n1 , in which all agents in
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the same clique chose the same action and have the same idiosyncratic preferences.

Consider first the case of θ < ζ1. Then the stochastically stable network is empty, Kn and
the potential function simplifies to

Φ(s,Kn) =

n∑
i=1

siγi +
ρ

2

n∑
i=1

n∑
j ̸=i

sisj − κ

n∑
i=1

si.

Observe that the first term is maximized if si = γi, the second term is maximized if si = sj
for all i and j, while the last term is maximized if si = −1 for all i. The second and third
terms are jointly maximized if all agents choose si = −1. We thus need to consider only three
possible cases for the action profiles. All agents i choose si = −1, all agents i choose si = −1 or
all agent choose si = γi. We can ignore configurations different from the above in which some
agent i with γi = +1 would choose an action si = −1. This is because if the potential would be
higher in such a configuration, then it would be even higher in the case where all agents choose
si = −1.

In the case of all agents choosing the action si = −1 the potential is given by

Φ((−1, . . . ,−1),Kn) = n− 2n+ +
ρn(n− 1)

2
+ κn.

Conversely, in the case of all agents choosing the action si = +1 the potential is given by

Φ((+1, . . . ,+1),Kn) = n+ − (n− n+) +
ρn(n− 1)

2
− κn.

In the case of all agents choosing the action si = γi the potential is given by

Φ(γ,Kn) = n+
ρ

2
(n+((n+ − 1)− (n− n+)) + (n− n+)((n− n+ − 1)− n+))

− κ(n+ − (n− n+))

= n+
ρ

2

(
(n− 2n+)

2 − n
)
− κ(2n+ − n).

We then have that

Φ((−1, . . . ,−1),Kn)− Φ(γ,Kn) = 2n+ (κ+ ρ(n− n+)− 1)

which is increasing in ρ. Solving Φ((−1, . . . ,−1),Kn) = Φ(γ,Kn) for ρ yields the threshold

ρ∗ =
1− κ

n− n+
−−−→
n→∞

0,

For ρ > ρ∗ the stochastically stable state will be the empty network Kn in which all agents
choose the action si = −1, while for ρ < ρ∗ all agents choose the action si = γi. Similarly,
solving for κ yields the threshold

κ∗∗ = 1− ρ(n− n+) −−−→
n→∞

−∞ (if ρ > 0)

Moreover,
Φ((+1, . . . ,+1),Kn)− Φ(γ,Kn) = −2(n− n+)(κ+ 1− n+ρ)
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Figure 11: The two thresholds ρ∗ and ρ∗∗ as a function of n+. The dashed line indicates where they coincide,
i.e., ρ∗ = ρ∗∗, which happens for ν+ =

n+

n
= 1+κ

2
.

which is positive if ρ is larger than
ρ∗∗ =

1 + κ

n+
.

Similarly, solving for κ yields the threshold

κ∗∗∗ = ρn+ − 1 −−−→
n→∞

+∞.

Further,
Φ((+1, . . . ,+1),Kn)− Φ((−1, . . . ,−1),Kn) = −2((κ+ 1)n− 2n+),

which is positive if κ is smaller than

κ∗ =
2n+
n

− 1,

Note that κ∗ is positive only if n+ > n/2 and that κ∗ > κ∗∗∗ only if ρ < 2/n −−−→
n→∞

0.

We next assume that n+ < n
2 and θ > ζ1. First, consider two cliques, Kn+ and Kn−n+ of

sizes n+ and n−n+, respectively, where the agents in Kn+ choose si = γi = +1, and the agents
in Kn−n+ choose si = γi = −1. The potential function is then given by

Φ(γ,Kn+ ∪Kn−n+)

= n+
1

2
(n+(n+ − 1) + (n− n+)(n− n+ − 1))(θ − ζ1)

+
ρ

2
(n+((n+ − 1)− (n− n+)) + (n− n+)((n− n+ − 1)− n+))− κ(n+ − (n− n+))

= n+
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1)

+
ρ

2
(n+(2n+ − n− 1) + (n− n+)(n− 1− 2n+))− κ(2n+ − n)

= n+
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) +

ρ

2

(
(n− 2n+)

2 − n
)
− κ(2n+ − n).

We next consider the potential in a union of cliques Kn+−k ∪Kn−n++k, obtained from discon-
necting k nodes j from the clique Kn+ and connecting them to all nodes in the clique Kn−n+ ,
while choosing the action sj = −1 with γj = +1, with k = 0, . . . , n+. This is illustrated in the
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left panel in Figure 12 for k = 1. The corresponding potential function is given by

Φ(s′,Kn+−k ∪Kn−n++k)

= ((n+ − k)− k + n− n+)− κ((n+ − k)− (n− n+ + k))

+
1

2
((n+ − k)(n+ − k − 1) + (n− n+)(n− n+ − 1) + k(k − 1))(θ − ζ1) + k(n− n+)(θ − ζ2)

+
ρ

2
((n+ − k)((n+ − k − 1)− (n− n+ + k)) + (n− n+ + k)((n− n+ + k − 1)− (n+ − k)))

= (n− 2k)− κ(2(n+ − k)− n) +
ρ

2
((n− 2(n+ − k))2 − n)

+
1

2
(2
(
k2 − n+(k + n) + n2+

)
+ n(n− 1))(θ − ζ1) +

1

2
k(k − 1)(θ − ζ2).

It then follows that

Φ(s′,Kn+−k ∪Kn−n++k)− Φ(γ,Kn+ ∪Kn−n+)

=
k

2
(2ζ1n+ + ζ2 − θ(1 + 2n+)− 4(1− κ)− k(2ζ1 + ζ2 − 3θ) + 4ρ(k + n− 2n+)) . (37)

Note that this is (under some regularity conditions) a convex function of k (see Figure 12).34

A convex function attains its maximum at the boundaries, which is either the union of two
cliques, Kn+ ∪Kn−n+ , or the complete graph, Kn, in which all agents choose si = −1. In the
latter the potential is given by

Φ((−1, . . . ,−1),Kn) = (n−2n+)+
1

2
(n(n−1)−2n+(n−n+))(θ−ζ1)+n+(n−n+)(θ−ζ2)+

ρ(n− 1)

2
n+κn.

We then have that

Φ((−1, . . . ,−1),Kn)− Φ(γ,Kn+ ∪Kn−n+) = n+(2(κ− 1)− (n− n+)(ζ2 − θ − 2ρ)),

which is increasing in θ. Solving Φ((−1, . . . ,−1),Kn) = Φ(γ,Kn+ ∪ Kn−n+) for θ yields the
threshold

θ∗ = ζ2 +
2(1− κ)

n− n+
− 2ρ −−−→

n→∞
ζ2 − 2ρ

Further, consider the union of cliques Kn+−k ∪Kn−n++k in which all agents i choose action
si = −1. The potential is given by

Φ((−1, . . . ,−1),Kn+ ∪Kn−n+) = (n− 2n+) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) +

ρ(n− 1)

2
n+ κn.

We then have that

Φ((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ(γ,Kn+ ∪Kn−n+) = 2n+((1− κ)− ρ(n− n+)),

which is negative for
ρ < ρ∗ =

1− κ

n− n+
−−−→
n→∞

0

34Denote by ∆Φ(k) ≡ Φ(s′,Kn+−k ∪Kn−n++k)−Φ(γ,Kn+ ∪Kn−n+). Then d2∆Φ(k)

dk2 = 3θ+4ρ− 2ζ1 − ζ2 > 0

if θ > 2ζ1+ζ2−4ρ
3

. Further, note that if ∆Φ(k) is convex, then also Φ(s′,Kn+−k ∪Kn−n++k) is convex.
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Similarly,

Φ((−1, . . . ,−1),Kn)− Φ((−1, . . . ,−1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is increasing in θ. We have that Φ((−1, . . . ,−1),Kn) = Φ((−1, . . . ,−1),Kn+ ∪Kn−n+)
for θ = ζ2. Hence, for θ > ζ2 > ζ1 the stochastically stable state is the complete graph Kn in
which all agents choose the action si = −1, while for ζ1 < θ < ζ2 it is the union of two cliques,
Kn+ ∪ Kn−n+ , in which all agents choose the action si = γi if ρ < ρ∗ or all agents choosing
action si = −1 if ρ > ρ∗.

Next we analyze the case of n+ > n
2 and θ > ζ1. Consider the complete graph Kn in which

all agents choose si = +1. Then

Φ((+1, . . . ,+1),Kn) = (n+ − (n− n+)) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + n+(n− n+)(θ − ζ2)

+
ρ

2
n(n− 1)− κn

= (2n+ − n) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + n+(n− n+)(θ − ζ2)

+
ρ

2
n(n− 1)− κn.

Further, we have that

Φ((+1, . . . ,+1),Kn)− Φ(γ,Kn+ ∪Kn−n+) = −(n− n+)(2(κ+ 1) + n+(ζ2 − θ − 2ρ)),

which is increasing in θ. Solving Φ((+1, . . . ,+1),Kn) = Φ(γ,Kn+ ∪ Kn−n+) for θ yields the
threshold

θ∗∗ = ζ2 +
2(κ+ 1)

n+
− 2ρ −−−→

n→∞
ζ2 − 2ρ = lim

n→∞
θ∗.

Next, consider the union of cliques Kn+−k ∪ Kn−n++k in which all agents i choose action
si = +1. The potential is given by

Φ((+1, . . . ,+1),Kn+ ∪Kn−n+) = (2n+ − n) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) +

ρ(n− 1)

2
n− κn.

We then have that

Φ((+1, . . . ,+1),Kn+ ∪Kn−n+)− Φ(γ,Kn+ ∪Kn−n+) = −2(n− n+)((κ+ 1)− n+ρ),

which is negative for
ρ < ρ∗∗ =

1 + κ

n+
−−−→
n→∞

0.

Similarly,

Φ((+1, . . . ,+1),Kn)− Φ((+1, . . . ,+1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is positive for θ > ζ2, negative for θ < ζ2 and increasing in θ. Further, we have that
Φ((+1, . . . ,+1),Kn) = Φ((+1, . . . ,+1),Kn+ ∪ Kn−n+) for θ = ζ2. Hence, for θ > ζ2 > ζ1
the stochastically stable state is the complete graph Kn in which all agents choose the action
si = +1, while for ζ1 < θ < ζ2 it is the union of two cliques, Kn+ ∪Kn−n+ , in which all agents
choose the action si = γi if ρ < ρ∗∗ or all agents choosing action si = +1 if ρ > ρ∗∗. If θ < ζ1
then we obtain the empty network, Kn.
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Figure 12: (Left panel) Illustration of two cliques, Kn+ and Kn−n+ and the relocation of one node j from Kn+

to Kn−n+ . (Right panel) The resulting potential for relocating node j from the clique Kn+ to the clique Kn−n+

for θ ∈ {0.05, 0.075, 0.1, 0.125}, n+ = 17, n = 50, ρ = 0 and ζ1 = ζ2 = 0.01. The threshold is given by θ∗ = 0.061.
For small values of θ < θ∗ the union of cliques Kn+∪Kn−n+ (j = 0) has the highest potential, while for increasing
values of θ the potential is highest for the complete graph Kn (j = n+ = 17). We also see that the potential in
a union of cliques Kn+−k ∪Kn−n++k for k = 1, . . . , n+ − 1 is always smaller than the potential in the complete
graph Kn or in the union of cliques Kn+ ∪Kn−n+ .

Next, note that

Φ((−1, . . . ,−1),Kn)− Φ((+1, . . . ,+1),Kn) = 2(n(κ+ 1)− 2n+), (38)

which is increasing in κ. For n+ < n
2 (38) is strictly positive for any value of κ. In contrast, for

n+ > n
2 we have that

Φ((−1, . . . ,−1),Kn) < Φ((+1, . . . ,+1),Kn)

if
κ < κ∗ =

2n+
n

− 1,

and κ∗ being positive only if n+ > n/2. Moreover,

Φ((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ((+1, . . . ,+1),Kn+ ∪Kn−n+) = 2n(κ− κ∗),

which is positive for κ > κ∗ and negative for κ < κ∗. With the above discussion we have
covered all possible partitions of agents into two cliques (including the complete and the empty
graphs), and the actions they can choose. As these are the candidate potential maximizers,
we have therefore identified the networks and action profiles that maximize the potential. This
concludes the proof.

Proof of Propositions 5 and 6. In the following we compute an absorbing state of the Markov
process formalizing the LIL scenario in the limit of η → ∞ characterizing the stochastically
stable states. In such an absorbing state (s, G,p), given the beliefs p agents do not have an
incentive to change their actions, s, or links, G. Because differences in the potential correspond
to differences in payoffs, this is satisfied if the potential is maximized for such (s, G) given the
beliefs p. Conversely, given (s, G), the stationary belief updating in (8) must be satiesfied, that
is, pi = fi(s,p, G) = φ 1

di

∑n
j=1 aijsj +(1−φ) 1

di+1(pi+
∑n

j=1 aijpj) for all i = 1, . . . , n. We then
proceed by a guess and verify approach to check that the conditions for such a fixed point are
satisfied.
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We first consider the potential maximizing states (s, G) given the beliefs p. The potential
function can be written as

Φ̃(s, G,p) =
n∑
i=1

γisi +
1

2

n∑
i=1

n∑
j=1

aij(θsisj − ζij) + ρ(n− 1)
n∑
i=1

pisi − κ
n∑
i=1

si

= γ̃⊤s+
θ

2
s⊤As− 1

2
u⊤ζu,

where we have denoted by γ̃i = γi + ρ(n− 1)pi − κ. For a given vector of beliefs, p, the scalar
product ⟨γ̃, s⟩ = γ̃⊤s is maximized for si = sign(γ̃i), and the quadratic form s⊤As is maximized
for aij = 1 iff sign(si) = sign(sj), or equivalently sign(γ̃i) = sign(γ̃j) in the case of ζij < 1. This
implies that the stochastically stable network must be either complete, empty or composed of
two cliques, where in each clique the agents choose the same actions.

From (9) we know that the stationary beliefs satisfy the following relationship

p(ω) = φ
[
I− (1− φ)D̂−1(G)Â(G)

]−1
D−1(G)A(G)s (ω = (s, G) ∈ Ω).

Hence, we know that the absorbing state (s, G,p) must satisfy si = sign(γi+ρ(n−1)pi−κ) and
aij = 1 iff sign(si) = sign(sj) in the case of ζij < 1, where the network must be either complete,
empty or composed of two cliques, where in each clique the agents choose the same actions.

From the equation si = sign(γi + ρ(n− 1)si − κ) we see that for γi = −1 it must hold that

si =

{
+1, if ρ > (1 + κ)/(n− 1) −−−→

n→∞
0,

−1, for any vales of ρ and κ.
(39)

Similarly, for γi = +1 it must hold that

si =

+1, if ρ > (κ− 1)/(n− 1) −−−→
n→∞

0,

−1, if ρ > (1− κ)/(n− 1) −−−→
n→∞

0.
(40)

Further, from (7) we know that the stationary beliefs must satisfy pi = φ 1
di

∑n
j=1 aijsj + (1 −

φ) 1
di+1(pi +

∑n
j=1 aijpj). In a network where all connected agents choose the same action and

have the same beliefs, this simplifies to pi = φsi + (1 − φ)pi, and this equation is satisfied for
pi = si.

When pi = si for all i = 1, . . . , n then the potential is given by

Φ̃(s, G) =
n∑
i=1

γisi + ρ(n− 1)
n∑
i=1

s2i +
1

2

n∑
i=1

n∑
j=1

aij(θsisj − ζij)− κ
n∑
i=1

si.

With the linking cost

ζij = ζ1 −
ζ1 − ζ2

2
(1− γiγj) =

{
ζ1, if γi = γj ,

ζ2, if γi ̸= γj ,
(41)
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where 0 ≤ ζ1 < ζ2, the potential function can be written as

Φ̃(s, G) =
n∑
i=1

(γi + ρ(n− 1)si − κ) si +
1

2

n∑
i=1

n∑
j=1

aij

(
θsisj − ζ1 +

ζ1 − ζ2
2

(1− γiγj)

)
. (42)

Note that only the last term in (42) depends on the network (through the entries of the adjacency
matrix elements aij). In particular, the term

∑n
i=1

∑n
j=1 aijsisj is maximized over si, sj ∈

{−1,+1} for aij = 1 iff si = sj . The term
∑n

i=1

∑n
j=1 aij(θsisj − ζ1 + (ζ1 − ζ2)(1 − γiγj)/2 is

maximized over si, sj ∈ {−1,+1} for aij = 1 iff si = sj = γi = γj if ζ1 < θ < ζ2 and si = sj
if ζ2 < θ. If θ < ζ1 then aij = 0 and we obtain the empty network, Kn. To summarize, the
candidate networks and action profiles that maximize the potential must be either complete,
Kn, empty, Kn, or composed of two disconnected cliques, Kn1 ∪Kn−n1 , in which all agents in
the same clique chose the same action and have the same idiosyncratic preferences.

Consider first the case of θ < ζ1. Then the stochastically stable network is empty, Kn and
the potential function simplifies to

Φ̃(s,Kn) =

n∑
i=1

siγi + ρ(n− 1)
n∑
i=1

s2i − κ
n∑
i=1

si.

Observe that the first term is maximized if si = γi, while the last term is maximized if si = −1
for all i. The second and third terms are jointly maximized if all agents choose si = −1. We
thus need to consider only two possible cases for the action profiles. All agents i choose si = −1
or all agents choose si = γi. We can ignore configurations different from the above in which
some agent i with γi = +1 would choose an action si = −1. This is because if the potential
would be higher in such a configuration, then it would be even higher in the case where all
agents choose si = −1.

In the case of all agents choosing the action si = −1 the potential is given by

Φ̃((−1, . . . ,−1),Kn) = n− 2n+ + ρ(n− 1)n+ κn.

Conversely, in the case of all agents choosing the action si = +1 the potential is given by

Φ̃((+1, . . . ,+1),Kn) = n+ − (n− n+) + ρ(n− 1)n− κn.

In the case of all agents choosing the action si = γi the potential is given by

Φ̃(γ,Kn) = n+ ρ(n− 1)n− κ(n+ − (n− n+)) = n+ ρ(n− 1)n− κ(2n+ − n).

We then have that
Φ̃((−1, . . . ,−1),Kn)− Φ̃(γ,Kn) = 2(κ− 1)n+,

which is positive for κ > 1 and negative for κ < 1. Moreover,

Φ̃((+1, . . . ,+1),Kn)− Φ̃(γ,Kn) = −2(n− n+)(1 + κ) < 0,

which is negative for all parameter choices. Further, we have that

Φ̃((+1, . . . ,+1),Kn)− Φ̃((−1, . . . ,−1),Kn) = −2((κ+ 1)n− 2n+),
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which is positive if
κ < κ∗ =

2n+
n

− 1 ≤ 1,

where κ∗ = 1 if n+ = n and κ∗ < 0 if n+ < n/2. Thus, for κ > 1 the stochastically stable state
will be the empty network Kn in which all agents choose the action si = −1, while for κ < 1 all
agents choose the action si = γi. Note that in the case that all agents choose action si = −1,
the condition in (40) is trivially satisfied with κ > 1 as ρ ≥ 0. The same holds for the case that
the agents choose their idiosyncratic preferences as actions when κ < 1.

We next assume that n+ < n
2 and θ > ζ1. First, consider two cliques, Kn+ and Kn−n+ of

sizes n+ and n−n+, respectively, where the agents in Kn+ choose si = γi = +1, and the agents
in Kn−n+ choose si = γi = −1. The potential function is then given by

Φ̃(γ,Kn+ ∪Kn−n+)

= n+
1

2
(n+(n+ − 1) + (n− n+)(n− n+ − 1))(θ − ζ1) + ρ(n− 1)n− κ(n+ − (n− n+))

= n+
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + ρ(n− 1)n− κ(2n+ − n).

In the complete graph, Kn, in which all agents choose si = −1, the potential is given by

Φ̃((−1, . . . ,−1),Kn) = (n−2n+)+
1

2
(n(n−1)−2n+(n−n+))(θ−ζ1)+n+(n−n+)(θ−ζ2)+ρ(n−1)n+κn.

We then have that

Φ̃((−1, . . . ,−1),Kn)− Φ̃(γ,Kn+ ∪Kn−n+) = n+(2(κ− 1) + n(θ − ζ2) + n+(ζ2 − θ)),

which is increasing in θ. Solving Φ̃((−1, . . . ,−1),Kn) = Φ̃(γ,Kn+ ∪ Kn−n+) for θ yields the
threshold

θ̃∗ = ζ2 −
2(κ− 1)

n− n+
−−−→
n→∞

ζ2.

We therefore find that θ̃∗ < ζ2 if κ > 1 and θ̃∗ > ζ2 if κ < 1.

Further, consider the union of cliques Kn+−k ∪Kn−n++k in which all agents i choose action
si = −1. The potential is given by

Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+) = (n− 2n+) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + ρ(n− 1)n+ κn.

We then have that

Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ̃(γ,Kn+ ∪Kn−n+) = −2n+(1− κ),

which is negative for κ < 1 and positive for κ > 1. Similarly,

Φ̃((−1, . . . ,−1),Kn)− Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is positive for θ > ζ2, negative for θ < ζ2 and increasing in θ. In particular, we have
that Φ̃((−1, . . . ,−1),Kn) = Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+) for θ = ζ2. Hence, for θ > ζ2 > ζ1
the stochastically stable state is the complete graph Kn in which all agents choose the action
si = −1, while for ζ1 < θ < ζ2 it is the union of two cliques, Kn+ ∪Kn−n+ , in which all agents
choose the action si = γi if κ < 1 or all agents choosing action si = −1 if κ > 1. Note that in the
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case that all agents choose action si = −1, the condition in (40) is trivially satisfied with κ > 1
as ρ ≥ 0. The same holds for the idiosyncratic preferences fragmented cliques when κ < 1.

Next we consider the case of n+ > n
2 and θ > ζ1. Consider the complete graph Kn in which

all agents choose si = +1. Then

Φ̃((+1, . . . ,+1),Kn)

= (n+ − (n− n+)) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + n+(n− n+)(θ − ζ2) + ρ(n− 1)n− κn

= (2n+ − n) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + n+(n− n+)(θ − ζ2) + ρ(n− 1)n− κn.

Further, we have that

Φ̃((+1, . . . ,+1),Kn)− Φ̃(γ,Kn+ ∪Kn−n+) = −(n− n+)(2(κ+ 1) + n+(ζ2 − θ)),

which is increasing in θ. Solving Φ((+1, . . . ,+1),Kn) = Φ̃(γ,Kn+ ∪ Kn−n+) for θ yields the
threshold

θ̃∗∗ = ζ2 +
2(κ+ 1)

n+
−−−−→
n+→∞

ζ2,

with θ̃∗∗ > ζ2.

Next, consider the union of cliques Kn+∪Kn−n+ in which all agents i choose action si = +1.
The potential is given by

Φ̃((+1, . . . ,+1),Kn+ ∪Kn−n+) = (2n+ − n) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + ρ(n− 1)n− κn.

We then have that

Φ̃((+1, . . . ,+1),Kn+ ∪Kn−n+)− Φ̃(γ,Kn+ ∪Kn−n+) = −2(n− n+)(κ+ 1),

which is negative for all parameter values. Similarly,

Φ̃((+1, . . . ,+1),Kn)− Φ̃((+1, . . . ,+1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is positive for θ > ζ2, negative for θ < ζ2 and increasing in θ. In particular, we have
that Φ̃((+1, . . . ,+1),Kn) = Φ̃((+1, . . . ,+1),Kn+ ∪Kn−n+) for θ = ζ2. Hence, for θ > ζ2 > ζ1
the stochastically stable state is the complete graph Kn in which all agents choose the action
si = +1, while for ζ1 < θ < ζ2 it is the union of two cliques, Kn+ ∪Kn−n+ , in which all agents
choose the action si = γi.

Finally, note that

Φ̃((−1, . . . ,−1),Kn)− Φ̃((+1, . . . ,+1),Kn) = 2(n(κ+ 1)− 2n+), (43)

which is increasing in κ. For n+ < n
2 (43) is strictly positive for any value of κ. In contrast, for

n+ > n
2 we have that

Φ̃((−1, . . . ,−1),Kn) < Φ̃((+1, . . . ,+1),Kn)

if
κ < κ∗ =

2n+
n

− 1 ≤ 1,
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where κ∗ = 1 if n+ = n. Moreover,

Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ̃((+1, . . . ,+1),Kn+ ∪Kn−n+) = 2n(κ− κ∗),

which is positive for κ > κ∗ and negative for κ < κ∗.

With the above discussion we have covered all possible partitions of agents into two cliques
(including the complete and the empty graphs), and the actions they can choose. As these
are the candidate potential maximizers, we have therefore identified the networks and action
profiles that maximize the potential. This concludes the proof.
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B. Extensions

In the following we briefly illustrate how the simple theoretical model discussed in Subsection
2.1 could be extended along two important dimensions: In Subsection B.1 we allow for directed
links, and in Subsection B.2 we consider heterogeneous linking costs that depend on the actions
of the agents.

B.1. Directed Links

It is possible to consider a directed network. Assume for simplicity a constant linking cost. In
this case the potential function for the GI environment needs to be modified as follows

Φ(s, G) =
n∑
i=1

γisi + θ
n∑
i=1

n∑
j=1

(
1

2
aijaji + aij(1− aji)

)
sisj +

ρ

2

n∑
i=1

n∑
j ̸=i

sisj − κ
n∑
i=1

si −mζ.

(B.44)
Here we consider undirected links, as it is standard in the social networks literature on peer
effects, and we leave the detailed analysis of directed networks to future work.

B.2. Action-Specific Heterogeneous Linking Costs

Consider a linking cost between agents i and j given by

ζij = ζ1di − ζ2

n∑
j=1

aij(1− sisj)

that allows for linking costs to be lower between agents choosing the same strategy. The
corresponding payoff function in the GI environment is given by

πi(s, G) = γisi + (θ + ζ2)
n∑
j=1

aijsisj + ρ
n∑
j=1

sjsi − κsi − ζ1di.

This is the same functional form as in (1) up to a shift of the parameter θ.

C. Finite Noise Equilibrium Characterization

In this section we analyze the stationary states in the case of finite noise (while the stochastically
stable state characterizations in Propositions 3, 4, 5 and 6 cover only the case of vanishing noise,
i.e., the limit of η → ∞). For concreteness, we focus on two especially relevant statistics, the
average connectivity (network degree) and the average action, as they depend on the linking
costs ζ (= ζ1 = ζ2) and the noise parameter η.

C.1. Global Information

We start by characterizing the expected number of links induced by the distribution µη(·).
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Proposition C.1. Assume homogeneous linking costs, ζ1 = ζ2 = ζ. Then the expected number
of links in the stationary state is given by

Eη(m) =
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)eη(ρ(2l(k,j)−(

n
2)))−κ(n−2(n++k−2j))

×
(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)( l(k, j)

1 + e−η(θ−ζ)
+

(
n
2

)
− l(k, j)

1 + eη(θ+ζ)

)
, (C.45)

where l(k, j) is given by

l(k, j) =
n2 + (2(2j − k)− 1)n+ 2(2j − k)2 − 2(n+ 2(2j − k)− n+)n+

2
, (C.46)

n+ = #({γi = 1 : i = 1, . . . , n}), and we have that limζ→∞ Eη(m) = 0.35

Before proceeding with the proof of Proposition C.1 we state three useful lemmas that will
be needed later. In these lemmas we assume that ζ1 = ζ2 = ζ.

Lemma C.1. Assume that ζ1 = ζ2 = ζ. The marginal distribution of the action levels,
s ∈ S = {−1,+1}n, is given by

µη(s) =
1

η eη
η(s), (C.47)

where we have denoted by

η(s) ≡
n∑
i=1

γi − κ+
ρ

2

n∑
j ̸=i

sj

 si +
n∑

j=i+1

(
1

η
ln
(
1 + eη(θsisj−ζ)

)) , (C.48)

and the normalizing constant is given by

η = ∑
s∈{−1,+1}n

eηη(s). (C.49)

Proof of Lemma C.1. We first compute the partition function [cf. Grimmett, 2010; Wainwright

35An explicit expression for the partition function η can be found in Lemma C.3 in Appendix A.
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and Jordan, 2008], which appears as the denominator in (14), explicitly. We have that36

η ≡ ∑
G∈Gn

∑
s∈{−1,+1}n

eηΦ(s,G)

=
∑

s∈{−1,+1}n

∑
G∈Gn

eη(
∑n

i=1(γi−κ)si+
ρ
2

∑n
i=1

∑n
j ̸=i sisj+

∑n
i=1

∑n
j=i+1 aij(θsisj−ζ))

=
∑

s∈{−1,+1}n
eη

∑n
i=1(γi−κ+

ρ
2

∑n
j ̸=i sj)si

∑
G∈Gn

eη
∑n

i=1

∑n
j=i+1 aij(θsisj−ζ)

=
∑

s∈{−1,+1}n
eη

∑n
i=1(γi−κ+

ρ
2

∑n
j ̸=i sj)si

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
, (C.50)

where we have used the fact that∑
G∈Gn

e
∑n

i<j aijσij =

n∏
i=1

n∏
j=i+1

(1 + eσij ) , (C.51)

for any real and symmetric σij = σji. Introducing the Hamiltonian [cf. Grimmett, 2010]

η(s) ≡
n∑
i=1

γi − κ+
ρ

2

n∑
j ̸=i

sj

 si +

n∑
j=i+1

(
1

η
ln
(
1 + eη(θsisj−ζ)

)) , (C.52)

we can write the partition function as follows

η = ∑
s∈{−1,+1}n

eηη(s).

With the Hamiltonian we can write the marginal distribution as follows

µη(s) =
1

η
∑
G∈Gn

eηΦ(s,G)

=
1

ηn eη
∑n

i=1(γi−κ+
ρ
2

∑n
j ̸=i sj)si

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
=

1

η eη
η(s), (C.53)

where η(s) has been defined in (C.52).

Lemma C.2. Assume that ζ1 = ζ2 = ζ. Conditional on the action profile, s ∈ S ∈ {−1,+1}n,
the probability of observing the network G is given by

µη(G|s) =
n∏
i=1

n∏
j=i+1

pij(si, sj)
aij (1− pij(si, sj))

1−aij ,

36Note that when the network is exogenous (i.e., when λ = 0) then in the limit of η → ∞ the sum over
all configurations s ∈ {−1,+1}n is equivalent to summing over all max cuts of the underlying graph, whose
enumeration is an NP-hard problem (cf. A. Montanari, “Inference in Graphical Models”, Stanford University,
lecture notes, 2012).
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where
pij(si, sj) =

eη(θsisj−ζ)

1 + eη(θsisj−ζ)
. (C.54)

Proof of Lemma C.2. With the marginal distribution from (C.47) we can write the conditional
distribution as

µη(G|s) = µη(s, G)

µη(s)
=

eη(
∑n

i=1(γi−κ+
ρ
2

∑n
j ̸=i sj)si+

θ
2

∑n
i=1

∑n
j=1 aijsisj−mζ)

eη
∑n

i=1(γi−κ+
ρ
2

∑n
j ̸=i sj)si

∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
=

eη
∑n

i<j aij(θsisj−ζ)∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
=
∏
i<j

eηaij(θsisj−ζ)

1 + eη(θsisj−ζ)

=
∏
i<j

(
eη(θsisj−ζ)

1 + eη(θsisj−ζ)

)aij (
1− eη(θsisj−ζ)

1 + eη(θsisj−ζ)

)1−aij

=
∏
i<j

pij(si, sj)
aij (1− pij(si, sj))

1−aij . (C.55)

Hence, conditional on the action choices s, we obtain the likelihood of an inhomogeneous random
graph with link probability [Bollobas et al., 2007]

pij(si, sj) =
eη(θsisj−ζ)

1 + eη(θsisj−ζ)
.

In the following we provide an explicit computation of the partition function introduced in
(C.50).

Lemma C.3. Assume that ζ1 = ζ2 = ζ. Then the partition function, η =∑G∈Gn

∑
s∈{−1,+1}n e

ηΦ(s,G),
is given by

η = n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)

× eη(ρ(2l(k,j)−(
n
2)))−κ(n−2(n++k−2j))

(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
, (C.56)

where
l(k, j) =

n2 + (2(2j − k)− 1)n+ 2(2j − k)2 − 2(n+ 2(2j − k)− n+)n+
2

,

and n+ = #({γi = 1 : i = 1, . . . , n}).

Note that, while the evaluation of the partition function in (C.50) requires the computation
of a sum with 2n terms, the partition function in (C.56) requires the evaluation of only 1

2(n+ +
1)(2(n + 1) − n+) = O(n) terms. With (C.56) the marginal distribution µη(s) in (C.47) can
then be efficiently computed.
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Proof of Lemma C.3. Assume w.l.o.g. that the agents are ordered such that γ1 = . . . γn+ = +1
and γn++1 = . . . γn = −1, with 0 ≤ n+ ≤ n. Let us consider all configurations s ∈ {−1,+1}n
for which there k = 0, . . . , n agents with si = γi. For a given k, there are

(
n+

j

)
ways to select j

agents from n+ choosing si = γi = +1, and there are
(n−n+

k−j
)
ways to select k − j agents from

n− choosing si = γi = −1, for each j = 0, . . . ,min{k, n+}. Hence, there are

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)

ways to obtain alignments of γ and s such that
∑n

i=1 siγi = k − (n− k) = 2k − n.

Next, we consider the products sisj . Since all the j agents in n+ with si = +1 choose the
same action +1, and all the k − j agents in n− with si = −1 choose the same action −1 we
obtain

l(k, j) =

(
j

2

)
+

(
k − j

2

)
+

(
n+ − j

2

)
+

(
n− n+ − (k − j)

2

)
+(n+−j)(k−j)+j(n−n+−(k−j))

pairs whose product of actions gives sisj = +1. The first term in the equation above counts all
pairs of agents with action +1 in the first set (with all γi = +1), the second all pairs of agents
with action −1 in the second set (with all γi = −1), the third term the pairs of agents with
action −1 in the first set (with all γi = +1), the fourth term the pairs of agents with action +1
in the second set (with all γi = −1), the fifth term counts the pairs with agents in the first set
who choose action −1 and the agents in the second set who chose action −1, while the last term
counts the pairs with agents in the first set who choose action +1 and agents in the second set
who also choose action +1.

We can further simplify l(k, j) to

l(k, j) =
n2 + (2(2j − k)− 1)n+ 2(2j − k)2 − 2(n+ 2(2j − k)− n+)n+

2
.

Then we can write

η = ∑
s∈{−1,+1}n

eηη(s)

=

n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
exp

{
η

[
(2k − n)

−κ (n− 2(n+ + k − 2j)) + ρ

(
2l(k, j)−

(
n

2

))
+

l(k, j)

η
ln
(
1 + eη(θ−ζ)

)
+

(
n
2

)
− l(k, j)

η
ln
(
1 + e−η(θ+ζ)

)]}

=
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)

× eη(ρ(2l(k,j)−(
n
2)))−κ(n−2(n++k−2j))

(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
,

where n+ = #({γi = 1 : i = 1, . . . , n}).
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Proof of Proposition C.1. With the partition function in Lemma C.3 we can compute the ex-
pected number of links, m, as follows

Eη(m) =
∑
G∈Gn

∑
s∈{−1,+1}n

mµη(s, G) =
1

η
∑
G∈Gn

∑
s∈{−1,+1}n

meηΦ(s,G)︸ ︷︷ ︸
− 1

η
∂
∂ζ
eηΦ(s,G)

= −1

η

1

η
∂η
∂ζ

. (C.57)

With (C.50) and (C.57) we then can compute the expected number of links as

Eη(m) =
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)eη(ρ(2l(k,j)−(

n
2)))−κ(n−2(n++k−2j))

×
(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)( l(k, j)

1 + e−η(θ−ζ)
+

(
n
2

)
− l(k, j)

1 + eη(θ+ζ)

)
, (C.58)

and one can show that limζ→∞ Eη(m) = 0.

Note further that for θ = ρ = 0 (C.58) simplifies to

Eη(m) =
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)

×
(
1 + e−ηζ

)l(k,j) (
1 + e−ηζ

)(n2)−l(k,j)( l(k, j)

1 + eηζ
+

(
n
2

)
− l(k, j)

1 + eηζ

)

=
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)(
n

2

)
eη(2k−n)

(
1 + e−ηζ

)(n2) 1

1 + eηζ

=
1

η
(
n

2

)(
1 + e−ηζ

)(n2) 1

1 + eηζ

n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)

=
1

η
e−ηn

π(1 + eηζ)

(
n

2

)(
1 + e−ηζ

)(n2)
×
(
π
(
1 + e2η

)n − e2(n+1)η sin(nπ)Γ(n+ 1) 2F1

(
1, 1;n+ 2;−e2η

))
.

In the left panel of Figure C.1 we compare the average degree d̄ obtained by averaging across
simulations with the expected value 2Eη(m)/n from Proposition C.1 for different values of the
linking cost ζ ∈ [0, 2] and noise parameter η ∈ {1, 2, 3}. The theoretical result predicts well the
simulated average degree, which naturally decreases with increasing linking costs ζ.

Now we turn to the average action level, which leads to the following counterpart of Propo-
sition C.1.

Proposition C.2. Assume homogeneous linking costs, ζ1 = ζ2 = ζ. Then the expected average
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Figure C.1: The average degree d̄ = 2m/n (left panel) and the average action level s̄ (right panel) across different
values of the linking cost ζ ∈ [0, 2] and varying noise η ∈ {1, 2, 3}. The parameters used are n = 5, n+ = 2,
κ = 0.1, ρ = 0.1, λ = χ = ξ = 1 and θ = 0.75. Dashed lines indicate the theoretical prediction of (C.45) in
Proposition C.1 and (C.59) in Proposition C.2, respectively, while circles indicate averages across 1000 numerical
Monte Carlo simulations of the model using the “next reaction method” for simulating a continuous time Markov
chain [cf. Anderson, 2012; Gibson and Bruck, 2000].

action level, s̄ = 1
n

∑n
i=1 si, in the stationary state is given by

Eη(s̄) =
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
n+ 4j − 2(n+ + k)

n
eη(2k−n)

× eη(ρ(2l(k,j)−(
n
2)))−κ(n−2(n++k−2j))

(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
, (C.59)

where l(k, j) is defined in (C.46) and n+ = #({γi = 1 : i = 1, . . . , n}).

Proof of Proposition C.2. Assume that ζ1 = ζ2 = ζ. Then the average action level s̄ =
1
n

∑n
i=1 si =

1
n⟨u, s⟩ is given by

Eη(s̄) =
∑

s∈{−1,+1}n
s̄µη(s)

=
1

η
∑

s∈{−1,+1}n

1

n
⟨u, s⟩eηη(s)

=
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
j + (n− n+ − (k − j))− (n+ − j + (k − j))

n

× eη(2k−n)eη(ρ(2l(k,j)−(
n
2)))−κ(n−2(n++k−2j))

(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
=

1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
n+ 4j − 2(n+ + k)

n

× eη(2k−n)eη(ρ(2l(k,j)−(
n
2)))−κ(n−2(n++k−2j))

(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
.
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The average action level s̄ in Proposition C.2 is illustrated in the right panel of Figure C.1
across different values of the linking cost ζ and for varying levels of noise, as parameterized by
η. The average action is increasing with ζ and more sharply so as the level of noise is decreasing
(respectively, η is increasing).

C.2. Local Information and Learning

The analysis of the LIL model is more complicated because its belief-formation ψLIL(·)mapping
given in (9) depends in an intricate manner on the current network structure. To make this
characterization tractable, we rely on a mean field approximation that is commonly used in
analyzing stochastic network formation models [see e.g., Jackson and Rogers, 2007]. By making
this approximation, in the stationary beliefs equation derived from (9):

p = φ
[
I− (1− φ)D̂−1Â

]−1
D−1As, (C.60)

we replace the entries of the adjacency matrix, A = (aij)
n
i,j=1 with their expected values:

aij = eη(θsisj−ζ)/(1 + eη(θsisj−ζ)) for all 1 ≤ i, j,≤ n. Similarly, D, Â and D̂ are computed.
Under this approximation, the beliefs, p, become a function of the actions, s, only. This will
allow us to compute the partition function (η) and other statistics of interest – such as the
average degree or the average action level – for an arbitrary level of noise (η).

The following proposition characterizes the expected number of links for an arbitrary level
of noise under a mean field approximation.

Proposition C.3. Consider homogeneous linking costs, ζ1 = ζ2 = ζ. Then, under a mean field
approximation, the expected number of links is given by

Eη(m) ≃ 1

η
∑

s∈{−1,+1}n
eη⟨γ̃,s⟩hη(s), (C.61)

where γ̃i = γi + ρ(n − 1)pi − κ, beliefs p are given by Eq. (C.60), the adjacency matrix
A = (aij)

n
i,j=1 has elements aij = eη(θsisj−ζ)/(1 + eη(θsisj−ζ)), D = diag(d1, . . . , dn) is the

diagonal matrix of the degrees di =
∑n

j=1 aij, the partition function is

η = ∑
s∈{−1,+1}n

eη⟨γ̃,s⟩fη(s), (C.62)

and

hη(s) =

(
e−η(ζ+θ) + 1

)α(s) (
eη(θ−ζ) + 1

)β(s)−1 (
(α(s) + β(s))eη(θ−ζ) + α(s) + β(s)e2ηθ

)
1 + eη(θ+ζ)

,

fη(s) =
(
1 + e−η(ζ+θ)

)α(s) (
1 + eη(θ−ζ)

)β(s)
, (C.63)

with α(s) = n+(s)(n − n+(s)), β(s) = 1
2(n(n − 1) − 2n+(s)(n − n+(s))), n+(s) = #({si = 1 :

i = 1, . . . , n}) and ⟨·, ·⟩ is the usual scalar product in RN .

Before proceeding with the proof of Proposition C.3 we state the following lemma which
will be useful later.
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Lemma C.4. For any s ∈ S = {−1,+1}n we have that

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
=
(
1 + e−η(θ+ζ)

)n+(n−n+) (
1 + eη(θ−ζ)

)n(n−1)−2n+(n−n+)

2
,

where n+ = #({γi = 1 : i = 1, . . . , n}).

Proof of Lemma C.4. In the following we denote by f(s) ≡
∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
and

g(si, sj) ≡ 1 + eη(θ−ζ). Then we can write

f(s) =

n+−1∏
i=1

 n+∏
j=i+1

g(si, sj)
n∏

j=n++1

g(si, sj)

 n∏
j=n++1

g(sn+ , sj)
n∏

i=n++1

n∏
j=i+1

g(si, sj)

=

n+−1∏
i=1

 n+∏
j=i+1

g(+1,+1)

n∏
j=n++1

g(+1,−1)

 n∏
j=n++1

g(+1,−1)

n∏
i=n++1

n∏
j=i+1

g(−1,−1)

=

n+−1∏
i=1

g(+1,+1)n+−ig(+1,−1)n−n+g(+1,−1)n−n+

n∏
i=n++1

g(−1,−1)n−i

= g(+1,−1)n−n+g(+1,−1)(n−n+)(n+−1)

n+−1∏
i=1

g(+1,+1)n+−i
n∏

i=n++1

g(−1,−1)n−i

= g(+1,−1)n−n+g(+1,−1)(n−n+)(n+−1)g(+1,+1)
n+(n+−1)

2 g(+1,+1)
(n−n+)(n−n+−1)

2

= g(+1,−1)n+(n−n+)g(+1,+1)
n(n−1)−2n+(n−n+)

2

=
(
1 + e−η(θ+ζ)

)n+(n−n+) (
1 + eη(θ−ζ)

)n(n−1)−2n+(n−n+)

2
.

This concludes the proof.

Proof of Proposition C.3. Assume that ζ1 = ζ2 = ζ. Then, in the belief-based model, the quasi
partition function is given by

η ≡ ∑
G∈Gn

∑
s∈{−1,+1}n

eηΦ̃(s,p,G)

=
∑

s∈{−1,+1}n

∑
G∈Gn

eη(
∑n

i=1 γ̃isi+
∑n

i=1

∑n
j=i+1 aij(θsisj−ζ))

=
∑

s∈{−1,+1}n
eη

∑n
i=1 γ̃isi

∑
G∈Gn

eη
∑n

i=1

∑n
j=i+1 aij(θsisj−ζ)

=
∑

s∈{−1,+1}n
eη

∑n
i=1 γ̃isi

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
,

where we have denoted by
γ̃i = γi + ρ(n− 1)pi − κ.
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The expected number of links is given by

Eη (m) = −1

η

1

η
∂η
∂ζ

= −1

η

1

η
∑

s∈{−1,+1}n
eη

∑n
i=1 γ̃isi

∂

∂ζ

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
.

Denoting by fη(s) ≡
∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
from Lemma C.4 it follows that

fη(s) =
(
1 + e−η(θ+ζ)

)α(s) (
1 + eη(θ−ζ)

)β(s)
,

where α(s) = n+(s)(n− n+(s)), β(s) = 1
2(n(n− 1)− 2n+(s)(n− n+(s))) and n+(s) = #({si =

1 : i = 1, . . . , n}). Moreover one can show that

hη(s) ≡ ∂fη(s)

∂ζ
=

(
e−η(ζ+θ) + 1

)α(s) (
eη(θ−ζ) + 1

)β(s)−1 (
(α(s) + β(s))eη(θ−ζ) + α(s) + β(s)e2ηθ

)
1 + eη(ζ+θ)

,

and we can write

Eη(m) =
1

η
∑

s∈{−1,+1}n
eη⟨γ̃,s⟩hη(s),

where η = ∑
s∈{−1,+1}n

eη⟨γ̃,s⟩fη(s).

Finally, stationary beliefs are given by (8) so that we can write them as a function of the actions
and network as p = φ

[
I− (1− φ)D̂−1Â

]−1
D−1As. Moreover, from Lemma C.2 we know that

the linking probability conditional on actions s is given by

pij =
eη(θsisj−ζ)

1 + eη(θsisj−ζ)
, (C.64)

and the expected value of aij of the (i, j)-th element of A is given by pij . This concludes the
proof.

The left panel in Figure C.2 shows the average degree d̄ = 2Eη(m)/n across different values
of the linking cost ζ ∈ [0, 2] and η ∈ {1, 2, 3}. The average degree is decreasing with the linking
cost ζ. The decrease is becoming sharper as the level of noise is decreasing (respectively, η is
increasing).

The next proposition characterizes the average action level for an arbitrary level of noise
under a mean field approximation.
Proposition C.4. Consider homogeneous linking costs, ζ1 = ζ2 = ζ. Then, under a mean field
approximation, the expected average action level, s̄, is given by

Eη(s̄) ≃ 1

η
1

n

∑
s∈{−1,+1}n

⟨u, s⟩eη⟨γ̃,s⟩fη(s), (C.65)

with fη(·) given by (C.63), the partition function is given by (C.62), γ̃i = γi + ρ(n− 1)pi − κ,
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Figure C.2: The average degree d̄ = 2m/n (left panel) and the average action level s̄ (right panel) across different
values of the linking cost ζ ∈ [0, 2], η ∈ {1, 2, 3}, n = 5, n+ = 2, κ = 0.1, ρ = 0.1, λ = χ = ξ = 1, φ = 0.5 and
θ = 0.75. Dashed-dotted lines indicate the theoretical predictions of d̄ = 2m/n in (C.61) in Proposition C.3 and
of s̄ in (C.65) of Proposition C.4, respectively, while circles indicate averages across 1000 numerical Monte Carlo
simulations of the model using the “next reaction method” for simulating a continuous time Markov chain [cf.
Anderson, 2012; Gibson and Bruck, 2000].

beliefs p are given by Eq. (C.60), the adjacency matrix A = (aij)
n
i,j=1 has elements aij =

eη(θsisj−ζ)/(1 + eη(θsisj−ζ)), D = diag(δ1, . . . , δn) is the diagonal matrix of the degrees δi =∑n
j=1 aij, and ⟨·, ·⟩ is the usual scalar product in RN .

Proof of Proposition C.4. Assume that ζ1 = ζ2 = ζ. Then the average action level s̄ =
1
n

∑n
i=1 si =

1
nu

⊤s = 1
n⟨u, s⟩ is given by

Eη(s̄) =
∑

s∈{−1,+1}n
s̄µη(s)

=
1

η
∑

s∈{−1,+1}n

1

n
⟨u, s⟩eη

∑n
i=1 γ̃isi

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)

where we have denoted by γ̃i = γi+ρ(n−1)pi−κ. Denoting by fη(s) ≡
∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
from Lemma C.4 it follows that

fη(s) =
(
1 + e−η(θ+ζ)

)α(s) (
1 + eη(θ−ζ)

)β(s)
,

where α(s) = n+(s)(n− n+(s)), β(s) = 1
2(n(n− 1)− 2n+(s)(n− n+(s))) and n+(s) = #({si =

1 : i = 1, . . . , n}), and hence

Eη(s̄) =
1

η
1

n

∑
s∈{−1,+1}n

⟨u, s⟩eη
∑n

i=1 γ̃isi
(
1 + e−η(θ+ζ)

)α(s) (
1 + eη(θ−ζ)

)β(s)
.

Finally, the stationary beliefs p(s) as a function of the actions s can be computed as in the
proof of Proposition C.3.

The right panel in Figure C.2 shows the average action level s̄ across different values of the
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linking cost ζ ∈ [0, 2] and noise η ∈ {1, 2, 3}. The average action level is increasing with ζ. The
increase is becoming sharper as the level of noise is decreasing (respectively, η is increasing).
Figure C.2 also illustrates a good match between the theory and simulations for different values
of ζ and η.

D. Finite Population Equilibrium Characterization

D.1. Complete Information

The following proposition provides a complete characterization of the Stochastically Stable
States (SSS) for finite populations in the complete information environment (generalizing Propo-
sitions 3 and 4).

Proposition D.1. Let n+ = #({γi = 1 : i = 1, . . . , n}), ν = n+/n and denote by

θ∗ = ζ2 +
2(1− κ)

n− n+
− 2ρ,

θ∗∗ = ζ2 +
2(1 + κ)

n+
− 2ρ,

κ∗ = 2ν+ − 1 (≤ 1),

κ∗∗ = 1− ρ(n− n+),

κ∗∗∗ = ρn+ − 1,

ρ∗ =
1− κ

n− n+
,

ρ∗∗ =
1 + κ

n+
.

(i) If θ < ζ1 then the stochastically stable state in the limit of η → ∞ is given by the empty
network, Kn. Further,

1. if ν+ < 1/2 and
(a) if ρ > ρ∗ (or κ > κ∗∗) then all agents choose the action si = −1,
(b) if ρ < ρ∗ (or κ < κ∗∗) then all agents choose the action si = γi.

2. if ν+ > 1/2 and
(a) κ > κ∗ and

i. if ρ > ρ∗ (or κ > κ∗∗) then all agents choose the action si = −1,
ii. if ρ < ρ∗ (or κ < κ∗∗) then all agents choose the action si = γi.

(b) κ < κ∗ and
i. if ρ > ρ∗∗ (or κ < κ∗∗∗) then all agents choose the action si = +1,

ii. if ρ < ρ∗∗ (or κ > κ∗∗∗) then all agents choose the action si = γi.

(ii) In the case of θ > ζ1 the stochastically stable state is either complete, Kn, or composed of
two cliques, Kn+ ∪Kn−n+, where all agents in the same clique have the same preference γi and
choose the same action. More precisely,

1. if ν+ < 1/2 and
(a) θ > ζ2 and θ∗ < ζ2 or if θ∗ > ζ2 and θ > θ∗ then the stochastically stable state is the

complete graph Kn in which all agents choose the action si = −1; if θ∗ > ζ2 and
θ < θ∗ then the stochastically stable state is the union of two cliques, Kn+∪Kn−n+,

13



in which all agents choose the action si = γi;
(b) θ < ζ2 and θ∗ < ζ2 and θ > θ∗ then the stochastically stable state is the union of

two cliques, Kn+ ∪Kn−n+, in which all agents choose the action si = −1 while if
θ < θ∗ then all agents choose the action si = −1 if ρ > ρ∗ and all agents choose the
action si = γi if ρ < ρ∗; if θ∗ > ζ2 then the stochastically stable state is the union
of two cliques, Kn+ ∪Kn−n+, in which all agents choose the action si = γi while
if ρ > ρ∗ all agents in the cliques choose the action si = −1;

2. if ν+ > 1/2 and
(a) κ > κ∗ and

i. θ > ζ2 and θ∗ < ζ2 or if θ∗ > ζ2 and θ > θ∗ then the stochastically stable state
is the complete graph Kn in which all agents choose the action si = −1; if
θ∗ > ζ2 and θ < θ∗ then the stochastically stable state is the union of two
cliques, Kn+ ∪Kn−n+, in which all agents choose the action si = γi;

ii. θ < ζ2 and θ∗ < ζ2 and θ > θ∗ then the stochastically stable state is the union
of two cliques, Kn+ ∪Kn−n+, in which all agents choose the action si = −1
while if θ < θ∗ then all agents choose the action si = −1 if ρ > ρ∗ and all agents
choose the action si = γi if ρ < ρ∗; if θ∗ > ζ2 then the stochastically stable state
is the union of two cliques, Kn+ ∪ Kn−n+, in which all agents choose the
action si = γi while if ρ > ρ∗ all agents in the cliques choose the action si = −1;

(b) κ < κ∗ and
i. θ > ζ2 and θ∗∗ < ζ2 or if θ∗∗ > ζ2 and θ > θ∗∗ then the stochastically stable state

is the complete graph Kn in which all agents choose the action si = +1;
ii. θ < ζ2 and θ∗∗ < ζ2 and θ > θ∗∗ then the stochastically stable state is the

union of two cliques, Kn+ ∪ Kn−n+, in which all agents choose the action
si = +1; while if θ < θ∗∗ and ρ < ρ∗∗ then all agents choose the action si = γi
while if ρ > ρ∗∗ all agents in the cliques choose the action si = +1; if θ∗∗ > ζ2
and ρ < ρ∗∗ then the stochastically stable state is the union of two cliques,
Kn+ ∪Kn−n+, in which all agents choose the action si = γi while if ρ > ρ∗∗ all
agents in the cliques choose the action si = +1.

Proof of Proposition D.1. This is a direct consequence of the proof of Propositions 3 and 4.

Proposition D.1 shows that when the idiosyncratic preference is large enough (i.e., θ is small
enough) in the payoff function of (1) then the society is segregated in disconnected communities
in which each agent is choosing the action in accordance with her idiosyncratic preference
(γi = si for all i = 1, . . . , n), while if the peer effect is strong enough (the conformity parameter
θ is large enough) then the society becomes completely connected and all agents choose the
same action (homogeneous society). The action chosen in the latter case is determined by the
idiosyncratic preference of the majority. That is, if more agents have an idiosyncratic preference
γi = +1 (and ν+ < 1/2) then all agents will choose si = +1, and vice versa. Finally, if linking
is too costly (ζ2 > θ), then all agents are isolated and choose their idiosyncratic preference if
the global conformity parameter ρ is not too high (ρ < ρ∗).

D.2. Local Information and Learning

The following proposition provides a characterization of the Stochastically Quasi-stable States
(QSS) for finite populations in the belief formation environment (generalizing Propositions 5
and 6).
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Proposition D.2. Let n+ = #({γi = 1 : i = 1, . . . , n}), denote by ν+ = n/n+ and define

θ̃∗ = ζ2 +
2(1− κ)

n− n+
, (D.66)

θ̃∗∗ = ζ2 +
2(1 + κ)

n+
,

κ∗ = 2ν+ − 1 (≤ 1).

Then, in the stochastically stable state in the limit of η → ∞, we have that beliefs are consistent
with actions, pi = si, for all i = 1, . . . , n, where:

(i) If θ < ζ1 then the stochastically stable state is given by the empty network, Kn. Further,

1. if ν+ < 1/2 and
(a) if κ > 1 then all agents choose the action si = −1,
(b) if κ < 1 then all agents choose the action si = γi.

2. if ν+ > 1/2 and
(a) κ > κ∗ and

i. if κ > 1 then all agents choose the action si = −1,
ii. if κ < 1 then all agents choose the action si = γi.

(b) κ < κ∗ and then all agents choose the action si = γi.

(ii) In the case of θ > ζ1 the stochastically stable is either complete, Kn, or composed of two
cliques, Kn+ ∪ Kn−n+, where all agents in the same clique have the same preference γi and
choose the same action. More precisely,

1. if ν+ < 1/2 and
(a) θ > ζ2 and κ < 1 (such that θ̃∗ < ζ2) and θ < θ̃∗ then the stochastically stable state

is the union of two cliques, Kn+ ∪Kn−n+ in which all agents choose the action
si = γi, while if θ > θ̃∗ and ρ > (1 − κ)/(n − 1) then the stochastically stable state
is the complete graph Kn in which all agents choose the action si = −1; if κ > 1
then the stochastically stable state is the complete graph Kn in which all agents
choose the action si = −1;

(b) θ < ζ2 and κ < 1 the stochastically stable state is the union of two cliques,
Kn+ ∪Kn−n+, in which all agents choose the action si = γi while if κ > 1 (such that
θ̃∗ < ζ2) and ρ > (1 − κ)/(n − 1) then all agents in the cliques choose the action
si = −1;

2. if ν+ > 1/2 and
(a) κ > κ∗ and

i. θ > ζ2 and κ < 1 (such that θ̃∗ < ζ2) and θ < θ̃∗ then the stochastically stable
state is the union of two cliques, Kn+ ∪Kn−n+ in which all agents choose the
action si = γi, while if θ > θ̃∗ and ρ > (1 − κ)/(n − 1) then the stochastically
stable state is the complete graph Kn in which all agents choose the action
si = −1; if κ > 1 then the stochastically stable state is the complete graph Kn

in which all agents choose the action si = −1;
ii. θ < ζ2 and κ < 1 the stochastically stable state is the union of two cliques,

Kn+ ∪Kn−n+, in which all agents choose the action si = γi while if κ > 1 (such
that θ̃∗ < ζ2) and ρ > (1 − κ)/(n − 1) then all agents in the cliques choose the
action si = −1;

(b) κ < κ∗ and
i. θ > θ̃∗∗ and ρ > (1+κ)/(n−1) then the stochastically stable state is the complete
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graph Kn in which all agents choose the action si = +1,
ii. θ < θ̃∗∗ then the stochastically stable state is the union of two cliques, Kn+ ∪

Kn−n+, in which all agents choose the action si = γi.

Proof of Proposition D.2. This is a direct consequence of the proof of Propositions 5 and 6 .

From Proposition D.2 we observe that the possible stochastically stable actions and networks
are the same as in Proposition D.1, and the beliefs are identical to the actions. This implies
that when the stochastically stable network is complete, then the beliefs (about the average
action chosen in the entire population) are correct. But when the stochastically stable network
is a union of two cliques, Kn+ ∪Kn−n+ , then the beliefs do not correspond to the average action
chosen in the entire population, but represent only the average action chosen in the local clique.

E. Context and Historical View of the Egyptian Arab Spring

In the following we provide a brief historical overview of Egyptian politics and the civil unrest
in Egypt that began as part of the Arab Spring.

E.1. Historical and Political Background

Egypt had been under what was effectively one-party rule since the 1952 coup that remove King
Farouk from power. The ruling political party, originally named Liberation Rally, transitioned
to the politically centrist National Democratic Party (NDP). The NDP ideology centered around
modernist and anti-Islamist, and members were secular elite, bureaucrats, and regime cronies.
Hosni Mubarak rose to the head of the NDP movement in 1981.

In addition to the NDP, the Egyptian military sustains power and influence in the political
arena. The military also has a vast presence in civilian industry, making it wealthy and opposes
Islamist rule.

Egypt’s main opposition to the NDP’s rule was in the Islamist movement, whose main social
organization is the Muslim Brotherhood (MB). The MB’s ideology centers around a literal in-
terpretation of scriptures and advocates a return to idealized Islamic society. MB’s followers are
urbanized middle and lower classes. Outlawed in 1954 connected to the assassination attempt
of president Nasser. From the 1970s, leaders were freed, and MB moved towards an official
political party as many leaders were released from prisons (tolerated but not liberated). In the
2005 elections, MB gained approximately 20 percent of the seats in the Egyptian parliament
by running as independents, making them a new force within Egyptian society and politics,
although the state was still officially denying that it existed.

Mubarak’s regime took a vigorous position against Islamic investment companies. This was
a severe attack on the MB and its largest source of finance; more than 40% of the owners of
the Islamic investment companies were MB members and supporters. Egyptian society was
also characterized by various protest movements over time, some with pro- and some with
anti-government orientation.
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E.2. The Egyptian Arab Spring

We can divide Egypt’s Arab Spring into four stages: (I) the lead up to and then fall of Mubarak,
(II) a period of rule by the Egyptian Military, (III) rule by Islamist President Mohamed Morsi,
and (IV) the fall of President Morsi and the return to power by the military, the latter of which
is the focal point of our empirical exercise.

Phase I: Fall of Mubarak. Under Mubarak’s rule, and particularly in the latter stages, NDP
members acquired vast wealth while the civilian population stagnated Following the removal of
Tunisian President Bin Ali in early 2011, the fervor against privileged elites and ruling parties in
North Africa and the Middle East grew. This led to thousands (5K) of protesters congregating
in Cairo’s Tahir Square in a public demonstration against the Mubarak regime organized by
young middle-class Egyptians, not Islamist opposition. MB later encouraged its members to
participate without invoking the MB’s Islamist slogans or ideology. Note protests are illegal in
Egypt. After the initial protest, demonstrations continued, growing to 50K on Jan 28, and by
Feb 1 over 500K protesters. On the evening of Feb 11, Mubarak resigns and hands over power
to the military. After this handover, protests continued until relative stability in mid-March.
The first phase of Egypt’s Arab Spring ended on April 16, 2011, when an administrative court
dissolved the NDP on charges of corruption and seized its assets.

Phase II: First phase of military rule. Directly after the uprising, the Supreme Council
of the Armed Forces (SCAF) of the military faced a massive dilemma. The SCAF had to decide
either to proceed to elections in order to end the post-revolutionary rule of the military, or
slow down the electoral timetable and prioritize the writing of a new constitution. The SCAF
decided to hold parliamentary elections before drafting a new constitution.

The demonstrations continued thereafter, pressuring the military finally to allow presidential
elections to take place, with the results of the first round announced on May 28 and the results
of the runoff election announced on June 24. The MB rallied behind the SCAF’s plan to hold
parliamentary elections prior to drafting a new constitution. MB is run under the name Freedom
and Justice Party (FJP).

Phase III: Rule of Mohammed Morsi. Islamist Mohammed Mursi narrowly won the par-
liamentary elections against the former general Ahmed Shafiq with 51.7% of the vote. However,
the constitution imposed by the SCAF, left Morsi with limited power. On August 12, 2012,
Morsi revoked the interim declaration, thereby transferring power back to the president, includ-
ing absolute legislative authority. The first stage of Morsi’s rule was a struggle to assert power
against the military, culminating in the removal of 5 key military figures (Comm-in-chief and 4
generals) in Aug 2012.

Opposition to Morsi began building in November 2012 when, wishing to ensure that the
Islamist-dominated constituent assembly could finish drafting a new constitution, the president
issued a decree granting himself far-reaching powers. Critics claimed he had mishandled the
economy and failed to deal with the very issues that led to the uprising that brought him to
power. Calls for rights and social justice led to decreasing popularity of Morsi. By Dec 23, 2012,
a referendum passed a new constitution promoting political Islam and expanded military power
passes despite the secular boycott of the election. This was followed by alternating protests in
Tahir Square, rotating between pro- and anti-Islamist movements.
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Phase IV: Fall of Mohamed Morsi and return to military rule. On June 26, 2013,
Morsi delivers a divisive address to defuse growing defiance to his rule. This leads to larger
protests in the following days involving two sets of protesters, pro- versus anti-Morsigroups, in
different locations across Egypt. On July 1, the military issues an ultimatum to Morsi to call
an early election. On July 2, Morsi refuses to step down. On July 3, the Egyptian Military
overthrows Morsi’s regime in coup, and anti-military intervention protests grow. On July 24,
the military encourages pro-military intervention protests. From July 27 to mid-August, large
demonstrations take place from both sides, leading to violent clashes with the military for
anti-intervention protesters.

F. Constructing the Data on the Egyptian Protests

F.1. Reconstructing the Dataset of Borge-Holthoefer et al. [2015]

The data used in our empirical analysis is a reconstruction of the data originally used in Borge-
Holthoefer et al. [2015] who document opinion dynamics about the Egyptian protests over the
Summer of 2013. They collect apercent sample of all Arabic language tweets from the Twitter
API over the June 21, 2013 to September 30, 2013 time period. Then tweets relevant to Egypt
and the protest movement were identified by constructing over 100 Boolean queries covering
aspects of Egyptian politics, government and the protest movement.

Twitter’s terms of use prevent researchers sharing Twitter data either directly or by posting
the raw data online. However, authors can provide the ’Tweet-IDs’ - a numerical identifier -
and numeric ’User-IDs’ - which uniquely identify Twitter user profiles - that were used in their
research. After obtaining the IDs, we then performed a process known as ‘Tweet Hydration’
to pull the tweets and user-info with any associated meta-data using software created by the
Documenting the Now project (https://www.docnow.io/).37 This process involves a process
of repeatedly querying the public facing Twitter API and requesting the associated meta-data
for either a Tweet-ID or User-ID.

The API returns the complete data about each tweet or user from the query provided that
the tweet or user profile has not been deleted or taken down from the platform. Importantly
for our application, the returned data includes the textual content of the tweet, date and time
posted and the user-ID. When returning information about each user, the API returns the
information at the time the API query was made - thus the username, friends and follower
counts as measured in December 2020.38

F.2. Inferring Political Affiliation of Twitter Users

We briefly describe the process undertaken by Weber et al. [2013] to label 20,886 Egyptian
Twitter users by their political affiliation, which we use as training data to classify each of
Twitter users in our dataset. Starting with a set of manually labelled Twitter users, the authors
collect data on twitter users who interact with these accounts. Table F.2 contains the list of seed

37The original Tweet IDs and User-IDs along with the codes that perform the tweet hydration process are
available in our replication package.

38To the best of our knowledge there is no way to get the meta-information for each user retroactively (i.e.
their 2013 values).
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users. For each of the seed users, their most recent 3,200 tweets extracted from the Twitter API
and then the user meta-data of up to 200 retweeters of each tweet were downloaded.39 From
this set of retweeters, only those who’s location could be identified as being located in Egypt
were retained in the sample.40 The remaning Egyptian residing users were classified as Islamist
or Secularist according to their retweeting behaviour: A user who retweeted nI distinct Islamist
seed users and nS distinct Secular seed users over two time periods (January and March 2013)
is classified as a political Islamist if nI/(nI + nS) > 0.5.

Table F.1: Seed users and their political affiliation.

Secularists Islamists
Screen Name Twitter Handle Screen Name Twitter Handle

Mohamed El Baradei @ElBaradei Muhammad Morsi @MuhammadMorsi
Alaa Al-Aswany @alaaaswany Fadel Soliman @FadelSoliman
Ayman Nour @AymanNour Essam Al Erian @EssamAlErian
Wael Abbas @waelabbas Almogheer @almogheer
Belal Fadl @belalfadl Hazem Salah @HazemSalahTW
Dr. Hazem Abdelazim @Hazem_Azim Khaleed Abdallah @KhaleedAbdallah
MohamedAbuHamed @MohamedAbuHamed Melhamy @melhamy
HamzawyAmr @HamzawyAmr Dr Mohamed Aly @dr_mohamed_aly
E3adet Nazar @E3adet_Nazar Mustafa Hosny @MustafaHosny
GameelaIsmail @GameelaIsmail El Awa @El_Awa
shabab6april @shabab6april
waelabbas @waelabbas

G. Additional Empirical Results

In the following we provide additional estimation results when using a different sampling rate
in the case-control design discussed in Section 5.1. We find that by changing mi,o from 100 +
5
∑

j ̸=i aij to 1000 + 5
∑

j ̸=i aij , the results in Tables G.1 and G.2 are qualitatively similar to
those in Tables 2 and 3 in the main text. This illustrates that the results in Tables 2 and 3 are
robust against using alternative sampling rates in our the case-control design.

39These are the quantity limits are imposed by the Twitter API in early 2013.
40User locations where determined by their self reported location in their Twitter meta-data or by references

to place names in these users own tweets - which Weber et. al. collected and passed through Yahoo Placemaker.
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Table G.1: Robustness check for estimation results of the global information
(GI) scenario – by setting mi,o = 1000 + 5

∑
j ̸=i aij .

with random w/o random
effects effects
(1) (2)

Local spillover (θ) 0.1716∗∗∗ 0.2292∗∗∗
(0.0029) (0.0026)

Global conformity (ρ̃) 3.10e-6∗∗∗ 3.02e-6∗∗∗
(9.18e-8) (7.90e-8)

Individual preference

Female (β1) -0.0637∗∗∗ -0.0562∗∗∗
(0.0090) (0.0062)

Islamist (β2) 0.1007∗∗∗ 0.1103∗∗∗
(0.0055) (0.0037)

(Log) followers (β3) 0.0119∗∗∗ 0.0090∗∗∗
(0.0017) (0.0015)

Random effect (τ) 0.0059∗∗∗ –(0.0009)
Linking cost

Constant (ϕ0) 14.6860∗∗∗ 12.5847∗∗∗
(0.0226) (0.0088)

Same gender (ϕ1) -0.1629∗∗∗ -0.1873∗∗∗
(0.0161) (0.0073)

Same religiousness (ϕ2) -0.0781∗∗∗ -0.0011
(0.0082) (0.0061)

Diff. in followers count (ϕ3) 0.0858∗∗∗ 0.0987∗∗∗
(0.0032) (0.0027)

Variance of random effect (σ2
z) 2.0719∗∗∗ –(0.0175)

Sample size (# of nodes) 225,578

Notes: For the purpose of identification, we replace ρ
∑n

j ̸=i sj with
ρ̃(n − 1)s̄ and drop κ in the GI scenario. The parameter estimates
reported in this table are the posterior mean and the posterior stan-
dard deviation from the Bayesian MCMC sampling. The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density
interval (HDI) of the corresponding draws does not cover zero.
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Table G.2: Robustness check for estimation results of the local information
and learning (LIL) scenario – by setting mi,o = 1000 + 5

∑
j ̸=i aij .

with random w/o random
effects effects
(1) (1)

Local spillover (θ) 0.0709∗∗∗ 0.1601∗∗∗
(0.0036) (0.0025)

Global conformity (ρ) 2.36e-6∗∗∗ 1.71e-6∗∗∗
(5.15e-8) (3.88e-8)

Weight of local observation (φ) 0.0961∗∗∗ 0.0802∗∗∗
(0.0050) (0.0040)

Individual preference

Female (β1) -0.0565∗∗∗ -0.0523∗∗∗
(0.0112) (0.0087)

Islamist (β2) 0.1144∗∗∗ 0.1181∗∗∗
(0.0063) (0.0047)

(Log) followers (β3) 0.0059∗∗ 0.0032∗∗
(0.0020) (0.0015)

Random effect (τ) 0.0055∗∗∗ –(0.0004)
Rioting cost (κ) -0.2951∗∗∗ -0.3065∗∗∗

(0.0113) (0.0085)
Linking cost

Constant (ϕ0) 14.6812∗∗∗ 12.5650∗∗∗
(0.0226) (0.0094)

Same gender (ϕ1) -0.1655∗∗∗ -0.1947∗∗∗
(0.0148) (0.0087)

Same religiousness (ϕ2) -0.0776∗∗∗ -0.0038
(0.0071) (0.0065)

Diff. in followers (ϕ3) 0.0871∗∗∗ 0.0990∗∗∗
(0.0033) (0.0025)

Variance of random effect (σ2
z) 2.1127∗∗∗ –(0.0205)

Sample size (# of nodes) 225,578

Notes: The parameter estimates reported in this table are the
posterior mean and the posterior standard deviation from the
Bayesian MCMC sampling. The asterisks ***(**,*) indicate that
the 99% (95%, 90%) highest posterior density interval (HDI) of the
corresponding draws does not cover zero.
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