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The Great Barrier Reef (GBR), encompassing ~3000 coral reefs and spanning an area of 

345,000 km2 along the northeast coast of Australia, is the largest of the world’s coral reefs. 

Globally, it provides a diverse range of essential goods and services such as, food, coastal 

protection, income, employment, and the discovery of new drugs and biochemicals. 

Unfortunately, coral reefs worldwide have been degraded by centuries of overfishing and 

pollution and are now facing further pressure from ocean warming and acidification driven 

by increasing atmospheric CO2 concentrations. How this important bioresource is 

managed under future climate change scenarios is crucial to maintaining the goods and 

services it provides. 

The traditional approach to reef management involves monitoring and assessing the state 

of the reef ecosystem, as well as impacts and environmental drivers of change; however, 

due to a lack of detailed indicators, this approach does not fully reflect the health and 

functional state of corals, nor many of the ecological and biochemical processes that 

underpin the entire system. Metabolic biomonitoring, which incorporates metabolic 

profiling and modern chemometrics to monitor the biochemical response of an organism 

to changes in its environment, may provide a higher resolution solution to fill the current 

gaps in coral reef monitoring. 

This research explores the potential of metabolic profiling and machine learning to search 

for chemical bioindicators of the health and functional state of coral reefs. This will further 

our understanding of the complex biological processes that underpin the biological stress 

response by characterising the molecular features driving the prediction of specific stress 

responses. The grey and published literature is reviewed to establish Symbiodiniaceae-

invertebrate symbioses and their metabolic interactions and identify potential knowledge 

gaps. Initially published in 2010, chapter 2 has been updated to include the current (2010-

2019) coral metabolomics literature. 

Metabolic biomonitoring requires a thorough and reproducible snapshot of the coral 

metabolome. Snapshots are affected by the sample preparation and handling procedures 

that are common to many studies; however, standard metabolic profiling protocols may be 

unsuitable for the analysis of corals due to the biological complexity of the holobiont. 

ABSTRACT 
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Chapter 3 presents a protocol for the sample collection, extraction and measurement of 

hard coral holobiont metabolites using proton Nuclear Magnetic Resonance (1H NMR) 

spectroscopy and Liquid Chromatography coupled with Mass Spectrometry (LC-MS). It 

provides all the details required to replicate the method, including the hazards and risks 

that were discovered during its development. Recently reviewed, the 70% methanol 

extraction method developed here is now a commonly used method in coral metabolomics. 

Discrete descriptors of coral health, such as stressed or healthy, provide reef managers with 

coral phenotypes associated with their health for guiding interventions; they can also be 

supplied to machine learning algorithms as class labels. With this in mind, Chapter 4 

explores the capability of two machine learning models – Partial Least Squares 

Discriminant Analysis and Random Forests (RF) – to classify the 1H-NMR and LC-MS 

metabolic profiles of Acropora aspera during exposure to a simulated bleaching event and 

pCO2 levels consistent with the mid-century projections of the representative 

concentration pathway. Elevated temperature was the major contributor to coral stress 

while elevated pCO2 somewhat ameliorated temperature stress and increased symbiont 

photosynthetic capacity. LC-MS, combined with RF modelling was the most accurate 

combination of analytical platform and modelling algorithm, correctly classifying corals at 

different stages of exposure. This approach identified perturbations in the metabolome of 

corals exposed to realistic mid-century levels of pCO2; surpassing the sensitivity of more 

traditional methods such as symbiont cell density and Pulse-amplitude modulation (PAM) 

fluorometry. This work clearly demonstrates the potential utility of metabolic profiling for 

precise monitoring purposes. 

In contrast to the discrete descriptors predicted by classification models, regression models 

predict a continuous descriptor. A continuous descriptor based on a quantifiable measure, 

such as the maximum quantum yield of photosystem II (Fv/Fm), may provide more precise 

indicators of coral health. In Chapter 5, RF predicted the Fv/Fm during cross-validation to 

within ±0.0371 of the true values, while unseen test samples were predicted to within 

±0.0406 of their true values. Twenty spectral features that were important predictors of 

Fv/Fm were revealed, three of which were provided with a putative compound 

identification after a thorough search of the coral research literature. LC-MS-based 

profiling predicted a quantitative measure of coral health with meaningful precision, while 

simultaneously providing valuable information about the coral metabolome. 
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Natural variation in coral metabolomes has the potential to introduce unwanted bias in 

machine learning models, which may undermine the confidence of model predictions 

and/or lead to false assessments of coral health. Furthermore, metabolic biomonitoring, 

like many monitoring programs, will rely on a few representative species as sentinels of 

coral health. Therefore, the natural metabolic variation and homeostatic potential of five 

coral species over a diel cycle was explored using LC-MS and RF models (Chapter 6). The 

need for a simple and effective collection technique was also realised during the design of 

the in-field experiment presented here; consequently, the metabolomes of wild corals 

quenched using liquid nitrogen were compared with those quenched using a less 

hazardous, and more user-friendly, methanol-based technique. RF modelling revealed low 

levels of diel variation in each coral species that was most apparent in low abundant 

spectral features. A. aspera had the lowest intrasample variation, supporting its adoption as 

a sentinel species for metabolic biomonitoring. Finally, the more user-friendly methanol 

quenching technique induced similar levels of metabolome variation as the more 

commonly used liquid nitrogen quenching, supporting its use for in-field sampling of wild 

corals. 

The research in this thesis improves the current understanding of the coral metabolism by 

providing several putative biomarkers linked to coral health and function, and metabolic 

phenotypes associated with realistic, mid-century levels of atmospheric CO2. It furthers the 

progress of coral metabolomics by testing and validating a variety of sampling, extraction, 

analysis and chemometric methods. The results and discussion presented here provide a 

solid foundation for the future development and advancement of metabolic biomonitoring 

programs of corals and coral reefs. 
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The Great Barrier Reef (GBR), encompassing ~3000 coral reefs and spanning an area of 

345,000 km2 along the northeast coast of Australia, is the largest of the world’s coral reefs 

(De'ath et al., 2009). Globally, it provides a diverse range of essential goods and services 

such as, food, coastal protection, income, employment and the discovery of new drugs and 

biochemicals (Hoegh-Guldberg, 1999). The GBR is valued at $56 billion as an Australian 

economic, social and iconic asset; in 2015-16 alone, it contributed $6.4 billion and currently 

supports over 64,000 jobs (O'Mahoney et al., 2017). Unfortunately, coral reefs worldwide 

have been degraded by centuries of overfishing and pollution and are now under further 

pressure from ocean warming and acidification driven by increasing atmospheric CO2 

concentrations (Hughes et al., 2010). On the GBR, the combined effects of increased 

nutrients and sediments, localised flooding, temperature extremes, predation by Crown-of-

Thorns starfish (CoTS) and cyclones have had a major impact on the reef (GBRMPA, 

2014a, Hughes et al., 2017b). The cumulative effects of these disturbances have diminished 

the GBR’s ability to recover (GBRMPA, 2014b) and they are predicted to worsen into the 

future. How this important resource is managed under future climate change scenarios is 

crucial to maintain the goods and services it provides. 

Management of the GBR is a delicate balance between the needs of users, Traditional 

Owners and stakeholders while ensuring the long-term protection of the reef, its 

biodiversity and heritage values – it is a nuanced and complex task that involves multiple 

disciplines and strategies. Traditional approaches to reef management have involved 

monitoring and assessing the state of the reef ecosystem, as well as impacts and 

environmental drivers of change (GBRMPA, 2014c, Nichols & Williams, 2006, Christensen 

et al., 1996). State-based indicators such as, % coral cover, coral colour, number of new 

coral recruits, etc, are monitored in keystone species to assess the state of the reef as it 

responds to environmental stressors such as, ocean warming, storm activity, fishing, 

dredging, water quality, damage, sedimentation and CoTS predation (Cooper & Fabricius, 

Chapter 1 

Introduction 
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2007, GBRMPA, 2014c). This traditional approach, with its emphasis on reef state and the 

abundance of keystone species, does not adequately reflect the health and functional state 

of corals, nor many of the ecological and biochemical processes that underpin the entire 

system. 

Molecular biomarkers of coral health and functional state offer great potential as a new 

source of resilience-based metrics. They have the capacity to describe a variety of ecological 

processes and drivers with greater precision than many of the traditional bioindicators and 

proxies. Growth and mortality of corals for example, could be more accurately described 

using molecular biomarkers as they may potentially describe the health of corals prior to 

the manifestation of visual symptoms. The maximum quantum yield of photosystem II 

(Fv/Fm), for example, is known to correlate with reduced growth rates and mortality in 

Acropora hyacinthus for up to two years post bleaching (Okamoto et al., 2005). To date, the 

use of molecular biomarkers such as symbiont Fv/Fm, alteration in gene expression or 

metabolic dysfunction in reef resilience assessments remains low (Warner et al., 2006, Weis 

& Allemand, 2009, Weis, 2019). This may be due, in part, to the perceived complexity of 

emerging techniques and the cost and logistics of employing them at regional scales. In-

depth research into the applicability and reliability of molecular biomarkers is required, as 

the benefits returned from their use in biomonitoring may far outweigh the costs of 

implementation. 

The measured metabolome is the ultimate expression of an organism’s phenotype, 

representing the end product of cellular and genetic processes in response to the 

environment (Fiehn, 2002). Metabolic profiles are unique fingerprints of an organism’s 

biochemical state and their comprehensive analysis falls within the broad field of 

metabolomics (see Chapter 2 for a more thorough review of the field). Metabolic profiling 

is particularly well suited as a biomonitoring tool as the metabolome reflects the response 

of the genotype to (environmental) disturbance and precedes phenotypic change; in 

essence, its response is faster than most other biological processes (Caldana et al., 2011). 

Metabolic biomonitoring is an emerging approach to ecosystem management that 

incorporates metabolic profiling and modern chemometrics to monitor the biochemical 

response of an organism to changes in its environment. Its potential has been considered 

for a number of environmental management applications, such as: measuring the 

bioavailability of soil contaminants by monitoring the metabolome of earthworms 

(Simpson & McKelvie, 2009); monitoring soils, crops, livestock health and water quality in 
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developing countries using low-cost infrared spectroscopy (Shepherd & Walsh, 2007); 

utilising sentinel species to monitor pollution and its effects (Moore et al., 2004); managing 

biotic interactions in agro-ecosystems (Thrall et al., 2011); conducting in situ monitoring of 

fish exposed to impacted surface waters (Skelton et al., 2014), monitoring of bivalves to 

assess harmful marine compounds (Suárez-Ulloa et al., 2013) and as a biological effects tool 

to define good marine environmental status (Lyons et al., 2010).  

Metabolic biomonitoring has been validated in several non-environmental fields. In health 

and medicine, for example, metabolic profiling has been used to monitor: the treatment of 

patients with rheumatoid arthritis (Zabek et al., 2016); the outcomes of gastric bypass 

surgery (Lopes et al., 2016); the health effects of iron storage disease in the Sumatran 

Rhinoceros (Watanabe et al., 2016) and cancer treatment toxicity (Hajduk et al., 2016). In 

agriculture, metabolic biomonitoring has been adopted to monitor biochemical changes in 

grape berries (Ali et al., 2011); the milk composition and metabolic status of dairy cows 

(Aernouts et al., 2011); plant responses to abiotic stresses (Obata & Fernie, 2012); the effect 

of production practices on potatoes (Shepherd et al., 2014) and the quality, authenticity and 

provenance of a variety of foods (Cevallos-Cevallos et al., 2009). More recently, validated 

approaches have been applied to environmental biomonitoring programs (reviewed by 

Bedia et al., 2018), including detection of changes in water quality parameters using Daphnia 

magna (Jeong et al., 2019), and presence of the widely prescribed non-selective non-steroidal 

anti-inflammatory drug diclofenac based on changes in the metabolome profile of the 

mussel Mytilus galloprovincialis (Bonnefille et al., 2018), both with potential to be an early 

warning system. 

In the coral reef research field, a number of metabolomics studies have highlighted the 

potential of this technique to provide high-resolution phenotypes of a variety of corals and 

their symbionts (see Gordon & Leggat, 2010 and Chapter 2 for a more detailed review of 

the coral metabolomics literature). For example, phenotypes associated with ocean 

warming (Hillyer et al., 2016, Hillyer et al., 2017a, Hillyer et al., 2017b, Hillyer et al., 2018, 

Petrou et al., 2018), ocean acidification (Putnam et al., 2016) and combined ocean warming 

and acidification (Sogin et al., 2016, Farag et al., 2018) have been identified. Phenotypes 

associated with unique environmental conditions, such as water quality (Januar et al., 2012), 

provenance (He et al., 2014, Farag et al., 2016) and light conditions (Klueter et al., 2015), 

have also been identified in a variety of coral species. Finally, phenotypes associated with 

unique attributes such as, species variation (Sogin et al., 2014), competitive interactions 

between coral and algae (Quinn et al., 2016), chemical and physical elicitors (Farag et al., 
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2017a, Farag et al., 2017b), symbiont type (Matthews et al., 2017) and microbiome 

composition (Sogin et al., 2017) have been characterised.  

There is a lack of thorough accounting of the array of coral biomarkers available for 

targeted monitoring. On this basis, this research explores the potential of metabolic 

profiling and machine learning methods to establish the presence of molecular biomarkers 

of coral reef health and functional state that may potentially offer greater precision than 

traditional bioindicators. In doing so, it aims to further our understanding of the complex 

biological processes that underpin the biological stress response of corals by characterising 

influential features driving the prediction of specific stress responses. 

To begin with, the relevant grey and published literature was reviewed to establish the state 

of the field and identify the potential knowledge gaps. This review, which is focussed on 

Symbiodiniaceae-invertebrate symbioses and their metabolic interactions (see Gordon & 

Leggat, 2010 and Chapter 2) was first published in 2010 and has since been updated to 

include the current coral metabolomics literature. 

Metabolic biomonitoring of coral health relies on a thorough and reproducible snapshot of 

the coral metabolome. Snapshots are affected by the sample preparation and handling 

procedures that are common to many studies; however, traditional metabolomics 

protocols, which have been developed primarily for medical and industrial applications and 

rely on comprehensive primary metabolite databases, may be unsuitable for the analysis of 

coral due to the biological complexity of the holobiont and our limited knowledge of coral 

secondary metabolite chemistry. Prior to 2013, there was no published research on sample 

preparation for coral metabolomics (see Gordon et al., 2013 and Chapter 3). This protocol 

describes the sample collection, extraction and measurement of hard coral holobiont 

metabolites using both proton Nuclear Magnetic Resonance (1H NMR) spectroscopy and 

Liquid Chromatography coupled with Mass Spectrometry (LC-MS) (Gordon et al., 2013 

and Chapter 3). It provides all the details required to replicate the method, including many 

of the costly and time consuming “pitfalls” or “traps” that were discovered during its 

development. Other than Gordon et al. (2013), there remains a lack of standardised 

methods for coral metabolomics. Anderson et al. (2019) recently reviewed the methanol 

extraction method, finding it still to be applicable to coral metabolomics. This is discussed 

in greater detail in Chapter 3, section 3.5. 

To identify health-related coral phenotypes from metabolic profiles, robust statistical and 

machine learning models are required to classify profiles under specific conditions while 
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monitoring coral health and identifying potential biomarkers. Discrete descriptors of coral 

phenotype, such as stressed or healthy, provide reef managers with easy to interpret terms for 

guiding interventions. With this in mind, Chapter 4 explores the capability of two machine 

learning models (Partial Least Squares – Discriminant Analysis and Random Forests) to 

classify the 1H-NMR and LC-MS metabolic profiles of stressed and healthy Acropora aspera 

during exposure to a simulated bleaching event and at pCO2 levels consistent with mid-

century relative concentration pathways (IPCC RCP 4.5, 2014).  

In contrast to the discrete classification approach, regression models can predict 

continuous descriptors that may provide more precise indicators of coral health based on 

quantifiable measures such as Fv/Fm, widely accepted as a proxy for coral health (Jones et 

al., 1999). Therefore, the capability of Random Forests (RF) modelling to predict the Fv/Fm 

of healthy and thermally stressed corals from their LC-MS metabolic profiles is explored in 

detail in Chapter 5. Mass spectral features driving the prediction of Fv/Fm are discussed in 

the context of coral health and metabolic biomonitoring. 

Unfortunately, natural variation in coral metabolomes has the potential to introduce 

unwanted bias in machine learning models, which unduly undermines the confidence of 

model predictions and/or lead to false assessments of coral health. Furthermore, metabolic 

biomonitoring programs, like many other monitoring programs, will rely on a few 

representative species as sentinels of coral and overall ecosystem health. In Chapter 6, 

therefore, the natural metabolic variation of five coral species over a diel cycle is 

determined using LC-MS and RF modelling. Further data interrogation identified 

influential spectral features that explain differences in the homeostatic potential as a 

function of species and time. These are discussed in the context of identifying a suitable 

sentinel coral species for metabolomics biomonitoring of coral reefs. 

Over the course of this research, it became evident that coral biomonitoring introduces an 

additional level of technical and logistical complexity not experienced in aquaria- or 

laboratory-based experiments. Field sample collection, for example, is a particularly 

complex task given the dynamic nature of the coral metabolome and the challenging 

conditions encountered in the marine environment. The use of traditional quenching 

agents, such as liquid nitrogen, is problematic in the field due to its high evaporation rate 

and elevated safety risk, requiring strict handling procedures. In many field studies, it may 

not be possible (immediately or at all) to immerse freshly collected corals nubbins in liquid 

nitrogen, where any delay in quenching possibly induces unwanted variation into the coral 
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metabolome. Therefore, impacts of an alternative, less hazardous and more user-friendly 

methanol-based quenching technique on the metabolomes of wild corals were assessed. 

This thesis concludes with a synthesis of the results adding to the current pool of metabolic 

biomonitoring literature while advancing our understanding of coral metabolism and coral 

metabolomics. Additional gaps in the coral metabolomics field are identified and discussed, 

signalling further research directions that might lower the barrier to implementing future 

metabolomics research and biomonitoring programs. 
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A portion of this chapter is published as: 

Gordon, B. R. & Leggat, W. (2010) Symbiodinium-Invertebrate Symbioses and 

the Role of Metabolomics. Marine Drugs, 8, 2546-2568. 

 

Benjamin Gordon wrote this chapter, designed and conducted the research, and analysed 

the data. Co-authors provided intellectual and editorial support. 
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2.1 Foreword 

This section was initially prepared and published in 2010 (Gordon & Leggat, 2010). At the 

time, metabolomics was in its infancy and yet to be applied to the coral animal or its 

dinoflagellate symbiont. There was a wealth of knowledge on coral and Symbiodiniaceae 

metabolites and natural products going back decades, and one could argue that some of 

those studies fell within the definition of metabolomics. Given the lack of coral 

metabolomics studies at the time, the original brief for this review was broad: explore the 

potential of applying metabolomics techniques to corals and their symbionts. With that in 

mind, the literature was examined and the state of metabolite research on coral and 

Symbiodiniaceae assessed – the genesis of this review. Now, Gordon et al. 2010 has been cited 

more than 120 times, highlighting its relevance to those who have delved into the coral 

metabolomics field. Nonetheless, more than ten years have passed since this chapter’s 

publication and an update of the coral metabolomics literature was warranted. This chapter 

offers an updated version of the review with the most recent literature discussed in section 

2.5. The literature is discussed within the context of six common themes that best 

represent the current state of the coral metabolomics field. 
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2.2 Background 

Metabolomics is the newest of the ‘omics’-based sciences and is fast becoming a popular 

tool in many fields of research. The first metabolomics analyses were performed at the turn 

of the century and, in the decades since, the literature available has gone from a handful 

published in 2000 (Fiehn et al., 2000, Raamsdonk et al., 2001, Oliver et al., 1998) to more 

than 600 published in 2009. Now, in 2020 a Google Scholar search for “metabolomics” 

returns more than 100,000 articles.  

Metabolomics was first defined by Oliver et al (1998) as:  

“the quantitative complement of all of the low molecular weight molecules 

present in cells in a particular physiological or developmental state” 

In the years before the advent of metabolomics, coral metabolite studies were more 

focused on specific metabolites, or groups of metabolites, and how they changed according 

to a given stimuli or from the effects of an alteration (e.g. a genetic mutation). These types 

of studies were often classified as metabolite target analysis, metabolic profiling or 

metabolic fingerprinting (Fiehn, 2001). Although definitions can be vague and open to 

interpretation, the distinguishing factor in all three definitions is that none attempted to 

study the global suite of metabolites in an unbiased fashion. Metabolomics has evolved 

over the last twenty years and, for the purpose of clarity, it is now more commonly defined 

as the study of endogenous, low molecular weight (<1500 Da), global metabolite profiles in 

a system (cell, tissue, or biofluid) under a given set of conditions (Goodacre et al., 2004, 

Rochfort, 2005, Viant, 2007).  

Metabolomics has become a popular approach for studying the interaction of living 

organisms with their environment. Part of its appeal, and value, is that it complements 

other omics methods such as genomics, transcriptomics and proteomics (Viant et al., 2009). 

Metabolomics can report on the functional status of an organism, which can then be 

related to its phenotype, and is one reason it has become a popular tool in the 

environmental sciences. Another contributing factor is its ability to raise questions about 

the study organism and thereby uncover unexpected metabolite responses and 

relationships, which can lead to further hypothesis generation and investigation (Bundy et 

al., 2009, Kell & Oliver, 2004). The study of how organisms interact with their 

environment is a broad field, encompassing ecology, agriculture (Dixon et al., 2006), 

viticulture (Rochfort et al., 2010) and forensics (Ovenden et al., 2010).  
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Unicellular, photosynthetic dinoflagellates of the family Symbiodiniaceae, which were 

commonly referred to as zooxanthellae, were first described in (Cienkowski et al., 1871). 

They live freely in the water column and are predominantly found in clear tropical waters 

with low nutrient concentration and plankton densities (Muscatine & Porter, 1977, 

Oldeman, 1987). In this low nutrient environment, some invertebrates have formed a 

symbiotic relationship with Symbiodiniaceae to gain a competitive advantage through 

increased fitness (Trench, 1979), allowing the bilateral exchange of metabolites, including 

the production of metabolites that are not formed by either organism separately (Lewis & 

Smith, 1971). Of particular interest to researchers over the past few decades are the 

relationships of Symbiodiniaceae with hermatypic corals. The importance of this relationship 

cannot be understated given the fundamental role that hermatypic corals have played in the 

formation and maintenance of coral reef habitats. These habitats provide a livelihood for 

local communities, with tourism and fishing industries relying heavily upon them. 

Unfortunately, due to anthropogenic pollution and global climate change, this ecosystem is 

under increasing threat (Hughes et al., 2003, Yellowlees et al., 2008, Morice et al., 2012, 

Hughes et al., 2017a, Hoegh-Guldberg et al., 2017). 

This chapter analyses the roles that metabolomics and targeted metabolite analysis had in 

marine science with a specific focus on Symbiodiniaceae-invertebrate symbioses (see section 

2.3). An in-depth historical analysis of targeted metabolite research of Symbiodiniaceae and 

invertebrate hosts (see section 2.4) sets the tone for a thematic analysis of the coral 

metabolomics literature (see section 2.5). 

2.3 Symbiodiniaceae symbiosis 

Symbiosis was originally defined by Anton deBary as “the living together of differently 

named organisms” (Yellowlees et al., 2008). Symbiodiniaceae have established intracellular 

symbioses with corals, anemones, jellyfish, nudibranchs, Ciliophora, Foraminifera, 

zoanthids and sponges and have extracellular symbioses with giant clams (for a review see 

Stat et al., 2006).  The majority of the estimated 800 coral species have established 

symbiosis with Symbiodiniaceae; in this symbiotic relationship the algae are found within a 

host-derived vacuole (symbiosome membrane) within the gastrodermal cell layer. The cell 

membrane is derived during the acquisition and division of the algal symbionts and is 

analogous to the symbiosome in legumes where the plant membrane encloses the 

symbiotic rhizobium cells (Yellowlees et al., 2008). Roth et al (1988) defined this cell 
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membrane as the host derived symbiosome. In 1993 research revealed that the cell 

membrane of the anemone host Anemonia viridis controls the availability of phosphorous 

compounds and other nutrients to zooxanthellae (Rands et al., 1993). Since the 

transportation of all nutrients must proceed via this cell membrane, it is critical to the 

metabolic interaction between the symbiont and host. 

Symbiodiniaceae cell numbers can range from one symbiont per host cell (Muscatine et al., 

1998) to over 60 in some hydroids (Fitt, 2000), with Symbiodiniaceae normal cell densities 

being in the order of 1-2 million cells cm-2 of coral tissue. Until recently, Symbiodiniaceae 

were characterised within a single genus (Symbiodinium) consisting of several clades, sub-

clades, types and strains (LaJeunesse, 2001). However, a recent systematic revision of the 

genus has brought the formal taxonomy in line with the current understanding of the 

evolutionary relationships among these dinoflagellate symbionts (LaJeunesse et al., 2018). 

The genus Symbiondinium has now been split into multiple genera and species belonging to 

the Symbiodiniaceae family. 

While some Symbiodiniaceae are considered generalists, establishing symbioses with more 

than one species of host, others are restricted in the symbiotic association they can form. 

Given the diversity in both coral host species and algal genotypes there is potential for a 

large range of metabolic relationships. 

2.4 Targeted metabolite analysis of Symbiodiniaceae. 

2.4.1 Nutritional roles of Symbiodiniaceae. 

Much of the metabolite analysis of Symbiodiniaceae began in the mid 1950s after Zahl and 

McLaughlin (1957) reported a method for isolating and cultivating these dinoflagellates. 

From that point onwards, the study of Symbiodiniaceae metabolites accelerated. Muscatine 

and Hand (1958) were the first to suggest, based on experimental evidence, that 

Symbiodiniaceae provided nutrition to their anemone host. In that study, sea anemones with 

symbiotic dinoflagellates were exposed to seawater containing 14C-labelled CO2 for 18 and 

48 hours. Autoradiography of dissected host tissue after 18 hours of exposure showed that 

algae incorporated enough labelled carbon to produce a readable autoradiograph; however, 

no transfer of labelled metabolites from the algae to the anemone were observed. Transfer 

of labelled carbon from the algae to the host was observed after one week, and each 

subsequent week for four weeks. Muscatine et al. (1967) subsequently demonstrated that 
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symbiotic algae from a variety of freshwater hosts produce relatively large amounts of 

soluble carbohydrates (mostly maltose and glucose) in contrast to free living algae, which 

produced only small amounts of glycolic acid; speculating that the soluble carbohydrates 

were a source of carbon utilised by the host to enhance growth and survivability. 

 
Figure 2.1 Schematic diagram of the invertebrate-Symbiodiniaceae relationship 

By the 1970’s researchers had firmly established that Symbiodiniaceae release soluble products 

of photosynthesis, including sugars, amino acids, esters, alcohols and lipids; all of which 

were utilised by their hosts (see Table 2.1 and Figure 2.1) (Goreau et al., 1973, Von Holt & 

Von Holt, 1968b, Cernichiari et al., 1969). Most research during this period emphasised the 
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nutritional interactions between the host and symbiont. Of particular interest was the role 

of Symbiodiniaceae in translocating photosynthetic products and the recycling of host 

metabolic products, such as ammonium and phosphate. Once again, most research made 

use of labelled carbon to identify the metabolic products produced and recycled by 

Symbiodiniaceae. 

Table 2.1 Some of the more common metabolites of the invertebrate-Symbiodiniaceae relationship1 

Metabolite 
Transport Direction Symbiodiniaceae 

Specific Function Reference Host to 
symbiont 

Symbiont to 
Host 

Maltose    Nutrition (Muscatine, 1965) 
Glycerol    Nutrition (Muscatine, 1967) 

Glucose and other hexoses’    Nutrition (Muscatine et al., 1967, 
Bil et al., 1991) 

Glycolic acid    Nutrition (Muscatine et al., 1967) 

Glycine    Nucleotide synthesis 
and nutrition (Von Holt, 1968) 

Alanine    Protein formation (Lewis & Smith, 1971) 

Acetate    Fatty acid synthesis 
(Von Holt & Von Holt, 
1968a, Patton et al., 

1977) 
Fatty acids    Lipid synthesis (Patton et al., 1977) 

Lipids    Energy exchange (Kellogg & Patton, 1983) 

Lactate    Metabolite (Von Holt & Von Holt, 
1968a) 

Succinate    Krebs cycle (Von Holt & Von Holt, 
1968a) 

Citrate    Krebs cycle (Von Holt & Von Holt, 
1968a) 

Ketoglutarate    Krebs cycle (Von Holt & Von Holt, 
1968a) 

Malate    Krebs cycle (Von Holt & Von Holt, 
1968a) 

Pyruvate    Glycolysis product (Von Holt & Von Holt, 
1968a) 

PO4
3-    Nutrition (Cates & McLaughlin, 

1979) 

NO2
-, NO3

-, NH4
+    Amino acid synthesis (Cates & McLaughlin, 

1979) 
Inorganic carbon (i.e. CO2, 

HCO3
-)    Photosynthesis  (Muscatine & Lenhoff, 

1963, Patton et al., 1983) 
O2    Photosynthesis (Dykens & Shick, 1982) 

Zooxanthellamide-A and B    Unknown (Onodera et al., 2003, 
Onodera et al., 2004) 

Mycosporine-like amino 
acids    UV light and free 

radical protection 
(Dunlap & Yamamoto, 

1995) 
Zooxanthellatoxins    Unknown (Nakamura et al., 1993) 
Symbioramide-C16    Unknown (Nakamura et al., 1998) 

Zooxanthellabetaines    Unknown (Nakamura et al., 1998) 
Zooxanthellamine    Unknown (Nakamura et al., 1998) 

 

Despite direct evidence that photosynthetic products were chemically incorporated into the 

tissue of the host, little was understood about the quantity of metabolites produced by the 

symbiont, nor how the host utilised them. It was in this context that Robert K. Trench 

published three papers (Trench, 1971a, Trench, 1971b, Trench, 1971c). The first examined 

the movement of labelled carbon from symbiont to host in the sea anemone, Anthopleura 

 
1 A more comprehensive list of metabolites can be found in the coralmz R package at GitHub and Zenodo (Gordon & Motti, 2020). 
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elegantissima and the zoanthid Palythoa townsleyi. Chemical extraction and paper 

chromatography methods were used to fractionate the water-soluble, low molecular weight 

compounds from the lipids, proteins and nucleic acids. The photosynthetically fixed 

carbon (predominant as glycerol) was incorporated into the animal tissue primarily as lipids 

and proteins (Trench, 1971a).  

The second paper (Trench, 1971b), focussed on the type of compounds that were 

produced by Symbiodiniaceae. Using similar chemical and chromatographic methods, several 

different compounds were identified. Glycerol was identified as the major extracellular 

product and that other labelled carbon-based compounds were produced, including 

alanine, glucose, fumaric acid, succinic acid, glycolic acid and two other unidentified 

organic acids. One of the more noteworthy observations in this paper was that different 

Symbiodiniaceae isolates produced similar compounds in significantly differing proportions. 

Trench (1971b) concluded that although Symbiodiniaceae from different hosts were 

morphologically the same, they did differ biochemically. This was the first observation that 

Symbiodiniaceae is a diverse group of dinoflagellates; it is also consistent with the dynamic 

response of the metabolome to its environment.  

The third and final paper in the series considered the effect of host tissues on the excretion 

of photosynthetic products in vitro by Symbiodiniaceae (Trench, 1971c). It was observed that 

Symbiodiniaceae excreted a greater number of metabolites when incubated in a homogenate 

of host tissue than those incubated in seawater alone. When incubated in a homogenate of 

host tissue from algal-free host animals, there was no observable increase in the production 

of extracellular metabolites; however, when algal-free animals were infected with 

Symbiodiniaceae, the host tissue increased production of metabolites, suggesting that the host 

plays an important role in regulating the type and quantity of metabolites produced by 

Symbiodiniaceae. This series of papers highlighted the metabolic diversity and plasticity of 

Symbiodiniaceae while providing a priori knowledge of complex biosynthetic pathways. 

The concept of the host controlling the release of metabolites from the symbiont has been 

formalised in the concept of host factors (HF) or host release factors (HRF) (Muscatine, 

1967, Trench, 1971c). Although there are still some questions as to their exact identity, 

Gates et al. (1995) proposed that host-derived free amino acids (FAAs) served as HRFs. 

They found that a variety of FAAs stimulated Symbiodiniaceae carbon fixation up to two-

fold, and carbon release up to four-fold. These compounds were tentatively identified as 

glucose, glycerol, alanine, glycine, serine, glutamine, valine, phenylalanine, leucine citrate, 



 

 15 

glycerate, glycolate, lactate and succinate. In contrast, research by others has been unable to 

reproduce similar results (Withers et al., 1998, Cook & Davy, 2001), proposing instead that 

small (<1000 Da) unknown host compounds must act as HRFs (Grant et al., 1998). In 

recent years, inositol has been proposed as a potential host-controlled signalling molecule 

after a recent study identified increases of this well-known signalling molecule in the 

metabolome of Aiptasia exposed to thermal stress (Hillyer et al., 2017a). Corals may also 

produce a low molecular weight (<1000 Da) peptide that can inhibit Symbiodiniaceae 

photosynthesis (Grant et al., 2001).  

Although coral tissue can consist of up to one-third lipid by dry-weight, it was not until 

1977 that Patton et al. (1977) provided evidence that Symbiodiniaceae primarily performed the 

role of lipid synthesis in corals from host-derived acetate. They proposed that energy 

transfer from symbiont to host via acetate recycling might be the key to the ecological 

success of corals in nutrient poor waters. Their work provided evidence that the host 

acquires, via digestive and degradative metabolism, carbon from exogenous food sources, 

where it is subsequently absorbed by the Symbiodiniaceae, most likely as acetate. The acetate 

is then transferred to the chloroplast where, in reaction with excess adenosine triphosphate, 

it is reduced to triglyceride fatty acids. These triglyceride fatty acids are transferred back to 

the host via lipid bodies that were formed on the outer surface of the Symbiodiniaceae cell 

wall. They went on to propose that the surface membrane of these lipid bodies were the 

site of wax ester and triglyceride synthesis.  

Later research by Patton et al. (1983) showed that lipid bodies exist within both the host 

and symbiont cells. They found that wax esters and triglycerides comprised 75% of the 

intact coral lipids whereas the symbiont comprised of only about 8% of these neutral lipids. 

Conversely, structural lipids such as sterols, phospholipids and galactolipids made up 

approximately 67% of the symbiont lipids but only 16% of the host lipids. Labelled fatty 

acids derived from acetate had a higher degree of unsaturation than endogenous fatty acids, 

which implied that the host either modified the fatty acids or the transfer process was 

selective for saturated fatty acids. Their results showed that the majority of the coral’s 

reserved energy (wax esters and triglycerides) was located within its own tissue and that 

Symbiodiniaceae were the primary producers of these lipids, biosynthesised from host-derived 

acetate.  

Research on lipids delved deeper into the function and formation of lipid bodies in 

mammalian cells during the early 2000s. Reviewed by Martin and Parton, (2006) these lipid 
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bodies were described as pivotal cellular organelles with specific structural and functional 

characteristics. They consist of a core of neutral lipids predominantly comprised of 

triacylglycerols or cholesteryl esters, which are surrounded by a monolayer of 

phospholipids and associated proteins. Functionally, these mammalian lipid bodies are now 

regarded as complex organelles involved in a number of cellular processes such as, cell 

signalling (Umlauf et al., 2004) and visual chromophore regeneration (Imanishi et al., 2004) 

and, as previously discussed, the lipid metabolism in Symbiodiniaceae.  

Luo et al (2009) tested the hypothesis that lipid bodies in Symbiodiniaceae and the host 

gastrodermal cells of Euphyllia glabrescens were unique organelles that reflected the dynamic 

nature of their endosymbiotic status. Using dual emission ratiometric imaging with a 

solvatochromic fluorescent probe, they found the ratio of polar versus neutral lipids in lipid 

bodies of the host increased upon bleaching, indicating a decrease in neutral lipid 

accumulation within the gastrodermal cell. Conversely, neutral lipid accumulation increased 

in the lipid bodies of the symbiont when bleached. This demonstrated that the 

composition and morphology of lipid bodies was positively correlated to the 

endosymbiotic status and hence, implicated the lipid bodies in lipid trafficking between the 

host and the symbiont for the purpose of regulating the endosymbiosis.  

While lipids are essential for energy storage and nutrition, they also play an important role 

as structural components of symbiont cells; as such, differences in lipid composition can 

have distinct effects on the ability of different Symbiodiniaceae species to adapt to changes in 

their environment. In 2004, Tchernov et al (2004) demonstrated that thermal stress 

sensitivity of Symbiodiniaceae could be categorised by the level of lipid saturation and lipid 

stacking patterns in the thylakoid membrane. Gas Chromatography Mass Spectrometry 

(GC-MS) analysis of several Symbiodiniaceae isolates revealed a striking contrast between 

thermally tolerant and sensitive isolates. The thermally tolerant Symbiodiniaceae had much 

lower levels of the major polyunsaturated fatty acid, ∆6,9,12,15-cis-octadecatetraenoic acid 

(18:4), in relation to ∆9-cis-octadecatetraenoic (18:1). Furthermore, transmission electron 

micrographs of thermally sensitive Symbiodiniaceae exposed to higher temperatures showed a 

significant disruption in the organised stacking pattern of the thylakoid membrane, which is 

essential for efficient photochemical energy transduction. This finding demonstrated that 

thylakoid membrane lipid composition was a key determinate of thermal stress sensitivity 

in the symbiotic algae of cnidarians. 
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Research by Chen et al. (2015) identified six major lipid classes in host cytoplasmic lipid 

bodies: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and 

phospholipids. The significant differences in concentration of these lipids between the 

host, symbiont and lipid bodies suggests a high degree of compartmental regulation. Chen 

et al. (2015) also found that wax esters were only present in the host cells and lipid bodies, 

further evidence that lipid bodies are host derived. In another study by Chen et al. (2017), 

lipid profiling of Euphyllia glabrescens specimens collected across the diel cycle revealed 

significant changes in host gastrodermal cells, lipid bodies and the symbiont; demonstrating 

the temporally variable nature of lipids in corals. Each of the three compartments 

possessed a unique lipidome, consisting of both symbiont- and host-derived lipids. The 

existence of uniquely derived lipids across all three compartments is evidence of the active 

lipid trafficking that occurs in the holobiont. Given the high degree of temporal lipid 

exchange from the host to lipid body, and symbiont to lipid body, Chen et al (2017) argued 

that lipid bodies may act as a relay centre of lipid exchange between the host and symbiont. 

Given the nutrient limitation reported in tropical waters, the translocation of organic 

nitrogen, in the form of amino acids, from Symbiodiniaceae to the coral is extremely 

important. Symbiodiniaceae recycle waste nitrogen produced by the host to synthesise several 

essential amino acids. Until 1999, substantial evidence for the transport of essential amino 

acids from Symbiodiniaceae to the host had yet to be observed. Wang and Douglas (Wang & 

Douglas, 1999) reasoned that previous experimental designs exploring labelled 

photosynthate release would fail to detect amino acid transfer to the host tissue if the 

amino acids were released many hours, or even days, after carbon fixation took place, or 

that amino acids were not synthesised by photosynthetically-derived carbon. Extended 

pulse chase experiments over 2 days established the metabolic fate of labelled carbon 

compounds in the symbiosis and provided direct evidence for the transport of several 

essential amino acids from Symbiodiniaceae to the host. 

Both the coral and algae are capable of assimilating ammonium from their environment in 

addition to producing it metabolically via glutamate dehydrogenase and glutamine 

synthetase. This is thought to be a major reason for the success of the Symbiodiniaceae -

invertebrate relationship in nutrient poor environments. Uptake, retention and release of 

ammonium in reef corals was investigated, providing “evidence to support the hypothesis 

that combined nitrogen is recycled within the coral-algae symbiosis” (Muscatine & D'Elia, 

1978). These experiments found symbiotic corals uptake and retain ammonium and that 

the process was enhanced by light; in contrast, non-symbiotic corals released ammonium 
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into the medium under all conditions. It was tentatively proposed that the uptake and 

retention of ammonium was due to the activity of Symbiodiniaceae. This process was 

considered an adaptation to a deficiency of environmental nitrogen since virtually all of the 

ammonium excreted by the coral host was taken up by the symbiont. These results were 

further supported by D’Elia et al. (1983) who proposed a depletion-diffusion mechanism 

for the uptake of ammonium, whereby the symbiont was responsible for the majority of 

ammonium assimilation. However, contrasting studies have since supported the theory that 

the host may be limiting the supply of ammonium as a method of controlling the 

population of Symbiodiniaceae. A study of the assimilation of ammonium by the host under 

dark conditions, for example, found that ammonium assimilation, along with protein and 

free amino acid pool sizes, were the same in dark conditions as illuminated conditions after 

supplementing the medium with organic carbon compounds (Wang & Douglas, 1998). 

This suggests that the host controls the concentration of ammonium via enhanced 

ammonium assimilation. It also contradicted previous findings that the symbiont was 

primarily responsible for ammonium assimilation.  

Unlike its host, Symbiodiniaceae is capable of utilising nitrate as a nitrogen source. The first 

evidence of this appeared when reef corals were found to have a light independent 

mechanism for the uptake and reduction of dissolved nitrate from seawater (Franzisket, 

1973) and that nitrite was present in both the coral and symbiont tissue. The discovery of 

expressed sequence tags for transporter enzymes of both nitrate and nitrite provided 

further evidence for the uptake of nitrates by Symbiodiniaceae (Leggat et al., 2007). Further, 

an increase in Symbiodiniaceae cell densities was observed upon increases in nitrate 

concentration and uptake (Marubini & Davies, 1996). 

2.4.2 Diel cycles 

Given the importance of photosynthesis to coral symbiosis, it is not surprising there are 

several biomolecules, proteins and metabolites that exhibit large diel variations. One of the 

major diel changes seen in symbiotic invertebrates is intracellular oxygen tension, a 

consequence of Symbiodiniaceae photosynthesis. Using oxygen microelectrodes, Dykens and 

Shick (1982) measured the partial pressure of pure oxygen bubbles on the surface of 

symbiotic sea anemones and found they were subjected to a continuous flux of hyperbaric 

oxygen. Similar studies have estimated that oxygen concentrations at the tissue surface vary 

from less than 2% of air saturation during dark periods to over 250% saturation in the 

light, while tissue pH varied from 8.5 in the light to 7.3 in the dark (Kuhl et al., 1995). 
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These high oxygen concentrations have profound implications for the coral host given 

molecular oxygen undergoes reductions to form oxygen radicals, which are particularly 

destructive to cells.  

An important enzyme involved in reactive oxygen detoxification is superoxide dismutase 

(SOD), which catalyses the dismutation of two oxygen radicals to produce hydrogen 

peroxide and molecular oxygen. Dykens and Shick (1982) found that anemones with higher 

chlorophyll content had higher rates of SOD activity, indicating that the host was altering 

its protein expression in response to Symbiodiniaceae physiology or metabolism. Exposing 

anemones to exogenous hyperbaric oxygen caused a 62% increase in SOD activity, while 

anemones kept under dark, and photosynthetically poor conditions, had reduced levels of 

SOD activity. Levy et al (2006) examined the wavelength dependence of two free radical 

scavenger enzymes, SOD and catalase, finding that the host’s enzyme response to the 

spectral distribution of light was higher than that of the zooxanthellae; probably due to 

accumulation of free radicals within the host tissue. Furthermore, the activity of the 

enzymes was affected by the length of the day and night cycles, and in the laboratory, by 

the duration of the illumination. The activity of scavenger enzymes, such as SOD, are vital 

for the acclimatisation and survival of corals in shallow water environments with high light 

radiation, as they reduce the effects of oxidative damage to cells by free radicals.  

Recent research has provided evidence of diel-associated metabolite transfer in corals. This 

research was focussed on the transfer of lipids between the host and symbiont via lipid 

bodies, which are suspected of acting as a relay centre between the host and symbiont (see 

Chen et al. 2017 and the previous discussion in section 2.4.1). In the giant clam- 

Symbiodiniaceae symbiosis, where sampling the haemolymph (blood) can be easily 

performed, there is ample evidence that glucose is the major carbohydrate transported to 

the host with concentrations varying from less than 100 µM in the dark to almost 400 µM 

at noon (Rees et al., 1993, Leggat et al., 2002). 

In addition to driving photosynthesis, high light levels expose the host and symbiont to 

damaging UV radiation. One particular defence against UV exposure is the production of 

mycosporine-like amino acids (MAAs). These compounds (1-12 in Figure 2.2) are 

characterised by a cyclohexanone or cyclohexenimine chromophore conjugated with a 

nitrogen substituent of an amino acid and absorb UV radiation without any further 

photochemical reactions (Nakamura et al., 1982). The source (host vs. symbiont) of these 

compounds is not yet clear, and concentrations in coral tissue can vary according to 
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fluctuations in light levels. Yakovleva & Hidaka (2004) showed that freshly isolated 

Symbiodiniaceae contained no MAAs, yet they were distributed throughout the host tissue. In 

contrast, Banaszak et al (2000) showed that cultured Symbiodiniaceae cells did produce 

MAAs, while cells from Breviolum spp. did not. These discrepancies may indicate that MAAs 

are produced by the coral’s microbial community. 

Increases of up to two-fold at midday have been demonstrated for discrete MAA species. 

In particular, the concentration of imino-MAA species varied in response to light while 

mycosporine-glycine 1 did not (Yakovleva & Hidaka, 2004). Some MAAs also have the 

potential to act as free radical scavengers (Dunlap & Yamamoto, 1995) with six common 

MAAs (five cyclohexenimine MAAs: shinorine 9, porphyra-334 10, palythine 3, asterina-

330 5 and palythinol 6; and a single cyclohexanone MAA, mycosporine-glycine 1) being 

found in four different marine species. These five imino-MAAs have the oxidative 

robustness, which is consistent with their sunscreen properties, but no definitive 

antioxidant activity; mycosporine-glycine showed moderate antioxidant activity. 

 
Figure 2.2 Molecular structure of some common mycosporine-like amino acids (MAAs) in marine organisms 
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The production of MAAs correlates with the availability of ammonium in the red algae 

Porphyra leucosticta and Porphyra umbilicalis (Korbee et al., 2005). Both species were cultured at 

three ammonium concentrations (0, 100 and 300 µM) under artificial light and the effect of 

ammonium availability on photosynthesis determined by measuring the fluorescence of 

chlorophyll-a, photosynthetic pigments and MAA content. Photosynthetic activity 

decreased under culture conditions due to UV radiation and increased ammonium 

availability. Conversely, four MAAs were identified in both species (shinorine 9, porphyra-

334 10, palythine 3 and asterina-330 5) that were found to increase in concentration at high 

ammonium concentrations and exposure to UV radiation. 

2.4.3 Biomarkers and natural products 

The concept of using chemical fingerprints to classify different coral phenotypes was first 

explored in a 1982 study of secondary metabolites from soft corals and sponges from the 

Red Sea (Kashman et al., 1982). These organisms are chemically protected from predation 

by fish and bacterial infection, and a potential source of bioactive pharmaceuticals. Given 

the difficulty in species identification of soft corals, chemical fingerprints of sesquiterpenes 

and other volatiles obtained through gas chromatography (GC) and liquid chromatography 

(LC) were investigated as a complementary tool for phenotype identification. Unique 

chemical differences in the chromatograms of six Sinularia species were observed and were 

subsequently used to assist traditional taxonomists in defining different species, especially 

where doubt existed due to different growth forms.  

The use of molecular biomarkers has been examined in Symbiodiniaceae symbioses (Cuif et 

al., 1999). Derivatisation of >3 kDa proteins and hydrolysis of polysaccharides, isolated 

from coral skeletons of symbiotic and non-symbiotic corals, yielded amino acids and 

monosaccharides. Univariate statistical methods were applied to identify key amino acids 

and monosaccharides associated with soluble matrices and those which distinguished 

between symbiotic and non-symbiotic coral types. The amino acids identified were 

glutamic acid, alanine, serine, threonine and histidine. Monosaccharides included: galactose, 

mannose, galactosamine, glucosamine and arabinose. The discriminant amino acids and 

sugars (a total of nine variables) were combined into a single data set and interrogated by 

principal component analysis (PCA) to expose the variation within. The first three principal 

components (PCs) explained 80% of the total variance of the data, with PC 1 variation, at 

50.1%, driven by galactosamine and serine. Further interrogation of the PCA established 

non-symbiotic corals contained high levels of serine and galactosamine as well as alanine 
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and glucosamine while symbiotic corals were high in mannose, galactose, arabinose, 

glutamic acid and threonine. These results demonstrated that characteristic ratios of certain 

amino acids and sugars in soluble skeletal matrices could be used to differentiate symbiotic 

and non-symbiotic corals. 

Investigation of zooxanthellae isolated from the flatworm Amphiscolops sp. identified the 

first examples of Symbiodiniaceae -derived water-soluble large molecules, zooxanthellatoxins 

(ZTs) A (13; Figure 2.3) and the congener ZT-B (Nakamura et al., 1993). Initial 

characterisation of these toxins, which induce prominent contraction of rabbit aorta, 

showed they contain more double bonds and fewer ethereal rings compared to similar 

toxins isolated from other species of dinoflagellates. Structural similarities between ZTs 

and palytoxins (Boroujerdi Arezue et al., 2009) suggested that there exist common 

biogenetic processes, such as the polyketide pathway, that utilise a glycine starting unit and 

tetrahydropyran ring formation, indicating that Symbiodiniaceae may be the source of various 

toxins isolated from symbiotic marine invertebrates, thus making them an attractive source 

of novel bioactive materials.   
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Figure 2.3 Molecular structures of zooxanthellatoxin-A (13), symbioramide-C16 (14), zooxanthellabetaine (15) 

and zooxanthellamine (16). 

Nakamura et al (1998) elucidated four new compounds from ethanol extracts of 

Symbiodiniaceae cells cultured under varied conditions. Two were the betaines, 

zooxanthellabetaine-A and -B (15), another was the C30 alkaloid, zooxanthellamine (16), 

and the last a new ceramide, symbioramide-C16 (14) (Figure 2.3). Zooxanthellamine has a 
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very similar alkaloid structure to a zoanthamine obtained from zoanthids, suggesting this 

compound was algal rather than host derived (Nakamura et al., 1998). This highlighted that 

metabolites and the bioactive molecules produced by Symbiodiniaceae, could theoretically be 

manipulated by culture conditions and host factors to produce a variety of different 

metabolites of interest to natural products researchers. 

Compounds related to ZTs have also been isolated from free-living zooxanthellae found in 

a Hawaiian tidal pool (Onodera et al., 2003). Zooxanthellamide A (17, Figure 2.4) has a 

smaller molecular weight than that of ZTs; however, unlike ZTs, it does not possess 

bisepoxide and exomethylene moieties. In addition, it contains a pair of amide and sulfate 

groups, whereas these only exist as lone groups in ZTs. Structural similarities suggest that 

ZTs and zooxanthellamide A arise from similar biosynthetic pathways; however, 

subsequent isolation of the δ-lactone derivative zooxanthellamide B led to the proposal 

that zooxanthellamides were in fact a novel family of large polyhydroxy metabolites 

(Onodera et al., 2004). This showed that the polyhydroxy metabolism of zooxanthellae was 

quite diverse. 

 
Figure 2.4 Molecular structure of zooxanthellamide-A (17) 
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2.5 Coral metabolomics 

Phenotypic diversity – also referred to as intraspecific variation – in coral species is driven 

by polymorphism (i.e. genetic differentiation) and encompasses environment-induced 

variation (i.e. phenotypic plasticity) (Todd, 2008). Morphological assessment, particularly of 

the coral skeleton, and genotyping have been widely used to characterise phenotypes of the 

coral holobiont. The measured metabolome, however, is the ultimate expression of an 

organism’s phenotype (Fiehn, 2002). Metabolomics, therefore, may be a more powerful 

tool for studying phenotypic diversity of both partners at the cellular or molecular level.  

In the context of this review, a coral metabolomics study is defined as any published study 

that reported a metabolomics and/or lipidomics approach (including those using a wider 

systems biology approach) to examine cnidarians and/or their dinoflagellate symbionts. 

Since the first named coral metabolomics study in 2009, 35 studies fit these criteria. While 

they have been varied in their approach and subject, some common themes have emerged; 

for example, Aiptasia spp. has been a popular subject choice due to its informal acceptance 

and adoption as a model organism of cnidarian physiology (Weis et al., 2008), while 

temperature, being very relevant to coral bleaching, has been the predominant stressor 

investigated. What follows is a discussion of the coral metabolomics literature produced 

since this review was first published in 2010. Key examples are discussed with a focus on 

metabolite variation, coral-algal-microbial symbiosis maintenance, impacts of climate 

change, and impacts of anthropogenic agents. 

2.5.1 The dawn of coral metabolomics 

The first report applying metabolomics to any species of coral was published in 2009 by 

Boroujerdi et al (Boroujerdi Arezue et al., 2009). While not specifically investigating the 

metabolome of corals nor Symbiodiniaceae, they did explore the metabolome of the 

temperature-dependant coral pathogen Vibrio coralliilyticus. This has been linked to coral 

disease worldwide, and like many other Vibrio species, exhibits a temperature-dependent 

pathogenicity. The effect of temperature on the metabolome was monitored using Nuclear 

Magnetic Resonance (NMR) spectroscopy and assessed by PCA. Distinct metabolic 

differences were observed between the virulent (high temperature) and threshold-of-

virulency (low temperature) forms of V. coralliilyticus, with betaine, succinate and glutamate 

identified as the metabolites causing the greatest temperature-based separations in the PC 

scores. With increasing temperature, production of betaine was down-regulated, while 
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succinate and glutamate were up-regulated; however, significant inter-batch variability was 

observed. Upon re-extraction, instrumental and statistical reanalysis, systematic errors that 

may have caused the inter-batch variability were excluded, confirming there must have 

been significant biological variability during the growth of V. coralliilyticus.  

Metabolome data describing variation in Symbiodiniaceae metabolite profiles was non-

existent prior to 2010; however, in 2009 the importance of these daily variations was clearly 

demonstrated in a toxicity analysis of the unicellular freshwater alga Scenedesmus vacuolatus. 

Kluender et al. (2009) used GC-MS to analyse low molecular weight hydrophilic and 

lipophilic metabolites from synchronized algal populations exposed for 14 hours to the 

photosystem-II inhibiting herbicide prometryn. Subsequent multivariate analysis identified 

temporal trends in metabolite levels along with distinct statistical separations between 

control algal populations and those exposed to the toxin. Results were compared to 

traditional observational parameters used in phytotoxicity assessment where metabolite 

levels were found to respond more rapidly to toxin exposure than growth. This was one of 

the first papers to highlight the potential of metabolomics for the study of unicellular 

aquatic algae. 

2.5.2 Naturally occurring metabolite variation 

The metabolic modulation of free-living versus endosymbiotic (within the anemone 

Aiptasia pulchella) Symbiodiniaceae over the diel cycle was investigated using synchrotron 

radiation-based infrared microspectroscopy (SR-IRMS) (Peng et al., 2011). Significant 

differences in the levels of lipids, nitrogenous compounds, polysaccharides and cell wall 

components in Symbiodiniaceae were detected, revealing that nitrogen limitation was 

exploited by the host cell to induce lipid and polysaccharide production in endosymbionts. 

SR-IRMS was also used to examine a single Symbiodiniaceae cell (see Gordon et al., 2018 and 

Chapter 7) and three distinct regions characterised by their unique chemical signatures were 

established; further demonstrating the potential of this technique for metabolomics 

approaches.  

LC-MS-based metabolomic and genomic approaches have been used in combination to 

investigate the chemical diversity of three Symbiodiniaceae clades (Beedessee et al., 2019). 

These analyses revealed polyketide synthase genes that were more diversified than non-

ribosomal peptide synthetase genes and that evolutionary processes contributed to the 

diversification. Further, a few of the Symbiodiniaceae metabolic pathways were found to be 

conserved among the three clades, indicating that Symbiodiniaceae genomes were well 
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equipped to generate chemical diversity of secondary metabolites and subsequently adapt 

to unique host environments. 

An LC-MS metabolomics approach was employed to examine the indirect effects of genes 

of symbiotic and aposymbiotic Astrangia poculata and Symbiodinium psygmophilum on the 

cellular environment, independent of the individual bodies in which they reside (the 

extended phenotype) (Parkinson & Baums, 2014). In this study, PCA clustered the 

symbiont state of A. poculata more strongly than host genotype and a platelet-activating 

factor was observed at higher levels in aposymbiotic polyps. 13E-docosenamide was found 

to be unique to a Symbiodiniaceae sample, highlighting the importance of accounting for 

intraspecific diversity when designing an experiment. Importantly, these results also 

highlight the potential of A. poculata as a model system for investigating the coral-

dinoflagellate symbiosis due to its unique characteristic of harbouring both symbiotic and 

aposymbiotic polyps. 

Natural spatial and taxonomic variation of deep-sea coral species was explored using LC-

MS metabolomics (Vohsen et al., 2019). Across three deep-sea sites Callogorgia delta 

exhibited distinct metabolic profiles confirming spatial variation within the taxa, although 

no unique metabolites were found. Comparison of C. delta metabolite diversity with three 

other deep-sea corals Stichopathes sp., Leiopathes glaberrims and Lophelia pertusa, and one 

shallow-water species, A. palmata, found it to be the least diverse in terms of metabolic 

richness.  

To facilitate analysis and interpretation of such rich and complex chemical data a novel 

approach to organising mass spectral data of complex mixtures was developed (Garg et al., 

2015). The approach involves using a molecular networking technique, which exploits the 

fact that molecules with similar chemistry and structure have similar fragmentation spectra. 

Comparison of the fragmentation spectra of cystic fibrosis-afflicted human lung and hard 

corals, systems that represent complex mixtures arising from diverse microbial 

communities, identified an inflammatory lipid that was previously unknown in corals. This 

molecular networking technique has application in building libraries of complex mass 

spectral data that can assist in the automated annotation of molecular features in a variety 

of complex mixtures. 

The utility of 1H-NMR metabolic profiling to assess natural sample variation, the recovery 

and quantification of spiked compounds and to discriminate different species of reef-

building corals was investigated by Sogin et al (2014). 1H-NMR metabolomic profiles 
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correctly phenotyped four unique reef-building coral species while also highlighting the 

reproducibility and sensitivity of the technique. A similar NMR-based metabolomics 

approach was used to investigate spatial variation in soft corals (He et al., 2014). Terpenes, 

sterols and nitrogenous compounds were identified as important variables in classifying 

soft coral samples from two different geographical locations and further fractionation of 

the original coral extracts was found to improve discrimination. 

Individually, both LC-MS and 1H-NMR have provided insight into the chemical repertoire 

of the coral host and algal symbiont. More recently, these techniques have been combined 

to enable a broader investigation of coral metabolites. A comparative LC-MS and 1H-NMR 

approach was used to explore the genetic diversity and provenance of 16 Sarcophyton soft 

coral species from the Red Sea (Farag et al., 2016). A total of 120 metabolites, including 65 

diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids were identified, with the 

cembranoids and oxylipids driving species differences. Cembranoids were also found to 

drive discrimination of origin. Notably, aquarium reared soft corals were less enriched with 

cembranoids compared to wild corals. In this study, PCA was as effective as Orthogonal 

Partial Least Squares in predicting species origin, which highlights the distinguishing nature 

of metabolic profiles given the unsupervised nature of PCA. 

Lohr et al (2019) applied a similar approach to unravel the differential responses of 

genetically different individuals of the same species (i.e. different genotypes) to the same 

environmental conditions. Distinct profiles for each of three genotypes of A. cervicornis 

from a common ecosystem were obtained, revealing the extent of their intraspecific 

variation while identifying several metabolites driving separation between genotypes. These 

findings highlight the metabolic complexity of the coral holobiont and the need to 

understand the naturally occurring metabolite variation of the study population, an aspect 

that is particularly relevant if metabolomics is to be included in biomonitoring programs at 

regional scales. 

2.5.3 Maintenance of coral symbioses 

The establishment of a symbiotic association involves changes in the biochemistry and 

metabolic network of all the partners involved; maintenance of this symbiosis is largely 

mediated by the transfer of metabolites between partners. Metabolomics can explore this 

biochemistry holistically, and in detail, establishing the physiological state that maintains 

the partnership between host and symbiont.  
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The mutualistic translocation model, as applied to coral-algal interactions, suggests that 

symbiont-derived metabolites, including lipids and fatty acids, are responsible for 90-99% 

of the hosts energy requirements (Gordon & Leggat, 2010, Yellowlees et al., 2008, 

Falkowski et al., 1993, Latyshev et al., 1991, Patton et al., 1977, Kellogg & Patton, 1983). 

With this in mind, 13C stable isotope incorporation into fatty acids was compared between 

symbiotic and aposymbiotic Aiptasia pulchella, Acropora millepora and free-living dinoflagellate 

cultures using LC-MS lipid profiling (i.e. lipidomics) (Dunn et al., 2012). The fatty acid 

synthesis rates were attributed to only two algal lipogenesis pathways with no evidence of 

symbiont-derived fatty acids, fatty acid derivatives or dissolved inorganic carbon being 

utilised in the host long chain (late n-6 pathway) fatty acid synthesis. These findings did not 

align with the mutualistic translocation model. Indeed, a similar study compared the mass 

features from symbiotic and aposymbiotic Aiptasia pallida (Garrett et al., 2013) and found 

149 differential features that differed between the two symbiotic states. Several lipid classes 

were identified including glycerophospholipids and phosphonosphingolipids, further 

contradicting the mutual translocation model and highlighting the need for more research 

in this area. 

13C stable isotope labelling and GC-MS was employed in a third study to track the fate of 

carbon in Aiptasia colonised with either the native symbiont, Breviolum minutum or the non-

native symbiont, Durusdinium trenchii (Matthews et al., 2018). Aiptasia harbouring non-native 

symbionts exhibited reductions in the abundance and diversity of carbohydrates and 

lipogenesis precursors. Additionally, significant alterations to the host molecular signalling 

pathways, as well as differential activity in the antioxidant- and ammonium-producing 

pathways, were observed. It was concluded that such significant metabolic differences 

between native and non-native symbionts may limit the success of the host switching to 

more thermally tolerant, but non-native, partners. 

2.5.4 Coral-microbial interactions 

In recent years, extracellular coral metabolites (i.e. the exometabolome) have received 

increased attention because of the need to link microbial community dynamics, host 

physiology and ecosystem biogeochemistry for a better understanding of the ecological 

roles of coral-associated microbes (Kelly et al., 2018). The significant role of microbial 

communities in reefs has led to the proposal of “ecosystem microbiology”, to link the vast 

amounts of data arising from the omics sciences to establish holistic monitoring of coral 
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reefs and provide management with microbial indicators of coral health and ecosystem 

processes.  

Metabolomics was employed to examine competition between corals and non-self 

holobionts such as algae and microbes (Quinn et al., 2016). This study found that algae and 

microbes induced tissue damage in corals during competitive interactions, promoting the 

production of platelet activating factor (PAF); a single fatty acid chain phospholipid that is 

a known pro-inflammatory signal molecule in humans. This finding was backed by rigorous 

compound identification. Complementary transcriptome data from the coral confirmed 

that the expression of the gene encoding the protein that converts Lyso-PAF to PAF 

increased during this competitive interaction. 

In a novel approach to study the exometabolome, Ochsenkühn et al. (2018) investigated the 

molecular environment surrounding two species of coral. Metabolomics and meta-

barcoding were employed to analyse seawater samples collected from the surface of corals 

and at distances of 5 and 50 cm. Each species was found to harbour unique bacteria and 

metabolites at their surface that were distinctly different from those in the surrounding 

seawater. The molecules at the surface of the corals were identified as chemo-attractants, 

antibacterials and signalling molecules that may play a significant role in structuring the 

surface-associated microbial community. Metabolites were also discovered that 

distinguished diseased corals from their healthy counterparts, likely produced by 

pathogenic or opportunistic bacteria. This discovery is significant in the context of coral 

biomonitoring, as it presents a non-destructive method for assessing the chemical state of 

corals and indicators of coral disease. 

Another study compared coral metabolome profiles (1H-NMR) with microbial community 

composition (Sogin et al., 2017). This untargeted metabolomics study assessed coral 

holobiont functional status in the presence of various microbial partners. The relative 

abundance of different Symbiodiniaceae sub-clades and microbial communities produced 

positive and negative metabolomic signatures, with respect to nutrition, in the holobiont. 

Positive correlations, for example, were observed between cyanobacteria and nitrogen 

containing branched-chain amino acids and acetate, supporting the hypothesis that 

cyanobacteria produce nitrogen compounds to support coral nutrition. On the other hand, 

opportunistic gamma-proteobacteria were negatively correlated, indicating they were 

consuming the compounds. This work set a foundation for future studies of microbial 
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coral symbionts and their effect on coral functional status while emphasising the need for 

more targeted studies. 

Meta-mass shift chemical profiling, a method analogous to molecular networking 

techniques (Garg et al., 2015), utilises the mass differences arising from ion fragmentation 

and knowledge of molecular networks to determine how molecules are related. The 

technique was applied to seven coral, algal and fungal mat holobiont metabolomic datasets 

(Hartmann et al., 2017). Distinct mass shift profiles were identified for all holobionts, 

suggesting they modified the same molecules in different ways, even within the same 

genera and species, and despite high genomic similarity. This approach to the analysis of 

tandem mass spectral profiles has again highlighted the chemical diversity and metabolic 

complexity of the coral holobiont. 

2.5.5 Impacts of climate change-related stressors 

To date, much of the scientific literature reporting on climate change related impacts to 

coral reefs assumes a business as usual emissions scenario of 600-1000 ppm of atmospheric 

CO2 (Hughes et al., 2017a). With greater global concern for climate change mitigation, such 

as the development of new ‘green’ technologies, this scenario is less likely to eventuate. 

Nevertheless, even under the most optimistic greenhouse gas emissions scenario 

considered by the Intergovernmental Panel on Climate Change (IPCC RCP 2.6 2014), the 

longer-term warming trend is still expected to be in the range of 0.30 ℃ to 0.68 ℃ 

(Hughes et al., 2017a, Morice et al., 2012). Modelling predicts this level of warming will have 

severe consequences for coral reefs, especially during summer heatwaves when sea surface 

temperatures spike above the summer maximum. 

Mounting scientific evidence of the longer-term impacts of climate change on coral reefs 

has highlighted the need to better understand coral-stressor interactions under more 

realistic emissions scenarios (Hughes et al., 2017a, Hughes et al., 2010, Pandolfi et al., 2011, 

Steffen et al., 2015). This is a difficult task because the biological response to smaller scale 

fluctuations in water temperature and CO2 are not easily detected, require more time to 

present physically, and are more difficult to quantify. Metabolomics, with its superior 

sensitivity and resolution, can detect changes in the metabolome from minor disturbances 

and even natural variation (see section 2.5.2), offering a solution to the problem of 

detection and quantification. However, long-term studies will still be required to detect 

those changes that take more time to present – a gap that could be filled by a 

metabolomics-based biomonitoring program.  
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Temperature 

Elevated temperatures have been implicated in the breakdown of the coral-algae symbiosis 

leading to coral bleaching and, if protracted, coral mortality. While the mechanism of 

action of this collapse remains somewhat unclear (Obura, 2009, Bieri et al., 2016), 

metabolomics has provided an insight into the heat-stress responses of both the host and 

symbiont. 

The metabolome profiles of four symbiosis-forming species of Symbiodiniaceae cultured 

under different light and temperature conditions was examined utilising an untargeted GC-

MS metabolomics approach designed to generate hypotheses (Klueter et al., 2015). GC-MS 

and Random Forests modelling was able to detect significant differences in two major free 

sterols produced by the four species of Symbiodiniaceae, with Symbiodinium psygmophilum being 

the most unique. In addition, changes were detected in the production of inositol, selected 

sterols and glycerol in Symbiodiniaceae exposed to varying temperature and light conditions, 

although these were considered unlikely to cause a disruption of the symbiosis. This study 

demonstrated the utility of untargeted metabolomics to observe previously unknown 

biochemical processes, leading to refined hypotheses.  

A 13C stable isotope tracer experiment in combination with GC-MS metabolomics was 

employed to profile polar and semi-polar compounds in the Acropora aspera host and their 

dinoflagellate symbionts during thermal bleaching (Hillyer et al., 2017b). Changes in GC-

MS profiles of both partners were detected, concomitant with bleaching severity. In the 

dinoflagellate symbiont, accumulations of free fatty acids and α-tocopherol, and a decline 

in carbohydrates, amino acids and ascorbate, were observed while in the coral host. 

Undoubtedly, this study furthered the understanding of metabolome changes in the coral 

holobiont. This was also the first reported attempt to measure the metabolome of the 

endogenous symbionts and of the coral host after their separation post sampling.  

In a follow up to their 2017 study, Hillyer et al. (2018) investigated the changes in 

autotrophic carbon fate during thermal bleaching of Acropora aspera. Partner-specific 

changes in carbon fate were observed in response to heat stress and were found to worsen 

with prolonged exposure. Symbiodiniaceae continued to produce and translocate organic 

products to the host despite significant photodamage. As bleaching progressed, however, 

symbiont production of long chain fatty acids decreased to a minimal state, which was also 

evident in the host fatty acid pools. This important finding, which shows how the quality 
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of translocated products is reduced during thermal bleaching, will no doubt encourage 

more research into the mechanisms that trigger the breakdown of symbiosis. 

A GC-MS-based metabolomics investigation of thermally induced changes in the 

metabolome of the Aiptasia-Symbiodiniaceae holobiont (Hillyer et al., 2016) found 

polyunsaturated fatty acids levels increased in the symbiont and decreased in the host, 

while glycolysis intermediates, amino acids and their intermediates accumulated in both 

partners. Pathway activity analysis associated these changes with alterations to central 

metabolism, oxidative state, cell structure, biosynthesis and signalling. This study provided 

valuable information of the biochemical interplay between host and symbiont under 

thermal stress and highlighted the importance of hypothesis-generating metabolomics 

studies.  

Subsequently, Hillyer et al. (2017a) mapped carbon fate during bleaching of the Aiptasia-

Symbiodiniaceae symbiosis. Substantial increases in non-labelled lipid and starch stores were 

observed in the dinoflagellate, while 13C enrichment of compounds associated with 

ongoing carbon fixation were maintained. In the host, some downstream pathways showed 

altered carbon states; however, minimal change was observed in 13C-enriched glucose, a 

major symbiont-derived compound. They concluded that symbionts continue to provide 

compounds for the host at significant cost to themselves, requiring the symbiont to draw 

on its own energy stores during thermal bleaching. 

The Aiptasia-Symbiodiniaceae model system was investigated using a comparative 

metabolomics and transcriptomics approach to characterise the molecular interplay 

between host and symbiont (Matthews et al., 2017). Driving this study was the hypothesis 

that reef corals may adapt to climate related stressors by changing their dominant symbiont 

type. This led to the examination of gene expression and metabolome profiles of Aiptasia 

sp. when colonised by two distinct symbionts: the thermally tolerant and opportunistic 

Symbiodinium trenchii and the regular or normal symbiont Symbiodinium minutum. In hosts 

colonised by S. trenchii, immunity processes, oxidative stress responses, G protein-

associated stress signalling and lipid signalling were all significantly activated, while a strong 

shift toward carbohydrate and lipid transport and storage was also observed. Notably, of 

the 89 metabolites identified in S. trenchii-colonised hosts, all but eight were present in 

higher abundance. The host immunoresistance and heterotrophy observed in this study has 

provided further evidence casting doubt on the ability of thermally tolerant Symbiodiniaceae 

species to assist corals in adapting to climate change. 
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Synchrotron radiation Fourier transform infrared microscopy metabolomics provided 

insight into the biochemical changes induced by elevated temperatures in individual in 

hospite and expelled Symbiodiniaceae cells from thermally stressed Acropora millepora (Petrou et 

al., 2018). In hospite symbionts showed increases in free amino acids and molecule 

phosphorylation along with a decline in protein content. Conversely, expelled symbionts 

showed decreases in amino acids and molecule phosphorylation and an increase in protein 

and lipid content. Surprisingly, this suggests that expelled symbionts are more functional 

after expulsion and that the metabolic profiles of heat stressed, and expelled symbionts are 

distinctly opposite. This metabolomics approach revealed alterations in the symbiont lipid 

metabolism that corroborates many of the findings reported by Hillyer et al. (Hillyer et al., 

2017a, Hillyer et al., 2017b). 

Ocean acidification 

Ocean acidification adversely affects the calcification process of corals and increases the 

passive dissolution of coral skeletons (van Woesik et al., 2013). Under a “business as usual” 

emissions scenario, where atmospheric CO2 concentrations are expected to reach 800 ppm, 

the rate of dissolution is predicted to outstrip the average rate of coral reef growth by 2100 

(Hughes et al., 2017a, van Woesik et al., 2013). However, due to a lack of research, it is 

currently difficult to predict the coral response to the more likely end-of-century 

atmospheric CO2 concentrations of 450-550 ppm that would maintain a pH of 7.9-8.1 in 

most tropical waters (Hughes et al., 2017a, IPPC RCP 4.5, 2014, ICCP RCP 2.6, 2014). 

Unlike temperature, experimentally manipulating and controlling small changes in CO2 

concentration for any length of time is technically challenging, identifying and quantifying 

its effect on coral even more so. 

The capacity for metabolomics to detect CO2-induced variations in coral metabolomes has 

been clearly demonstrated. Putnam et al. (2016) tested the hypothesis that ocean 

acidification-induced DNA methylation (i.e. epigenetics) is linked to phenotypic plasticity 

in two scleractinian corals. In addition to examining host DNA methylation and 

calcification rates, 1H NMR metabolomics was used to measure phenotypes of Pocillopora 

damicornis and Montipora capitata clonal fragments after exposure to high pCO2 (~1320-2360 

μatm; ΔpH ~0.3). P. damicornis, the more sensitive of the two species, exhibited DNA 

methylation, reduced calcification rates and changes in the metabolome, clearly linking 

phenotypic plasticity with DNA methylation. This was an important finding that supports 

the use of assisted evolution to aid corals in acclimating to rapid changes in their 

environment (van Oppen et al., 2015, Huey et al., 1999, Reusch, 2014). However, the pCO2 
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and ΔpH used here is consistent with a doubling of atmospheric CO2 concentrations of 

~800 ppm, an unlikely scenario for the average reef this century (Hughes et al., 2017a). 

Consequently, the suitability and applicability of metabolomics approaches in monitoring 

the long-term coral response to realistic, end-of-century, ocean acidification scenarios 

warrant further assessment. 

Synergistic effects 

While it is imperative to develop approaches and databases to establish the induced 

changes in the coral metabolome in response to individual stressors, the synergistic effects 

of ocean warming and acidification on corals must be considered to truly understand the 

impact of climate change. Comparison of the physiology of P. damicornis exposed to 

simulated future ocean temperatures and elevated pCO2 levels with GC-MS and LC-MS-

based metabolomics offers insight into these stress-induced changes (Sogin et al., 2016). 

Significant variables were identified and functionally analysed, demonstrating that corals 

alter carbohydrates, cell structural lipids and signalling compounds in response to these 

elevated stressors. For the first time, coral metabolic profiles were modelled to predict net 

photosynthetic rate (measured as oxygen flux) and corals exposed to synergistic 

temperature and pCO2 treatments. Understanding this link between the metabolome and 

photosynthetic performance is critical to identifying early biomarkers of coral stress with 

potential application in coral reef biomonitoring. 

A large-scale multi-platform approach using GC-MS and LC-MS metabolomics profiled 

the metabolome of the soft corals Sarcophyton ehrenbergi and S. glaucum and their 

dinoflagellate symbionts under simulated ocean warming and acidification (Farag et al., 

2018). Soft coral response to thermal and high CO2 stress increased the free amino acid 

pools, particularly alanine, which is an early indicator of acute anaerobiosis, and proline, 

which impacts the osmotic balance. The disturbance of osmotic balance was proposed as a 

biomarker of environmental stress in marine invertebrates. This study also attempted to 

modulate the bleaching response using four chemical treatments known to mitigate heat 

stress in plants (alanine, GABA, nicotinic acid and proline); unfortunately, these chemical 

treatments were unsuccessful. Regardless, identifying molecular biomarkers of coral stress 

and exploring novel solutions remains the goal for many metabolomics studies. 

2.5.6 Impacts of anthropogenic agents 

A key priority of managers is to halt and reverse the decline in water quality to maintain the 

health and resilience of coral reefs (Cooper & Fabricius, 2007, Cooper et al., 2009, 
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D’Angelo & Wiedenmann, 2014). Water quality is affected by a number of factors such as 

nutrient loading, sedimentation, pesticides, herbicides and even sunscreen. Changes in 

water quality impact coral physiology and induce a wide range of responses (Roder et al., 

2013, Browne et al., 2015); however, little is understood about the impacts on coral 

metabolism and health, nor how changes in water quality present in the coral metabolome. 

A better understanding of how water quality factors alter the coral metabolome will further 

our knowledge of coral health while also providing highly sensitive and dynamic indicators 

of water quality itself.  

Metabolomics biomonitoring of coral health and water quality was recently reported by 

Tang et al. (2018). Orthogonal projections to latent structures (OPLS) modelled the LC-

MS-derived lipidome profiles and photosynthetic efficiency of Seriatopora caliendrum in 

response to Irgarol 1051 exposure; a common photosystem II herbicide used in marine 

antifouling applications. Irgarol 1051 exposure caused photoinhibition and increased 

production of reactive oxygen species (ROS) in S. caliendrum, consistent with previous 

studies (Downs & Downs, 2007, Maxwell & Johnson, 2000, Müller et al., 2001). Changes in 

glycerophosphocholines (a major membrane lipid) were revealed in the lipidome after 4 

days of exposure to Irgarol 1051, which was attributed to photosynthetic shortages and cell 

membrane accommodation of ROS. The models, built using a large suite of metabolites, 

offer superior calibration and resilience to background noise associated with natural 

variation – a common issue when using only a handful of molecular biomarkers. 

Acrylic acid accumulation in hard and soft corals (Acropora sp. and Lobophytum sp., 

respectively) was investigated as a potential molecular biomarker of deteriorating water 

quality (Westmoreland et al., 2017). NMR metabolomics was employed to analyse changes 

in acrylic acid, and the polar metabolome, in response to increased ammonia and 

phosphate concentration and decreased calcium concentration. Deteriorating water quality 

resulted in nearly two-fold increases in acrylic acid and acetate concentration in both coral 

species. Increases in trigonelline concentration were also observed in both coral species 

while lactate and thymine decreased in concentration. The increase in acrylic acid 

concentration in corals exposed to reduced water quality contrasted with decreases 

observed in corals exposed to thermal stress. The authors proposed that acrylic acid 

accumulation could be a protective response to oxidative stress caused by excess ammonia. 

Changes in metabolite diversity of the soft coral, Nephthea spp. as a response to water 

quality was explored by LC-MS metabolomics (Januar et al., 2012). Traditional inorganic 
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nitrogen and phosphate, salinity and pH measurements were used as indicators for water 

quality index. In a unique data-driven environmental metabolomics approach, an ecological 

index was generated from the LC-MS data. The index included indicators such as 

metabolite richness, metabolite diversity and metabolite evenness. A correlation analysis of 

the water quality index and the LC-MS ecology index found a significant relationship 

between metabolite richness, particularly amongst terpenoids, and water quality. Water 

quality and environmental stress affected the metabolite richness of soft corals, with 

potential consequences for pharmaceutical studies and the capability of soft corals to 

defend against predation. 

With a focus on natural products and drug development, LC-MS metabolomics has been 

used to assess the potential of abiotic and biotic elicitors to increase secondary metabolite 

production in soft corals (Farag et al., 2017a, Farag et al., 2017b). Sarcophyton ehrenbergi was 

subjected to one physical and five chemical plant elicitors: physical wounding, methyl 

jasmonate, salicylic acid, ZnCl2, glutathione and β-glucan. Methyl jasmonate inhibited 

photosynthetic efficiency (Farag et al., 2017a) and salicylic acid and ZnCl2 altered metabolite 

production, eliciting a significant increase in the production of cholesteryl acetate and 

sarcophytonolide I, respectively. In a second study by Farag et al. (2017b), S. glaucum and 

Lobophyton pauciflorum were exposed to three oxylipin analogues, prostaglandin, methyl 

jasmonate, and arachidonic acid; the diterpene precursor, geranylpyrophosphate, and 

physical wounding. Multivariate data analysis revealed changes in the secondary 

metabolism of S. glaucum exposed to prostaglandin and methyl jasmonate. Terpene and 

sterol metabolites, such as campestene-triol and cembranoid were upregulated, with 

prostaglandin eliciting the strongest response. The effects of these chemical elicitors were 

less pronounced in L. pauciflorum, which pointed to a differential oxylipin response in soft 

corals. 

Metabolic profiling has also been used to evaluate the toxicity and bioaccumulation of 

octocrylene in Pocillopora damicornis, a common ingredient in many sunscreens and cosmetics 

(Stien et al., 2018). Metabolic profiles showed that octocrylene was transformed into fatty 

acid conjugates yielding highly lipophilic octocrylene analogues, which are more likely to 

accumulate in the coral tissue than octocrylene itself. Exposed corals also had higher levels 

of acylcarnitines, suggesting a disturbance in the fatty acid metabolism related to 

mitochondrial dysfunction. The discovery that octocrylene forms lipophilic analogues 

suggests environmental monitoring of octocrylene has been underestimating octocrylene 
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bioaccumulation for some time. The authors rightly argue for an in-depth re-evaluation of 

octocrylene toxicity and its bioaccumulation rate in the ocean’s food chain. 

2.6 Concluding Remarks 

It is clear from the literature available that metabolite analysis of Symbiodiniaceae symbioses 

peaked in the 1970s and 1980s with a keen interest in the nutritional roles that symbionts 

provided their hosts and how they interacted. The pioneers in these early days of 

metabolite analysis made a significant contribution to the knowledge that marine science 

benefits from today. Little was understood in those early years about the number or 

diversity of metabolites produced by the symbiont, nor how the host utilised them, yet they 

proved the symbiont was providing nutrition to the host and that free-living zooxanthellae 

behaved differently to their symbiotic counterparts.  

Growing concerns over climate change in the 1990s resulted in a greater focus on 

monitoring the photophysiological responses of corals and the loss of coral diversity at the 

expense of metabolism research. This trend has reversed to some extent in recent times 

with improvements in analytical platforms and the increased popularity of metabolomics. 

Nevertheless, the fundamental cellular processes and metabolic interplay that establishes 

and sustains the coral holobiont remain somewhat neglected to this day. For example, coral 

holobiont phenotype identification, signalling pathways between host and symbiont, and 

connecting gene and protein expression with metabolite regulation are just a few research 

areas that have yet to be investigated in any real detail. The specific and synergistic effects 

of anthropogenic stressors, including ocean warming and acidification (under the most 

likely emissions scenarios for this century) and water quality on corals remain poorly 

understood. With coral reefs continuing to experience accelerating rates of change and 

poor recovery despite decades of research, metabolomics methods provide a solid 

foundation towards the development of a metabolomics-based biomonitoring program 

that may address many of these knowledge gaps. 
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Chapter 3 

Extraction protocol for non-targeted NMR and LC-MS 

metabolomics-based analysis of hard coral and their algal 

symbionts 
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3.1 Introduction 

The coral holobiont is a complex symbiotic organism that consists of the animal host and a 

plethora of intracellular and extracellular macro- and microbiota, such as fish, crustaceans, 

polychaetes, dinoflagellates, prokaryotes, viruses, fungi, archaea and endolithic algae (Rohwer et 

al., 2002, Stella et al., 2011, Bourne et al., 2009). While many of the these have mutualistic 

associations with the coral host, the most well-known and studied of them is that of the 

photosynthetic dinoflagellate, Symbiodiniaceae. Members of this diverse genus can live freely in the 

water column, or sediment (Adams et al., 2009), and also in symbiosis with a number of marine 

invertebrates, such as corals, giant clams and anemones (Stat et al., 2006). This symbiosis allows 

the animal host to meet part or all of its carbon requirements through autotrophy, thereby 

gaining a competitive advantage through increased fitness (Muscatine & Porter, 1977, Trench, 

1979). The relationship enables the bilateral exchange of metabolites, including metabolites that 

are not produced solely by either organism (Lewis & Smith, 1971, Gordon & Leggat, 2010). 

The success of this symbiosis is based upon the invertebrate host supplying inorganic nutrients to 

the algal symbiont, which are returned as organic compounds and used to supplement the host’s 

energy and nutritional demands (Yellowlees et al., 2008). In the coral symbiosis, Symbiodiniaceae are 

found in a host-derived vacuole (symbiosome membrane) within the gastrodermal cell layer, 

which forms during the acquisition of the algal symbiont. The symbiosome membrane closely 

resembles those in legumes where the plant membrane encloses the symbiotic rhizobium cells 

(Roth et al., 1988, Rands et al., 1993). Consequently, the exchange of all organic and inorganic 

nutrients must proceed through this cell membrane and thus it is critical to the metabolic 

interaction between the symbiont and host. 

Of the metabolites involved in the algal-invertebrate symbiosis, not all are involved in nutritional 

roles. Compounds such as mycosporine-like amino acids (MAAs) play an important role in the 

protection of coral from ultraviolet light, in addition to acting as free radical scavengers (Dunlap 

& Yamamoto, 1995). Likewise, dimethylsulfoniopropionate and its breakdown products, 

dimethylsulfide and acrylate, are involved in free radical scavenging (Sunda et al., 2002), osmotic- 

and cryoprotection (Trevena et al., 2000) and the structuring of microbial communities (Miller et 

al., 2004, Sjoblad & Mitchell, 1979, Raina et al., 2010). While the biological role of some of these 

metabolites have either been identified or closely examined, there are still many metabolites of 

which the exact function remains unknown. For example, free amino acids and other small 

compounds may act as host release factors that stimulate the production and release of other 

metabolites from Symbiodiniaceae to the host (Muscatine, 1967, Trench, 1971c, Gates et al., 1995). 
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What’s more, compounds such as zooxanthellatoxins (Nakamura et al., 1993), zooxanthellamides 

(Onodera et al., 2003), betaines, alkaloids and ceramides (Nakamura et al., 1998) have all been 

isolated from either Symbiodiniaceae or invertebrates in symbiosis with Symbiodiniaceae; however, 

their biological role still remains unclear. On that note, the diversity of metabolites involved in 

the algal-invertebrate symbiosis, along with the theoretical prospect of changing growth 

conditions and host factors to manipulate metabolite production, highlights the potential role 

that metabolomics will have in elucidating metabolites of interest from both hard coral and their 

algal symbionts for not only the biochemical sciences, but also for natural products research. 

The extraction protocol presented here was developed with the following criteria in mind. Firstly, 

the protocol had to be user friendly and as such, should not require any further handling or input 

from the analyst than was absolutely necessary. The benefits of such an approach were two-fold; 

in addition to reducing the working time, it also ensured that any interference from the analyst 

that may affect the integrity of a sample was kept to a minimum. The next criterion, maximising 

the number of features detected by 1H NMR and LC-MS, was based on the non-targeted 

metabolomics approach taken. As such, the choice of extraction solvent and analysis conditions 

played an integral role in fulfilling that requirement and are discussed later in more detail. The last 

criterion, but by no means the least, was reproducibility. Reproducibility is the key to a successful 

metabolomics study with the results of statistical analyses, and hence the conclusions that can be 

drawn from an experiment, being reliant on reproducible data. Consequently, not only were 

experimental conditions kept constant and similar between samples, sample collection and 

preparation were also regulated by maintaining a constant handling time and temperature. As 

such, aspects of the protocol that could utilise multiple techniques (i.e. sample concentration) for 

achieving the same outcome were thoroughly tested to ensure that the least disruptive technique 

was employed. 

The choice of extraction solvent played a crucial role in the development of this protocol. For 

metabolomics, this choice depends largely on the metabolites of interest, the analytical platform 

used, and the hypothesis put forward by the researcher. If, for example, one was interested in 

employing a targeted metabolomics approach, such as the analysis of free amino acids, then in 

most cases an appropriate solvent system that targets those compounds is deemed most suitable. 

However, it is important to keep in mind that in symbiotic coral, the organism is comprised of 

two distinctly different cell types, animal and algal cells, of which the latter have more robust cell 

walls than that of their host. Consequently, many high polarity solvent systems (i.e. those high in 

water content and suitable for free amino acid extraction) will not easily permeate the cell walls of 

the algal symbionts and would therefore require the employment of more time-consuming 
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mechanical disruption methods. With that in mind, a biphasic methanol-chloroform extraction 

that is capable of permeating the algal cell walls (Viant, 2008), while partitioning polar and non-

polar metabolites into two separate phases, would in most cases, be deemed most suitable for the 

targeted metabolomics analysis of symbiotic coral. 

Considering the two distinct cell types of symbiotic coral, and the fact that this protocol was 

developed for a non-targeted metabolomics approach, the effectiveness of five commonly used 

solvents employed in the extraction of compounds from both plant and animal material were 

examined. Each extraction was carried out in the same manner as described in the methods using 

the symbiotic hard coral, Acropora aspera. The solvents tested for this protocol were; 100% 

methanol, 70% aqueous methanol, 90% aqueous acetone, 100% water and a 

methanol:dichloromethane:water (MeOH:DCM:H2O) biphasic solvent system. Of the five 

solvents, the 100% methanol and 90% aqueous acetone solvents produced the greatest number 

of features in both the 1H NMR and LC-MS analyses (see Figure 3.1). However, they also 

extracted large amounts of lipid, which is detrimental to reversed-phased LC-MS analysis and as 

such, were eliminated as viable extraction solvents. The 100% water solvent was eliminated after 

microscopy analysis of the residual biological matter showed that the algal cells were not 

effectively lysed. In 100% water, enzymatic and metabolic activity was not halted, affecting the 

integrity of the sample. While the biphasic MeOH:DCM:H2O extraction may be suitable for a 

targeted metabolomics analysis, there was a distinct disadvantage of this technique when applied 

to the non-targeted metabolomics analysis of symbiotic hard coral. Essentially, too many of the 

less polar metabolites partitioned into the organic phase of the solvent system, along with the 

lipids. This resulted in an aqueous phase that had very few features for both NMR and LC-MS 

analyses (see Figure 3.1). Of the five extraction solvents examined, the 70% aqueous methanol 

solvent displayed excellent reproducibility, extracted minimal amounts of lipid, effectively lysed 

the algal cells and complied with the proposed criteria. Hence, the 70% aqueous methanol 

solvent was considered the most suitable for a non-targeted metabolomics study of hard coral 

and their algal symbionts. 
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Figure 3.1 LCMS comparison of four different solvents. Total ion chromatograms of 100% methanol (A), 70% aqueous 

methanol (B), 90% aqueous acetone (C) and the aqueous phase of the MeOH:DCM:H2O extraction (D) 

Metabolomics has become a popular technique for the study of biological samples, which can be 

attributed to the high number of quality studies published in a diverse number of fields such as 

environmental science, medicine and pharmaceuticals. A quality metabolomics study depends 

largely on the hypotheses put forward by the researcher and a thorough understanding of the 

scientific principals involved. Consequently, each study needs to be considered in the context of 

the hypothesis. Presented here is an extraction protocol for a non-targeted metabolomics analysis 

of symbiotic hard coral using LC-MS and 1H NMR. The protocol requires minimal user input 

and provides reproducible and reliable results using readily available labware and reagents. Every 

effort has been made to provide the reader with all the details required to perform the technique, 

including many of the costly and time consuming “pitfalls” or “traps” that were discovered 

during its development. This protocol can be confidently accomplished by those with less 

experience in the extraction and analysis of symbiotic hard coral and their algal symbionts. 

3.2 Materials 

Extraction solvents should be prepared in ultra-clean glassware (see Note 1) at 25 °C using Mass 

Spectrometry (MS) grade solvents (see Note 2) and ultrapure (MilliQ) water with a minimum 
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resistance of 18 MΩ cm-1. Extractions should be performed at approximately 4 °C or cooler (see 

Note 3) in ultra-clean glassware or disposable scintillation vials of known purity. High quality 

centrifuge tubes are recommended for removing particulates from liquid extracts (see Note 4). 

To avoid unwanted contamination, all aspects of the extraction process should be performed 

while wearing appropriate gloves washed with MilliQ water. 

3.2.1 Coral collection and quenching materials 

1. Liquid nitrogen 

2. Disposable foam dewar 

3. 50 mL plastic centrifuge tubes (Nunc/Thermo Fisher Scientific, Scoresby, VIC, Australia) 

(see Note 4) 

4. Double-action, Stille-Liston bone cutters for cutting coral into nubbins 

5. Stainless steel forceps or clamps 

6. Liquid nitrogen or dry ice for temporary storage 

7. Minus 80 °C freezer for long-term storage 

8. Nally bin with a tether attached 

3.2.2 Sample extraction, concentration and clarification components 

1. 70% aqueous methanol extraction solvent: Using a clean glass measuring cylinder, 

measure and combine 70 parts of MS grade methanol to 30 parts of MilliQ water up to 

the required volume and store in an acid-washed glass Schott bottle or similar at minus 20 

°C until required for use 

2. 15 mL centrifuge tubes (Nunc/Thermo Fisher Scientific, Scoresby, VIC, Australia) (see 

Note 4) 

3. 20 mL glass scintillation vials (Sigma) (see Note 5) 

4. Dry ice or liquid nitrogen contained in two disposable foam dewars 

5. Double-action, Stille-Liston style bone cutters 

6. Glass Pasteur pipettes and silicone pipette bulb 

7. Freeze dryer (Dynavac FD12) 

8. Speed vacuum evaporator (Savant/Thermo Fisher Scientific, Scoresby, VIC, Australia) 

9. Sonic water bath maintained at 0 - 4 °C 

10. An appropriate labelling system (see Note 6) 

11. An appropriate rack for upright handling and storage of glass vials in a minus 80 °C 

freezer 

12. Centrifuge with a carousel suitable for 15 mL centrifuge tubes 
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3.2.3 LC-MS materials and conditions 

1. MS certified sample vials (see Note 7) (Verex™, Phenomenex, Lane Cove, NSW, 

Australia) 

2. 99% formic acid in 1 mL glass ampules (see Note 8) (Sigma) 

3. Superficially porous C18 or XB-C18 HPLC column and matching guard column 

(Kinetex™, Phenomenex, Lane Cove, NSW, Australia) 

4. MS grade acetonitrile (see Note 2) (Fisher Optima®, Thermo Fisher Scientific, Scoresby, 

VIC, Australia) 

5. 1000 μL auto pipette 

6. LC-MS platform: Low resolution mass spectral data (see Note 29) were measured on a 

Bruker Daltonics Esquire 3000 plus mass spectrometer (ESI MS) with an Apollo source 

connected to an Agilent 1100 HPLC system comprising degasser, binary pump, 

autosampler and PDA. All LC-MS data was collected using Bruker Daltonics Esquire 

Control v5.3 and Hystar v3.1 operating on Windows XP Professional.  

3.2.4 NMR materials 

1. NMR sample tubes, 509-UP-7 (see Note 9) (Norell Inc., Landisville, NJ, USA) 

2. Deuterated methanol (CD3OD, D 99.8%) (see Note 10) (Cambridge Isotope 

Laboratories, Andover, MA, USA) 

3. 1 mL graduated glass syringe (Hamilton Company, Reno, NV, USA) 

4. Lint-free tissue (Kimwipes, Kimberley-Clark, Milsons Point, NSW, Australia) 

5. 6 mL glass scintillation vials (see Note 5) 

6. 1000 μL auto pipette 

7. NMR spectrometer (1H NMR spectra in this study were collected on a Bruker Avance 

600 MHz NMR spectrometer complete with TXI cryoprobe operating at 600 MHz for 
1H in CD3OD, δH 3.31 ppm) 

3.3 Methods 

3.3.1 Coral collection and metabolism quenching 

Harvesting coral and the quenching method used is dependent on the conditions at the collection 

site. It is recommended to harvest coral from a sheltered lagoon or reef flat where the collection 

can be undertaken safely in calm, shallow water that is approximately knee deep. As this method 

requires small amounts of liquid nitrogen to be taken to the site of collection, care should be 
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taken to always ensure the safety of personnel. Generally, 2-3 L of liquid nitrogen in a foam 

dewar is sufficient to harvest coral nubbins over a 30-minute period. The foam dewar containing 

the liquid nitrogen can be placed in a Nally bin and floated on the water’s surface so that nubbins 

can be placed into the liquid nitrogen immediately after they are excised from the colony. This 

timing is critical as it is well documented in coral that physical interference can result in an 

immediate chemical response (Tapiolas et al., 2010). 

Collection of hard coral from deeper waters, which will often involve the use of SCUBA and a 

boat, requires a different sampling technique. For this method, it is recommended to use a 

hammer and a cold chisel with a 1-inch cutting surface to remove all or part of a colony from the 

substrate. After which, the whole colonies can be dissected into smaller nubbins while still 

submerged just below the water’s surface and immediately placed into liquid nitrogen that is kept 

on the boat. Care should be taken to ensure that dive profiles do not involve multiple ascents and 

descents and as such, all colonies should be brought close to the surface in only one attempt per 

dive. 

For metabolomics, diligent work and a reliable method will produce sound results that, in some 

cases, will not require the commonly used techniques of data scaling (i.e. normalisation and 

transformation). In this protocol, for example, normalising samples to a common extract 

concentration by drying and resuspending the sample in the appropriate volume of solvent 

practically eliminated the need to normalise at the data processing stage. As a means of verifying 

the robustness of this method and the importance of quickly and effectively quenching the coral 

metabolism, five stressed coral nubbins (nubbins collected and snap frozen after 30 minutes of 

agitation in a bucket of seawater) were compared with five non-stressed coral nubbins (nubbins 

snap frozen immediately according to this method) using 1H NMR and Principal Components 

Analysis (PCA). As expected, the results of the PCA show that the stressed nubbins displayed 

considerably greater variability (Figure 3.1) Moreover, scaling of the data matrix rows and/or 

columns reduced the amount of variability explained by the PCA from 97.96% in 3 PCs without 

scaling, to 97.16% in 4 PCs with scaling. The fact that scaling reduced the ability of PCA to 

explain the variability associated with our data adds considerable weight to the reproducibility of 

this method. Methods reported below conform to the Metabolomics Standards Initiative 

(Sumner et al., 2007). 
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Figure 3.2 PCA scores plot of 70 % methanol extracts of stressed (open circles) versus non-stressed (open triangles) A. 

aspera analyzed by 1H NMR. The much tighter grouping of the non-stressed samples highlights the reproducibility obtained 

by this protocol and the importance of fast and effective quenching of the metabolism. Binned NMR data (0.02 ppm widths) 

was mean-centred and Pareto -scaled prior to PCA. 

Method 

1. Fill a disposable foam dewar with liquid nitrogen, store, transport and handle with 

appropriate care 

2. Place the foam dewar containing the liquid nitrogen, along with the bone cutters into a 

tethered Nally bin that is suitable for use as a stable, floating work platform 

3. Use the double-hinged bone cutters to cut the coral nubbins into approximately 5 cm 

pieces (see Note 11) 

4. Immediately after cutting, place each nubbin into the foam dewar containing liquid 

nitrogen to snap freeze. Nubbins can remain in the liquid nitrogen until ready for transfer 

into 50 mL centrifuge tubes 
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5. Upon returning to shore, remove the coral nubbins from the liquid nitrogen using steel 

forceps and place immediately into labelled 50 mL centrifuge tubes (see Note 12) 

6. Place the filled tubes back in liquid nitrogen or onto dry ice to keep frozen until ready for 

transfer into a minus 80 °C freezer for long-term storage 

3.3.2 Sample extraction, concentration and clarification 

Given the desire to extract and analyse as many metabolites as is feasible whilst excluding as 

many lipid classes as possible for reasons mentioned previously, it is recommended to start with 

the 70% methanol extraction and then store the sample at minus 80 °C in the dark. Subsequently, 

the lipid, chlorophyll and other less polar classes of compounds can be examined later by re-

extracting the biological material in a less polar solvent. As such, long-term storage conditions are 

an important consideration if samples are to be analysed later and it is widely accepted that 

storing samples at or below minus 80 °C and in the dark is adequate for halting enzyme or 

metabolite activity and preserving the integrity of samples (Fiehn, 2002). It should be noted, 

however, that storing samples above minus 25 °C is not adequate for performing the same task 

(Lauridsen et al., 2007, Ettinger-Epstein et al., 2007, Tapiolas et al., 2010). 

While the reproducibility of a method is influenced by the choice of extraction solvent, other 

factors such as sample concentration, extraction temperature, sample state before extraction (i.e. 

wet or dried sample), collection methods, sample storage and sample handling (i.e. the amount of 

time kept at room temperature for analysis) can also have a significant effect on the outcome of a 

particular experiment. With regards to the extraction temperature, sample storage and handling, it 

is largely a case of maintaining constant and similar conditions for all samples while reducing 

exposure to elevated temperatures that may cause sample degradation. However, where several 

choices are available, as is the case for sample concentration (speed vacuum, lyophilisation or 

nitrogen stream) and sample state prior to extraction (wet or lyophilised sample), it is appropriate 

to consider each option with respect to its potential to minimise sample degradation and data 

variability. With that in mind, 1H NMR and PCA were used to examine the variability associated 

with three different solvent removal techniques (speed vacuum, lyophilisation and nitrogen 

stream at 25 °C) and the extraction of either lyophilised or wet coral nubbins. Of the three 

sample concentration techniques, drying under a stream of nitrogen gas at 25 °C introduced the 

greatest variability, while lyophilisation and speed vacuum introduced similar levels of variability 

(see Appendix Figure 2). As such, drying under a nitrogen stream at 25 °C was not considered an 

appropriate sample concentration technique. Furthermore, the analysis of extractions performed 

on wet and lyophilised samples showed that the extraction of wet sample was less reproducible, 
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most likely due to the greater differences in water and salt composition between wet and dried 

samples. Consequently, extractions were performed on lyophilised coral and that a combination 

of lyophilisation and speed vacuum was used for sample concentration. 

Method 

1. Fill two appropriately sized disposable foam dewars with dry ice or liquid nitrogen. Place 

the bone cutters and labelled 20 mL scintillation vials in the first container to cool and 

place the 50 mL centrifuge tubes containing the coral nubbins collected in step 3.1.4 into 

the second dewar 

2. Using the chilled bone cutters cut each coral nubbin into several 1 cm3 pieces so that each 

nubbin fits into the 20 mL glass scintillation vials (see Note 13). Remove any ice that may 

have dislodged from the nubbin when cutting (see Note 14). Return vials to the dry ice to 

keep frozen until lyophilisation 

3. Undo each lid of the cold vials containing the frozen coral nubbins a quarter of a turn to 

ensure the atmosphere within each vial can escape when subjected to the vacuum 

associated with the lyophilisation. Vials should be placed upright in a suitably sized rack 

or tray and placed into a freeze drier for 24 hours or until completely dry (see Note 15) 

4. After lyophilisation, fill each scintillation vial containing the coral nubbin pieces with cold 

(0 - 4 °C) 70% methanol to approximately 75% of its volume, ensuring that the coral 

nubbin is completely submersed in the extraction solvent 

5. Sonicate each vial for 5 mins in a sonication bath chilled to 0 - 4 °C (see Note 16) 

6. Decant the extract into 15 mL centrifuge tubes (see Note 4) and centrifuge at 5800 rcf 

for 5 mins to settle any particulates still present in the extract solvent 

7. Using a glass Pasteur pipette remove the supernatant and transfer into clean, pre-

weighed, 20 mL glass scintillation vials (see Note 17) 

8. Remove the lids of each vial and place the vials containing the 70% methanol extracts 

into a speed vacuum and dry at ambient temperature for ~ 1 hour (see Note 18) 

9. Remove the samples from the speed vacuum and freeze the remaining sample in liquid 

nitrogen or by placing in a minus 80 °C freezer for 1 hour 

10. Undo the lids of each vial one quarter of turn and place the frozen samples into a freeze 

drier and lyophilise to complete dryness 

11. Remove the samples from the freezer drier and tighten caps immediately to avoid any 

absorption of water 

12. Weigh each vial and calculate the extract weight by subtracting the empty weight of each 

vial from the final weight (see Note 19) 



 

 50 

13. Resuspend each of the dried extracts in an appropriate amount of 70% methanol, 

ensuring that each extract is made up to a uniform concentration (see Note 20) 

14. Store samples at minus 80 °C until ready for analysis 

3.3.3 LC-MS Analysis 

It is important to consider the optimisation of the analytical platforms, which must be done on a 

case-by-case basis. While it is not pertinent to discuss in detail the optimisation of our own LC-

MS instrument and its associated peripheries, the relevant details are provided. In particular, it is 

worth mentioning some of the details related to our choice of column and mobile phase, along 

with the parameters and conditions used for our own LC-MS analysis. With regards to the 

chromatography, the ability of three superficially porous columns to separate the 70% methanol 

extract (20 mg/mL) of symbiotic hard coral using two different acidified organic mobile phases, 

0.1% formic acid in methanol and 0.1% formic acid in acetonitrile, was tested. Columns were 

rated based on peak separation, resolution and the number of features within each 

chromatogram. Of the three different columns and two different mobile phases, the XB-C18 

column and the 0.1% formic acid in acetonitrile mobile phase gave reproducible chromatograms 

with the best resolution, peak separation and the greatest number of features (see Figure 3.3 and 

Appendix Figure 1). 

 
Figure 3.3 Overlaid LC-MS ion trap base peak chromatograms of five replicate 70 % methanol extracts of A. aspera. An 

XB-C18 column and a 0.1% formic acid in aqueous acetonitrile mobile phase gradient was used to obtain the data shown 
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Method 

1. Remove the samples prepared according to section 3.2 from the minus 80 °C storage and 

store at 4 °C for 1 hour to defrost 

2. Using a 1000 μL auto pipette and clean pipette tips, place 1 mL of each sample into new 

1.5 mL centrifuge tubes and centrifuge each sample at 4 °C for 5 mins at 21,900 rcf to 

ensure that no particulates remain in the sample (see Note 21) 

3. Transfer 100 μL of each sample into a new reduced volume HPLC sample vial or one 

containing a reduced volume insert (see Note 22). Return the remaining sample back to 

minus 80 °C storage 

4. Store HPLC vials in the dark at minus 80 °C until ready for analysis 

5. Perform the LC-MS analysis. Conditions described in steps 6 and 7 can be used as an 

initial starting point or guide (see Note 23) 

6. Chromatography conditions: An XB-C18 superficially porous, (Phenomenex, Kinetex 3 × 

100 mm, 2.6 μm) column was mated with a 0.5 μm stainless steel filter and guard 

cartridge of the same stationary phase; 2 μL injection volume; mobile phase A (0.1% 

formic acid in water); mobile phase B (0.1% formic acid in acetonitrile); gradient elution 

from 50% A to 100% B at a flow rate of 350 μL/min for 35 mins. After 35 mins 100% B 

was maintained for 7.1 mins at the same flow rate. At 42.1 mins the mixture was changed 

to its initial setting (50% A, 50%B) and the column equilibrated until 47.1 mins 

7. MS Acquisition parameters: ESI ion source; positive ion polarity; scan range from 50 to 

1000 m/z; capillary exit of 120 V; accumulation time of ~ 8000 μs; Drying temperature 

of 350 °C; Nebuliser pressure of 32 psi; Drying gas flow of 8 L/min 

8. Agilent ES tuning mix ACN solution (G2421A) was used as the calibration sample for 

the performance test. This solution contains several calibration ions at mass values from 

117 Da to 2,722 Da. 

9. MS processing parameters: Base peak chromatograms were calculated with background 

removal. Raw data was mean-centred prior to PCA. 

3.3.4 1H NMR analysis 

It is not within the scope of this protocol to provide in detail the methods used for the 1H NMR 

analysis of symbiotic hard coral. As such, using the well-described protocol written by Mark 

Viant as a solid foundation for the development of a high-quality metabolomics NMR analysis is 

recommended (Viant, 2008). Although our NMR analysis is not described in detail, there were 

aspects worth mentioning. For example, and of particular importance, is that 1H NMR was 

proven to be effective at identifying differences between coral that were either stressed or healthy 
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at the time of snap freezing (Figure 3.1) (see Note 24). However, upon examination of the 1H 

NMR spectra there were some noticeable, yet minor, shifts in signal position, which were 

attributed to the effects of high salt concentration and differences in the pH of samples. While 

most NMR metabolomics experiments employ the use of pH buffers to avoid such signal shifts, 

in this case, the shifts were small and within the confines of the binned data; hence the PCA was 

still very effective. As such, buffering of the sample pH using commonly employed buffers, such 

as sodium phosphate, were not included as part of this protocol (see Note 25) nor was a 

chemical shift standard (see Note 26). 

Method 

1. Remove the samples prepared according to section 3.2 from the minus 80 °C storage and 

store at room temperature (20 – 25 °C) for 30 minutes to thaw 

2. Using a 1000 μL auto pipette and a clean tip for each sample, place 800 μL of each 70% 

methanol extract into new, individually labelled, 6 mL glass scintillation vials 

3. Remove the lids of each vial and place the vials containing the extracts into a speed 

vacuum and dry at ambient temperature for ~ 10 mins (see Note 18) 

4. Remove the samples from the speed vacuum and freeze the remaining sample in liquid 

nitrogen or by placing in a minus 80 °C freezer for 1 hour 

5. Undo the lids of each vial one quarter of turn and place the frozen samples into a freeze 

drier and lyophilise to complete dryness 

6. Remove the samples from the freezer drier and tighten caps immediately to avoid any 

absorption of water 

7. Using a 1 mL graduated glass syringe, reconstitute each sample to its original 20 mg/mL 

concentration by adding 800 μL of deuterated methanol, (CD3OD, D 99.8%) 

8. Place each vial containing the extracts in CD3OD into a sonic bath for 5 mins to 

completely dissolve the extracts 

9. Using a 1000 μL auto pipette and a clean tip for each sample, transfer the 800 μL of each 

sample into clean, individual and appropriately labelled 5 mm NMR tubes 

10. Cap each tube, seal with parafilm and store upright at minus 80 °C until ready for analysis 

11. Prior to analysis, thermally equilibrate samples by storing the tubes at room temperature 

(~ 25 °C) for 30 minutes (see Note 27) 

12. Perform the NMR analyses using the acquisition and processing parameters in steps 13 

and 14 as a guide 

13. Acquisition parameters: Bruker pulse sequence zgesgp (1D excitation sculpting using 180 

water-selective pulses) comprising [relaxation delay–180°–acquire]; 8.3 kHz spectral 
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width; 3 s relaxation delay; typically 4 dummy scans followed by 32 transients (ns) are 

collected into 32K data points; receiver gain was constant for all samples; temperature set 

at 298K 

14. Processing parameters: Zero-filling was not applied; exponential line broadening of 0.3 

Hz; Fourier transformation; manual phase correction (zero- and first-order corrections); 

baseline correction was not performed (see Note 28); calibrate the spectrum by setting 

CD3OD peak to 3.31 ppm. Raw data was mean-centred prior to PCA. 

3.4 Notes 

1. It is critical to ensure that all reusable glassware is free from contaminants that may affect 

the analysis. LC-MS using superficially porous columns is particularly susceptible to 

contaminants such as polyethylene glycol, slip agents, biocides and plasticisers. They can 

be concentrated on reverse phase LC columns and eluted during a gradient. These 

contaminants are commonly found in detergents used for washing glassware and any 

plastic items they come in contact with (i.e. drying racks and gloves). They are often 

identifiable by broad peaks in the chromatogram with repeating mass units in the 

corresponding mass spectrum. As such, care should be taken to avoid any unnecessary 

exposure of glassware to plastic items. Gloves should be washed in ultrapure water to 

remove any slip agents before handling and all glassware of unknown purity should be 

acid-washed in a solution of 50% nitric acid (HNO3) for 30 mins then rinsed at least 3 

times with MilliQ water. Glass Schott bottles, beakers and measuring cylinders can be 

filled to the brim with 50% HNO3 and left for 30 mins and then triple-rinsed with MilliQ 

water. It is not necessary to wash the outside of any glassware. 

2. The use of high-quality MS grade solvents is highly recommended to eliminate the 

possibility of inferior solvents introducing spurious features to an analysis. This method 

recommends the use of Fisher Optima® LC-MS solvents (Thermo Fisher Scientific, 

Scoresby, VIC, Australia). 

3. While the 70% methanol extraction solvent effectively halts enzyme and metabolic 

activity, it is considered good practice to ensure that the temperature is kept as low as 

feasibly possible throughout the extraction and analysis to avoid unwanted changes in 

chemistry. Also, as temperature is not as critical for extraction efficiency as solvent choice 

(Beltran et al., 2012), a temperature range of 0 °C to 4 °C is recommended for this 

protocol. 
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4. All plastic centrifuge tubes should be made of virgin polypropylene and free from slip-

agents, biocides and plasticisers. 

5. Glass scintillation vials should be of known purity and utilise an inert, contaminant and 

extractable free Teflon or foil-lined gasket. Vials having a plastic lid without such a gasket 

should be avoided. 

6. This protocol recommends labels be made of plastic film and be solvent resistant. Labels 

made of paper or absorbent material can affect the calculation of extract yields as they 

contribute to a loss in mass during the solvent removal steps. Alternatively, permanent 

markers can be used to label vials, however, care should be taken to ensure that spilt 

solvents do not remove the markings. 

7. During the development of this protocol, the silicone/Teflon septa of standard auto-

sampler vials was found to contribute significant levels of plasticiser contamination to 

each analysis. As such, sample vials, lids and septa used in LC-MS auto-samplers should 

be certified as MS grade. The use of certified Verex™ vials, lids and septa (Phenomenex, 

Lane Cove, NSW, Australia) is highly recommended. For cases where reduced volume 

glass inserts are used, then it is acceptable to use standard vials with MS certified lids and 

septa as the glass inserts are of sufficient purity. 

8. The cost of formic acid supplied in 1 mL glass ampules can be very expensive and as 

such, it is not considered essential for this protocol, however, it does buy peace of mind 

for the analyst and is preferable. If using formic acid supplied in larger volumes, it is 

highly recommended to ensure the ongoing integrity of the reagent by exerting extra care 

when storing and taking aliquots from the storage container. As such, a number of 1 mL 

aliquots should be prepared in individual clean glass vials (2 mL MS certified HPLC vials 

and lids are ideal) and stored at 4 °C for later use. In this way, it is a straightforward 

process of adding the pre-measured 1 mL of formic acid to 1 L of mobile phase to give a 

final formic acid concentration of 0.1 %. 

9. NMR sample tubes should be compatible with the field frequency of the user’s NMR and 

the volume of the sample must cover the entire active region of the shim coils (700 µL in 

a 5 mm NMR tube). Dirty tubes can be cleaned by filling them with 50% HNO3 and 

soaking for 30 minutes. The acid solution can then be removed, and the tubes rinsed 

twice with ultra-pure water and again with acetone. Tubes can be dried by either air-

drying or placing them under vacuum and should never be dried at high temperature. 

Always follow the manufacturer’s instructions. 



 

 55 

10. Volatile NMR solvents should be stored in a sealed container with a suitable desiccant to 

minimise the possibility of solvents absorbing water from the atmosphere. 

11. When cutting the coral nubbins, it is preferable to cut the nubbin and allow it to fall into 

a waiting gloved hand or container. The nubbin can then be quickly transferred directly 

into the liquid nitrogen and snap-frozen with minimal handling. Care should be taken to 

avoid handling each nubbin more than required as this will damage the coral tissue, 

invoking the rapid production of coral mucous resulting in a change of chemistry. 

12. It is acceptable to place replicate nubbins in a single 50 mL centrifuge tube after the 

nubbins have been snap frozen. 

13. Once cut into smaller pieces, a nubbin should occupy approximately 30% to 50% of the 

volume of each scintillation vial. The nubbin pieces should be completely submersed 

once the vial is filled to 75% of its volume with the extraction solvent. 

14. Most of the residual seawater that was frozen with the nubbin during the collection 

process will separate from the nubbins when cutting them into smaller pieces. It is 

important that this ice be discarded to reduce the amount of undesirable salts within the 

sample. 

15. In any metabolomics study it is important to recognise the effects that certain techniques 

will have upon the sample. In the case of lyophilisation, the reduced atmospheric pressure 

will remove many of the volatile compounds. If these volatile compounds are of interest 

to the analyst, then drying under such conditions may need to be avoided and a more 

suitable technique examined. 

16. At this point extracts should be orange in colour if effective lysis of Symbiodinium cells has 

occurred. 

17. New glass scintillation vials are weighed at this point in order to acquire the empty weight 

of each vial, which will be used to calculate the weight of the crude, dry extract. 

18. The aim of this step is to remove ~ 90% to 95% of the extraction solvent. Therefore, it is 

important to remove the vials from the speed vacuum concentrator before all the liquid 

has been evaporated so that the extracts remain cooled by the evaporation process, which 

commonly takes from 10 – 60 minutes depending on the volume of solvent. The speed 

vacuum concentrator should not be used with sample heating. Drying alcohol and water 

mixtures under vacuum can be time consuming without sample heating due to the non-

ideal interaction of water and methanol molecules at low concentrations (Wakisaka et al., 

1998). As such, this protocol utilises lyophilisation as a second drying step. In this way, 
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the water-methanol interaction is overcome, the sample does not need to be heated and 

thus the sample integrity is maintained. 

19. By recording the weight of each extract, samples can be prepared at the same 

concentration for analysis. This has the effect of normalising each sample. 

20. For this method, a final concentration of 20 mg/mL is appropriate and will provide 

sufficient sample concentration for both 1H NMR and LC-MS analyses. However, factors 

such as LC column loading and NMR sensitivity, need to be accounted for when deciding 

on the appropriate concentration. 

21. Syringe filtering was not employed in this method due to the contamination that the 

rubber syringe plungers introduce into the sample. Using glass syringes as an alternative 

was ruled out because cleaning them between samples was deemed too time consuming, 

in addition to the negative impact that additional sample handling could have on the 

sample. Alternatively, centrifugal solvent resistant filters could be used; however, they 

were not tested as part of this protocol. 

22. In this instance, a 100 μL aliquot of the 20 mg/mL extract was transferred into each 

HPLC vial, hence the use of reduced volume inserts. This small amount is sufficient for 

multiple 2 μL injections and avoids the risk of compromising the entire sample. 

23. While the conditions described in steps 6 and 7 will provide a good starting point, LC-MS 

conditions may still need to be optimised depending on the type of instrument and its 

associated peripheries. 

24. In addition to the typical 1D 1H NMR experiment, the effectiveness of the 2D JRES 

experiment (Aue et al., 1976) was examined using a double spin-echo water suppression 

method (Thrippleton et al., 2005). The primary advantage of the JRES experiment for 

metabolomics lies in its ability to reduce the complexity of the typical 1D 1H NMR 

experiment by shifting the J-coupling into a second dimension. However, upon 

comparing the two experiments, it was found that there was not a sufficient gain in 

spectral decongestion to warrant using the more time consuming JRES experiment. 

25. The decision not to use a buffer was based on a number of reasons. Firstly, the observed 

signal shifts were small and within the tolerance of the 0.04 ppm bin widths used in the 

PCA. For the small number of instances where shifts in NMR peaks did occur across the 

borders of a bucket, the loadings of the PCA reflected these shifts whereby multiple and 

consecutive bins contributed to the explanation of variability in the data. The final reason 

for avoiding the use of a pH buffer was salt concentration. It was reasoned that adding a 

buffer to a marine sample, which already had a naturally high salt content, would 
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contribute to the ionic strength of the sample, exacerbating the detrimental effects of 

high salt concentration (Weljie et al., 2006). That being the case, it is critical that the 

analyst thoroughly examines and compares all NMR spectra for shifts in peak position to 

ascertain the need for pH buffering. When the use of a buffer is required, we recommend 

using a buffer with low ion mobility to preserve the sensitivity of the NMR probe, 

particularly when analysing samples high in salt concentration using cryogenically cooled 

probes (Kelly et al., 2002). 

26. Chemical shift standards were not used in this protocol as all spectra were calibrated to 

the residual methanol signal at 3.31 ppm, thus avoiding the need to manipulate the 

sample. While chemical shift standards often perform the secondary function of an 

internal standard used for quantification, we recommend the use of the ERETIC 

experiment for this purpose (Akoka et al., 1999). The advantage of the ERETIC 

experiment lies in its ability to add an electronic signal, at a chemical shift of one’s choice, 

into previously acquired spectra. The electronic signal is calibrated and integrated to a 

known concentration of any analyte of choice and inserted into the previously acquired 

spectra where it can be used for the quantification of all other signals. 

27. Warming the sample to 25 °C is necessary for cases where the NMR experiment is 

performed at 25 °C (298 K), thereby reducing the time of thermal equilibration within the 

instrument. 

28. Manual baseline correction was not performed. In our case, all baselines were observed to 

be flat within the signal region, yet distortions did occur at the extremities (visible as 

upturned edges of the baseline). These distortions could not be removed using baseline 

correction without being detrimental to nearby regions. To rectify this, our sweep width 

was increased to 14 ppm (8.3 kHz) and the spectrum offset changed to 6 ppm. In this 

way, the distortion at the extremities of the baseline was shifted to regions having no 

signals (approximately -1 ppm and 13 ppm) and were then removed from the subsequent 

PCA by only integrating the signal region from 0 ppm to 10 ppm. 

29. A low-resolution instrument, such as that used to assess the different extractions here, 

while suited to exploratory investigations of metabolic profiles during method 

development, is not suited for most metabolomics workflows. 
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3.5 Discussion and concluding remarks 

Despite the rise in popularity of coral metabolomics over the last decade, there have only been 

two attempts to provide a thoroughly investigated and validated sample preparation procedure 

for coral metabolomics (Andersson et al., 2019, Gordon et al., 2013). There are a variety of 

reasons for this but mostly, researchers are tailoring their sample preparation to the specific goals 

of each experiment, where factors such as the type of analytical platform being employed, the 

metabolite classes being targeted, or the specific hypotheses formulated (e.g. targeting a specific 

partner in the holobiont) drive the choice of sample preparation methods. Nevertheless, certain 

aspects of sample preparation and extraction have been universally adopted in coral 

metabolomics. For example, quenching is almost always performed using liquid nitrogen 

followed by storage at -80 ℃ and metabolite extraction is commonly achieved using 70% 

aqueous methanol (Andersson et al., 2019). 

The protocol reported in this chapter (published in 2013) has had a measurable impact on coral 

metabolomics. For example, extraction using 70% aqueous methanol has been successfully 

employed in a number of studies (Sogin et al., 2014, Quinn et al., 2016, Putnam et al., 2016, Sogin 

et al., 2017, Hartmann et al., 2017), revealing measurable changes in the production and utilisation 

of key endogenous molecules linked to coral functional status. The protocol is suitable for a 

variety of analytical approaches, including fragmentation mass spectrometry and negative 

ionisation with little to no modification. 

The performance of the 70% aqueous methanol extraction protocol was recently evaluated using 
1H-NMR-based metabolomics (Andersson et al., 2019). Processing steps related to metabolome 

(cryo)preservation, metabolite extraction and subsampling were evaluated for the variation 

induced, and for the intensity and number of metabolite features detected. Comparative analysis 

confirmed that while a biphasic extraction solvent of chloroform:methanol:water (2:2:1.8), was 

superior in terms of reproducibility compared with either methyl tert-butyl ether (developed for 

lipid extraction) or 70% aqueous methanol, extraction with 70% aqueous methanol was superior 

for feature detection, validating the original intent of the protocol developed here (Gordon et al., 

2013). 

The 70% aqueous methanol extraction protocol provides a solid foundation for coral 

metabolomics and while its adoption has already been realised, there is still a fundamental need 

for a standardised protocol if a metabolomics-based biomonitoring program is to be realised. 

Therefore, a more rigorous experimental and statistical evaluation of its application was 
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undertaken and is presented in the following chapters. The suitability of the 70% aqueous 

methanol extraction protocol for LC-MS and 1H NMR profiling of the metabolome of corals 

exposed to ocean warming and acidification is assessed in Chapter 4. Its effectiveness in 

extracting metabolites to predict the maximum quantum yield of photosystem II in corals 

exposed to ocean warming is assessed in Chapter 5. 

In the process of developing a method to classify temporal metabolome changes in wild coral 

species, it became evident that a more user-friendly and less hazardous method to quench coral 

samples in the field was needed. Therefore, a modification of this protocol, forgoing 

cryopreservation with liquid nitrogen for full immersion in 100% methanol, is investigated in 

Chapter 6. It is anticipated that these investigations will provide a solid foundation towards 

developing a standardised biomonitoring protocol with the potential to facilitate large-scale and 

non-expert sampling and data sharing. Ultimately, the findings will improve the prediction of 

coral functional status to guide management of reef ecosystems facing functional collapse due to 

cumulative anthropogenic stresses. 
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Chapter 4 

Classification of Discrete Acropora aspera Phenotypes Associated 

with a Simulated Bleaching Event and Elevated Carbon Dioxide 
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4.1 Introduction 

The success of coral reefs is negatively impacted from a variety of anthropogenic pressures such 

as, overfishing, climate change, nutrient runoff and pollution (Hughes et al., 2017a, Hughes et al., 

2017b, Hoegh-Guldberg, 2011). Anthropogenic activity on both local and global scales continues 

to change the configuration of coral reefs at accelerating rates and in previously unseen ways, 

despite our current knowledge of these impacts and our efforts to manage them (Hughes et al., 

2017a, Hughes et al., 2010, Pandolfi et al., 2011, Hoegh-Guldberg et al., 2017). To conserve and 

manage the coral reef ecosystem and maintain the service it provides now, and for future 

generations, it is imperative we have a better understanding of the biological processes that 

underpins its health and productivity. 

Stable seawater temperatures and aragonite concentrations are crucial factors affecting many of 

the biological processes that maintain healthy coral reefs. In scleractinian corals, the major reef 

framework builders, prolonged elevated temperatures 1-3 ℃ above the baseline summer 

maximum are sufficient to cause coral bleaching (Hughes et al., 2017a, Hoegh-Guldberg, 2011), 

while decreases in carbonate ion concentrations of ~200 μmol kg-1 seawater will reduce the rate 

of reef calcification processes to a state favouring erosion (Hoegh-Guldberg et al., 2007). 

Ocean warming and acidification also impacts the broader reef community; for example, coral 

fitness is reduced, and disease becomes more prevalent (Maynard et al., 2015), resulting in higher 

rates of coral mortality over larger regions. Algal abundance increases and can degrade or reduce 

substrate availability, impacting coral recruitment and the ability of coral reefs to recover from 

other major disturbances such as cyclones and Crown of Thorns Starfish (CoTS) outbreaks 

(Ledlie et al., 2007, Pandolfi et al., 2011). In turn, a decline in abundance of animals that rely on 

coral for food or habitat may occur, resulting in a shift in community structure (Stella et al., 2011). 

To date, coral metabolic phenotypes associated with ocean warming (Hillyer et al., 2016, Hillyer et 

al., 2017b, Hillyer et al., 2017a, Hillyer et al., 2018, Petrou et al., 2018), ocean acidification (Putnam 

et al., 2016) and combined ocean warming and acidification (Sogin et al., 2016, Farag et al., 2018) 

have been identified; however, our understanding of the coral response to synergistic ocean 

warming and acidification is underpinned by research assuming a business-as-usual emissions 

scenario of 600 – 1000 ppm of atmospheric carbon dioxide (CO2) (Hughes et al., 2017a). These 

atmospheric CO2 concentrations are now less likely as countries do more to limit the production 

of greenhouse gases (as agreed in the Paris Agreement, 2015), and the world sees a shift to a 

lower emissions scenario. Unfortunately, we lack an understanding of how reefs will change 
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under more realistic atmospheric CO2 concentrations of 450 – 550 ppm (Hughes et al., 2017a) 

that is projected by the Intergovernmental Panel on Climate Change (IPCC) Representative 

Concentration Pathway 4.5 (IPCC, RCP 4.5, 2014). 

Our knowledge of the cumulative and chronic impacts of ocean warming up to 1 ℃ and changes 

in ocean pH of up to 0.1 units is poorly understood; indeed, no coral metabolic phenotypes have 

been identified for atmospheric CO2 concentrations of 450 – 550 ppm projected under RCP 4.5 

(Hughes et al., 2017a). This gap in the coral research is due, in part, to the difficulty associated 

with manipulating and recording temperature and CO2 variables at such fine scales, and to the 

potential masking of acidification-induced symptoms by more influential factors such as 

temperature and irradiance.  

Metabolomics biomonitoring is an emerging approach to ecosystem management that 

incorporates metabolic profiling and modern chemometrics to monitor the biochemical response 

of an organism to changes in its environment. Given the fast response of the metabolome to 

external stressors (Caldana et al., 2011) and the superior sensitivity of the analytical platforms 

used to measure it, metabolomics and chemometric techniques, offer an ideal solution for 

monitoring an individual coral’s response to small changes in seawater temperature and pH 

(associated with atmospheric CO2 concentrations) expected this century.  

To be an effective biomonitoring tool metabolic profiling must not only provide detailed and 

informative data, but also have sufficient resolving power to predict the functional state of corals 

subjected to realistic changes in temperature and CO2. In particular, the technique must be 

sufficiently sensitive to describe coral phenotypes associated with atmospheric CO2 

concentrations less than 550 ppm, even when subjected to the more influential factors. To this 

end, the potential of two commonly used analytical platforms – liquid chromatography coupled 

with mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H-

NMR) – as well as two popular machine learning algorithms – partial least squares discriminant 

analysis (PLS-DA) and Random Forests (RF) (Mendez et al., 2019) – to classify Acropora aspera 

phenotypes (supplied as discrete class labels) associated with a simulated bleaching event and 

pCO2 levels consistent with the projections of RCP 4.5 were assessed. 
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4.2 Methods 

4.2.1 Experimental conditions 

This experiment was designed to compare the responses of A. aspera fragments under current day 

conditions with those subjected to either a simulated bleaching event, elevated pCO2 or 

combined bleaching and elevated pCO2 scenarios. Coral nubbins (n = 96) were collected (Great 

Barrier Marine Park Authority permit G09/32575.1 and G08/26873.1) from three colonies of A. 

aspera (tan morph, approximately 32 nubbins from each colony) from the Heron Island reef flat, 

Queensland, Australia. The nubbins, supported in racks, were acclimated in aquaria at the Heron 

Island research station with a continuous flow of fresh, sand filtered seawater pumped from the 

Heron Island reef flat. The incised base of the coral nubbins were monitored for tissue regrowth 

for 14 days to ensure they were in good health.  

Acclimated nubbins were randomly assigned to one of four treatments (Table 4.1): control 

(ambient temperature and ambient CO2), eT (elevated temperature at ambient CO2), eCO2 

(elevated CO2 at ambient temperature) and eCO2eT (elevated CO2 and elevated temperature). 

Each semi-closed treatment system consisted of a 250 L flow-through sump tank supplying two 

65 L replicate aquaria. In heated systems, temperature was controlled using 300W aquarium 

heaters (Eheim Jager, Deisizou, Germany) and monitored with red spirit thermometers and 

HOBO temperature loggers (OneTemp, Brisbane, Australia). In acidified systems, a CO2/air 

mixing system based on the design of Munday et al. (2009) was used to control CO2 enrichment. 

Aquaria pH was monitored daily with a YSI 600QS Sonde (YSI, OH, USA). 

Table 4.1 Summary of the physical and chemical conditions (mean ± SD) of the semi-closed aquaria during the 

experiment. Value ranges reflect the diurnal fluctuations of the incoming reef water. Changes in mean temperature and CO2 

are relative to controlled conditions. 

Treatment T (℃) Peak Mean ΔT pH Mean ΔpH pCO2 (μatm) Mean ΔpCO2 
Control 25.4-30.8 - 8.1-8.4 - 142-435 - 
eCO2  26.7-35.2 4.24 ± 0.91 8.1-8.4 -0.04 ± 0.05 141-350 -11 ± 26 

eT 26.7-35.2 4.24 ± 0.91 8.1-8.4 -0.04 ± 0.05 141-350 -11 ± 26 
eCO2eT 25.9-35.3 3.77 ± 1.54 7.9-8.4 0.08 ± 0.05 204-827 59 ± 28 

 

For heated treatments (eT and eCO2eT), aquaria were maintained at 34 °C daily maximum (3–5 

°C above the ambient midday maxima) for the first five days, then decreased at a rate of 1 °C per 

day to a mild heat stress of approximately 2 °C above ambient for the remainder of the 

experiment. Acidified treatments (eCO2 and eCO2eT) were maintained at a pH that was 

consistent with IPCC projections under RCP4.5 (approximately 0.1 pH units lower than present 

levels or ~450 ppm [CO2]atm) for the duration of the experiment (IPCC, RCP 4.5, 2014). Due to 
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the nature of the semi-closed system, the ambient temperature and pH was monitored in every 

experimental aquarium and baseline fluctuations established (25.4–30.8 °C and 8.1–8.4 pH, 

respectively). Aquaria were covered with 70% shade cloth (maximum 250 μmol photons m−2 s−1) 

to provide light levels similar to those experienced by the corals in their natural reefal 

environment. Water samples were collected and preserved with a 0.2% saturated HgCl2 solution 

then stored at 4 °C for subsequent analysis of alkalinity and pCO2 as described by Ogawa et al. 

(Ogawa et al., 2013). 

4.2.2 Sample collection 

On days 1, 4, 6 and 14, three replicate coral fragments were taken from each of the replicate 

aquaria (six fragments per treatment), snap-frozen immediately in liquid nitrogen then stored at -

80 °C for metabolomic analyses. On days 5, 10, and 14, three nubbins from each of the replicate 

aquaria (6 fragments per treatment) were snap-frozen immediately in liquid nitrogen and stored at 

-80 °C for pigment quantification and symbiont cell densities.  

4.2.3 Quantification of thermal and pH stress 

The maximum quantum yield of photosystem II (Fv/Fm) in A. aspera was measured using imaging 

Pulse Amplitude Modulation (PAM) fluorometry (MAXI imaging PAM, Waltz, Effeltrich, 

Germany) to monitor symbiont photosystem health during the experiment. PAM measurements 

of the same five replicate nubbins from each aquarium were conducted every second day, 30 min 

after sunset. The minimum fluorescence was measured with a weak pulse of light, followed by a 

saturating pulse of 2,700 μmol quanta m-2 s-1 of photosynthetically active radiation (PAR) for 800 

ms to determine the maximal fluorescence and dark-adapted yield. Nubbins were returned to 

aquaria immediately following measurement. 

Coral fragments collected for symbiont cell density analysis had their tissue removed with a 

dental irrigator filled with 0.22 μm filtered seawater. Tissue samples were homogenised using an 

immersion blender for 20 s, the blastate volume recorded, and then centrifuged at 3220 g for 5 

min to pelletize the algal cells. Symbiont cell densities were quantified using replicate (n = 6–10) 

haemocytometer counts per sample and normalised to the fragment surface area using the 3D 

modelling method of Jones et al. (Jones et al., 2008). 

4.2.4 LC-MS and NMR sample preparation 

Frozen coral nubbins were placed into 20 mL glass scintillation vials and lyophilised for 24 h 

after which they were extracted in 70 % aqueous methanol (MeOH) as per Chapter 3 and 

Gordon et al (Gordon et al., 2013). Coral extracts were centrifuged at 5,800 g to remove any 
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undissolved cellular debris and the supernatant transferred to clean scintillation vials. The extract 

was concentrated under centrifugal vacuum followed by lyophilisation for 24 h. Dry coral 

extracts were normalised to total dry extract weight by weighing each dried extract before 

reconstituting to an extract concentration of 20 mg mL-1 in 70 % MeOH for LC-MS analyses and 

100% deuterated methanol (CD3OD; Cambridge Isotope Laboratories Inc sourced from 

Novachem Australia) for 1H-NMR analysis.  

Those extracts earmarked for LC-MS were centrifuged at 21,900 g before transferring an aliquot 

of the supernatant to LC-MS grade amber vials with reduced-volume glass inserts (Phenomenex, 

Lane Cove, Australia) and then stored at -80 °C for analysis. Pooled biological quality controls 

(PBQCs) were used to monitor analytical variation. PBQCs were prepared for LC-MS analysis by 

combining 2 μL of each sample into a single PBQC sample that was analysed after every 10 

injections.  

A 700 µL aliquot of each extract prepared in CD3OD was transferred into a 5 mm NMR tube 

and samples analysed immediately. 

4.2.5 LC-MS data acquisition 

Reverse Phase chromatography was performed using an Agilent 1200 HPLC system (Santa Clara, 

CA, USA) consisting of a vacuum degasser, binary pump, thermostatic auto sampler and column 

compartment. Chromatography was conducted using the following conditions: a Zorbax Eclipse 

XDB-C18, 2.1 mm x 100 mm, 1.8 μm (Agilent, Australia) column; solvent (A) 0.1% formic acid 

in Milli-Q water and solvent (B) 0.1% formic acid in acetonitrile (ACN); a flow rate of 0.4 mL 

min-1 and; a column temperature of 40 °C. Samples were injected (10 µL) and eluted with a 10 

min linear gradient from 5% (B) to 100% (B), followed by a 2 min hold at 100% (B), then 

returned to 5% (B) and re-equilibrated for 5 min (total time of 17 min). Samples were 

randomised to ensure analytical variation did not correlate with biological variation and a pooled 

biological quality control was run every tenth sample. 

The mass spectrometer was an Agilent 6520 ESI-QTOF-MS (Santa Clara, CA, USA) with a dual 

spray ESI source operated in positive ion mode. The source conditions were: nebuliser pressure 

of 45 psi; gas temperature of 300 °C; drying gas flow of 10 L min-1; capillary voltage of 4000 V 

and skimmer 65 V; fast polarity enabled. Measurements were performed in the extended dynamic 

range mode (m/z range of 100-3200; sampling rate 2 GHz); scan rate of 2.03 spectra/s collected 

as MS1 centroid data. The mass spectrometer was calibrated using Agilent’s ES Tuning Mix ACN 

Solution, containing several calibration ions at mass values from 117 Da to 2,722 Da. PBQCs 
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were used to monitor mass deviations of some ubiquitous features and analytical variation such 

as retention time shifts (typically < 0.1 min) and ionisation efficiency. 

4.2.6 LC-MS data pre-processing 

LC-MS data was converted to mzXML format using ProteoWizard’s MSConvert tool (v3.0.6585; 

Chambers et al., 2012, Kessner et al., 2008) with an absolute intensity threshold of 1000. LC-MS 

chromatograms were integrated and aligned in the R environment (v3.6.1; http://www.r-

project.org/) using the XCMS package (v1.42.0; Scripps Institute for Metabolomics; Smith et al., 

2006). Feature detection was performed using the centWave method (Tautenhahn et al., 2008) with 

the following optimised parameters: ppm=30, peakwidth=c(20,60), mzdiff=0.01, integrate=2 

and, prefilter=c(3,1100). Features were matched across samples using the following optimised 

parameters: bw=5, mzwid=0.05 and max=100. Retention time correction utilised the obiwarp 

method and profStep=0.5. FillPeaks was employed using default values. Isotopes and adducts 

were annotated using the CAMERA package (v1.40.0) with the following optimised parameters: 

perfwhm=0.7, cor_eic_th=0.75, ppm=10 and polarity=’positive’. All M+1, M+2, M+3 and M+4 

isotopes identified by the CAMERA package were removed from the resulting peak list. Missing 

values were imputed using k-nearest neighbour averaging implemented by the impute package 

(v1.58.0) with the following parameters: k=10, rowmax=0.5, colmax=0.8 and maxp=3000. The 

final, pre-processed, dataset had a total of 1641 features. 

4.2.7 1H-NMR Data Acquisition 

1H-NMR spectra were acquired at 600.13 MHz using a Bruker Avance NMR spectrometer fitted 

with a cryoprobe. Acquisition parameters: Bruker pulse sequence zgesgp (1D excitation sculpting 

using 180° water-selective pulses) comprising [relaxation delay—180°—acquire]; 8.3 kHz spectral 

width; 3 s relaxation delay; four dummy scans followed by 32487 transients (ns) were collected 

into 32 K data points; receiver gain (161) was constant for all samples; temperature set at 298 K. 

Processing parameters: Zero filling was not applied; exponential line broadening of 0.3 Hz; 

Fourier transformation; manual phase correction (zero- and first-order corrections); baseline 

correction was not performed; spectra were calibrated to the CD3OD peak at 3.31 ppm. 

4.2.8 1H-NMR data pre-processing 

1H-NMR data was converted to rectangular bins with a 0.02 ppm width using AMIX Version 3.7 

(Bruker BioSpin GmbH, Rheinstetten, Germany) and exported as .csv files. The bin containing 

the residual CH3OH/CD3OD solvent peak (3.30 – 3.32 ppm) was removed. The final, pre-

processed, dataset had a total of 499 features. 
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4.2.9 Principal components analysis (PCA) 

Principal components analysis (PCA) was performed to visualise the internal structure of the LC-

MS and 1H-NMR data in relation to its variance. PCA was performed in the R environment 

(v3.5.0; R Core Team, 2018) by singular value decomposition of the mean-centred and scaled 

data using the base prcomp function. 

4.2.10 Model training and validation 

PLS-DA and RF models were trained in the R environment (version 3.5.0; R Core Team, 2018) 

to classify coral samples exposed to one of four treatment conditions: control, eT, eCO2 and 

eCO2eT. The temporal variable was not included as an outcome or predictor variable; however, 

temporal information was used to ensure balance of the training and test sets and to examine its 

relationship with model predictions. The model training process is outlined in Figure 4.1. The 

initial step randomly partitioned the data into training and test sets using the createDataPartition 

function within the caret package (v6.0-84). A balanced 80:20 (train:test) split was created based 

on the treatment and exposure time. Both the PLS-DA and RF data were mean-centred and 

scaled prior to fitting each model. For PLS-DA, the model was trained to the optimal number of 

components, or latent variables (LVs); while for RF, the model was trained to the optimal 

number of variables randomly sampled as candidates at each split (known as the mtry value). In 

both cases, the training process utilised repeated, stratified, k-fold cross validation (three repeats; 

k=10) for choosing the optimal model. The optimal model was evaluated based on the overall 

accuracy. For all models, the optimal model was the most accurate model within one standard 

error of the empirically best model (Kohavi, 1995, Breiman et al., 1984). Test set predictions were 

used to evaluate the final model. 
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Figure 4.1 Model tuning and validation flow diagram for the analysis of LC-MS and 1H-NMR data. 

4.2.11 Variable Selection 

Spectral features driving classification were identified for both LC-MS models. For the PLS-DA 

model, variable selection utilised the Variable Importance in Projection (VIP) coefficient, which 

is based on the weighted sums of the absolute regression coefficients. For the RF models, 

variable selection utilised the mean decrease in accuracy as described in the randomForest package 

(Liaw & Wiener, 2002).  

An in-house thematic database of known coral and algal mass spectral features was constructed 

from data in the MarinLit2 database and coral mass spectral features reported in the coral 

research literature (Gordon & Motti, 2020a). Important spectral features identified in this 

research were cross-referenced with this database using a mass error of ∆50 ppm, providing level 

2 putative annotations where possible (Sumner et al., 2007). Restricting our search to known coral 

and algal compounds which have been observed using mass spectrometry provided a greater 

level of confidence in the level 2 putative annotations and allowed for a wider search window as 

described by Van Assche et al (2015). 

 
2 https://pubs.rsc.org/marinlit 
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4.2.12 Data 

The data analysis and R scripts for this experiment are available from GitHub at 

https://github.com/brgordon17/coralclass (Gordon, 2020a). The full list of metabolites found 

in the coral research literature and the MarinLit database are available as an R package at GitHub 

at https://github.com/brgordon17/coralmz (Gordon & Motti, 2020a). Total ion chromatograms 

for duplicate samples in positive and negative ion modes respectively are illustrated in Appendix 

Figure 3. 

4.3 Results 

4.3.1 Thermal and pH stress indicators 

Treatment had a significant effect on Symbiodiniaceae cell density at day 5 (one-way ANOVA, F3, 20 

= 7.98, P = 0.001), day 10 (one-way ANOVA, F3, 20 = 84.08, P = < 0.001) and day 14 (one-way 

ANOVA, F3, 20 = 209.2, P = < 0.001). Compared to the controls, corals subjected to both 

elevated temperature treatments (eT and eCO2eT; Figure 4.2) experienced a reduction in 

symbiont cell density on all days measured (Bonferroni post hoc, P < 0.05), while corals exposed 

to elevated CO2 at ambient temperature (eCO2) did not (Bonferroni post hoc, P > 0.05). 

 
Figure 4.2 Boxplots of symbiont cell density for each treatment at day 5, 10 and 14. 

Corals exposed to elevated temperature treatments (eT and eCO2eT) exhibited significant (P < 

0.05, Bonferroni post hoc) declines in Fv/Fm (Figure 4.3) on all days measured except day 5. On 

the other hand, corals exposed to elevated CO2 at ambient temperatures displayed no significant 

declines. Compared to control corals, those exposed to the eCO2 treatment had marginally higher 
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Fv/Fm. Likewise, corals exposed to the eCO2eT treatment displayed a similar effect compared to 

corals exposed to the eT treatment. 

 
Figure 4.3 The photosynthetic efficiency of Acropora aspera for each treatment. Photosynthetic efficiency is defined as 

the maximum quantum yield of photosystem II (Fv/Fm) for each day it was measured. 

4.3.2 Raw data structure 

PCA was used to visualise the underlying structure, or variability, in the raw data. The scores plot 

for the LC-MS data (Figure 4.4a) shows the first two principal components (PCs) captured 

approximately 46% of the variability. There was some separation in the second PC between 

control samples and those exposed to elevated temperature (eT and eCO2eT), while there was no 

discernible separation between control samples and those exposed to elevated CO2. For the 1H-

NMR data (Figure 4.4b), the first two principal components captured approximately 88% of the 

variability. The captured 1H-NMR variability was less clearly defined in the PCA scores plot; 

however, PCA scores for both analytical platforms revealed more clearly defined separation 

between individual treatments at specific timepoints. For example, corals exposed to elevated 

temperature treatments for prolonged periods (days 6 and onwards) occupied scores space that 

was furthest from all other samples (Appendix Figure 4). The Total Ion Chromatograms of 

PBQCs, which were employed to monitor LC-MS analytical variance, were centred amongst all 

LC-MS samples, i.e., their variation was adequately represented by the “average” of all variation 

(see Figure 4.5). Their even separation across both PCs 1 and 2 suggests the analytical variation 

was unlikely to correlate with any biological variation. 
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Figure 4.4 PCA scores plot of (a) the mean-centred LCMS data and (b) the mean-centred 1H-NMR data. Corals exposed 

to elevated temperatures (eT; blue squares and eCO2eT; red triangles) occupy unique regions of the LCMS scores plot in 

panel a. 

 
Figure 4.5 Overlaid Total Ion Chromatograms of PBQC samples. 

4.3.3 Model performance and parameter optimisation 

Model performance was evaluated using three random iterations of a stratified, 10-fold, cross-

validation. For both the LC-MS and 1H-NMR datasets, the PLS-DA models benefitted the most 

from model training (Figure 4.6a-d). The LC-MS PLS-DA and LC-MS RF models performed 

equally well, achieving a classification accuracy of approximately 84% in both cases. This was not 

the case for models built from 1H-NMR data, where the PLS-DA model was 15% more accurate 

at classifying treatment class than the RF model. The LC-MS models provided more accurate 

predictions of treatment class than the 1H-NMR models, being approximately 7% and 23% more 

accurate for the PLS-DA and RF models, respectively. The LC-MS PLS-DA model was optimal 

at 16 latent variables (LVs) with a model accuracy of 84% (Figure 4.5a), while the 1H-NMR PLS-

DA model was optimal at 21 LVs with a model accuracy of 77% (Figure 4.5b). As shown in 
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figure 4.6a-b, increasing the number of LVs beyond that to be considered optimal would not 

produce any further gain in model accuracy and resulted in overly complex models. The LC-MS 

RF model was optimal at mtry = 350 giving an accuracy of 84% (Figure 4.6c), while the 1H-NMR 

RF model was optimal at mtry = 25 with a model accuracy of 61% (Figure 4.6d).  

 
Figure 4.6 Model tuning results for: (a) the LCMS PLS-DA model, (b) the 1H-NMR PLS-DA model, (c) the LCMS RF model 

and (d) the 1H-NMR RF model. The best tune indicates the optimal model within one standard error of the empirically best 

model. 

The prediction results from cross-validation were examined to assess the predictive power of the 

final models in greater detail. For each model, the accuracy, sensitivity (the proportion of samples 

correctly identified) and specificity (the proportion of samples correctly rejected) for each 

treatment class were calculated (Table 4.2). The specificity of both LC-MS models and the 1H-

NMR PLS-DA model were similar, having true negative rates between 89% and 98% across all 

treatment classes. The specificity of the 1H-NMR RF model was somewhat lower than the other 

models, having true negative rates between 86% and 88%. All models for both datasets had 

slightly, though distinctly higher, specificity for control and eT classes than eCO2 and eCO2eT 

classes. 
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Sensitivity was slightly more varied between models and treatment class. The LC-MS RF model 

was particularly sensitive to the control and eCO2 classes whereas the LC-MS PLS-DA model 

was more sensitive to the eCO2 and eCO2eT classes. Both 1H-NMR models had, in general, 

lower sensitivity than both LC-MS models; however, the 1H-NMR PLS-DA model and LC-MS 

PLS-DA model had comparable sensitivity to control and eCO2 treatment classes. 

Table 4.2 Comparison of the cross validation predictions for Partial Least Squares Discriminant Analysis (PLS-DA) and 

Random Forest (RF) models of the LC-MS and 1H-NMR datasets. Elevated temperature (eT), elevated CO2 (eCO2) and 

combined elevated CO2 and temperature (eCO2eT). 

4.3.4 Model validation 

The validity of all final models was evaluated by predicting an external validation dataset (or test 

set). However, due to the small number of samples per treatment class in the test set (three for 

eT and four for each of the other treatments), the test set’s sensitivity and specificity results are 

not sufficiently robust to make explicit comparisons with the respective cross validation results, 

where a single misclassification would present as a 0.25 change (0.33 for eT). The accuracy 

measure, being calculated from all 15 test samples is, however, somewhat more robust. The 

accuracy of the test set predictions (Table 4.3) was either similar, or greater than, the accuracy of 

predictions performed during cross validation (Table 4.2). The RF model of the LC-MS data 

most accurately predicted the treatment class of test samples (0.93).  

Table 4.3 Comparison of the test set predictions for Partial Least Squares Discriminant Analysis (PLS-DA) and Random 

Forest (RF) models of the LC-MS and 1H-NMR datasets. Elevated temperature (eT), elevated CO2 (eCO2) and combined 

elevated CO2 and temperature (eCO2eT). 

4.3.5 Temporal and class (treatment) effects on classification 

Temporal information was not included in the models; however, its relationship with 

classification was examined. For both PLS-DA models (Figure 4.7) the greatest proportion of 

misclassified samples were those exposed to either one or 14 days of treatment. A similar effect 

  Sensitivity Specificity 
Method Accuracy Control eT eCO2 eCO2eT Control eT eCO2 eCO2eT 

LC-MS PLS-DA 0.84 0.8 0.81 0.86 0.89 0.97 0.97 0.93 0.92 
LC-MS RF 0.84 0.93 0.72 0.93 0.75 0.98 0.94 0.94 0.93 

1H-NMR PLS-DA 0.77 0.82 0.69 0.8 0.77 0.96 0.92 0.93 0.89 
1H-NMR RF 0.61 0.65 0.61 0.58 0.6 0.87 0.88 0.86 0.86 

  Sensitivity Specificity 
Method Accuracy Control eT eCO2 eCO2eT Control eT eCO2 eCO2eT 

LC-MS PLS-DA 0.8 0.75 0.67 0.75 1 0.91 0.92 1 0.91 
LC-MS RF 0.93 1 1 1 0.75 1 0.92 1 1 

1H-NMR PLS-DA 0.8 0.75 1 0.5 1 0.82 0.92 1 1 
1H-NMR RF 0.8 0.75 1 0.75 0.75 0.91 0.92 0.91 1 
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was seen in the LC-MS RF model; however, a greater proportion of samples misclassified as 

belonging to the eCO2 treatment class were exposed to six days of treatment. The greater 

proportion of samples misclassified by the 1H-NMR RF model were, again, exposed to either one 

or 14 days of treatment; however, there was a greater proportion of misclassified samples 

exposed to four and six days of treatment than there was with the other models. 

 
Figure 4.7 The proportion of misclassified samples according to length of exposure as predicted by Partial Least Squares 

Discriminant Analysis (PLS-DA) and Random Forest (RF) models of the LC-MS and 1H-NMR datasets. Elevated temperature 

(eT), elevated CO2 (eCO2) and combined elevated CO2 and temperature (eCO2eT). For example, 50% of Control samples 

misclassified by the LCMS Random Forests algorithm (bottom left panel) were exposed for 1 day of treatment and the other 

50% were exposed for 14 days. 

All four models varied in their ability to predict treatment classes, as shown in the confusion 

matrices (Table 4.4). The LC-MS PLS-DA model, for example, was better at predicting samples 

exposed to eCO2 than control and eT samples. The LC-MS RF model performed particularly 

well in discriminating control and eCO2 samples having only four incorrect predictions each, 

while performing less admirably with samples exposed to eT. Models built on 1H-NMR data were 

less accurate and classification differences between classes were less obvious. The 1H-NMR PLS-
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DA model was less effective at classifying eT samples while the 1H-NMR RF model was less 

effective with samples exposed to elevated CO2. 

Table 4.4 Cross validation confusion matrices for Partial Least Squares Discriminant Analysis (PLS-DA) and Random 

Forest (RF) models of the LC-MS and 1H-NMR datasets. Elevated temperature (eT), elevated CO2 (eCO2) and combined 

elevated CO2 and temperature (eCO2eT). 

4.3.6 Important LC-MS variables 

To identify potential compounds involved in the coral stress response, the 20 highest ranked m/z 

variables driving classification in both LC-MS models were determined (Figure 4.8). The two 

most important of these, extracted from both the PLS-DA and RF models were m/z 256.1166 

(χ2 (4) = 54.795, p < 0.001) and m/z 274.1992 (χ2 (4) = 54.271, p < 0.001). Other important 

variables common to both models were m/z 302.2308 (χ2 (4) = 44.706, p < 0.001), m/z 567.5809 

(χ2 (4) = 23.533, p < 0.001) and m/z 623.6350 (χ2 (4) = 18.903, p < 0.001).  

 

Figure 4.8 The top 20 important LC-MS variables from Partial Least Squares Discriminant Analysis (PLS-DA) and Random 

Forest (RF) models of the LC-MS dataset. 

Predicted Class LC-MS PLS-DA Observed Class  1H-NMR PLS-DA Observed Class 
 Control eT eCO2 eTeCO2   Control eT eCO2 eTeCO2 

Control 48 0 5 0  49 1 6 0 
eT 0 44 0 6  0 37 2 12 

eCO2 10 2 49 0  10 1 48 2 
eTeCO2 2 8 3 51  1 15 4 46 

          
 LC-MS RF Observed Class  1H-NMR RF Observed Class 
 Control eT eCO2 eTeCO2   Control eT eCO2 eTeCO2 

Control 56 0 4 0  39 5 14 3 
eT 2 39 0 8  3 33 3 15 

eCO2 2 3 53 6  18 0 35 6 
eTeCO2 0 12 0 43  0 16 8 36 
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The top 20 ranked spectral features (Figure 4.8), and their corresponding adducts, were 

compared with the coral research literature (https://github.com/brgordon17/coralmz) to 

provide putative identifications. Of the 20 top ranked variables and their corresponding adducts, 

two spectral features had a similar mass (Δppm < 50 ppm) to three compounds identified in the 

literature (Table 4.5). One of the most important variables, m/z 256; χ2 (4) = 54.795, p < 0.001, 

had a monoisotopic mass within 50 ppm of 3'-deimino-3'-oxoaplysinopsin identified in the 

Tubastraea genus of corals (Guella et al., 1988). The other variable, m/z 217; χ2 (4) = 36.612, p < 

0.001, matched with montiporyne A and montiporyne B isolated from the Montipora genus of 

corals (Bae et al.). 

An expanded list of the 50 highest ranked m/z variables driving classification in both LC-MS 

models is provided in Appendix Table 2 and Appendix Table 3. 

 



 

 

Table 4.5 Putative assignment of important mass spectral features determined by Partial Least Squares Discriminant Analysis (PLS-DA) and Random Forest (RF) models  

Detected m/z Detected 
Ion 

Importance  
% 

Literature 
m/z 

Literature 
Exact Mass 

Literature 
Ion 

Molecular 
Formula 

Mass 
error 
(ppm) 

Compound Taxon Reference 

PLS—DA           

256.1166 [M+H]+ 100 255 255.100784 [M] •+ C14H13N3O2 33 3'-deimino-3'-
oxoaplysinopsin 

Tubastraea (Guella et al.) 

RF           

256.1166 [M+H]+ 80.67 255 255.100784 [M] •+ C14H13N3O2 33 3'-deimino-3'-
oxoaplysinopsin 

Tubastraea (Guella et al., 
1988) 

217.1509 [M+H]+ 34.46 239 216.1514 [M+Na]+ C15H20O 36 Montiporyne A Montipora (Bae et al., 
2000) 

217.1509 [M+H]+ 34.46 217 216.1514 [M+H]+ C15H20O 36 Montiporyne A Montipora (Bae et al., 
2000) 

217.1509 [M+H]+ 34.46 217 216.1514 [M+H]+ C15H20O 36 Montiporyne B Montipora (Bae et al., 
2000) 
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4.4 Discussion 

Temporal 1H-NMR and LC-MS metabolite profiles of the A. aspera holobiont subjected to a 

simulated bleaching event and projected mid-century CO2 conditions were examined using 

two common statistical models, PLS-DA and RF, and their prediction accuracy compared. 

Elevated temperature was the major contributor to coral stress while elevated CO2 somewhat 

ameliorated temperature stress and increased symbiont photosynthetic capacity. Of the two 

analytical techniques and two algorithms examined, LC-MS combined with RF was 

undoubtedly the most informative, and better at predicting the test data. The two statistical 

models performed equally well at classifying treatment classes for LC-MS data; however, the 

RF model proved more sensitive to control samples and those exposed to elevated CO2, 

while the PLS-DA model was equally sensitive to all treatment classes. Despite the large 

temporal variation, and the associated degree of stress, LC-MS, combined with either RF or 

PLS-DA modelling, proved very capable of correctly classifying corals at different stages of 

stress exposure. Of note was the ability of each model to classify corals exposed to elevated 

CO2 that could not be identified using more traditional methods such as symbiont cell 

density and PAM fluorometry. Finally, a comparison of the important spectral features with 

the coral literature provided three putative annotations. These spectral features deserve 

closer examination with regards to their role in coral health. 

4.4.1 Physiological responses to elevated temperature and CO2 

This study compared two commonly used physiological measurements—symbiont cell 

density and PAM fluorometry—to characterise the level of stress experienced by corals 

exposed to elevated CO2 and temperature. While there was no statistically significant 

response to samples exposed to elevated CO2, marginally higher Fv/Fm was observed. This is 

contrary to several other studies that have observed negative responses to photosynthesis 

and respiration rates under elevated CO2 conditions. For example, under high irradiance, 

high CO2 has been shown to act as a bleaching agent by lowering thermal bleaching 

thresholds over an 8-week period (Anthony et al., 2008). In A. millepora, high CO2 induced 

major changes in Fv/Fm, gene expression and respiration for up to 28 days and before 

changes in mineralisation were apparent (Kaniewska et al., 2012). The lack of a negative PSII 

response observed in the present study might be due to a commensurate increase in 

bicarbonate concentration. This has been observed in previous studies over short timescales 

(~1 week) where the increase in bicarbonate concentrations dominated the subtle effects of 
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pH and had a positive effect on photosynthesis rates (Weis, 1993, Marubini et al., 2008). 

Alternatively, atmospheric CO2 may not act as a bleaching agent at the levels observed in this 

study; the average elevated ΔpCO2 from control corals was ~60-70 ppm. The CO2 induced 

bleaching of corals observed by Anthony et al (2008) and Kaniewska et al (2012), occurred 

between 520 ppm and 1300 ppm. 

4.4.2 Analytical platform 

There is no universally accepted single analytical platform for metabolomics due wholly to 

the complex and diverse nature of metabolites. MS and NMR are the two most popular 

detection platforms, and each has its advantages and disadvantages that must be considered 

prior to analysis or determined experimentally. MS-based methods, for example, have 

superior sensitivity and lower limits of detection, while NMR is purely quantitative, highly 

reproducible, and unmatched for determining chemical structures. Signal resolution is 

particularly important in metabolic profiling experiments and LC-MS is superior to NMR in 

this regard. Resolution of the NMR signal can be improved with a variety of two-

dimensional experiments; however, these are often time consuming and cannot compete 

with the higher throughput and automation of LC-MS. On the other hand, LC-MS suffers 

from matrix effects that may mask the detection of biologically important compounds and 

reduce its quantitative capability (Taylor, 2005). Ideally, many analytical platforms should be 

employed, preferably simultaneously, to detect and characterise as much chemistry as 

possible; however, due to cost, time, and logistics, the analyst must often choose one. This is 

particularly true in the context of biomonitoring, where simplicity and cost are major 

considerations of large-scale and long-term monitoring.  

LC-MS was the most informative analytical platform for classifying corals exposed to 

elevated CO2 and temperature. This was visually evident in the PCA scores, where some 

biological variation within the LC-MS data was observed, while very little variation was 

observed within the raw 1H-NMR data (Figure 4.4). This was largely due to the increased 

resolution resulting from the chromatographic separation in LC-MS; however; the 

complexity of the experiment, which had four treatment classes and four sampling points, 

also affected the visual separation of samples in the PCA scores plots. Indeed, after reducing 

the complexity to two treatment classes at a single sampling point (day 14 controls vs day 14 

eT, Appendix Figure 5) clear separation was observed in the NMR data. 

Superior class predictions further support LC-MS as the preferred analytical platform for 

biomonitoring of coral. In this experiment, the prediction accuracies of both PLS-DA and 
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RF models built using LC-MS data were higher than those from 1H-NMR data for both PLS-

DA and RF models (Table 4.2). Moreover, the optimal LC-MS PLS-DA model was more 

parsimonious, requiring less LVs, than the optimal 1H-NMR PLS-DA model. Although 

model complexity is not an accurate measure of model performance, other studies have 

observed increases in complexity when differences between classes are smaller and/or model 

performance deteriorates (Szymańska et al., 2012). From this perspective, the ability of LC-

MS to provide higher resolution metabolic profiles and superior predictions than 1H-NMR, 

naturally places it as the preferred analytical platform for coral metabolic profiling. 

4.4.3 Machine learning algorithms 

Establishing the best machine learning model for predicting sample classes based on LC-MS 

data was less straightforward since the PLS-DA and RF models were equally accurate in their 

overall classification (84%; Table 4.2). However, the PLS-DA model was equally sensitive to 

all classes, whereas the RF model was less sensitive to both elevated temperature classes (eT 

and eCO2eT) and more sensitive to control and eCO2 classes. This observation was likely due 

to a stronger interaction between the control and eCO2 classes compared to the eT and 

eCO2eT classes, where tree-based models such as RF are thought to be more accurate (Cutler 

et al., 2007). Both models were equally specific (specificity > 0.9 across all classes) and so 

false positive classifications are equally unlikely with each model. At first glance, the PLS-DA 

with its equal sensitivity to all classes, appears more suitable for predicting samples exposed 

to ocean warming and acidification from LC-MS data; however, the RF model may be the 

better choice given it was superior at classifying both the test data and the least influential of 

the stressors (i.e. CO2). This is important if synergistic ocean warming and acidification is to 

be effectively monitored long-term. Also, when the RF model incorrectly predicted eT 

corals, it classified them as belonging to the other elevated temperature class (eCO2eT), and 

vice versa (Table 4.4). PLS-DA, on the other hand, was more likely to falsely classify healthy 

corals (control and eCO2 samples) as physiologically stressed corals (eT and eCO2eT); a far 

more concerning misclassification that erodes trust in the model. Considering the greater 

sensitivity of RF models to healthy corals and corals subjected to the low-impact CO2 

treatment, it is the preferred algorithm for metabolomics biomonitoring of synergistic ocean 

warming and acidification. 

4.4.4 Temporal effects on statistical model performance 

For all four models, the majority of misclassified samples were those that were exposed to 

either one or 14 days of treatment (Figure 4.7). Metabolites represent the composite output 
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of the genomic, transcriptomic and proteomic variability of the organism at any given time 

(Wang et al., 2010), in effect describing the interaction between an organism and its 

environment. (i.e. the phenotype). As such, changes in the metabolome are relative to 

changes in these upstream cellular processes. It is not unsurprising then that the metabolic 

profiles of those samples exposed to a single day of stress, even 34 °C, did not differ 

significantly from the controls. A similar phenomenon could be expected for samples 

exposed to 14 days of elevated temperature, where metabolic profiles would likely converge 

to a state of complete stress. Samples exposed to four days of treatment were the least likely 

to be misclassified, where the average metabolic profile of each class is most likely to diverge 

and where prediction accuracy is maximised.  

To explore the temporal effects on coral metabolic fingerprints in more detail, future work 

should apply a linear temperature gradient along with an increased number of sample 

replicates and time points. This would facilitate a regression analysis to model changes in 

temperature (as a continuous variable) as a function of coral biochemistry. That is, instead of 

classifying corals to binary classes of stressed/healthy, a regression model may offer accurate 

predictions of ocean temperature at the time of sampling while revealing the biochemical 

changes that underpin those predictions. 

4.4.5 Important variables 

Two of the 20 top ranked LC-MS variables were putatively matched to coral metabolites 

identified in the literature (Gordon & Motti, 2020a). One of these, 3'-deimino-3'-

oxoaplysinopsin (m/z 256.1166 [M+H]+), is an alkaloid that was first identified in a 

scleractinian coral in 1988 (Guella et al., 1988). It has since been identified in marine sponges, 

sea anemones and molluscs (Bialonska & Zjawiony, 2009). There is little research on its 

function in corals or its significance to climate related stressors; however, the 

photoisomerisation of aplysinopsins may act as a protection against UV radiation by 

entrapping radiant energy (Bialonska & Zjawiony, 2009, Guella et al., 1988). In corals, 

aplysinopsins have been proposed as defensive compounds such as: antimicrobials (Koh & 

Sweatman, 2000); antipredation compounds (Okuda et al., 1982); coral-produced inhibitors 

of cell cleavage in fertilised sea urchin eggs (Fusetani et al., 1986) and as inhibitors of 

competing coral larval growth (Koh & Sweatman, 2000). Six dihydroaplysinopsins, isolated 

from sea anemones, have also been identified as chemical attractants for anemone fish, and 

are important for maintaining the host-guess symbiosis (Murata et al., 1986). Given the 

somewhat ubiquitous nature of aplysinopsins, a more detailed analysis of these compounds is 
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warranted; in particular, future work should focus on formally identifying the presence of the 

compound in A. aspera while quantifying any potential correlation with climate related 

stressors such as temperature, irradiance and CO2. 

The second annotated variable was m/z 217.1509 [M+H]+ and was putatively matched to the 

polyacetylenes montiporyne A and montiporyne B. These two compounds were first isolated 

in 2000 from Montipora sp. (Bae et al., 2000). To date, much of the research on these 

compounds has focused on their antitumor, antibacterial, antimicrobial and antifungal 

properties (Negri, 2015, Legrave et al., 2015). They are cytotoxic compounds that are 

extremely effective at inhibiting bacterial strains, including known coral pathogens in the 

surrounding seawater (Gochfeld & Aeby, 2008). Ecologically, they have been shown to act as 

sperm attractants in Montipora digitata (Coll et al., 1994), which is a hermaphroditic coral that 

releases eggs and sperms in a single bundle. In a certain ratio, these acetylenic alcohols were 

shown to be more effective in attracting sperm from M. digitata than from other species of 

Montipora, reducing the chances of hybridisation between different Montipora species. They 

are also known to irreversibly inhibit photosynthesis in Symbiodiniaceae within minutes of 

exposure (Hagedorn et al., 2015). If montiporynes are indeed a component of the A. aspera 

metabolome then its role in the A. aspera stress response may, along with its known 

cytotoxicity and detriment to Symbiodiniaceae, suggest a role in the bleaching process. 

Nevertheless, future research must formally confirm its presence in A. aspera and fully 

investigate its potential role in the stress response. 

None of the remaining 18 top-ranked spectral features driving the classification of stressors 

could be putatively annotated. Compound identification requires considerable time and 

resources that were not within the scope of this research and unfortunately, it remains the 

major bottleneck in coral metabolic profiling. This is especially true for secondary 

metabolites, as reference standards are not readily available for comparison. In this regard, a 

multi-platform approach that utilises both NMR and MS platforms to elucidate chemical 

structures and provide conclusive compound identifications is essential. To advance the field 

of coral metabolomics and our understanding of coral physiology, future research must focus 

on isolating and identifying a much greater proportion of the coral metabolome, with the 

same sense of urgency and effort that has been invested into decoding the coral and 

symbiont genome. 
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4.5 Conclusion 

This study highlights the potential of LC-MS-based metabolic fingerprinting to predict 

discrete outcomes of coral exposure to varying degrees of ocean warming and acidification 

with a high level of accuracy. Of note is the ability of this approach to classify corals exposed 

to mid-century levels of ocean pH with a high degree of accuracy. It’s an important finding 

given few studies have observed CO2 induced changes in coral physiology at levels that are 

likely to persist, and gradually increase, for the remainder of the century: most ocean 

acidification studies to date have focussed on CO2 levels representing worst-case emissions 

scenarios (Hughes et al., 2017a). Additionally, this study has demonstrated the ability of this 

technique to distinguish corals exposed to a single stressor from those exposed to a 

combination of stressors. This research provides potential leads, in the form of important 

variables, which, with further examination, may enlighten our understanding of coral 

physiology and the biochemical interplay between host and symbiont. This work clearly 

demonstrates the potential utility of metabolic profiling for biomonitoring of coral reefs. 

With that in mind, future research should focus on improving model accuracy and resolution 

via an increase in sampling frequency and replication. 
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5.1 Introduction 

Effective management of coral reef ecosystems requires knowledge of coral functional status 

and health. To date, this knowledge is acquired by monitoring indicators of reef state such as: 

coral abundance or the presence and prevalence of coral bleaching and/or disease. In many 

cases, these indicators are symptoms resulting from external stressors such as ocean warming 

and nutrient runoff, which are monitored by reef managers to predict changes in reef state. 

Given the complexity of ecological systems, this somewhat reactive approach to monitoring 

provides managers with only limited descriptions of coral functional status, hindering their 

ability to predict the resilience and future responses of coral reefs (Lam et al., 2017, Hughes et 

al., 2017a); as such, the ability to prioritise interventions and avoid undesirable changes in the 

reef ecosystem is diminished. To manage reefs effectively, more precise indicators of coral 

functional status and health are required. 

Molecular biomarkers offer a more informative overview of coral functional status; however, 

their inclusion in monitoring programs has been hindered by the cost and logistics associated 

with instrumentation and their analysis. These hurdles may be overcome as technology and 

our understanding of coral physiology matures. Indeed, analytical platforms used to study 

coral functional status, such as Pulse Amplitude Modulation (PAM) fluorometry, are now 

commonplace in the field and are routinely deployed in regional scale monitoring programs. 

PAM is a rapid and non-destructive technique to assess the photosynthetic efficiency of the 

coral symbiont. Photosynthetic efficiency is determined by the ratio of variable fluorescence 

to maximal fluorescence (Fv/Fm), otherwise known as the maximum quantum yield of 

photosystem II (PSII). A stress-induced reduction in Fv/Fm indicates a breakdown in PSII 

function resulting in a loss of oxygen-evolving capacity, disruption of the PSII reaction 

centre and the disassociation of its light-harvesting complex that often precedes coral 

bleaching (Warner et al., 1996, Jones et al., 1998). 

Photosynthetic efficiency has been explored as an indicator of coral health in regional scale 

monitoring because of its sensitivity to a variety of stressors. In a 2007 report to the 

Australian Government Marine and Tropical Sciences Research Facility (Cooper & Fabricius, 

2007), managers advocated for the use of PAM fluorometry techniques based, in part, on 

evidence that the Fv/Fm of coral has a positive correlation with improvements in water 

quality (Cooper & Ulstrup, 2009). In a regional monitoring program in the Arabian Gulf, 

PAM- and visual-based monitoring of coral health was employed over a one-and-a-half-year 
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period, where it was found that corals experiencing reduced Fv/Fm, despite having no visual 

signs of stress, were more likely to experience subsequent necrosis (Febbo et al., 2012). In the 

Sekisei lagoon in Okanawa, Japan, the Fv/Fm of 28 coral genera (c. 68 species) were 

monitored both before and after a natural bleaching event using PAM fluorometry 

(Okamoto et al., 2005), providing an important baseline Fv/Fm of healthy and stressed coral 

populations.  

What constitutes a “healthy” or “unhealthy” Fv/Fm of wild coral populations across a variety 

of reef landscapes is of particular importance for monitoring and management of coral reefs. 

The current consensus for a healthy coral, as measured by PAM fluorometry, is when 

photosynthesis is working at peak efficiency. Typically, such corals have Fv/Fm values 

between 0.50-0.70, depending on the species of coral and irradiance (Fitt et al., 2001, Warner 

et al., 1996, Jones et al., 1998, Okamoto et al., 2005). While it is well-known that coral Fv/Fm is 

reduced when exposed to stress, classification of corals as unhealthy based on sub-optimal 

Fv/Fm below ~0.50 is less straightforward. Indeed, sub-optimal Fv/Fm values have been 

recorded in otherwise healthy corals for a variety of reasons, such as: the dark acclimation 

time employed prior to measurement (Fitt & Cook, 2001), seasonal fluctuations (Warner et 

al., 2002), host and/or symbiont identity (Warner et al., 2006), depth and irradiance (Winters 

et al., 2006, Okamoto et al., 2005), and diurnal variation (Jones & Hoegh-Guldberg, 2001, 

Belshe et al., 2007).  

Precise interpretation of suboptimal Fv/Fm in corals – to link photoinhibition with thermal 

stress for example – requires complimentary physiological measurements (Fitt et al., 2001). 

Symbiodiniaceae cell density and chlorophyll (chl) concentration are typically utilised in coral 

bleaching experiments; however, with these parameters alone, the focus remains solely on 

the response of the algal symbiont to the stressor(s) and not of the holobiont per se. Linking 

a stress response with photoinhibition is not trivial given the complexity of the holobiont, 

which comprises the animal host and algal endosymbiont along with a complex microbiome 

and numerous macrobiota (Rohwer et al., 2002, Stella et al., 2011, Glasl et al., 2019). To 

effectively link photoinhibition with the functional state of coral, a more holistic analysis, 

which better captures and describes the phenotype of all partners in the holobiont, is 

required. 

“Metabolites are the end products of cellular regulatory processes, and their 

levels can be regarded as the ultimate response of biological systems to genetic 

or environmental changes” (Fiehn, 2002).  
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The coral metabolome at any one time is a unique chemical fingerprint with the potential to 

provide detailed descriptions of the functional state of the coral holobiont. While the 

technique has yet to be employed as a coral reef monitoring tool, recent research has 

identified a variety of coral phenotypes associated with a number of stressors, such as: 

anthropogenic climate change (Hillyer et al., 2016, Hillyer et al., 2017b, Hillyer et al., 2017a, 

Hillyer et al., 2018, Petrou et al., 2018, Putnam et al., 2016, Sogin et al., 2016, Farag et al., 

2018), unique environmental conditions (Januar et al., 2012, He et al., 2014, Farag et al., 2016, 

Klueter et al., 2015) and unique physical attributes (Sogin et al., 2014, Quinn et al., 2016, Farag 

et al., 2017a, Farag et al., 2017b, Matthews et al., 2017, Sogin et al., 2017). Interpretation of 

these chemical fingerprints, however, is time consuming and difficult, due in part to the 

relative infancy of metabolomics in coral research and the difficulties associated with 

metabolite identification. Nevertheless, as the field matures and new discoveries come to 

light, coral metabolomics will play a defining role in the discovery of molecular biomarkers 

and bioindicators describing coral health. 

This research seeks to establish a molecular phenotype associated with temperature-induced 

photoinhibition of corals by investigating the hypothesis that Liquid Chromatography Mass 

Spectrometry (LC-MS) metabolic profiling and machine learning using a Random Forests 

(RF) algorithm can predict the photosynthetic efficiency of Acropora aspera exposed to a linear 

increase in daytime seawater temperatures over 15 days. Given that long-term monitoring of 

coral metabolic profiles will inevitably be hampered by batch specific sources of variation, 

this study analysed samples in two separate batches and investigated the resulting batch 

effects to determine their extent and how these may be managed under a biomonitoring 

scenario. Chapter 4 suffered from a lack of sample replication, which hindered model testing; 

consequently, sample replication was increased here to provide a more representative dataset 

and to adequately test the model. Model performance and the metabolites driving prediction 

are discussed in detail, as is the concept of Fv/Fm as an indicator of coral health. 

5.2 Methods 

5.2.1 Experimental conditions 

Coral nubbins (n = 312) were collected (under Great Barrier Reef Marine Park Authority 

permit G13/36402.1) from four colonies of Acropora aspera (tan morph, approximately 78 

from each colony) on the reef flat of Heron Island at low tide in May 2013. Submerged coral 

nubbins were randomly placed in holding racks before being transferred to eight 65 L 
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experimental tanks, where they were allowed to acclimate at ambient seawater temperature 

for five days: complete tissue regrowth at the site of excision confirmed acclimation of the 

nubbins. Each tank was supplied with a continuous flow of sand-filtered seawater pumped 

from the reef flat via two ~200 L sump tanks (total system volume ~460 L).  

Four tanks were subjected to ambient temperature (~21-24 ℃; control) conditions and the 

other four to elevated temperature (treatment) conditions (Figure 5.1). The control tanks 

were maintained at ambient seawater temperature for the duration of the experiment. The 

temperature of the treatment tanks was increased by approximately 0.7 °C per day, during 

the day, for eleven days (25–32.3 °C), then held at 33 °C for two days and then at 34 °C for 

the final two days. Treatment tanks were heated with a 300 Watt Eheim Jager heater (Eheim, 

Deisizou, Germany) and four 25 W Thermosafe™ aquarium heaters (Aqua One, Pet HQ, 

Townsville, QLD). Diurnal fluctuations in the control tanks were as per the ambient 

seawater temperature at Heron Island. To allow for some recovery from elevated daytime 

temperatures, and to maintain diurnal temperature variation, the Eheim heater was turned 

off at sunset and back on at sunrise. Temperatures in each tank were recorded every 10 

minutes with temperature data loggers (HOBO®, OneTemp, Brisbane, Australia). Reef flat 

temperatures were monitored by three Integrated Marine Observing System (IMOS) sensor 

floats (AIMS data centre, Heron Island sensor floats 1, 2 and 4). Light levels were monitored 

over the course of the experiment every 10 min with Photosynthetically Active Radiation 

recorders (Odyssey, Dataflow Systems Limited, New Zealand). 
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Figure 5.1 Temperature profiles of control (blue) and elevated temperature (red) treatments for the duration of 

the experiment. The grey data series represents the average temperature of three IMOS sensor floats (at 0.3 m depth) 

located on the Heron Island reef flats over the same period.  

5.2.2 Sample Collection 

Three coral nubbins were collected from each of the four control and heated tanks on days 

1, 5, 8, 10, 12 and 15 (n = 144; 12 nubbins × 2 treatments × 6 time-points) and snap-frozen 

in liquid nitrogen. All samples were stored at -80 °C for metabolomic analyses. On days 1, 5, 

8, 10, 12 and 15, three coral nubbins were collected from each of the control and heated 

tanks (n = 144) for chlorophyll quantification and Symbiodiniaceae cell count. Three coral 

nubbins from each of the control and heated tanks (n = 24) were designated for repeated 

daily PAM measurements.  

5.2.3 Quantification of thermal stress 

Chlorophyll (chl) fluorescence of A. aspera was measured using imaging PAM fluorometry 

(MAXI imaging PAM, Waltz, Effeltrich, Germany) to monitor the dark-adapted Fv/Fm 

response to exposure. Repeated PAM measurements of the same three designated coral 

nubbins from each aquarium were conducted every day ~30 min after sunset. Chl 

fluorescence was measured with a weak pulse of light, followed by a saturating pulse of 2,700 

μmol quanta m-2 s-1 of photosynthetically active radiation (PAR) for 800 ms. Coral nubbins 

were returned to aquaria immediately following measurement. 
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To quantify Symbiodiniaceae cell density and chl levels coral tissue was removed from nubbins 

with a dental irrigator filled with filtered (0.22 μm) seawater. The blastate was homogenised 

with an immersion blender for 5 s before being centrifuged at 3,076 g for 3 min to pelletise 

algal cells. Due to a procedural oversight, the blastate was not homogenized with an 

immersion blender prior to centrifugation on days 1 and 5 and the results were found to be 

unreliable. Pelletised cells were suspended in 50 mL of seawater and a 1 mL aliquot removed 

for cell density approximation. Cell number was determined using a Neubauer 

haemocytometer, with replicate cell counts performed (n = 5). The remaining cells (in 49 

mL) were centrifuged at 3,076 g for 3 min to pelletise cells and stored at −80 °C for chl-a 

and chl-c quantification. Samples were extracted in 90% acetone for 20 h in the dark at 4 °C 

and chl quantified using the equations of Jeffrey and Humphrey (1975). The surface area of 

nubbins was determined using the wax dipping method (Stimson & Kinzie Iii, 1991).  

5.2.4 LC-MS sample preparation 

Frozen coral nubbins were placed into 20 mL glass scintillation vials and lyophilised for 24 h 

then extracted in 70 % aqueous methanol as per Chapter 3 and Gordon et al. (2013). Coral 

extracts were centrifuged at 5,800 g to remove any undissolved cellular debris and the 

supernatant transferred to LC-MS grade, amber vials (Phenomenex, Lane Cove, Australia). 

All samples were stored at -80 °C prior to analysis. PBQCs were prepared according to the 

methods described in section 4.2.4 and analysed after every tenth injection to monitor 

analytical variation. 

5.2.5 LC-MS data acquisition 

Reverse Phase chromatography was performed using an Agilent 1200 HPLC system (Santa 

Clara, CA, USA) consisting of a vacuum degasser, binary pump, thermostatic auto sampler 

and column compartment. Chromatography was conducted using the following conditions: a 

Zorbax Eclipse XDB-C18, 2.1 mm x 100 mm, 1.8 μm (Agilent, Australia) column; solvent 

(A) 0.1% formic acid in Milli-Q water and solvent (B) 0.1% formic acid in acetonitrile 

(ACN); a flow rate of 0.4 mL min-1 and; a column temperature of 40 °C. Samples were 

injected (10 µL) and eluted with a 10 min linear gradient from 5% (B) to 100% (B), followed 

by a 2 min hold at 100% (B), then returned to 5% (B) and re-equilibrated for 5 min (total 

time of 17 min). Samples were randomised to ensure analytical variation did not correlate 

with biological variation and a pooled biological quality control was run every tenth sample. 
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The mass spectrometer was an Agilent 6520 ESI-QTOF-MS (Santa Clara, CA, USA) with a 

dual spray ESI source operated in positive ion mode (a small number of samples were 

analysed in negative ionisation mode to determine the most suitable method; see Appendix 

Figure 3). The source conditions were: nebuliser pressure of 45 psi; gas temperature of 300 

°C; drying gas flow of 10 L min-1; capillary voltage of 4000 V and skimmer 65 V; fast polarity 

enabled. Measurements were performed in the extended dynamic range mode (m/z range of 

100-3200; sampling rate 2 GHz); scan rate of 2.03 spectra/s collected as MS1 centroid data. 

The mass spectrometer was calibrated using Agilent’s ES Tuning Mix ACN Solution, 

containing several calibration ions at mass values from 117 Da to 2,722 Da. PBQCs were 

used to monitor mass deviations of some ubiquitous features and analytical variation such as 

retention time shifts (typically < 0.1 min) and ionisation efficiency. 

To assess batch variation samples were split into two batches, where samples from days 5 

and 12 were analysed as batch one and all other samples analysed independently, seven days 

later, as batch two. 

5.2.6 LC-MS data pre-processing 

LC-MS data was converted to mzXML format using ProteoWizard’s MSConvert tool 

(v3.0.6585; Chambers et al., 2012, Kessner et al., 2008) with an absolute intensity threshold of 

1000. LC-MS chromatograms were integrated and aligned in the R environment (v3.5.0; R 

Core Team, 2018) using the XCMS package (v3.6.2; Smith et al., 2006, Tautenhahn et al., 

2008, Benton et al., 2010). Feature detection was performed using the centWave method 

(Tautenhahn et al., 2008) with the following modified parameters: ppm = 30, peakwidth = 

c(10, 60), mzdiff = -0.001, integrate = 1 and, prefilter = c(3, 1100). Retention time correction 

utilised the obiwarp method with binSize = 0.5 (Prince & Marcotte, 2006). Chromatographic 

peaks were grouped across samples using the peak density parameter with: bw = 5, binSize = 

0.025 and minFraction = 0.5. Peak Filling was employed using the fillChromPeaks() function 

with default values.  

Isotopes and adducts were annotated using the annotate() function within the CAMERA 

package (v1.38.1; Kuhl et al., 2011) with the following parameters: perfwhm = 0.7, cor_eic_th 

= 0.75, ppm = 10 and polarity = ’positive’. All M+1, M+2, M+3 and M+4 isotopes identified by 

the CAMERA package were removed from the resulting peak list.  

Unreliable spectral features with 80% or more missing values across all classes were deleted 

entirely. Where a class had 65% or more missing values within any spectral feature, a random 
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value between zero and the minimum intensity was imputed to represent a non-detect 

specific to that class. The remaining missing values were imputed using a Random Forest 

trained on the observed values (ntree = 100, mtry = √x), as described by Stekhoven and 

Buehimann (2011). 

Batch effects were removed using a Principal Components Analysis (PCA) and constrained 

optimisation technique implemented by the Harman package (v1.12.0; Oytam et al., 2016) 

with limit = 0.99, numrepeats = 100000, and two class levels (control and heat-stressed). 

Finally, boxplots of the relative log abundance for each sample and a PCA were utilised to 

assess the data for unwanted variation. The final, pre-processed, dataset had a total of 6334 

features. 

5.2.7 Model tuning and validation 

The experiment utilised an optimised Random Forest model (RF) to predict the Fv/Fm of 

corals exposed to simulated ocean warming. Model parameters were optimised using 

repeated k-fold cross-validation (k = 10) as outlined in Figure 5.2. The data was partitioned 

into training and test sets and the test set excluded from the model construction procedure. 

A balanced 90:10 (train:test) split was created by grouping the descriptor (Fv/Fm) using 

percentiles and sampling evenly from within each group. The root mean square error 

(RMSE) of prediction was used to tune the optimal mtry value during model construction. 

The final, optimal model was the most accurate model within one standard error of the 

empirically best model (Kohavi, 1995, Breiman et al., 1984). 
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Figure 5.2 Workflow of the model tuning and validation procedure for the analysis of LC-MS data 

5.2.8 Variable selection 

Variables driving prediction were identified by permuting each spectral feature then 

comparing the RMSE of prediction on the out-of-bag portion of data both before and after 

permutation as described in the randomForest package (v4.6-14) and by Breiman (Breiman, 

2001). Important spectral features were cross-referenced with the MarinLit database and 

metabolites reported in the coral research literature (Gordon & Motti, 2020a) using a mass 

error of ∆50 ppm as per Van Assche et al (2015), providing level 2 putative annotations 

where possible (Sumner et al., 2007). 

5.2.9 Data 

The R scripts for this experiment are available from GitHub at 

https://github.com/brgordon17/fvfm-prediction (Gordon, 2020b). The full list of 

metabolites retrieved from the coral research literature and the MarinLit database is available 

as an R package on GitHub at https://github.com/brgordon17/coralmz (Gordon & Motti, 

2020a). 
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5.3 Results 

5.3.1 Quantification of thermal stress 

The functional state of A. aspera nubbins was affected by elevated temperature by day 10 of 

exposure. At that point, coral nubbins had experienced at least six days of seawater 

temperatures above 30 °C with days 8 to 10 experiencing maximum midday temperatures of 

approximately 32 °C. By day 10 of exposure, a 22.3% decline in Symbiodiniaceae cell density 

and a 46.6% decline in Fv/Fm was observed. 

Exposure of A. aspera to the linear temperature gradient as described in section 5.2.1, 

resulted in statistically significant declines of Fv/Fm between treatments over time (Figure 5.3; 

RMANOVA, F14, 330 = 208.4, p < 0.001). Tukey’s HSD post hoc tests were performed to 

compare treated samples with controls coinciding with each of the six collection points. 

There was no statistically significant decline in Fv/Fm for treated samples between days 1 and 

6. A statistically significant decline (p < 0.01) in Fv/Fm was observed for all treated samples 

from day 7 onwards. The average decline in Fv/Fm for samples collected after day 5 were: 

0.158 (p < 0.001) for day 8; 0.296 (p < 0.001) for day 10; 0.475 (p < 0.001) for day 12 and; 

0.660 (p < 0.001) for day 15.  

 
Figure 5.3 The maximum quantum yield of photosystem II (PSII, ratio of variable fluorescence to maximal 

fluorescence, Fv/Fm mean ± s.e.) over time for control samples (blue circles) and heat-stressed samples (red triangles). 

Asterisks denote significance at *P < 0.05, **P < 0.01, ***P < 0.001. 
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Elevated temperatures correlated with statistically significant decreases in symbiont cell 

density from days 10 to 15 (Figure 5.4a). By day 15, the mean symbiont cell density of heat-

stressed samples was 6 × 105 cells cm-2, representing a decline of 37.5% compared to the 

control samples (1.6 × 106 cells cm-2, Bonferroni post hoc, p < 0.001). In contrast to the 

declines in cell density and Fv/Fm over the course of the experiment, mean chl-a increased 

over the same temporal scale (Figure 5.4b). By day 15, the mean chl-a concentration of heat-

stressed samples (0.93 pg cell-1) was 102% greater than the control samples (0.46 pg cell-1). 

 
Figure 5.4 Symbiont cell density (a) and chlorophyll-a (chl-a) concentration (b) for heat-stressed (red triangles) and 

control treatments (blue circles) on days 8, 10, 12, and 15. 

5.3.2 Batch effects and data structure 

The relative log abundance (RLA) of each sample’s metabolic profile was examined to 

compare the variation between samples. A pronounced batch effect was visible in box plots 

of the RLA of the unadjusted data (Figure 5.5a). Samples analysed in batch one had 

noticeably higher spectral feature abundances and more outliers than samples analysed in 

batch two. The Harman batch correction algorithm (Oytam et al., 2016) was employed to 

mitigate and/or remove the unwanted variation while quantifying the loss of biological 

variation. Using a confidence level of 0.99 and 100,000 simulations, the Harman algorithm 

identified principal components PC1 and PC159 having a confidence less than 0.99 and thus 

containing the batch effect. These two PCs were corrected by the algorithm, where the 



 

 96 

correction applied to each was: 0.05 and 0.09 respectively. RLA plots of the spectral features 

both before (Figure 5.5a) and after (Figure 5.5b) the Harman algorithm was applied, clearly 

shows its effectiveness in removing the bulk of the batch effect. 

 

Figure 5.5 Relative log abundance plots of spectral features across all samples in the raw, unadjusted data (a) and 

in the batch corrected data (b). 

A PCA was performed on the batch-corrected heat-stressed samples to examine the 

remaining metabolome variation and ensure that biological variation was retained. The first 

five PCs (Figure 5.6) accounted for 66.8% of the variation and pairwise comparisons of these 

display, in greater detail, the variation that was captured by each PC. The variation captured 

by the positive component of PC1 (30.9%) was strongly associated with heat-stressed 

samples collected at day 15, while the negative component of PC1 captured some unknown 

variation present in one sample from day 1 and one from day 10. The positive component of 

PC2 captures much of the variation associated with day 12 samples, while the negative 

component of PC2 captures unknown variation associated with two samples from day 15. 

Combined, PC1 and PC2 appear to capture biological variation associated with day 12 and 

day 15 heat-stressed samples along with some unknown variation. The positive component 

of PC3 captured the variation associated with days 1 and 8, while the negative component 

captured the variation associated with batch one samples (days 5 and 12). The plot of PC2 

(17.6%) vs PC3 (8.4%) explains the variation of samples collected on days 1, 8, and 12 

reasonably well. The variation captured by the positive component of PC4 was most strongly 
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associated with the variation of day 5 samples, while the negative component also captured 

some variation within day 12 samples. Finally, PC5 (4.8%) appears to have captured 

unknown variation not associated with treatment. 

 
Figure 5.6 Composite pairwise Principal Component Analysis (PCA) scores plot of the corrected spectral data. The 

bottom left section of the plot shows the PCA scores plots for each pairwise comparison from PC1 to PC5. The plots 

lying on the diagonal from top left to bottom right are density plots of each PC for each day. The top right half of the 

plot shows the same PCA scores plots as the bottom left (axes reversed) with the addition of a linear smoother for each 

day. 

5.3.3 Model Accuracy 

Model construction utilised repeated, ten-fold cross-validation to tune the optimal number of 

variables to be considered at each split of the RF tree (the mtry value). The optimal model 

had an mtry value of 2113, a RMSE of prediction of 0.0371, a Q2
CV of 0.9721 and a mean 

absolute error (MAE) of 0.0269. As the RMSE is in the same units as the Fv/Fm, the cross-

validation results suggest the model can predict Fv/Fm within ±0.0371 of the measured 

Fv/Fm value. 

The validity of the final model was evaluated by predicting 12 test samples that were not 

included in the construction of the model (Table 5.1). The model predicted the Fv/Fm of the 

test samples to ±0.0406 of their mean measured values (RMSE = 0.0406, Q2 = 0.9684, MAE 

= 0.0290). The difference between the RMSE obtained during cross-validation and the 
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RMSE obtained from the prediction of the test samples was 0.0035. The prediction accuracy 

of the unseen test samples varied according to the observed Fv/Fm. For example, Fv/Fm 

values of two day 8 samples, having an average  measured value of 0.495, were both 

predicted to be higher at ~0.58; an error that is more than twice the RMSE (Shaded rows in 

Table 5.1). Removing the prediction results for day 8 samples, the RMSE of prediction for 

the test samples reduced to 0.0216 and the Q2 increased to 0.9962. 

Table 5.1 Observed and predicted maximum quantum yield of photosystem II (Fv/Fm) values for unseen model 

validation samples. Shaded rows highlight samples with the greatest prediction error. 

Day Treatment Observed Fv/Fm Predicted Fv/Fm 
day 1 Control 0.658 0.629 
day 1 Control 0.658 0.651 
day 1 Heated 0.648 0.635 
day 1 Heated 0.648 0.642 
day 5 Heated 0.625 0.627 
day 8 Heated 0.495 0.583 
day 8 Heated 0.495 0.581 
day 10 Heated 0.636 0.629 
day 10 Heated 0.34 0.356 
day 12 Heated 0.636 0.599 
day 12 Heated 0.161 0.201 
day 15 Heated 0 0.016 

 

Analysis of the 387 predictions made by the model during cross-validation provided insight 

into the increased prediction error observed for the day 8 test samples (Figure 5.7). Boxplots 

of the model predictions for each of the mean Fv/Fm values (Figure 5.7) show that day 8 

samples (those having an Fv/Fm of 0.495) had the greatest interquartile range with the least 

distance from optimal Fv/Fm values of ~0.6. In other words, the Fv/Fm of day 8 samples may 

represent a borderline Fv/Fm that is neither “healthy” nor “unhealthy”, somewhat explaining 

the difficulty in predicting these samples. In contrast, there was a larger distance between the 

predictions of samples having an observed mean Fv/Fm below ~0.4. Predictions of mean 

Fv/Fm close to the control values (~0.65) had much tighter distributions, highlighting the 

bias arising from the greater proportion of samples with an optimal Fv/Fm (more than half, 

i.e. all control samples and heat-stressed samples prior to day 7, had an Fv/Fm above 0.60; see 

Figure 5.3). 
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Figure 5.7 Boxplots of predicted maximum quantum yield of photosystem II (Fv/Fm) for each mean measured Fv/Fm 

made during cross-validation of the final model.  

5.3.4 Important variables 

To identify potential molecular biomarkers of coral functional status, the twenty most 

important spectral features driving prediction were identified by feature permutation (Figure 

5.8). The most important feature driving prediction of Fv/Fm was m/z 222, which produced a 

mean decrease in accuracy of 14% after permutation. The next three most important 

variables, m/z 593, m/z 339 and m/z 817 produced mean decreases in accuracy of 11.4%, 

8.3% and 7.6%, respectively. Of the 20 important variables, five were in a narrow m/z range 

between m/z 208-259. 
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Figure 5.8 Important variables driving the prediction of the maximum quantum yield of photosystem II identified 

by feature permutation. 

The top 20 ranked spectral features (Figure 5.8) and their corresponding adducts or 

precursor ions were compared with the coral research literature (Gordon & Motti, 2020a) to 

provide level 2 putative annotations where possible (Sumner et al., 2007). Three spectral 

features having a similar mass (Δppm ≤ 50 ppm) were matched with four compounds (Table 

5.2). The first, m/z 249, had a monoisotopic mass within 50 ppm of dihomomontiporyne H, 

first isolated from the Montipora genus of corals (Alam et al., 2002). At elevated temperatures, 

the intensity of m/z 249 was lower than controls on days 8 and 15 (Figure 5.9) and 

statistically significant differences in the mean intensity were observed over time (Krukal-

Wallis, χ2 (5) = 36.985, P < 0.001). The second feature, m/z 170, was identified as a potential 

potassium adduct within 50 ppm of two betaines, β-alanine betaine and alanine betaine 

(131.095 Da), which have been isolated from ten different species of Scleractinian coral (Hill et 

al., 2010). At elevated temperatures, the measured intensity of m/z 170 was notably higher 

than controls from day 10 onwards (Figure 5.9) and statistically significant differences in the 

mean intensity were observed over time (Krukal-Wallis, χ2 (5) = 24.601, P < 0.001). The final 

feature, m/z 985, was annotated as a potential sodium adduct and dimeric ion within 50 ppm 

of the C16 phosphocoline, (or C16 variant of lyso platelet activating factor) lyso-PAF-C16 

(481.353 Da); its intensity at elevated temperature was higher than days 5 and 8 controls 
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(Figure 5.9) and statistically significant differences in the mean intensity were observed over 

time (Krukal-Wallis, χ2 (5) = 22.256, P < 0.001). 

 
Figure 5.9 The m/z ion intensity each day (mean ± s.e) for three putatively annotated spectral features. The dotted 

horizontal line represents the limit of detection. 

 



 

 

Table 5.2 Spectral features having a similar mass (Δppm < 50 ppm) with those reported in the coral research literature 

Detected 
m/z 

Detected 
ion 

Literature 
m/z 

Literature 
Exact Mass 

Literature 
Ion 

Molecular 
Formula 

Mass Error (ppm) Compound Taxon Reference 

249.18855 [M+H]+ 271 248.17763 [M+Na]+ C16H24O2 13 Dihomomontiporyne 
H 

Montipora (Alam et al., 
2002) 

170.04777 [M+K]+ NA 131.094635 NA C6H13NO2 28 β-alanine betaine Scleractinia (Hill et al., 
2010) 

170.04777 [M+K]+ NA 131.094635 NA C6H13NO2 28 Alanine betaine Scleractinia (Hill et al., 
2010) 

985.69447 [2M+Na]+ 482.36 481.35321 [M+H]+ C24H52NO6P 4 Lyso-PAF C16 Scleractinia (Quinn et 
al., 2016) 
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5.4 Discussion 

Fv/Fm values are continuous and quantitative model descriptors of coral health (Fitt et al., 

2001, Warner et al., 1996, Jones et al., 1998, Okamoto et al., 2005). This study applied an 

LC-MS metabolomics approach and tree-based modelling to predict the Fv/Fm values of 

A. aspera exposed to an elevated temperature regime. Coral nubbins subjected to a ten-

day elevated temperature regime experienced significant disruptions to their functional 

state and a ~50% decline in Fv/Fm. The variation arising from batch effects in the raw 

data were successfully removed while quantifying the loss of biological variation that is 

inherent in such normalisation techniques. The final model predicted the Fv/Fm RMSE 

during cross-validation to within ±0.0371 of the observed values, while the unseen test 

samples were predicted to within ±0.0406 of their observed values. Twenty spectral 

features driving the prediction of Fv/Fm were identified, three of which were putatively 

identified after a thorough search of the coral research literature. This study confirms 

that an LC-MS-based metabolomics approach can be successfully employed to predict a 

quantitative measure of coral health with meaningful precision, while simultaneously 

providing valuable information about temperature induced changes in the A. aspera 

metabolome. 

5.4.1 The physiological response of A. aspera to elevated temperature 

Thermal stress significantly affected symbiont physiology after eight days of incremental 

increases in seawater temperature. Symbiont cells in thermally stressed corals experienced 

significant declines in cell density (Fig. 5.4a) and Fv/Fm (Fig 5.3) compared to controls, 

which is consistent with declines in coral health and symbiosis breakdown established by 

several previous studies (Lesser, 1996, Lesser, 1997, Warner et al., 1999, Dunn et al., 

2007). In contrast, chl-a negatively correlated with symbiont cell density (Figure 5.4b), 

which has been observed previously in A. aspera (Gierz et al., 2016, Ogawa et al., 2013), 

along with other coral species such as Montastrea annularis, Seriatopora hystrix (Fitt et al., 

1993a) and A. formosa (Jones, 1997). The negative correlation of chl-a with symbiont cell 

density runs counterintuitive to our understanding of coral bleaching and the consensus 

that pigment concentrations decline with thermal stress and cell density (Dove et al., 

2006, Fitt et al., 2001). It could be that the remaining algal cells increase chlorophyll 

production to maintain overall photosynthetic output, both requiring and resulting in 

increased nutrient production per cell. A number of arguments have been put forward 
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that may explain this increase in symbiont pigment concentration, including that: 1) 

Symbiodiniaceae with a higher thermal tolerance may repopulate the coral after bleaching 

(Ogawa et al., 2013); 2) repackaging of chl may result in pigment-protein complexes that 

absorb light more strongly (Gierz et al., 2016, Bissett et al., 1997); 3) the remaining 

symbionts experience a more nutrient rich intracellular environment than those that 

occupy corals with higher symbiont cell densities (Fitt et al., 1993b) or; 4) seasonal 

fluctuations and environmental factors are responsible (Brown et al., 1999b). The cause 

of elevated chl over the course of this experiment could be explained by any or all of 

these previous arguments; however, there is significant evidence that high nutrient levels 

correlate with increased chl concentrations (Hoegh-Guldberg & Jason-Smith, 1989, 

Muscatine et al., 1989, Stambler et al., 1994) and the argument for elevated nutrient 

enrichment at lower cell densities first put forward by Fitt et. al. (1993b) deserves more 

attention. 

5.4.2 Batch effects and their implication for long-term metabolomics-based 

monitoring 

Analysing samples in two separate batches resulted in pronounced analytical variation in 

the metabolic profiles. These batch effects are an unavoidable phenomenon in long-term 

mass spectrometry experiments involving large numbers of samples because of the high 

sensitivity of mass spectrometers, and the ions they detect. The major variations between 

batches one and two were associated with their date of analysis, eluent batch and the 

column usage time. As far as possible, all other variables were kept constant wherever 

possible: for example, instrument, column, operator, extraction and handling procedures 

were consistent across both batches.  

The most common methods used to minimise or eliminate batch effects involve the 

addition of internal standards and/or preparing and analysing PBQC samples at regular 

intervals and applying chemometric methods to normalise the data (Dunn et al., 2011, 

Hendriks et al., 2011, Wehrens et al., 2016). Unfortunately, there are several risks involved 

in removing batch related variation from the data using these techniques. Internal 

standards, for example, can change the physical characteristics of the sample, mask co-

eluting compounds or suppress ionisation; as a result, their inclusion in untargeted 

metabolomics studies, such as this one, is often avoided (Wehrens et al., 2016). While the 

use of internal standards is somewhat contentious, the use of PBQCs to remove batch 

effects is still considered good practice as they provide a means to monitor analytical 
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variation in long-term studies. As they do not directly affect the sample, their inclusion 

will, at worst, increase throughput time of each batch and, potentially, the number of 

batches required. A major consideration with PBQCs, however, is how they are utilised 

for removing batch effects. Traditionally, the workflow involves modelling the unwanted 

variation in the PBQCs and applying a correction to the sample data. Unfortunately, this 

process is not absolute and relies on the probability that batch effects can be discerned 

from genuine biological signals, inevitably resulting in the removal of some biologically 

relevant variation (Wehrens et al., 2016, Oytam et al., 2016). 

As the first and foremost concern of this study was to maintain the biologically relevant 

variation while detecting the highest possible number of spectral features, internal 

standards were avoided and the Harman technique: a recently developed risk-conscious 

approach to batch variation removal described by Oytam et. al. (2016) was employed. 

The technique, which was originally developed for genome and proteome data, was 

shown to be superior to the leading genome batch removal technique while preserving 

much of the biologically relevant information (Oytam et al., 2016). The technique 

separates data into its principal components and any variance that is associated with the 

batch information is then removed. The strength of the Harman technique is that the 

probability of removing variation associated with the biological factors, which are 

supplied to the algorithm, can be quantified by means of a confidence limit.  

In this study, the batch variation was prominent in the RLA plot of the unadjusted data 

(Figure 5.5a). The Harman technique was employed to remove this variation with a 

confidence limit of 0.99 (i.e. the probability of removing genuine biological signal was no 

greater than 1%). Some of the remaining batch variation could be observed in PC2 of the 

corrected data (Figure 5.6): however, decreasing the confidence limit of the Harman 

algorithm risked removing too much biological variation, which was naturally low due to 

the nature of the experiment. Heat-stressed samples collected on days 1 and 5, for 

example, exhibited “healthy” phenotypes, both having an Fv/Fm similar to that of 

controls. As a result, the stress-related variation in their metabolomic profiles was also 

low in comparison with control samples. In contrast, samples collected on days 8 to 15 

sustained a linear decline in their Fv/Fm and an increase in the stress-induced variation, as 

observed in their metabolomic profiles. The degree of stress-related variation is most 

obvious in the PCA plots, where treated samples collected on days 12 and 15, when 

seawater temperatures were at their highest, occupied more unique scores space than 

samples collected at earlier timepoints (Figure 5.6; PC1 and PC2). 
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The co-removal of biological variation with batch variation was of particular concern for 

samples collected on days 8 and 10, which had significant, although relatively small, 

declines in their Fv/Fm and relatively low variation in their metabolic profiles compared 

to samples exposed to longer periods of elevated temperature. For these samples, 

increasing the probability of removing biologically relevant variation by decreasing the 

confidence limit of the Harman algorithm was deemed too risky, especially given the 

large amount of the batch variation that was removed with the confidence limit set at 

0.99. 

Batch-related variation is unavoidable if the technique described here is to be scaled up 

for long-term metabolomics biomonitoring. For current long-term metabolomics studies 

this issue has largely been resolved with the judicious use and preparation of quality 

control samples, detailed experimental designs and the use of chemometrics to model the 

unwanted variation (Dunn et al., 2011, Wehrens et al., 2016, De Livera et al., 2015, Oytam 

et al., 2016). It should be noted that, in this study, only the treatment labels (control and 

heat-stressed samples) were supplied to the Harman algorithm for designating biological 

variation. It is therefore conceivable, that the algorithm may have removed other 

biologically relevant variation such as the length of exposure. Although the loss of all 

biologically-relevant variation was not definitively quantified in this study, the Harman 

technique removed the majority of variation that was not associated with either 

treatment group while also providing a means to quantify, and thus minimise, the 

probability of losing variation that was associated with each treatment. Whether this 

technique will translate to longer-term studies, where seasonal and diurnal variations 

must also be accounted for, has yet to be verified and should be explored in more detail. 

5.4.3 Fv/Fm as an indicator of healthy or stressed coral phenotypes 

The difficulty of linking the Fv/Fm value with a coral’s phenotype remains a major 

consideration in the use of Fv/Fm to monitor coral health, especially in the long term. 

While the connection between the functional state of the coral holobiont and the Fv/Fm 

of its algal symbionts has been firmly established over the past few decades of coral 

photophysiology research (Warner et al., 1996, Fitt et al., 2001, Ralph et al., 2015), other 

measures such as cell density and chl concentration are still utilised to provide context to 

the Fv/Fm measurements. For the purpose of this study, an Fv/Fm range representing a 

healthy phenotype was extracted from the vast amount of PAM fluorometry results 

reported in the coral research literature.  
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One of the earliest investigations into coral photophysiology reported that peak 

photosynthetic efficiency would produce an Fv/Fm between 0.5-0.7 in most corals 

depending on environmental conditions (Fitt et al., 2001), and this generally holds true to 

this day; however, this window may be even narrower for shallow water corals. Studies of 

A. aspera, for example, have recorded Fv/Fm values in “healthy” control corals between 

0.6 and 0.7 units (Hillyer et al., 2018, Hillyer et al., 2017b, Ogawa et al., 2013, Gierz et al., 

2016, Rosic et al., 2014, Middlebrook et al., 2008). Indeed, the work by Okamoto et. al. 

determined the average “healthy” Fv/Fm of 68 different species was 0.664 (σ = 0.029) 

(Okamoto et al., 2005). While there is no doubt that a long-term biomonitoring program 

must have adequate sampling to substantiate a baseline Fv/Fm, current research suggests 

that a healthy Fv/Fm phenotype of shallow water corals may be more in the region of 

0.60–0.70. 

Healthy A. aspera nubbins (controls) were found to have an average Fv/Fm of ~0.65. By 

day 10 of heat stress there was an obvious impact on coral health, where Fv/Fm had 

declined to an average of 0.34, corresponding to a significant decline in Symbiodiniaceae 

cell density. While there was not a significant decline in cell density on day 8 of the 

temperature regime, knowledge that corals were experiencing above average seawater 

temperatures (~32 °C), and that cell density declined by a further ~15% over the 

subsequent two days, supports the a priori assumption that the reduced Fv/Fm readings 

for day 8 (~0.5) were indicators of dysfunctional corals in this experiment. At the very 

least, the ~15% reduction in measured Fv/Fm on day 8 would be indicative of at-risk 

corals that warrant closer inspection. With this in mind, a ~15% reduction in Fv/Fm may 

represent a threshold where shallow water corals shift from a healthy to stressed 

phenotype. 

5.4.4 Model Performance 

RF modelling of coral metabolomic profiles accurately predicted the Fv/Fm of both 

healthy and heat-stressed corals at varying degrees of suboptimal Fv/Fm values. With the 

exception of samples collected on day 8, the Fv/Fm of all unseen test samples were 

predicted to within ±0.0406 of their observed values. This result is well within the 

window of each of the suboptimal Fv/Fm values recorded, as is evident in the boxplots of 

the cross-validation predictions, which show minimal overlap between the range of 

predictions (Figure 5.7). The same boxplots also highlight the bias that was introduced 

into the model, where samples having an Fv/Fm close to control values (~0.65) were 



 

 108 

more accurately predicted. This bias may be responsible for the greater prediction error 

of the two unseen test samples collected on day 8 (Fv/Fm of 0.495; Table 5.1), which 

were both predicted to be high and with twice the RMSE. It was suspected that the 

greater proportion of control samples, along with those less-exposed samples exhibiting 

a healthy Fv/Fm phenotype, were responsible for this bias; however, further analysis 

showed only a small increase in the RMSE of test samples when controls were removed 

from the model. As a result, removing the control samples from the model was deemed 

unnecessary and more likely to remove information that could be utilised for prediction 

of healthy coral phenotypes. The RMSE of prediction represents a 6.3% error margin for 

the control corals, well within the proposed ~15% threshold that delineates healthy 

corals phenotypes from stressed phenotypes. While more research on wild coral 

populations across a variety of regions is required, these results provide new and 

promising evidence that the information contained within metabolic profiles can be used 

to accurately describe healthy and stressed coral phenotypes as defined by their Fv/Fm. 

5.4.5 Putative molecular biomarkers driving the prediction of Fv/Fm 

An examination of the coral literature provided level 2 putative annotations (Sumner et 

al., 2007) for three of the 20 most influential spectral features driving Fv/Fm prediction 

(Table 5.2) The strongest driver of Fv/Fm was m/z 170.04777 (m/z 170), which was 

putatively annotated as a potassium adduct of alanine betaine or its isomer, β-alanine 

betaine. Betaines are abundant metabolites commonly found in marine algae (Kato et al., 

1996, Blunden et al., 1992, Blunden et al., 1986), Symbiodiniaceae (Nakamura et al., 1998, 

Yancey et al., 2009, Leblond et al., 2015) and a number of corals and giant clams (Hill et 

al., 2010, Hill et al., 2017, Yancey et al., 2009). Betaines act as osmolytes in animals (Hill et 

al., 2010, Yancey, 2005, Anthoni et al., 1991) and are widely known to reduce the impacts 

of cellular stress by stabilising proteins and cellular membranes (Hill et al., 2017, Rhodes 

& Hanson, 1993). Of note, is their role in protecting PSII from high irradiance and 

temperature, which has been firmly established in green algae and higher plants 

(Papageorgiou & Murata, 1995, Schiller & Dau, 2000). 

In corals, betaines have been measured at 30-94% higher concentrations when exposed 

to high irradiance (Hill et al., 2010). Under very low irradiance, i.e. in corals experiencing 

dark stress, up-regulation of the betaine-homocysteine S-methyltransferase 1 (BHMT) gene has 

also been observed (DeSalvo et al., 2012). Up-regulation of BMHT may be indicative of 

elevated betaine concentrations and thus further evidence of their defensive role in corals 
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experiencing PSII stress (DeSalvo et al., 2012). The intensity of the ion at m/z 170 had a 

positive correlation with Fv/Fm (Figure 5.9), which is consistent with the high irradiance 

behaviour reported by Hill et al. (2010), increasing confidence in the putative annotation 

of m/z 170 as alanine betaine. While future research is required to provide an 

unambiguous identification, this study provides tentative evidence of increased coral 

betaine production corresponding with a concomitant temperature induced reduction in 

symbiont Fv/Fm, and of the photoprotective role of betaines in corals. 

The next most influential spectral feature, m/z 985.69447, was putatively annotated as 

lyso-PAF-C16; a C16 phospholipid involved in the immune response of a number of 

animals where it acts as a signalling molecule to induce inflammation (Quinn et al., 2016, 

Camussi & Brentjens, 1987, Yost et al., 2010). Parkinson et al. (2014) reported the first 

observation of lyso-PAF-C16 in corals during an investigation of the functional diversity 

of coral and algal individuals. Examination of the metabolomes of symbiotic and 

aposymbiotic polyps of Astrangia poculata colonies found lyso-PAF-C16 to be more 

abundant in aposymbiotic polyps than symbiotic ones, highlighting the importance of 

accounting for intraspecific diversity in experimental designs. 

A second observation of lyso-PAF-C16 in corals came from a methods-based study of 

molecular networking for metabolite identification in complex metabolite mixtures (Garg 

et al., 2015 6389). Co-networking of coral (Montastraea annularis) extracts with diseased 

lung extracts, along with data from several spectral libraries, enabled the rapid 

identification of lyso-PAF-C16 and other PAFs in coral extracts, highlighting the utility of 

molecular networking as an organisational tool of tandem MS data. 

PAF-C16, lyso-PAF-C16 and lyso-PAF-C18 were identified in a 2016 study using a LC-MS-

based untargeted metabolomics approach and gene expression analysis to identify major 

components of the coral lipidome (Quinn et al., 2016). PAF-C16 concentration increased 

in four different coral genera in response to the competitive interactions with algae along 

with the gene that encodes the protein responsible for converting lyso-PAF-C16 to PAF-

C16. This was the first evidence that PAF-C16 was involved in the inflammation response 

of stressed corals. 

The ion at m/z 985 (putatively annotated as lyso-PAF-C16) was found to be a strong 

predictor of symbiont Fv/Fm. Initially, its abundance decreased from days 1-8 (Figure 

5.9) in response to increases in temperature (Figure 5.1). But, by day 10 its abundance 

began to increase and continued to do so for the remainder of the experiment, returning 
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close to its original baseline level at day 1 (Figure 5.9). This behaviour coincides with the 

known action of the PAF signalling cascade in mammals (Yost et al., 2010, Camussi & 

Brentjens, 1987), invertebrates (Sugiura et al., 1992) and corals (Quinn et al., 2016), where 

lyso-PAF is converted to PAF by the lyso-PAF acetyltransferase (lyso-PAF-AT) protein, 

initiating an inflammatory response. Conversely, conversion of PAF back to lyso-PAF by 

the PAF acetylhydrolase (PAF-AH) protein is known to reduce the inflammatory 

response (Yost et al., 2010) in mammals. This interconversion between lyso-PAF and 

PAF is tightly controlled; however, the inflammatory response in mammals can be 

uncontrolled and, in many cases, fatal (sepsis and anaphylaxis for example).  

Without monitoring the concentration of both PAF and lyso-PAF, it is difficult to 

explain with certainty the return of m/z 985 intensity back to baseline levels from day 10 

onwards. Logically, PAF-AH should be up-regulated, converting PAF to lyso-PAF, 

resulting in a reduction of the inflammation response; however, this scenario runs 

counterintuitive to the expected increase of the inflammatory response in organisms 

under continued physiological stress. One possible explanation may be that lyso-PAF is 

being produced, via the phospholipid remodelling pathway (Uemura et al., 1991), at a rate 

that exceeds the lyso-PAF-AT mediated conversion of lyso-PAF to PAF. This 

explanation, however, would also suggest a reduction in the inflammatory response at a 

time when the coral was most physiologically stressed, since lyso-PAF is known to 

reduce the inflammatory response in mammals (Yost et al., 2010). The latter would 

appear more likely given the continued thermal stress and further decreases in Fv/Fm 

observed in this experiment. Also, the lyso-PAF/PAF mediated inflammatory response 

in humans and other animals is known to be uncontrolled and often lethal under certain 

circumstances (e.g. in cases of sepsis and anaphylaxis) (Yost et al., 2010). Thus, the 

reduction in abundance of m/z 985 from days 1-8 may represent an initial inflammatory 

response to thermal stress involving the conversion of lyso-PAF-C16 to PAF-C16. With 

continued stress, a critical point may have been reached by day 10, where m/z 985 

biosynthesis is increased due to a dysregulation of the PAF signalling cascade—a 

common feature of lethal inflammatory responses in humans (Yost et al., 2010). 

The putative annotation of m/z 985 as lyso-PAF-C16, and its role as a predictor of Fv/Fm 

in response to thermal stress, provides supporting evidence for the lyso-PAF/PAF 

inflammatory response first observed in corals by Quinn et. al (2016). However, the 

M+H+ ion (482.36 Da) observed by Quinn et. al (2016) was not in the top 20 mass 

spectral features driving model classification, despite being analysed with similar 
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instruments. This could be due to matrix effects or ion suppression that are likely to be 

more prevalent when analysing crude coral extracts. Nevertheless, given that PAF-

mediated events are known to disrupt defensive mechanisms that predispose the host to 

further injury and/or infection (Yost et al., 2010), further research into this mechanism in 

corals should be prioritised, as it presents an opportunity to intervene in the PAF 

signalling cascade and so reduce the lethality of heat stress in corals. 

The final important spectral feature found in the coral research literature was m/z 

249.18855, putatively annotated as the acetylenic toxin, dihomomontiporyne H. The 

original isolation and structure elucidation of dihomomontiporyne H from Montipora 

corals was performed with the aim of finding new cytotoxic natural products that may 

have potential as chemotherapy drugs (Alam et al., 2002 6322). Against five human 

tumour cell lines, dihomomontiporyne H was found to have only moderate activity 

compared to other acetylenes isolated from Montipora sp. (Alam et al., 2002 6322, Alam et 

al., 2001 6321).  

In a study of the ecological roles of dihomomontiporyne H, Higa et. al. (1990) isolated 

four related acetylenes from Montipora sp. that exhibited ichthyotoxicity and inhibited the 

growth of some bacteria and fungi. They may act as sperm attractants in Montipora 

digitata, a hermaphroditic coral that releases eggs and sperms in a single bundle (Coll et al., 

1994). In a certain ratio, acetylenic alcohols are more effective in attracting sperm from 

M. digitata than from other species of Montipora, which may reduce the chances of 

hybridisation between different Montipora species (Coll et al., 1994). Both the tissue and 

eggs of Montiporid corals are known to harbour compounds that inhibit photosynthesis 

in endogenous and exogenous Symbiodiniaceae within minutes (Hagedorn et al., 2015, 

Hagedorn et al., 2010). Crushed eggs of M. capitata reduced the Fv/Fm of exogenous 

Symbiodiniaceae by up to 44% within 40 minutes, while the Fv/Fm of endogenous 

Symbiodiniaceae reduced to zero within 5 mins of crushing the M. capitata sperm bundle. 

While the ecological role of these toxins is still unclear, the literature suggests they play a 

role in defending the coral from other coral species, providing a chemical advantage to 

corals of the Montipora genus (Gunthorpe & Cameron, 1990, Hagedorn et al., 2015).  

This research provides tentative evidence of dihomomontiporyne H in a coral outside of 

the Montipora genus. Given their ability to inhibit photosynthesis, acetylenic toxins may 

play an important role in the breakdown of PSII during thermal stress if the putative 

annotation provided here proves to be correct. Clearly, future research is essential 
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investigate this phenomenon further and fully resolve the ecological role of acetylenic 

toxins in corals. 

5.5 Conclusion 

This research presents a reliable metabolomics-based method to accurately predict 

photoinhibition (i.e. Fv/Fm) in corals exposed to elevated temperatures. RF modelling of 

the LC-MS profiles of A. aspera identified a number of spectral features that were 

strongly associated with the Fv/Fm of A. aspera under varying degrees of thermal stress. A 

search of these spectral features against the coral research literature putatively identified 

three metabolites, all with potentially important roles in symbiont photophysiology and 

the breakdown of the coral-algal symbiosis. The successful implementation of the 

Harman algorithm, and its removal of batch related variation, has overcome a 

considerable impediment to the future implementation of long-term monitoring of coral 

metabolomes. While further research is required to investigate the utility of this approach 

beyond that of controlled laboratory conditions, these findings clearly highlight the 

potential of metabolic profiling to provide more informative, early indicators of coral 

health that may enhance the ability of reef managers to prioritise interventions and avoid 

undesirable changes in the reef ecosystem. 
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Chapter 6 

Revealing Taxonomic and Diel Variation Through 

Untargeted Metabolomics 
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6.1 Introduction 

Metabolic profiles of wild corals are highly variable and impacted by the vast array of 

environmental conditions to which they are exposed and the large number of organisms 

that constitute the holobiont. Variation in metabolic profiles can be captured using 

metabolomics – a spectral description of a sample’s measurable biochemistry – and 

monitored to assess the functional status and/or health of an organism. Indeed, 

metabolic biomonitoring of agricultural products such as, olive oils (Goodacre et al., 

2002), wine (Cuadros-Inostroza et al., 2010, Ali et al., 2011) and beef (Jung et al., 2010) has 

been in use for well over a decade, resulting in a thorough understanding of the 

conditions needed to control organismal behaviour and metabolic diversity, enabling the 

production of goods of specific quality. 

Robust biomonitoring of coral health must be representative of the coral population and 

account for natural or unknown variation. At small scales, a thorough sampling regime of 

a variety of corals provides an adequate representation of the coral reef population; 

however, due to the sheer number of samples required across multiple species, 

geographies and time scales, this approach does not scale well. A feasible solution may be 

found through the adoption of a sentinel species that is sensitive to changes in the 

environment while also being robust to localised variations and representative of a 

variety of species across a variety of landscapes. Restricting a metabolomics-based 

biomonitoring program to include only one, or even a few, important species would 

allow for greater sample replication and consequently, more accurate and robust 

predictions of coral and reef health.  

Metabolome research of wild corals is still in its infancy; however, a number of 

untargeted metabolic profiling studies have provided a glimpse into the metabolic 

response of key coral species to climate change-related stressors under controlled 

laboratory environments (see Chapter 2 for a review of the current coral metabolomics 

literature). Coral metabolic profiles are unique to their geographical location; for 

example, research of a single species of soft coral has shown that their sterol, terpene and 

N-containing compounds vary according to their geographical location, and by inference, 

their living environmental conditions (He et al., 2014). A similar discovery was made in 

the deep-sea coral, Callogorgia delta, which was shown to have unique metabolic variation, 

not only across different geographic locations, but also between individual colonies at the 

same location (Vohsen et al., 2019). Such intraspecific variation of coral metabolomes is 
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common, even within local environments. Betaines, for example, are as much as ~90% 

more abundant in corals that occupy areas of the reef that are high in irradiance (Hill et 

al., 2010). As well as provenance and reef morphology, intraspecific variation is also 

caused by the genotypic diversity within a species; for example, untargeted metabolic 

profiling of three distinct genotypes of Acropora cervicornis revealed metabolic profile 

variation unique to each genotype (Lohr et al., 2019). Interestingly, previous research had 

shown that the three genotypes had unique growth and stress tolerance phenotypes, 

which could be related to the observed metabolic variation. Clearly, a better 

understanding of the natural variation of corals is required to identify a sentinel coral 

species and instil confidence in the forecasts provided by metabolomics-based 

biomonitoring. To this end, this chapter explores the metabolic profiles of five different 

coral species and their variation over a single diel cycle.  

In addition to understanding natural metabolome variation, effective and efficient sample 

collection and quenching will be a major consideration of a metabolomics-based 

biomonitoring program. This aspect of biomonitoring can be both time consuming and 

costly in terms of the logistics involved, yet it is crucial to the quality of the data and the 

decisions that arise from its analysis. In particular, the traditional approach of collecting 

coral nubbins and quenching them in liquid nitrogen is problematic if coral sampling is 

to occur over a wide landscape. This is due, in large part, to the logistics and specialist 

handling required for liquid nitrogen in the marine environment. Nevertheless, there are 

a number of viable alternatives that could be explored in more detail; for example, 

methanol has been widely employed as a quenching agent in cell culture metabolomics 

(de Koning & van Dam, 1992, Sáez & Lagunas, 1976, Mashego et al., 2007, Bolten et al., 

2007, Canelas et al., 2008) and examined as an alternative to liquid nitrogen for the in-

field collection and quenching of plant samples (Maier et al., 2010). Alternatively, the 

metabolites present at the corals surface (i.e. 0-5 cm) can also be sampled with minimal 

to no impact on the coral itself (Ochsenkühn et al., 2018). In an effort to tailor the 

collection of wild corals to a metabolomics-based biomonitoring program, this chapter 

also assesses the suitability of methanol as a chemical-based alternative quenching agent 

of coral metabolomes. 
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6.2 Materials and methods 

6.2.1 Sample collection and processing for quenching assessment 

On the 26th March 2014 at the collection site on the reef flat of Heron Island, ten 

fragments of A. aspera were collected (under Great Barrier Marine Park Authority permit 

G13/36402.1) from a single colony and snap frozen in liquid nitrogen, while another ten 

from the same colony were placed into 20 mL glass scintillation vials (Sigma-Aldrich, 

Sydney, NSW, Australia) containing 15 mL of 100% LCMS grade methanol at ambient 

temperature, ~25 ℃ (Thermo Fisher Scientific, Scoresby, VIC, Australia). After one 

hour in liquid nitrogen, the snap-frozen samples were transferred to 20 mL glass 

scintillation vials containing 15 mL of 100% methanol. All twenty samples were 

transferred to -80 °C storage for approximately one month prior to analysis. 

Samples were prepared for LCMS analysis by centrifuging a 1 mL aliquot of the 

methanol extract from each sample at 21,900 g for 5 mins to settle any particulate matter 

before transferring the supernatant to glass autosampler vials (Verex™ vials, 

Phenomenex, Lane Cove, NSW, Australia). PBQCs were prepared by combining 5 μL of 

each sample extract into a single pooled sample. Three PBQCs were prepared; one for 

each of the two different quenching treatments and one for all samples. 

6.2.2 Sample collection and processing for the assessment of taxonomic and 

diel variation 

To ensure the greatest amount of metabolic diel variation was captured, sample 

collection was conducted both before, and after, the light/dark transitions at dawn and 

dusk. Coral samples were collected at 0500, 1000, 1600 and 2100 h (under Great Barrier 

Marine Park Authority permit G13/36402.1) on the reef flat of Heron Island on the 21st 

April 2014 from five coral colonies comprising five different, visually identified, species: 

Acropora aspera, Montipora digitata, Montipora aequituberculata, Pocillopora damicornis and Porities 

cylindrica (5 replicates per colony per time point; n = 100). For ease of sampling, 

collections were timed so that they occurred ~2.5 h either side of the low tides, which 

were recorded at 0731 and 1905 h. At all collection times, corals were at a collection 

depth of approximately 30 – 60 cm.  

Methanol quenching was employed as it was deemed to be a viable alternative to snap 

freezing using liquid nitrogen, as discussed in section 6.4.1. Small nubbins approximately 
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2 cm in length were excised from coral colonies and placed directly into 15 mL of 100% 

methanol at ~25 ℃ contained in 20 mL glass scintillation vials then stored at -80 °C for 

approximately one month prior to analysis. Samples and PBQCs were prepared for 

LCMS analysis as described in section 6.2.1. Six PBQCs were prepared: one for each 

species and one for all samples. 

6.2.3 LCMS data acquisition 

Reverse Phase chromatography was performed using an Agilent 1200 HPLC system 

(Santa Clara, CA, USA) consisting of a vacuum degasser, binary pump, thermostatic auto 

sampler and column compartment. Chromatography was conducted using the following 

conditions: a Zorbax Eclipse XDB-C18, 2.1 mm x 100 mm, 1.8 μm (Agilent, Australia) 

column; solvent (A) 0.1% formic acid in Milli-Q water and solvent (B) 0.1% formic acid 

in acetonitrile (ACN); a flow rate of 0.4 mL min-1 and; a column temperature of 40 °C. 

Samples were injected (10 µL) and eluted with a 10 min linear gradient from 5% (B) to 

100% (B), followed by a 2 min hold at 100% (B), then returned to 5% (B) and re-

equilibrated for 5 min (total time of 17 min). Samples were randomised to ensure 

analytical variation did not correlate with biological variation and a pooled biological 

quality control was run every tenth sample. 

The mass spectrometer was an Agilent 6520 ESI-QTOF-MS (Santa Clara, CA, USA) 

with a dual spray ESI source operated in positive ion mode. The source conditions were: 

nebuliser pressure of 45 psi; gas temperature of 300 °C; drying gas flow of 10 L min-1; 

capillary voltage of 4000 V and skimmer 65 V; fast polarity enabled. Measurements were 

performed in the extended dynamic range mode (m/z range of 100-3200; sampling rate 2 

GHz); scan rate of 2.03 spectra/s collected as MS1 centroid data. The mass spectrometer 

was calibrated using Agilent’s ES Tuning Mix ACN Solution, containing several 

calibration ions at mass values from 117 Da to 2,722 Da. PBQCs were used to monitor 

mass deviations of some ubiquitous features and analytical variation such as retention 

time shifts (typically < 0.1 min) and ionisation efficiency. 

6.2.4 LCMS data pre-processing 

Raw LCMS data was acquired from the instrument (Agilent MassHunter) then converted 

to mzXML format using ProteoWizard’s MSConvert tool (v3.0.6585; Chambers et al., 

2012, Kessner et al., 2008) with an absolute intensity threshold of 1000 counts. LCMS 

chromatograms were integrated and aligned in the R environment (v3.5.0) (R Core 
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Team, 2018) using the XCMS package (v3.4.2; Smith et al., 2006, Tautenhahn et al., 2008, 

Benton et al., 2010). Feature detection was performed using the centWave method 

(Tautenhahn et al., 2008) with the following modified parameters: ppm = 30, peakwidth 

= c(10, 60), mzdiff = -0.001, integrate = 1 and, prefilter = c(3, 1100). Retention time 

correction utilised the obiwarp method with binSize = 0.5 (Prince & Marcotte, 2006). 

Chromatographic peaks were grouped across samples using the peak density parameter 

with: bw = 5, binSize = 0.025 and minFraction = 0.5. Peak Filling was employed using 

the fillChromPeaks() function with default values.  

Isotopes and adducts were annotated using the annotate() function within the CAMERA 

package (v1.38.1) (Kuhl et al., 2011) with the following parameters: perfwhm = 0.7, 

cor_eic_th = 0.75, ppm = 10 and polarity = ’positive’. All M+1, M+2, M+3 and M+4 

isotopes identified by the CAMERA package were removed from the resulting peak list.  

Unreliable spectral features with 60% or more missing values across all classes were 

deleted entirely. Where a class had 80% or more missing values within any spectral 

feature, a random value between zero and the minimum intensity was imputed to 

represent a non-detect specific to that class. The remaining missing values were imputed 

using a random forest trained on the observed values (ntree = 100, mtry = √x), as 

described by Stekhoven and Buehimann (Stekhoven & Bühlmann, 2011).  

The structure and overall variation of the raw data was assessed using principal 

components analysis (PCA). PCA was performed in the R environment (v3.5.0; R Core 

Team, 2018) by a singular value decomposition of the centred and scaled data. Boxplots 

of the relative log abundance (RLA) of each sample were employed to assess the 

variation in metabolite abundance between samples. The data was standardised in the R 

environment (v3.5.0; R Core Team, 2018) by subtracting the median from each log-

transformed spectral feature before constructing the boxplots. The final, pre-processed, 

dataset had a total of 6542 features. 

6.2.5 Assessment of variation between liquid nitrogen- and methanol-quenched 

samples 

PCA and boxplots of the RLA of each sample were employed to assess metabolic 

variation as described in section 6.2.4. A Random Forests (RF) model was constructed in 

the R environment (v3.5.0; R Core Team, 2018) using the randomForest package (v4.6-

14)(Liaw & Wiener, 2002) to more accurately model minor variations in spectral feature 
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intensity. The optimal number of variables randomly sampled as candidates at each split 

(the mtry value) was optimised using repeated k-fold cross-validation (six repeats; k = 5). 

The optimal model was the most accurate model within one standard error of the 

empirically best model (Kohavi, 1995, Breiman et al., 1984). 

6.2.6 Modelling of taxonomic and diel variation 

Six RF models were constructed in the R environment (v3.5.0; R Core Team, 2018) using 

the randomForest package (v4.6-14; Liaw & Wiener, 2002): one to model the taxonomic 

variation between the five different species, and a further five to model the diel variation 

within each of the five species. For the taxonomic model, mtry was optimised using 

repeated k-fold cross-validation (three repeats; k = 10) using the caret package (v6.0-81; 

Kuhn, 2008). For the five models of diel variation, mtry was optimised using six repeats 

and k = 5 (see chapter 5, Figure 5.2 for a graphical representation of the cross-validation 

procedure). Due to the small number of samples (n = 20), the data was not partitioned 

into test and training sets: instead, all samples were used to optimise mtry and the results 

of cross validation were utilised for assessing the quality of the model. In each case, the 

optimal model was the most accurate model within one standard error of the empirically 

best model (Kohavi, 1995, Breiman et al., 1984). 

6.2.7 Variable selection 

Important spectral features driving classification were identified for each of the RF 

models by permuting each spectral feature then comparing the mean decrease in 

accuracy as described in the randomForest package (Liaw & Wiener, 2002). Important 

spectral features were cross-referenced with the MarinLit database and metabolites 

reported in the coral research literature (Gordon & Motti, 2020a) using a mass error of 

∆50 ppm as per Van Assche et al (2015), providing level 2 putative annotations where 

possible (Sumner et al., 2007). 

6.2.8 Data 

The R scripts for this experiment are available for viewing or download from GitHub at 

https://github.com/brgordon17/diel-species (Gordon & Motti, 2020b). The full list of 

metabolites found in the coral research literature and the MarinLit database are available 

as an R package at GitHub; https://github.com/brgordon17/coralmz (Gordon & Motti, 

2020a). 
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6.3 Results 

6.3.1 Metabolome variation as a function of quenching method 

PCA scores revealed no observable variations in the metabolome of A. aspera samples 

collected using the two different quenching methods (Figure 6.1a). Principal components 

(PCs) one and two captured a combined 57.3% of the variation in the data. Samples 

from both quenching methods occupy similar scores space in the plot, suggesting the 

variation captured by PCA was either very small or was not induced by either quenching 

method.  

As with the PCA, the RLA plot displayed little variation in metabolite abundance 

between quenching methods (Figure 6.1b). All samples had very similar interquartile 

ranges and distributions. Compared to previous observations of biological and analytical 

variation (see chapter 5, Figure 5.5), overall variation is very low. Nonetheless, the 

methanol-quenched samples show slightly more variation in their metabolite abundances 

than samples quenched in liquid nitrogen. 

 
Figure 6.1 PCA scores plot (a) and relative log abundance plot (b) of samples quenched in liquid nitrogen 

(blue) and samples quenched in methanol (red) 

Although variation due to the quenching method was less than the variation that is 

typically observed from biological or analytical factors, the quenching technique was 

modelled with RF to determine the true extent of the variation. Six repeats of five-fold 

cross validation produced a parsimonious model (mtry = 25) that was 100% accurate in 

predicting the quenching method used for each sample. This is unequivocal evidence that 

there is a difference in the metabolite content at the point of arrest of cellular 
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metabolism between the two quenching methods; consequently, a closer examination of 

the spectral features driving class separation was warranted.  

Boxplots of the 12 most important spectral features driving the classification of the two 

quenching methods were constructed to understand how the two different quenching 

methods affected the metabolites captured, i.e. the metabolic profile (Figure 6.2). Non-

detects drove separation of the two quenching methods: for example, spectral features 

m/z 349, 389, 399 and 813 were not detected in samples that were quenched with liquid 

nitrogen, while the remaining eight spectral features were not detected in samples 

quenched with 100% methanol. Nine of the spectral features from both methanol and 

nitrogen quenched samples had comparatively low intensities (<1 × 104 counts) that 

were close to the mass spectrometer’s limit of detection. Three of the 12 spectral 

features, m/z 383, 462 and 696, had moderate intensities above 1×104 counts. 

 

 
Figure 6.2 Boxplots of the 12 most important spectral features driving the separation of samples quenched 

by either methanol (red) or liquid nitrogen (blue). Each spectral feature is identified by its m/z above each of the 

nine panels. The dotted horizontal line represents the limit of detection (0.1 × 104). Boxplots of intensities below 

the limit of detection are non-detects (i.e. narrow distributions of imputed noise). Comparisons between features 

should take into account the free y-axis of each of the 12 panels. 
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6.3.2 Taxonomic and diel metabolome variation 

Tight clustering in the PCA of all five species’ clearly shows that taxonomic variation was 

greater than analytical variation or diel variation (Figure 6.3a). The negative component 

of PC2 and the positive component of PC1 captured variation associated with the two 

Montiporid corals, while the positive components of PC2 and PC1 captured the 

variation associated with P. damicornis. Metabolic variation of the A. aspera samples was 

best explained by the negative components of PC1 and PC2, while variation in the P. 

cylindrica samples was best explained by the negative component of PC1 and the positive 

component of PC2. 

 
Figure 6.3 PCA scores (a) and relative log abundance (b) plots of the measured metabolomes of A. aspera 

(A_aspe), M. aequituberculata (M_aequ), M. digitata (M_digi), P. cylindrica (P_cyli) and P. damicornis (P_dami). 

All five species occupied unique regions of the scores space for PC1 and PC2 and were 

distinctly separated from each other. M. aequituberculata and M. digitata occupied the most 

distant region of the scores plot compared to other species. Intraspecific variation was 

greatest in the P. damicornis samples and lowest in the A. aspera samples. Two trajectories 

appear to correlate with increasing intraspecific variation in the PCA scores plot: the 

first, extends from the A. aspera samples, through P. cylindrica and ending at the P. 

damicornis samples, while the second, extends from the A. aspera samples through to both 

of the Montiporid samples. All three species belonging to the Acroporidae family (A. 

aspera, M. aequituberculata and M. digitata), occupied similar scores space in the negative 

component of PC2. 

The relative log abundance boxplots of each sample highlight the variation in metabolite 

abundances between species. Montiporid corals had the highest metabolite abundances 
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of all species (Figure 6.3b) and the greatest variation of their sample medians. The 

sample medians and distributions of A. aspera and P. cylindrica were very similar; 

suggesting similar metabolite abundances and low sample variations, which is supported 

by their tight clustering in the PCA. Apart from two samples, A. aspera had the lowest 

variation between the sample medians while P. damicornis had the lowest overall 

metabolite abundance. Montiporid corals had the least number of high-abundant outliers 

of all species, while P. damicornis had the greatest number of high-abundant outliers. The 

number of low-abundant outliers was similar across all species. 

PCA was conducted on the raw data from individual species to further assess the 

variation within species and, in particular, to assess the level of variation associated with 

potential diel differences (Figure 6.4). A small amount of diel separation was observed in 

the scores space of each species; however, there was also a large amount of overlap 

between samples collected at different times. P. damicornis had the greatest separation 

between any two collection times with all samples collected at 05:00 and 16:00 h 

occupying unique areas of the scores space, although it should be noted that no data was 

available for P. damicornis at 21:00 h. For all species, diel variation within each class 

(timepoint) was similar to the variation between each class, indicating that diel variation 

was low and at levels similar to the noise in the data. Log transformation of the data, 

which is known to emphasise the standard deviations of low concentration metabolites 

(Kvalheim et al., 1994, van den Berg et al., 2006), revealed the structure associated with 

diel variation more clearly, further supporting the hypothesis that diel variation was low 

in comparison to taxonomic variation (Appendix Figure 3). 
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Figure 6.4 Composite PCA scores plot of PC1 and PC2 for each species 

6.3.3 Spectral features driving taxonomic variation 

RF modelling predicted the taxon of all training and test samples with 100% accuracy. 

To identify features driving taxonomic classification, the top 20 spectral features with the 

greatest contribution to the accuracy of the model were identified and labelled with their 

species-specific bias to model accuracy (Figure 6.5). Each of the top five features was 

biased to a single species and produced a mean decrease in model accuracy after 

permutation of 2.0-2.2%. The next six important features were biased to four species and 

produced a mean decrease in model accuracy after permutation from 1.8-2.0%. The 

remaining nine metabolites produced a mean decrease in model accuracy after 

permutation of ~1.7%. 

Montiporid corals required fewer important spectral features for effective classification: 

for example, two features from the top 20 drove classification of M. aequituberculata (m/z 

173 and m/z 1467; Figure 1.4), while for M. digitata three features drove classification 

(m/z 382, 749 and 404). In contrast, A. aspera utilised more of the top 20 features for 

classification than any other species, requiring six features in total. P. damicornis utilised 

five features and P. cylindrica utilised four. 
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Figure 6.5 Top 20 important spectral features driving taxonomic separation. Symbol shape and colour 

identifies the species-specific importance of each feature (see plot legend). 

Feature intensities of the 12 most important features (Figure 6.5) were examined to 

better understand their behaviour and influence (Figure 6.6). Many of the features 

driving taxonomic separation were unique to a single species or genus of coral. The two 

ions m/z 173 and 462 were detected in Montiporid corals only where m/z 173 was more 

abundant in M. aequituberculata and m/z 462 was more abundant in M. digitata. The ion 

m/z 382 was detected in M. digitata only, m/z 278 and 706 were unique to P. cylindrica, 

m/z 290 was unique to P. damicornis and m/z 608 was unique to A. aspera.  

Where features were detected in more than one species, notable differences in abundance 

drove taxonomic separation, for example, m/z 615 and 749 were the only features of the 

top 12 detected in all species and drove separation of A. aspera and M. digitata where they 

were most abundant. On the other hand, m/z 286 was most abundant in A. aspera but 

drove separation of P. damicornis where its abundance was low in comparison. Finally, 

two of the 12 important features were absent from only a single species: m/z 652 was not 

detected in P. cylindrica and m/z 694 was not identified in P. damicornis. None of the 12 

important features driving taxonomic variation could be provided with putative 

annotations from the coral research literature or the MarinLit database. 
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Figure 6.6 Feature intensities for the 12 most important features driving taxonomic separation. Each spectral 

feature is identified by its m/z above each of the 12 panels. The dotted horizontal line represents the limit of 

detection (0.1 × 104). Boxplots of intensities below the limit of detection are non-detects (i.e. narrow distributions 

of imputed noise). Comparisons between features should take into account the free y-axis of each of the 12 

panels. 

6.3.4 Spectral features driving diel variation 

Five models were constructed to classify the diel variation within each species and 

identify the spectral features driving separation. Due to the small number of samples (n 

= 20 per species), a subsample of the data was not set aside for validation of the final 

model. Instead, the prediction results obtained from cross-validation were used to assess 

the quality and fit of each model (Table 6.1). The best performing models were those 

constructed for A. aspera and P. damicornis, which had prediction accuracies of 0.98 and 

0.97, respectively. The model for M. digitata had an accuracy of 0.93, while the models for 

P. cylindrica and M. aequituberculata had prediction accuracies of 0.87 and 0.85, respectively.  

The sensitivity and specificity of all the models were above 0.80, with exception of the 

M. aequituberculata and M. digitata models, which had sensitivities of 0.60 for 10:00 h 

samples and 0.73 for 16:00 h samples, respectively. The sensitivity and specificity of the 

A. aspera model was particularly good, having values of 1.00 across three classes. 
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Table 6.1 Cross-validation prediction results for each Random Forests model including: the overall prediction 

accuracy of the model and the sensitivity and specificity of each model for the class descriptors (time). 

  Time (hh:mm) 
Statistic Accuracy 05:00 10:00 16:00 21:00 

A. aspera 0.98     
Sensitivity  1.00 1.00 1.00 0.90 
Specificity  1.00 0.97 1.00 1.00 

M. aequituberculata 0.85     
Sensitivity  0.80 0.60 1.00 1.00 
Specificity  1.00 0.99 0.88 0.93 

M. digitata 0.93     
Sensitivity  1.00 0.97 0.73 1.00 
Specificity  1.00 0.91 0.99 1.00 

P. cylindrica 0.87     
Sensitivity  0.83 0.80 1.00 0.83 
Specificity  0.89 0.94 0.99 1.00 

P. damicornis 0.97     
Sensitivity  0.97 - 0.93 1.00 
Specificity  0.97 - 0.98 1.00 

 

The top 20 features driving the classification of diel variation for each species were 

identified by their contribution to model accuracy after permutation (Figure 6.7). In each 

case, features contributed ~1.4 to ~2.0% accuracy to the model. Only a single feature 

was common to more than one species; m/z 246.3009, which was common to both A. 

aspera and M. aequituberculata and drove separation of samples collected at 16:00 h in both 

species. Features having an m/z ~200-500 featured prominently in all species and their 

contributions to model accuracy were evenly spread across all four classes (sampling 

times), except for P. damicornis, where none of the top 20 features had a strong 

contribution to the classification accuracy of samples collected at 21:00 h. 
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Figure 6.7 Important spectral features driving diel separation of five coral species. 

The top 20 spectral features were compared with coral metabolites reported in the coral 

mass spectrometry research literature and the MarinLit database (Gordon & Motti, 

2020a) to provide level 2 putative annotations (Sumner et al., 2007). Five spectral features 

having a similar mass (Δppm ≤ 50 ppm) matched five compounds in the research 

literature (Table 6.2). The mean intensity of each feature was plotted across all collection 

times to examine their behaviour and influence in each species (Figure 6.8).  

Feature m/z 784 drove class separation in A. aspera and produced a mean decrease in 

accuracy of ~1.75% after permutation (Figure 6.7). It had a monoisotopic mass within 50 

ppm of arachidonoylthio-phosphorylcholine (also known as arachidonoylthio-PC) 

identified in Pocillopora sp. (Sogin et al., 2016). Statistically significant differences in the 

mean intensity over time were observed in: A. aspera, where m/z 784 was detected in only 

two replicates at 21:00 h (one-way ANOVA, F3, 16 = 12.574, P < 0.001); P. damicornis 

where m/z 784 was detected in only three replicates at 21:00 h (one-way ANOVA, F2, 16 

= 13.598, P < 0.001) and; in M. digitata, where m/z 784 was below the LOD at 05:00 h 

and then increased in abundance during the day before decreasing again at 21:00 h (one-

way ANOVA, F3, 16 = 5.838, P < 0.01). 
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Figure 6.8 Annotated feature intensities for each species over time (mean ± s.e): The dotted horizontal line 

represents the limit of detection (0.1 x 104). Note that the y-axis scale differs for each plot. 

The second feature, m/z 277, drove class separation in A. aspera and produced a mean 

decrease in accuracy of ~1.6% after permutation (Figure 6.7). It had a monoisotopic 

mass within 50 ppm of methyl montiporate B identified in Montipora sp. (Alam et al., 

2001). Statistically significant differences in the mean intensity over time was observed in 

A. aspera (one-way ANOVA, F3, 16 = 5.782, P < 0.001), M. aequituberculata (one-way 

ANOVA, F3, 16 = 7.839, P < 0.01) and P. cylindrica (one-way ANOVA, F3, 16 = 6.836, P < 

0.01) where notable declines in m/z 277 abundance was observed from 05:00 to 10:00 h. 

This initial decline was not observed in P. damicornis due to missing 10:00 h samples. In P. 

cylindrica, the initial decline in abundance from 05:00 continued beyond 10:00 h to 16:00 

h. The abundance of m/z 277 continued to increase from 16:00 h to 21:00 in all species, 

except M. digitata, where m/z 277 decreased during that time.  

The third feature, m/z 1019, drove class separation in A. aspera and produced a mean 

decrease in accuracy of ~1.68% after permutation (Figure 6.7). It was annotated as a 

dimer having a monoisotopic mass within 50 ppm of 1-octadecylglycero-3-

phosphocholine (also known as Lyso-PAF C-18) as identified in Pocillopora sp. (Sogin et 

al., 2016) and a number of other scleractinian corals (Quinn et al., 2016). A statistically 

significant difference in the mean intensity over time was observed in: A. aspera, where 
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m/z 1019 was detected in all replicates at 05:00 h but not at any other time (one-way 

ANOVA, F3, 16 = 26.401, P < 0.001) and; in P. damicornis, where m/z 1019 was notably 

more abundant at 21:00 h (one-way ANOVA, F2, 16 = 7.268, P < 0.01). 

The fourth feature, m/z 347, drove class separation in M. aequituberculata and produced a 

mean decrease in accuracy of ~1.4% after permutation (Figure 6.7). It had a 

monoisotopic mass within 50 ppm of 10-hydroxydocosapentaenoic acid as identified in 

Modrepora sp. (Mancini et al., 1999). In M. aequituberculata and A. aspera, m/z 347 increased 

during the day before returning to 05:00 levels by 21:00 (one-way ANOVA, F3, 16 = 

4.771, P < 0.05 for M. aequituberculata and F3, 16 = 33.152, P < 0.001 for A. aspera). The 

feature was most abundant in M. digitata; however, there was no statistically significant 

difference in the mean intensity over time. It was not detected in P. damicornis and there 

was no statistically significant difference in the mean intensity over time in P. cylindrica. 

The last important spectral feature to be provided with a putative annotation was m/z 

135, which drove class separation in M. digitata and produced a mean decrease in 

accuracy of ~1.68% after permutation (Figure 6.7). It had a monoisotopic mass within 50 

ppm of dimethylsulfoniopropionate (Mancini et al., 1999). In M. digitata, the species in 

which it drove class separation, m/z 135 was detected at low abundance (~2.5 x 104) in 

only two of the five replicates at a single time point (10:00 h). These two replicates drove 

the statistically significant difference in the mean intensity over time for M. digitata and 

the importance of this feature to classification. No statistical difference was observed in 

the mean intensity over time for any of the remaining four species; however, unlike M. 

digitata, m/z 135 was detected in all replicates of the remaining four species at mean 

intensities ranging from ~1.5 x 104 in P. cylindrica to ~90 x 104 in A. aspera. 



 

 

Table 6.2 Table of features important to the prediction of diel variation matching metabolites identified in the coral mass spectrometry research literature and the MarinLit database. The 

shaded columns represent the data obtained in this experiment. The remainder of the table represents the data obtained from the literature. Important features (m/z) were compared to the 

monoisotopic masses reported in the research literature. Multiple matches of the same feature occur when another feature was identified as a potential adduct or when a metabolite was 

reported in two or more references. NA = not available; compound reported in the literature, but no data provided. 

Sample Taxon Detected 
m/z 

Detected Ion Literature 
m/z 

Literature 
Exact 
Mass 

Literature 
ion 

Molecular 
formula 

Mass Error 
(ppm) 

Compound Isolated from Reference 

A. aspera 784.5349 [M+H]+ NA 783.560059 NA C44H82NO6PS 41 Arachidonoyl thio-phosphatidylcholine Pocillopora (Sogin et al., 
2016) 

A. aspera 277.1801 [M+H]+ 299 276.1725 [M+Na]+ C17H24O3 1 Methyl montiporate B Montipora (Alam et al., 
2001) 

A. aspera 1019.7753 [2M+H]+ NA 509.384521 NA C26H56NO6P 1 Lyso-PAF C-18 Pocillopora (Sogin et al., 
2016) 

A. aspera 1019.7753 [2M+H]+ 510.42 509.384521 [M+H]+ C26H56NO6P 1 Lyso-PAF C-18 Scleractinia (Quinn et al., 
2016) 

M. 
aequituberculata 

347.2586 [M+H]+ NA 346.2508 NA C22H34O3 2 10-hydroxydocosapentaenoic acid Madrepora (Mancini et 
al., 1999) 

M. digitata 135.0478 [M+H]+ 135 134.040146 [M+H]+ C5H10O2S 3 Dimethylsulfoniopropionate Acropora (Swan et al., 
2017) 
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6.4 Discussion 

Long-term in situ biomonitoring provides a means of monitoring and predicting changes in 

reef communities, such as the effects of temperature and salinity-induced bleaching events, 

and recovery from disturbances such as Crown-of-Thorns starfish outbreaks and cyclones. 

This data is vital for assessing the impacts of management programs such as the 2003 

Great Barrier Reef Marine Park zoning plan (GBRMPA, 2004). In recent years, reef 

restoration has gained currency given the cumulative impacts on coral cover as it aims to 

build resilience of reefs and mitigate further damage to their delicate ecosystems. 

Metabolomics biomonitoring will be critical to assess the effectiveness of these 

intervention efforts while also having an increasingly important role as reef management 

moves further to a resilience-based approach. 

This study established solvent-based sample quenching as a feasible alternative to the 

commonly employed liquid nitrogen method (Vuckovic, 2012), greatly simplifying the 

sampling and extraction procedure of corals in the field towards developing a robust 

biomonitoring method. Quenching with methanol induced a similar level of metabolome 

variation as liquid nitrogen confirming its suitability. Applying the methanol quenching 

method, the metabolome variation of five coral species over a 24-hour period was 

examined to ascertain the taxonomic and diel metabolome variation and the spectral 

features driving differentiation. Within taxa, A. aspera had the lowest intrasample variation, 

supporting its adoption as a sentinel species for metabolomics-based biomonitoring. RF 

modelling revealed low levels of diel variation in each coral species that was most apparent 

in low abundant spectral features. Together, these results highlight the importance of 

understanding the natural inter- and intra-specific variation of coral metabolomes when 

considering the suitability of a potential sentinel species and for instilling confidence in 

biomonitoring predictions. 

6.4.1 Methanol quenching: a field-friendly and reproducible alternative to using 

liquid nitrogen. 

In-field methanol quenching of the five coral species induced variation that was 

comparable in magnitude to the variation induced by the commonly used liquid nitrogen 

method; the defining difference being that liquid nitrogen had a greater selectivity for low-

abundant metabolites. Although further work is required to better understand this 

phenomenon, there are several plausible explanations: 1) liquid nitrogen can capture low-
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abundant metabolites with high turnover rates before they’re metabolised into product 

compounds, 2) the low abundant metabolites are volatile and easily degas at the higher 

temperatures experienced during methanol quenching or, 3) liquid nitrogen is not as 

effective as methanol and is capturing metabolic processes. Given that liquid nitrogen is 

cold and fast acting it is likely to outperform methanol quenching while also reducing the 

volatility and reactivity of metabolites. For this reason, it should remain as the favoured 

method under laboratory conditions, or wherever it is convenient to employ, until the exact 

identity and nature of these low-abundant metabolites can be explored in greater detail. 

Nevertheless, the fact that variation was restricted to very low-abundant metabolites shows 

that methanol is a viable alternative to liquid nitrogen for the rapid quenching of wild coral 

metabolomes.  

Quenching in methanol has four major advantages over liquid nitrogen for field-based 

sampling of corals: 1) it is a quick and simple one-step extraction technique; 2) it is a highly 

effective extraction solvent (see chapter three and Gordon et al., 2013), increasing the 

throughput of sample preparation; 3) it does not require insulating containers and samples 

are unlikely to undergo major enzymatic changes that would normally occur at ambient 

temperatures; and 4) it does not require cumbersome protective equipment and can be 

easily handled by relatively unskilled personnel. 

Methanol quenching is uncommon in coral metabolomics; however, the technique is 

widely used in microbial and cell culture metabolomics (de Koning & van Dam, 1992, Sáez 

& Lagunas, 1976, Mashego et al., 2007, Bolten et al., 2007, Canelas et al., 2008). In microbial 

metabolomics, cold aqueous methanol (60% methanol; -40 °C) is routinely employed to 

arrest microbial activity while simultaneously washing the cells of any extracellular 

metabolites. In this case, it is the temperature of the solution that quenches the metabolism 

and the methanol is added to keep the cell suspension from freezing at sub-zero 

temperatures (Canelas et al., 2008). 

In contrast to its use in microbial metabolomics, methanol was employed here as a 

quenching agent for its ability to arrest cellular (metabolic) activity and not for its capacity 

to remain liquid at sub-zero temperatures. Methanol, which is inherently toxic to coral, 

quickly disrupts the cell walls in both the coral and its symbiont, effectively halting 

metabolic activity. Indeed, methanol and other popular solvents such as chloroform and 

acetone are known to quickly disrupt the cells of marine organisms and as such, are widely 

used in the extraction and analysis of metabolites (Andreae & Klumpp, 1979, Crews et al., 
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1986). For example, methanol is the solvent of choice to analyse photosynthetic pigments 

(Daigo et al., 2008, Kim et al., 2013) and other key metabolites in corals (see chapter three 

and Gordon et al., 2013). In contrast, methanol is far less effective on yeast cells grown in 

culture where it has been shown to be less disruptive to the cell wall, reducing metabolite 

leakage (Canelas et al., 2008). This counterintuitive phenomenon could be due to the more 

hydrophilic yeast cell wall, which has a requirement for active nutrient exchange with its 

aqueous environment, and the very low temperatures at which the methanol is employed. 

Liquid nitrogen is inherently difficult to work with in the field and limited by its high 

volatility at ambient temperatures. Indeed, this is not the first attempt to find a more field-

friendly sampling method. In a similar study, field sampling and quenching of fresh plant 

material using methanol:dichloromethane (2:1) was shown to be a favourable alternative to 

liquid nitrogen (Maier et al., 2010). In fact, solvent based quenching of plant material in this 

case was shown to be slightly more reproducible than liquid nitrogen. 

This study showed that methanol quenching compares favourably to liquid nitrogen in 

terms of its reproducibility —a finding that is supported by the previously mentioned 

research in plants (Maier et al., 2010). The effects of this one-step quenching and extraction 

method on the coral metabolome requires further investigation if the technique is to be 

used in a quantifiable manner; in particular, methanol’s nucleophilic nature and its effect on 

reactive, electrophilic components of the metabolome, as well as extraction efficiency and 

compound degradation, must be explored in greater detail. Nevertheless, these findings 

were sufficient to adopt methanol quenching for this study given the inherent difficulties 

associated with in-field sampling of coral.  

6.4.2 The suitability of a metabolomics biomonitoring sentinel species is 

influenced by the inter- and intra-specific variation of coral metabolomes. 

This study measured varying degrees of metabolome variation and metabolite abundance 

(Figure 6.3a-b) in five species of coral during a single diel cycle. Montiporid corals had the 

greatest metabolite abundance and metabolome variation of the five species, while A. aspera 

had the least. While these differing degrees of variation are influenced by the genotype of 

each species (Vohsen et al., 2019), they may also represent the homeostatic potential, or 

homeostatic range, of each species. Homeostatic control of the metabolome could affect 

the interpretation of results in two ways: 1) perturbed metabolites may be highly regulated, 

thus masking their initial response or, 2) perturbed metabolites may be less regulated, thus 

becoming more distinguishable compared to other, more highly regulated, metabolites. 
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Nevertheless, metabolic regulation is an important consideration when choosing a sentinel 

species for a metabolomics-based model of coral health. 

The advantage of an untargeted metabolomics approach to model coral health is that it is 

not restricted to a specific class of metabolites, such as primary metabolites, which are 

more actively regulated. Many coral metabolomics studies have been untargeted in their 

approach; however, their scope is often narrowed to include only those metabolites that 

can be identified using commercially available standards or molecular reference libraries 

(Hillyer et al., 2017b, Hillyer et al., 2016, Klueter et al., 2015, Sogin et al., 2016). This is less 

of an issue for metabolomics biomonitoring, which relies on monitoring the changes to the 

metabolic profile, rather than quantifying changes in known metabolites, to signify a 

deviation from the pre-defined baseline. Given the desirability for a stable metabolic 

baseline of “healthy” coral, species with a high homeostatic potential and/or low 

metabolome variation such as A. aspera, represent the better choice as a sentinel species 

(compared to other species used in this study). 

6.4.3 Putatively annotated metabolites associated with natural diel variation 

An examination of the coral research literature provided level 2 putative annotations 

(Sumner et al., 2007) for some of the most important spectral features associated with diel 

variation in A. aspera, P. cylindrica, M. digitata and M. aequituberculata (Table 6.2) The spectral 

feature m/z 784.53491 was strongly associated with diel variation in A. aspera and putatively 

annotated as arachidonoylthio phosphatidylcholine (ATPC). The first report of ATPC in 

corals was published by Sogin et al (2016) where ATPC was shown to be down regulated 

by ~23 % in P. damicornis exposed to thermal stress; prior to this report, ATPC was not 

known to occur naturally. ATPC is a synthetic compound first synthesised by Reynolds et 

al (1994) for use as a substrate in microtiter plate assays for the human cytosolic 

phospholipase A2 protein. Consequently, the putative annotation provided here is 

unreliable and further research is required to confirm the identity of m/z 784.  

Methyl montiporate B (m/z 277) was also associated with diel variation in A. aspera. This 

acetylenic compound was first isolated from Montipora sp. by Alam et al (2001). The exact 

ecological role of methyl montiporate B remains unknown; however, acetylenes have been 

found extremely effective at inhibiting bacteria and other coral pathogens in the 

surrounding seawater (Gochfeld & Aeby, 2008, Higa et al., 1990), as ichthyotoxins (Higa et 

al., 1990), and as sperm attractants in Montipora digitata (Coll et al., 1994). As a sperm 

attractant, acetylenes in certain ratios were shown to be more effective in attracting sperm 



 

 136 

from M. digitata than from other species of Montipora, which suggests they play a role in 

reducing the chances of hybridisation between different Montipora species. They are also 

known to irreversibly inhibit photosynthesis in Symbiodiniaceae within minutes of exposure 

(Hagedorn et al., 2015). Natural products researchers have a keen interest in acetylenes due 

to their significant antitumor, antibacterial, antimicrobial and antifungal properties (Negri, 

2015, Nathalie et al., 2015) 

Acetylenes may be common to many coral species given that m/z 277 was detected in all 

five species examined in this experiment. Statistically significant changes in the intensity of 

m/z 277 throughout the diel cycle in A. aspera, M. aequituberculata and P. cylindrica suggests 

the role of m/z 277 in coral physiology and/or photophysiology is not trivial. Indeed, 

acetylenes, and their ecological role in corals, could be worthy of far greater attention. With 

this in mind, m/z 277 should be formally identified to validate the strong association of 

acetylenes with Fv/Fm observed here.  

A third important spectral feature associated with diel variation was the dimer m/z 1019, 

which was putatively annotated as lyso-PAF-C18 (Table 6.2). In chapter five, the C-16 

form of lyso-PAF was associated with temperature induced changes in Fv/Fm. Both forms 

of lyso-PAF are very closely related and their role in corals has been discussed extensively 

in chapter 5; however, the C-18 form was found to be less common, and at much lower 

concentrations, than the C-16 forms in corals affected by algal and microbial interactions 

(Quinn et al., 2016). In this study, lyso-PAF-C18 was only detected in A. aspera at a single 

timepoint (0500 h), artificially inflating its importance to the model. In contrast, lyso-PAF-

C18 was far more abundant in P. damicornis, the only other species where lyso-PAF-C18 was 

observed to change significantly with the diel cycle. Since lyso-PAF-C18 could not be 

quantified at each timepoint in A. aspera, and since it wasn’t flagged as important by the P. 

damicornis model, it is difficult to conclude that lyso-PAF-C18 changes throughout the diel 

cycle with any authority. These findings, and those of chapter 5, do, however, bring this 

compound to the attention of the analyst for closer scrutiny – a primary aim of any 

untargeted metabolomics study. 

In M. aequituberculata, m/z 347 drove classification of diel variation. This feature was 

putatively annotated as 10-hydroxydocosapentaenoic acid, which was first identified in the 

deep-water corals, Modrepora oculata and Lophelia pertusa (Mancini et al., 1999). To date, the 

discovery of 10-hydroxydocosapentaenoic acid by Mancini et al. (1999) remains as the only 

observation of hydroxypolyenoic acids in Scleractinian corals; however, they have been 
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observed in other marine invertebrates such as red algae (Guerriero et al., 1990a, Lopez & 

Gerwick, 1988), sponges (Guerriero et al., 1990b) and a starfish (d’Auria et al., 1988). In 

mammals, hydroxypolyenoic acids are intermediates in the arachidonic acid cascade, an 

important signalling molecule present in the phospholipids of cell membranes (Shimizu & 

Wolfe, 1990). The arachidonic acid cascade is a popular biochemical target for the 

pharmaceutical industry due, in part, to its key role in the inflammatory response 

(Willenberg et al., 2015).  

Here, statistically significant increases in m/z 347 were observed during the day in M. 

aequituberculata and A. aspera but not in other species. Diel variation has been observed in 

other intermediates in the arachidonic acid cascade. In humans, for example, eicosanoids in 

saliva (Rigas & Levine, 1983) and gastric juices (Tonnesen et al., 1974) have been shown to 

change in concentration during sleep-wake cycles. This may suggest that hydroxypolyenoic 

acids could play an important role in the circadian rhythms of corals; however, their 

biological role in corals remains unclear. For this to be resolved, future work should focus 

on isolating and unequivocally identifying the existence of 10-hydroxydocosapentaenoic 

acid in these corals. 

The final important spectral feature to be provided with a putative annotation was m/z 

135, which was annotated as dimethylsulfoniopropionate (DMSP). DMSP drove prediction 

of diel variation in M. digitata; however, m/z 135’s importance for prediction in this case is 

likely to be overstated as DMSP concentration was below the limit of detection in all but 

two replicates at a single timepoint. Certainly, it is not feasible to conclude that diel 

variation of DMSP concentration was observed in M. digitata, nor was it observed in any 

other species. This is consistent with previous research that has found DMSP remains 

stable in coral tissue throughout the diel cycle (Tapiolas et al., 2013). 

6.4.4 Low levels of diel variation may affect the interpretation of metabolomic 

data and the confidence of biomonitoring predictions. 

The feature annotated as lyso platelet activating factor (lyso-PAF C-18) is a prime example 

of how natural variation may affect the biological interpretation of metabolomic data. 

Investigation of the photosynthetic efficiency of A. aspera exposed to elevated temperature 

(Chapter 5) found the C-16 variant of lyso-PAF to be a potentially strong predictor of the 

maximum quantum yield of photosystem II (Fv/Fm ), changing in abundance with 

continued thermal stress. Here, the C-18 variant of lyso-PAF was identified as a potential 

predictor of diel variation in A. aspera (Table 6.2 and Figure 6.8). As Fv/Fm is known to be 
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influenced by the natural diel cycle and its associated changes in solar irradiance (Lesser & 

Gorbunov, 2001, Brown et al., 1999a), the C-18 variant is also likely to be a predictor of 

Fv/Fm. Conversely, the C-16 variant is likely to be a predictor of diel variation. 

Minor changes in low-abundant spectral features are more likely to influence predictive 

models than minor changes in high-abundant spectral features. This happens because the 

absolute noise of the instrument increases with signal intensity, masking minor changes as 

metabolite abundance increases (Kvalheim et al., 1994). However, MS is not truly 

quantitative due to a variety of factors that affect the ionisation process (Gosetti et al., 2010, 

Ho et al., 2003). Consequently, the measurement of small variations by MS can often be 

unreliable in low-abundant spectral features, resulting in the incorrect identification of 

important variables. Here, m/z 135 (annotated as DMSP), identified by RF as driving 

classification of diel separation in M. digitata, was unreliable in this study due to a lack of 

reproducibility. In this case, two of the five replicates from a single time point had 

significantly higher intensities, which inflated the importance of m/z 135. The unreliable 

variation of m/z 135 in M. digitata highlights the importance of closely examining the 

spectral features that drive class separation.  

Low-level diel variations are an important consideration to metabolomics-based modelling 

of coral reef health on a landscape scale. Under lab conditions, diel variations can be 

accounted for with a considered experimental design that includes an appropriate number 

of controls and data pre-processing. A biomonitoring approach at landscape scales does 

not utilise controls in this traditional sense. Instead, many more corals need to be sampled 

over much larger spatial and time scales to establish a stable baseline of coral health or 

functional state. Nevertheless, diel variations should be carefully considered where control 

samples are lacking, especially when deriving conclusions about coral health from the 

behaviour of low abundant metabolites. 

6.5 Conclusion 

This research has advanced the prospect of metabolomics biomonitoring of corals by 

exploring the metabolic variation associated with quenching method, the diel cycle and 

taxonomy. Methanol is a viable alternative to liquid nitrogen for the rapid quenching of 

wild coral metabolomes. Apart from its superior ease of handling in the field, methanol 

quenching induces variation that is comparable in magnitude to the variation induced by 
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the commonly used liquid nitrogen method. Low levels of diel variation elevated the 

influence of low-abundant spectral features, highlighting the importance of a robust 

collection protocol, sound data processing and the close inspection of important features in 

machine learning. Even so, the reliance of all models on low-abundant spectral features 

revealed diel variation in the coral metabolome was relatively low; consequently, a shift in 

coral functional status away from its healthy baseline is unlikely to be masked by diel 

variation. A. aspera had the most stable metabolic baseline throughout the diel cycle, 

flagging it as a potential sentinel species. This stability is important in a biomonitoring 

context, as major biochemical changes should reflect the functional state of the coral rather 

than changes associated with the natural cycles within its environment. 
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Chapter 7 

General Discussion: Predicting Environmental Changes in 

the Coral Metabolome 
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By capturing and analysing high-resolution metabolic profiles (i.e. chemical fingerprints) of 

the coral metabolome, this study has advanced the current understanding of coral 

metabolomics and associated methods. It has established a link between the metabolic 

profile and coral health status, thereby enabling prediction of coral health and function. It 

has also provided a basis for a more thorough chemical investigation of keystone coral 

species by identifying a number of potential stress-specific biomarkers for further isolation 

and characterisation. Findings presented here also provide a solid foundation for the future 

development and advancement of metabolomics-based biomonitoring programs of corals 

and coral reefs. In summary, analytical methods have been firmly established with the 

publication of the first coral metabolomics extraction and analysis protocol, described in 

Chapter 3 (Gordon et al., 2013). These methods were further optimised with the 

development and validation of a user-friendly chemical quenching method for in-field 

sampling, as described in Chapter 6. Chemometric analysis of metabolic profiles has been 

thoroughly explored, validating several machine learning approaches that accurately predict 

both discrete labels and continuous quantitative descriptors of coral health. Further, 

metabolic phenotypes associated with realistic, mid-century, levels of atmospheric CO2 

have been established and thoroughly examined. Provided below is a reasoned synthesis of 

this research and recommendations on future research directions for advancing coral 

metabolomics and its role in long-term biomonitoring. 

The need for standardised analytical and data pre-processing protocols for coral metabolic profiling 

This research began at a time when coral metabolomics was just emerging and there was 

no prior research in this field on which to build. From this modest base, analytical methods 

were developed (Chapter 3) to address a key gap in the coral metabolomics research; 

specifically, to determine, with proper validation, a sampling and extraction protocol for an 

untargeted metabolome analysis of scleractinian corals using LC-MS and 1H-NMR. Since 

its publication in 2013 (Gordon et al., 2013), this protocol has had a significant impact on 

the field, being utilised in several studies (Sogin et al., 2014, Quinn et al., 2016, Putnam et al., 

2016, Sogin et al., 2017, Hartmann et al., 2017). Seven years later, however, methods for the 

extraction and analysis of coral for metabolomics remain diverse, reflecting the unique 

research questions of individual studies. 

Without well characterised biomarkers, coral metabolomics biomonitoring will need to use 

an untargeted metabolic profiling approach to monitor changes in the coral metabolome 

induced by environmental stressors. Analytical platforms such as mass spectrometry 

coupled with chromatographic separation (LC-MS) provide superior resolution (~1 ppm) 
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and are widely used in a diverse range of metabolic profiling experiments. Indeed, LC-MS 

was found to be superior to 1H-NMR for classifying coral exposure to elevated CO2 and 

temperature, in large part due to the greater amount of molecular information obtained. 

Both the Partial Least Squares Discriminant Analysis (PLS-DA) and Random Forest (RF) 

models, for example, were more parsimonious and had greater prediction accuracies for 

LC-MS data than those built with 1H-NMR data. 

The full repertoire of chemistry produced by corals is yet to be discovered, with isolation 

efforts focussed primarily on identification of secondary metabolites with specific 

bioactivity. Unfortunately, this represents a significant limitation to coral metabolomics 

studies not faced by other well-studied systems (German et al., 2005; Sumner et al., 2015), 

including the availability of applicable metabolite databases and appropriate internal 

standards. While metabolomics analysis of keystone coral species over a diurnal cycle and 

exposed to climate-associated stressors (i.e. elevated temperature and pCO2) has identified 

potential metabolites of interest, more research on the use of internal standards and their 

effects on the coral metabolome is sorely needed. Here, common internal standards were 

not used because they may potentially interact and react with the suite of metabolites 

present and alter the overall sample profile, which may affect the prediction outcomes and 

the interpretation of results (Wehrens et al., 2016, Remane et al., 2010, Chamberlain et al., 

2019). In this research, the use of an unadulterated sample was essential to provide 

confidence in the predictions that were provided. This was non-negotiable in this early-

phase, discovery-based, research to ensure that interpretations of the modelled metabolic 

fingerprint were not based on the assumed behaviour of metabolites in the mass 

spectrometer. In addition to the above, there a variety of other factors that must be 

considered when using internal standards in untargeted, non-quantitative, metabolomics 

studies like that performed here. For example: 

1. The availability of stable isotope labelled standards is very limited and they are 

often expensive; 

2. The number of metabolites is often too large and chemically diverse to provide a 

suite of internal standards with similar chemical characteristics and behaviour as 

the entire metabolome; that is, one cannot accurately normalise an entire dataset 

containing thousands of highly variable, and chemically diverse, features based on 

a few, or even many, internal standards (Wehrens et al., 2016, Chamberlain et al., 

2019); 
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3. Internal standards may coelute with other compounds, which is not ideal when it is 

not clearly known in advance what metabolites are being detected; 

4. Internal standards are known to contribute to ion suppression and/or 

enhancement; 

5. When used as quality controls, i.e. to monitor data quality and the variation 

induced during sample preparation and handling, internal standards may not be 

representative of all compounds – this is especially true for symbiotic organisms 

such as corals, which are comprised of a variety of cell types (animal, algal, 

bacterial and viral). 

Nevertheless, internal standards are widely used in the metabolomics field and the body of 

evidence suggests their benefits far outweigh any potential downsides. Indeed, internal 

standards play an important role as quality controls to assess variation from a variety of 

sources – not to be confused with internal standards that are used for quantification, which 

must be added just prior to analysis (Broadhurst et al., 2018). While the discovery-based 

approach taken in this study precluded the use of internal standards, identification of 

internal standards suited to investigating coral extracts– and their effects on the extracted 

coral metabolome – must be considered in future research, as they will be essential for 

monitoring the quality of data. This is particularly important for large datasets collected 

over extended timeframes, as is required in biomonitoring programs. 

Complex pre-processing is required before LC-MS data can be confidently analysed, 

representing the major downside to using this platform for metabolic profiling. Retention 

time correction, feature extraction, batch correction and isotope and adduct identification, 

for example, must be tailored and validated for every taxa, sample matrix, LC-MS 

instrument, and LC-MS separation and detection protocols. Coral samples and LC-MS 

conditions were kept consistent across each of the experiments conducted here and effort 

directed towards validating and testing a variety of data pre-processing approaches. 

Fortunately, data pre-processing in later experiments only required validation without 

testing. For most new studies, however, data pre-processing and analytical approaches are 

an obvious bottleneck in the coral metabolomics pipeline. Future research should, 

therefore, focus on the development of a standardised set of coral-specific pre-processing, 

separation, and analysis protocols suitable for a variety of platforms and study conditions. 

This would not only streamline the coral metabolic profiling workflow, but also encourage 

the use of a standard set of procedures; improving the insights that can be gained through 

the increased availability and the utility of standardised datasets. 
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Machine learning in untargeted metabolic profiling of the coral metabolome 

There is a wide variety of machine learning and statistical approaches for analysing 

metabolome data. Supervised machine learning algorithms predict a predefined outcome by 

iteratively optimising the model according to a measure of performance, such as accuracy 

or area under the receiver operating characteristic curve (AUC). Some more commonly 

used algorithms include: RF, PLS-DA, Support Vector Machines and principal 

components regression. The most widely employed algorithm in metabolomics is the linear 

PLS-DA algorithm, as it performs admirably well for binary classification problems and is 

computationally inexpensive compared to other algorithms (Gromski et al., 2015); however, 

the performance of the PLS-DA algorithm may suffer in comparison to more complex 

algorithms – as was the case in Chapter 4 – particularly with larger datasets. 

Untargeted metabolic profiling using LC-MS platforms generate far more molecular 

features than targeted approaches, or even untargeted approaches utilising alternative 

platforms, such as GC-MS and NMR. The untargeted LC-MS approach, for example, 

routinely generates metabolic profiles with anywhere from ~1000 to ~6000 molecular 

features, while those generated using targeted or semi-targeted approaches have far fewer 

features as a consequence of filtering data to identifiable metabolites only. Therefore, non-

linear algorithms, such as RF and neural networks, are more suitable for classifying the 

untargeted and unfiltered profiles that are encountered in LC-MS-based metabolomics 

biomonitoring. 

Metabolomics biomonitoring has unique chemometric demands for classifying metabolic 

profiles; however, as the field is still in its infancy a number of questions are yet to be 

thoroughly explored. For example: 

1. How are unwanted variations associated with long-term metabolic profiling 

handled? 

2. How current should a model be, and how is new data integrated, aligned and 

incorporated with existing data? 

3. How do we incorporate data from different platforms, sources or organisms for 

use by a single model or decision support tool? 

4. What model outcomes are important to marine park managers?  

5. How do we ensure the quality of predictions and instil confidence in those using 

them? 
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Regarding question one, this research shows that modelling unwanted variation can be an 

effective solution to removing the variation associated with different batches. This was 

achieved using the Harman algorithm (Chapter 5) by modelling both the batch-associated 

variation and the known biological variation, then removing the former while monitoring 

the probability of removing the latter. Low levels of natural diel variation were successfully 

identified using the RF algorithm and these too, could be successfully accounted for when 

drawing conclusions from metabolome data (Chapter 6). Modelling variation in pooled 

biological quality controls (PBQCs) is another commonly used method and, given the ease 

of preparing and analysing PBQCs, their inclusion in metabolic profiling experiments is 

considered best practice. However, the long-term stability and availability of PBQCs must 

be considered before implementing a long-term metabolomics biomonitoring 

programming, as they must remain consistent over time. Therefore, future research should 

be conducted to identify a stable, consistent, and widely available PBQC that can 

adequately and reproducibly represent the chemistry of the coral metabolome. 

The second question concerns the incorporation of new data into a predictive model. This 

is a time-consuming process because of the computationally expensive task of aligning the 

new LC-MS data with pre-existing data. To date, this is an unavoidable problem that is 

commonly handled by reprocessing (feature extraction and alignment, etc) then retraining 

and releasing new models at strategically timed intervals; however, this approach limits the 

speed that the model could provide feedback on coral health, exacerbating the problem as 

the volume of data grows. Recent research has highlighted the potential of mapping spectral 

features rather than aligning their retention times through warping functions (Smith et al., 

2015). Realising this approach would overcome the computational expense associated with 

alignment and facilitate the fusion of data from experiments using different 

chromatographic conditions. 

Predictive models are only as good as the data provided. Incorporating data from different 

laboratories or different platforms into a single model requires extensive data cleaning and 

pre-processing to ensure the quality and consistency of the data. This process takes 

considerable time, requires robust quality control and is often too difficult or time 

consuming to consider; consequently, data fusion is rarely considered in metabolomics. 

Stacking multiple models, rather than incorporating data into a single model, is one 

possible solution to the data fusion problem. 
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Model stacking involves training a new, or top layer, machine learning algorithm to 

combine the predictions of multiple base layer models. This approach to machine learning 

offers predictions that typically perform as well as, or better than, the individual base layer 

models (Polley & Van der Laan, 2010). Model stacking has had very low adoption rates in 

metabolomics to date due to the perceived complexity of the technique, poor 

interpretability and limitations in computing power. Data science, however, has advanced 

significantly in recent years and stacked models, along with new methods to interpret them, 

are now commonplace in machine learning. Stacked models facilitate the use of pre-

existing datasets from different laboratories, reducing the effort and time required to build 

a diverse and representative dataset. Hence, metabolomics biomonitoring could be 

implemented quicker, and at lower cost, using such an approach. For this reason, future 

research should examine the stacked model approach for combining the predictions of 

multiple unique metabolic profiling experiments into a single model for predicting coral 

health. 

Model outcomes must be underpinned with a sound understanding of the underlying 

biology or processes that may be affected by the decisions that the model supports. This 

could be achieved by incorporating scientifically valid data from alternative sources. A 

model that predicts the susceptibly of coral to bleaching, for example, might incorporate 

physical and water quality measurements from existing sources such as oceanographic 

moorings and satellites. This could be approached from a variety of angles; for example, 

pre-existing data could be incorporated into a new predictive model or, alternatively, 

metabolic profiling data could be incorporated into pre-existing coral reef monitoring 

programs. Either way, the success of any metabolomics biomonitoring program will be 

reliant on the support of reef managers and agencies already invested in coral reef 

monitoring. Consequently, coral sampling for metabolomics biomonitoring should 

prioritise areas that are actively monitored by existing programs. Engaging stakeholders 

involved in these programs is a high priority for the advancement of metabolomics 

biomonitoring. 

Isolating the individual response of host and symbiont 

Unfortunately, traditional metabolomics-based approaches are not ideal for the analysis of 

an intracellular symbiosis as they do not provide the spatial resolution required to 

investigate the individual responses of the host and symbiont. Quenching the metabolism 

of the study species, followed by extraction of metabolite classes of interest in a tailored 

solvent, is the standard workflow used for sample preparation (Gordon et al., 2013); 
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however, this approach does not distinguish between the host and symbiont, and attempts 

to differentiate their response through data analysis is extremely challenging. Separating the 

host tissue from the symbiont before extraction is not practical, as it is difficult to maintain 

the low temperatures required to suppress enzymatic activity during separation. Hillyer et al 

(Hillyer et al., 2016, Hillyer et al., 2018) attempted this by grinding and homogenising the 

coral holobiont under liquid nitrogen then suspending the material in chilled MilliQ water 

before separating the symbiont from the host by centrifugation (Hillyer et al., 2016). 

Although every attempt was made to minimise metabolic activity, their method has not 

been validated in the research literature and future research should verify their method and 

explore potential host-symbiont separation methods in more detail. 

Measuring the cellular level profiles of host and symbiont in situ is possible using platforms 

such as nano scale secondary ion mass spectrometry (nanoSIMS, Marshall et al., 2007), 

matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS; Kopp et al., 

2015) and Synchrotron Radiation Infrared Microspectroscopy (SR-IRM) (Gordon et al., 

2018), the latter having the potential to examine live algal cells in culture. Utilising a liquid 

flow-through cell, media can be manipulated and delivered to live cells and their response 

can be monitored in near real time (Heraud et al., 2005). Given that our current knowledge 

of the signal transduction pathways and molecular interactions that govern the initiation 

and stability of the coral-algal symbiosis remains poor (Weis et al., 2008, Davy et al., 2012), 

future research should focus on using a combination of platforms to decouple the host and 

symbiont responses observed by the LC-MS analyses conducted here.  

Metabolomics biomonitoring can provide real world data about the coral response to ocean acidification and 

warming  

Recent research has revealed that traditional CO2 and temperature manipulations in the 

scientific research literature have been too severe (Hughes et al., 2017a). There is now an 

urgent need to recalibrate ocean warming and acidification experiments to better 

understand coral-stressor interactions under more realistic emissions scenarios (Hughes et 

al., 2017a, Hughes et al., 2010, Pandolfi et al., 2011, Steffen et al., 2015). This is a difficult 

task because the biological response to smaller scale fluctuations in water temperature and 

CO2 are not as easily detected, require more time to present physically, and are more 

difficult to control experimentally. These barriers could be overcome with the 

establishment of a long-term metabolomics biomonitoring programming. Experimental 

manipulations of pCO2 and temperature, for example, would then be redundant, as a well-

designed metabolomics biomonitoring program would capture the biochemical response to 
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natural and anthropogenic-induced variation in the coral’s environment. Indeed, Chapter 4 

shows that metabolic profiling can identify molecular phenotypes associated with 

reductions in pH, elevated temperature, and combinations of the two, at pCO2 levels 

consistent with atmospheric CO2 concentrations under RCP 4.5. To date, however, 

metabolomics has yet to be employed in the study of coral health long-term. It is 

imperative, therefore, that future research focus firmly on long-term metabolomics 

biomonitoring and long-term chemometric approaches. 

The functional roles of many secondary metabolites in the coral holobiont are poorly understood  

Several secondary metabolites were putatively identified as directing classification of coral 

health. The application of a 70% aqueous methanol extraction protocol which is more 

selective for secondary metabolites and the reliance on a database that contained a high 

proportion of secondary metabolites (Gordon & Motti, 2020a), has likely biased their 

assignment at the expense of primary metabolites. Nevertheless, secondary metabolites 

clearly play an important role in distinguishing the coral’s response to stress and 

environmental variation. 

Acetylenes, for example, were putatively identified in A. aspera in three separate 

experiments (Chapters 4-6), indicating their potentially important role in A. aspera 

physiology. In chapter 4, m/z 217, putatively annotated as montiporyne A and 

montiporyne B, was strongly associated with A. aspera nubbins exposed to thermal and 

CO2 stressors. In chapter 5, m/z 249, putatively annotated as dihomomontiporyne H, was 

an important feature driving the prediction of the maximum quantum yield of photosystem 

II (Fv/Fm). In chapter 6, m/z 277, putatively annotated as methyl montiporate B was 

associated with diel variation. While it is difficult to speculate on the ecological function of 

acetylenes in A. aspera without a definitive identification, significant changes in Fv/Fm were 

common to all three experiments. In Chapters 4 and 5, for example, Fv/Fm reduced in 

response to stress, while in Chapter 6, Fv/Fm was expected to change throughout the diel 

cycle (Lesser & Gorbunov, 2001, Brown et al., 1999a, Sorek et al., 2013), particularly in 

response to the significant shift in irradiance that occurs at dawn and dusk. Given this 

common factor, and the fact that Montiporid corals are known to harbour compounds that 

inhibit photosynthesis in Symbiodiniaceae (Hagedorn et al., 2015, Hagedorn et al., 2010), A. 

aspera may be utilising acetylenes or closely related compounds to regulate the 

photosynthetic performance of their coral symbionts. 
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Lyso-PAF was another putatively identified metabolite that drove prediction of samples 

undergoing changes in Fv/Fm in more than one experiment. In Chapter 5, for example, m/z 

985, putatively annotated as lyso-PAF-C16, was a strong predictor of symbiont Fv/Fm. Its 

abundance initially decreased in response to increasing temperature before returning to 

original baseline levels, consistent with the PAF-induced inflammatory response in 

mammals (Yost et al., 2010, Camussi & Brentjens, 1987), invertebrates (Sugiura et al., 1992) 

and corals (Quinn et al., 2016). In Chapter 6, the dimer m/z 1019 was putatively annotated 

as lyso-PAF-C18 and contributed to the classification of corals throughout the diel cycle, 

which, as mentioned previously, causes changes in symbiont Fv/Fm. Given the well-known 

role of lyso-PAF in the immune response of many animals, changes in symbiont Fv/Fm 

may elicit a similar immune response in either partner. To advance the field of coral 

metabolomics, future research must focus on isolating and identifying these common 

features from corals. Indeed, coral metabolomics should revisit its roots, incorporating a 

natural products chemistry approach to formally identify a greater proportion of the coral 

metabolome with the same sense of urgency and effort that has been invested into 

decoding genomes. 

Considerations for coral metabolomics biomonitoring 

Tropical coral reefs are under considerable and increasing pressure from global stressors 

caused by a rapidly changing climate and their resilience into the future is uncertain. A 

more robust method to detect subtle variation and decline in coral fitness within the 

holobiont (i.e. host and symbiont) - before changes in phenotype expression become 

evident - will better inform reef managers by offering an early warning system and decision 

support tools that stratify corals reefs according to a variety of risk factors.  

Decision support tools and predictive models must have the confidence of marine park 

managers. To instil this confidence, predictive models must be validated and robust to 

unforeseen environmental changes, such as abnormal weather events and anthropogenic 

influences, as well as variations introduced through subtle differences in the collection, 

handling, processing, and analysis of coral samples. 

This research has considered several factors to improve the robustness and quality of 

predictions made using coral metabolic profiles. The quality of predictions, for example, 

was shown to be affected by a lack of sample replication in Chapter 4. In Chapter 6, a 

simplified method for sample collection was evaluated after recognising the complexity and 

potential for errors associated with the commonly used liquid nitrogen quenching 
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approach. Nevertheless, there remain numerous gaps in the research that must be explored 

before the coral metabolic profiling techniques explored here can be utilised for 

metabolomics biomonitoring at full-scale. Some of the major gaps identified here for 

consideration include: 

1. The development of standardised sample handling, extraction and analysis 

protocols, with appropriate quality controls and quality assurance, to improve the 

quality and comparability of data; 

2. Improvements in, and standardisation of, mass spectral feature detection, 

alignment and/or mapping to improve the quality of data and facilitate the sharing 

and fusion of datasets.; 

3. Identification of a stable and common PBQC to facilitate the sharing and fusion of 

datasets; 

4. Research into the stacked model approach for combining the predictions of 

multiple concurrent biomonitoring programs, improving predictive power and 

model stability; 

5. Prioritising regions that are actively monitored by existing programs to make use of 

current resources and datasets that may improve model predictions and stability; 

6. Engaging stakeholders involved in existing programs to document the business 

needs and risks; 

7. Formally identifying a greater proportion of the coral metabolome, and specifically 

those putatively assigned features identified here; 

8. Furthering the work by Tang et al. (2018) to explore the full potential of the 

lipidome for biomonitoring purposes; 

9. Exploring the full potential of affordable technology, such as older, lower 

resolution mass spectrometers, to reduce the investment needed. Chapter 4 

provides evidence that affordable and low-resolution instruments can provide data 

to categorise the health status of corals. 

This thesis has developed protocols and provided insights into the suitability of metabolic 

profiling to monitor coral health long term. While more rigorous studies, including 

biomarker identification, are needed to progress metabolomics-based biomonitoring of 

corals, findings reported here provide a basis to further explore this strategy. 
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Appendix Figure 1 Comparison of an identical sample on 3 different reversed phase chromatography columns in 

positive ion detection mode. XB-C18 (top), PFP (middle) and Phenyl-Hexyl (bottom). 

 

Appendix Figure 2 Principal Components Analysis of coral extracts subjected to three different solvent removal 

techniques. Lyophilisation (black), speed vacuum (blue) and nitrogen stream (green). 
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Appendix Figure 3 Total ion chromatograms of identical samples analysed in positive ionisation mode (red) and 

negative ionisation mode (blue) 

 

 
Appendix Figure 4 LC-MS and 1H-NMR PCA analysis of all samples. Samples exposed to elevated temperature (eT 

and eCO2eT) at day 6 (blue circles) and day 14 (orange squares) are highlighted. 
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Appendix Figure 5 PCA of 1H-NMR data for elevated temperature (eT, blue squares) and control (orange circles) 

classes at day 14 of exposure 
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Appendix Figure 6 PCA of each species after log transformation of the data: log transformation reveals the 

structural variation of low concentration metabolites by reducing large values in the dataset more than smaller 

values while emphasising the larger relative standard deviation of low abundant metabolites. 

 

Appendix Figure 7 An example total ion chromatogram (top) and extracted ion chromatogram (bottom; m/z 

286.2641) of A. aspera 
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Appendix Table 2 The top 50 most influential metabolites to the PLS-DA model in Chapter 4. 

mz vip control eT eCO2 eCO2eT 
256.1166 100.00 45.12 93.69 44.88 100.00 
274.1992 80.00 79.83 68.98 56.32 80.00 
302.2308 75.44 75.44 55.46 72.80 73.87 
300.2147 61.85 60.76 44.38 59.97 61.85 
565.2811 59.78 12.80 41.98 12.67 59.78 
494.5636 56.94 16.25 43.63 20.63 56.94 
298.2735 55.33 18.42 44.48 17.43 55.33 
294.2422 54.86 15.63 46.58 13.96 54.86 
286.2994 54.25 11.55 40.10 20.01 54.25 
514.3720 54.18 18.72 24.14 24.65 54.18 
694.5451 53.13 19.52 32.90 19.47 53.13 
567.5809 51.55 11.12 38.68 18.65 51.55 
333.1782 50.89 18.86 29.08 31.40 50.89 
680.5825 50.71 12.29 42.29 13.80 50.71 
623.6350 50.08 11.73 43.55 16.07 50.08 
509.5011 49.84 48.07 27.25 49.84 40.75 
533.2730 49.59 26.44 38.70 19.05 49.59 
646.3334 49.41 22.01 30.54 23.77 49.41 
411.4272 47.66 10.09 35.23 15.69 47.66 
621.6285 47.60 16.52 41.23 20.60 47.60 
340.1156 47.54 47.54 17.76 26.47 18.14 
247.0418 46.33 18.77 37.32 13.48 46.33 
296.2571 46.25 11.35 38.62 12.90 46.25 

99.9799 46.04 11.31 41.95 15.47 46.04 
284.2934 45.56 4.27 33.84 11.56 45.56 
686.4859 45.48 17.51 33.82 24.36 45.48 
426.2220 44.95 9.82 26.50 10.25 44.95 
560.3340 44.74 27.68 28.14 33.93 44.74 
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299.2934 44.53 17.77 28.20 22.31 44.53 
292.0441 44.23 29.59 38.53 17.16 44.23 
457.3533 44.04 19.83 35.85 18.86 44.04 
687.5141 43.92 25.92 34.56 30.70 43.92 
794.6061 43.75 18.55 27.69 19.28 43.75 
246.0963 43.71 17.21 34.52 22.49 43.71 
246.9871 43.67 43.67 33.55 30.29 38.04 
280.6700 43.53 23.91 28.36 32.94 43.53 
742.5740 43.30 43.30 32.38 42.45 37.21 
139.0300 42.91 13.09 38.58 13.83 42.91 
590.4276 42.69 14.64 37.27 11.76 42.69 
487.2822 42.63 21.45 33.70 31.92 42.63 
372.3842 42.21 20.10 32.03 17.25 42.21 
228.0860 42.00 42.00 13.71 40.40 22.69 
810.5997 41.91 8.89 27.43 9.06 41.91 
290.0853 41.86 41.86 18.16 22.52 15.67 
826.6058 41.79 21.99 23.98 19.65 41.79 
692.5772 41.71 18.66 34.41 19.57 41.71 
678.4905 41.56 9.86 35.56 10.24 41.56 
574.3158 41.43 16.77 29.53 28.03 41.43 
170.0794 41.23 24.30 32.16 26.66 41.23 
173.1083 41.10 19.60 35.92 22.80 41.10 

 

Appendix Table 3 The top 50 most influential metabolites for the RF model in Chapter 4. 

mz vip control eT eCO2 eCO2eT 
274.1992 100.00 100.00 46.55 86.94 33.28 
256.1166 80.67 20.32 80.67 39.07 47.59 
846.5911 75.53 59.70 60.08 75.53 67.69 
279.1004 70.11 58.99 69.14 70.11 58.35 
302.2308 64.76 63.90 21.50 64.76 15.56 
304.1517 59.73 59.73 55.14 55.08 59.38 
608.3232 56.93 56.93 48.55 34.75 53.55 
471.1805 45.70 37.28 37.72 44.48 45.70 
567.5809 44.78 20.46 44.78 21.14 42.42 
336.1221 42.97 35.13 39.39 42.97 40.42 
849.6088 42.27 26.30 35.98 42.27 40.02 
623.6350 39.19 21.14 36.92 12.48 39.19 
590.8178 37.99 33.21 37.99 28.78 8.32 

1135.3766 34.79 33.03 34.35 34.79 28.32 
217.1509 34.46 34.46 27.15 14.71 23.14 
231.1150 33.60 33.60 18.02 24.45 15.65 
316.0974 33.25 33.25 28.35 23.40 18.34 
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590.4276 32.80 14.48 32.80 14.48 13.59 
167.0966 32.70 25.33 27.61 32.68 32.70 
862.5857 32.67 26.68 32.67 24.59 26.82 
340.1156 32.16 32.16 21.99 18.44 30.25 
333.1553 32.15 14.48 29.38 32.15 30.93 
247.0418 31.88 9.39 31.88 11.95 6.83 
464.1640 31.73 31.73 19.11 20.05 23.56 
661.1742 31.65 27.43 26.47 31.65 20.95 
300.1996 31.40 14.48 23.52 13.93 31.40 
677.6813 31.27 18.62 31.27 21.14 5.41 
347.1031 31.15 31.15 9.80 16.97 8.80 
161.0415 30.62 28.87 19.42 4.42 30.62 
292.5880 30.52 28.71 25.57 30.52 0.00 
268.1028 30.48 30.48 21.14 21.14 14.48 
509.5011 30.43 30.43 21.14 29.01 8.25 
742.5740 30.19 14.48 30.19 21.14 23.41 
872.6058 30.00 15.81 28.68 30.00 23.37 
165.0574 29.81 21.14 29.81 18.13 7.41 
103.0518 28.59 20.66 28.59 23.72 25.57 
251.0160 28.42 11.24 28.42 21.14 16.53 
178.0924 27.77 27.77 16.98 21.14 14.48 
192.0242 27.75 15.67 27.75 22.91 18.34 
472.1842 27.63 19.34 27.63 25.82 17.80 
551.3206 27.42 27.42 16.03 22.86 21.14 
985.5799 27.42 14.48 21.95 21.14 27.42 
766.5766 27.23 7.82 13.61 14.48 27.23 
376.2978 27.09 23.00 27.09 14.05 6.33 
211.1894 26.99 6.37 14.48 26.99 14.48 
746.5665 26.99 26.99 23.91 25.75 8.60 
417.2315 26.92 26.92 21.14 9.91 14.48 
292.1733 26.65 26.65 23.89 25.93 14.48 
469.3107 26.04 26.04 14.48 21.14 7.82 
131.1283 26.02 23.06 21.14 26.02 23.72 
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