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A B S T R A C T   

The synthesis of free-standing graphene in a microwave plasma at ambient conditions is currently of great in-
terest. The past works have relied on the usage of higher microwave powers to synthesize free-standing graphene 
which is not only costly but also an obstacle to the industrialization of the process. The aim of this work was to 
bring down the cost of the process by synthesizing graphene at a significantly lower microwave power, i.e. 250 
W. The formation of graphene was confirmed through Raman spectrum and scanning electron microscopy, where 
the Raman spectrum showed the signature 2D peak of graphene, and the vertical orientation of the graphene was 
observed in the microscopic images. The application of graphene in oil-water separation is demonstrated based 
on its hydrophobic and oleophilic properties. The as-synthesized pristine graphene coated on a melamine sponge 
showed a mass absorption capacity (57 g/g) comparable to that of functionalized or composite graphene.   

Introduction 

Graphene is a monatomic layer of graphite, comprised of sp2-hy-
bridized carbon atoms arranged in a honeycomb structure. In the last 
two decades, graphene is one of the extensively researched 2-D materials 
[1]. It is due to its myriad of fascinating properties which include 
extraordinary mechanical and electrical properties, thermal conductiv-
ities, chemical inertness, and optical transparency [2]. Its applications 
can be found in various fields, for example, electronic devices, energy 
generation and storage, optical devices, chemical, and biological sen-
sors, etc. [3–7]. 

Many methods have been developed by researchers to fabricate this 
promising novel nanomaterial. However, the techniques reported until 
now involve laborious procedures and require multiple stages of syn-
thesis. For instance, the commonly used chemical exfoliation method, 
modified Hummers’ method [8], demands numerous steps of synthesis 
such as dilution, mixing, oxidation, washing, centrifuging, and intense 
stirring [9]. On the other hand, chemical vapor deposition (CVD) [10] 
and plasma-enhanced chemical vapor deposition (PECVD) [11,12] have 
many procedural requirements such as high vacuum and temperatures, 
post-synthesis treatment, and above all they are lengthy processes 
[12–14]. 

Atmospheric pressure microwave plasma (APP), which recently 
gained scientists’ attention, can synthesize graphene in a single-step 

without the need for a catalyst or substrate. Since the operation of at-
mospheric pressure microwave plasma does not require any vacuuming 
or heating owing to the synthesis being carried out under ambient- 
conditions, the cost effectiveness of the process is remarkable [15]. 
Moreover, due to the free-standing nature of the graphene and contin-
uous synthesis procedure, the yield of the process is higher and scalable. 
The APP have produced good quality monolayer to few-layer graphene 
nanosheets from different resources, such as methane, ethanol, aniline, 
etc. [16–23]. 

Methane, which is one of the cheap and abundant resources has been 
widely used in graphene synthesis in CVD or PECVD [24,25]. However, 
its utilization in APP is scarcely reported. Methane, due to its gaseous 
form, makes it convenient to actively control its flow on the one hand, 
and on the other hand, unlike liquid precursors, it eliminates the need 
for aerosol formation. In APP, Tatarova et al. [18] and Bundaleska et al. 
[21] used methane to synthesize graphene in two separate studies. They 
used microwave power as high as 1 kW. In Tatarova et al.’s [18] work, 
they observed non-uniformity in the structures and also observed 
particles-like structures. Singh et al. [26] also synthesized graphene 
from methane at a high microwave power of 1.3 kW and supplied 
additional hydrogen gas along with methane precursor. 

In the current study, our goal was to synthesize graphene using at-
mospheric pressure microwave plasma (APP) at a low microwave 
power. We synthesized graphene from methane at a microwave power of 
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250 W, which is four times lesser than the previously reported methods. 
A comparison between both, high and low-power synthesized graphene 
has been made through Raman and SEM analysis. The market mainly 
relies on the graphene produced by the time-consuming (many hours) 
Hummers’ method. However, APP could be used to synthesize graphene 
within seconds. Considering that the synthesis is carried out at low 
microwave power which makes the process energy-efficient, our 
approach will be highly sought-after in the market. Since the spillage of 
the oil in the water has detrimental effects on the environment [27], we 
used as-synthesized graphene in oil-water separation application using 
the physical absorption method. The coating of as-fabricated pristine 
graphene, on melamine foam behaved in a similar manner to the 
nanocomposite of graphene as well as the ones synthesized using addi-
tional steps of functionalization. 

Materials and method 

Materials 

Methane and argon gases in ultra-high purity grade were purchased 
from BOC, Australia. Melamine foam was procured from Bunnings, 
Australia. 

Synthesis of graphene 

The synthesis of graphene was carried out using downstream mi-
crowave plasma at atmospheric conditions. The setup primarily consists 
of a microwave generator (2.45 GHz), matching network, quartz tube 
(30 mm OD), and a sliding short circuit. The microwave generator and 
the quartz tube were fitted with a water- and air-cooling system 
respectively. Methane (CH4) was utilized in its pure form as the only 
precursor for synthesis. The top end of the quartz tube was enclosed, and 
it was fitted with the hoses for the supply of argon and methane gasses. 
The bottom open end of the tube was enabled the expulsion of the re-
action gasses. 

Argon and methane gasses were fed into the quartz tube separately 
and continuously at the rate of 3000 and 2500 sccm respectively for 4 
min. The graphene is produced straightaway in the plasma reactor once 
the methane is introduced into the system. The formation takes place on 
the walls of the quartz tube. However, it can also be collected directly on 
different substrates for characterizations. Optical microscopic images of 
graphene, collected on silicone substrate are shown in Fig. S1. Graphene 
tends to be chemically inert and stable at atmospheric conditions [28]. A 
study on the thermal stability showed structural defects after 1000◦C 
[29,30]. A basic schematic illustration of the synthesis is shown in Fig. 1. 

A combination of low and high microwave power, i.e. 250 W and 500 
W, respectively were investigated. The graphene grown was collected 
directly on silicon substrate for characterizations. Confocal laser Raman 
spectroscopy (Witec, 532 nm laser) and scanning electron microscopy 
(SEM) (Hitachi SU 5000) were used to investigate respectively the ma-
terial’s structure and morphology. 

Preparation of graphene-coated foam 

The graphene, used for melamine foam coating in oil-water separa-
tion was synthesized using 250 W microwave power. It was chosen 
because its synthesis procedure involved low energy requirements. 
Moreover, the differences in the characteristics of both, low and high 
power graphene were quite trivial. For the coating, a 1 mg/mL solution 
of graphene in ethanol was prepared. The solution was ultra-sonicated 
for 15 min to obtain uniform dispersion of graphene in ethanol. For 
the purpose of experimentation, only a small sized (~1×1 cm) melamine 
foam was used. However, the foam can be scaled to any size. To coat the 
melamine foam with graphene, it was soaked in the solution for 10 min. 
After soaking, the foam was dried in air to evaporate ethanol. The coated 
and uncoated melamine foams are shown in Fig. 2. 

Measurement of water contact angle and oil absorption capacity 

The static contact angle was determined by employing KSV CAM 101 
optical contact angle device. The wettability of pristine and graphene- 
coated melamine foam was measured using water and olive oil liquids. 

To find out the oil absorption capacity of graphene-coated melamine, 
a solution of olive oil and water was prepared. The oil in the container 
formed a layer on the top of the water. The absorption capacity of the 
graphene-coated melamine foam was measured by gravimetric analysis. 
The mass absorption capacity was measured by the following formula. 

Q =
Wt − Wi

Wt
(1)  

Where Wi and Wt are the weights of the foams before and after oil ab-
sorption respectively. 

Results and discussions 

The as-synthesized graphene nanosheets were analysed using Raman 
spectroscopy to investigate the structural quality. The Raman spectra of 
both 250 and 500 W samples, showed three vibrational modes, which 
are characteristic of graphene materials. They are denoted as D peak (at 
~1335 cm− 1), G peak (at ~1575 cm− 1), and a 2D peak (at ~2675 
cm− 1), which represent defect mode, vertical vibration mode, and two- 

Fig. 1. A schematic illustration of graphene synthesis in atmospheric pressure 
microwave plasma. 

Fig. 2. Image of pristine (left) and graphene-coated (right) melamine foams.  
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phonon vibration mode, respectively [31]. The Raman spectra are 
shown in Fig. 3. It is clear from Fig. 3 that graphene has been obtained at 
both powers. Overall, no significant differences have been observed 
between both spectrums. In comparison to the 500 W sample, the 250 W 
sample showed a slightly higher intensity ratio of D and G peak, i.e. 
ID/IG. Similarly, a trivial increase in I2D/IG and full width at 
half-maximum (FWHM) values can be observed in the 250 W sample, 
given in Table 1. 

The D peak in the Raman spectrum is indicative of the degree of 
disorder in a material. This disorder can be due to non-hexagonal rings, 
dopants, and/or functional groups [32]. The low values of ID/IG ratios in 
our samples show comparatively fewer disorders in the structures. Since 
this synthesis is under atmospheric conditions, therefore, a slight in-
crease of ID/IG ratio in the 250 W sample compared to the 500 W sample, 
is most likely due to the higher content of oxygen functional groups 
attached to the basal plane of graphene. In Tatarova et al.’s [18] work, 
where they synthesized graphene from methane at a microwave power 
of 1 kW, the intensity values of D and G peaks were nearly the same. 
They attributed this intense D peak to sp3-bonded carbon atoms and/or 
edge effects. Given this, our samples exhibited comparatively less dis-
order due to relatively smaller ID/IG values. Additionally, our samples 
were synthesized at fairly low microwave power. 

The 2D peak in the Raman spectrum is notable. The full width at half- 
maximum (FWHM) of a 2D peak, and intensity ratio between 2D and G 
peak (I2D/IG), are normally associated with the number of layers in 
graphene. The I2D/IG values of 2 or higher with FWHM of ~30 cm− 1, and 
I2D/IG ratios between 1 to 1.5 with FWHM of ~50 cm− 1 are generally 
linked with the monolayer and bilayer structures, respectively [33,34]. 
In this study, for instance, 250 W sample exhibited I2D/IG and FWHM 
values of 0.91 and 63 cm− 1 respectively, which can be suggestive of a 
few layers of graphene. In Singh et al. [26] work, where they synthesized 
graphene from methane at 1.3 kW power, the reported I2D/IG values are 
around 0.3. Whereas, our samples showed relatively higher values of 
I2D/IG, which is an indication of a smaller number of layers than that of 
their samples. 

The low and high-resolution SEM images of the graphene nanosheets 
deposited directly on silicon substrates are shown in Fig. 4. Both samples 
showed three-dimensional islands similar to crumpled and torn paper 
sheets spread on a surface. These islands consisted mainly of a few- 
layered graphene as discussed in Raman spectra analysis. Apparently, 
there are no significant differences in SEM images of both samples, 
except that the 500 W sample has relatively dense islands due to the 

aggregation of graphene nanostructures. The SEM results are compara-
ble with the reports [21,35,36], where they also synthesized 
free-standing graphene under atmospheric conditions. 

The growth, morphology and density of graphene mainly depends on 
the parameters such as microwave power, flow rate of the precursor and 
the carrier gas. The proposed growth mechanism of our vertical gra-
phene samples can be divided into three stages. It includes nucleation 
and nanoislands formation on the substrate, growth initiation of gra-
phene nanosheets, and the further growth of graphene. Malesevic et al. 
[37] and Zhang et al. [38] have reported similar growth proposition. 
Before the nucleation of graphene, a layer of buffer was formed on the 
substrate, and this buffer layer subsequently resulted in the nucleation of 
the graphene. 

Water and oil contact angle analysis 

Water contact angles of pristine and graphene-coated melamine 
foam were measured using water and olive oil (shown in Figs. 5 and 6). 
The droplets of water and oil, 5uL each were used for this purpose. The 
distance between syringe and foam was kept constant at 20 mm for all 
the measurements. The pristine foam (Fig. 5a, b) immediately absorbed 
the water droplet as soon as it dropped onto the foam. Whereas the 
graphene coating imparted the hydrophobic property in the foam, and 
hence a water contact angle of 78◦ was observed (Fig. 5c, d). The hy-
drophobic property in the foam is highly desirable to avoid any ab-
sorption of the water in the oil-water separation process. On the other 
hand, a high absorption capacity for the oil is required. The contact 
angles for the oil droplet are shown in Fig. 6. The graphene-coated foam 
absorbed the oil droplet as soon as it dropped on the foam (Fig. 6c, d). 
While, the absorption on the pristine foam was very slow, and it showed 
a high contact angle of 64◦ even after 10 s (Fig. 6a, b). This character-
ization shows the oleophilic property of the graphene, highly necessary 
in the oil-water separation process. 

Absorption properties of graphene-coated foam 

The oil absorption capacity of the graphene-coated foam was 
investigated by an experiment shown in Fig. 7. Simply the foam was 
dipped into the solution of water and oil in which oil was settled at the 
top. After 5 min of dipping, the foam was taken out. Good absorption of 
the oil from the water in a container can be seen. The percentage of 
absorption capacity was determined using Eq. (1). A 57 g/g of absorp-
tion capacity was calculated. Comparison of our graphene-coated mel-
amine foam with the previous works is presented in Table 1. In those 
studies, the preparation of graphene involves several hours of synthesis 
procedure. Moreover, the graphene used in previous works is either 
reduced-graphene (contains oxygen functional groups) or functionalized 
with other materials [39,40]. Whereas, in this work we used pristine 
graphene, synthesized in few seconds using the microwave plasma and 
ambient conditions for synthesis. It should also be noted that the foam 
dipping time in the solution and the coating amount of graphene on the 
foam has significant effects on the absorption properties. Thus, we 
believe that a higher concentration of the graphene solution can increase 
the hydrophobic and oleophilic properties even more. 

Non-toxicity and reusability of graphene-coated melamine foam 

Graphene is hydrophobic in nature and insoluble in water [46]. As 
evident in Fig. 7, the residual water after oil absorption is clean and free Fig. 3. Raman spectra of 250 and 500 W samples.  

Table 1 
Intensity ratios and FWHM from Raman spectra.  

Microwave power (W) ID/IG I2D/IG FWHM of 2D (cm− 1) 

250 0.88 0.91 63 
500 0.83 0.87 57  
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from graphene nanoparticles. Likewise, the poor solubility of melamine 
in water is also well-known [47,48]. These features of graphene and 
melamine make them safe for use in oil-water separation application. 
Moreover, the graphene-coated melamine foam can be reused after 
squeezing-out the absorbed oil. It allows the recycling of the foam 
multiple times for oil-water separation. Additionally, melamine foam 
has been used as a raw material in pyrolysis for the synthesis of 
nitrogen-doped carbon to be used in batteries [49]. Thus, the choice of 
foam and coating material in this application is not only suitable for 
oil-water separation but also provides a valuable resource for future 
applications. 

Conclusion 

In a summary, we synthesized graphene from methane using mi-
crowave plasma under ambient conditions. The feasibility of the syn-
thesis of graphene at a remarkably low microwave power of 250 W is 
substantiated in this manuscript. For the fabrication of graphene as re-
ported in this manuscript, there is no need for vacuum and external 
heating. In addition to that, the method allows for quick fabrication of 
graphene. The fabrication time is less than 1 min. We have fabricated 
1.53 mg/min graphene. The Raman spectra showed lower ID/IG and 
higher I2D/IG values in comparison to those in literature, where synthesis 
power was 1 kW or higher. The SEM images showed a crumpled and torn 
paper-like structure, which is consistent with the previous reports. So 

Fig. 4. SEM images of 250 and 500 W graphene samples at lower and higher magnifications.  

Fig. 5. Water contact angles for (a, b) pristine and (c, d) graphene-coated 
melamine foams. 

Fig. 6. Oil contact angles for (a, b) pristine and (c, d) graphene-coated mel-
amine foams. 
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overall, the fabrication method is cheaper, facile, sustainable, and 
quicker. The as-synthesized graphene was used in oil-water separation 
application. Graphene-coated melamine foam showed excellent hydro-
phobic and oleophilic properties, which made graphene an ideal mate-
rial in the oil-water separation process. 
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