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Abstract

With the increasing uptake of electric vehicles (EVs) and relative lag

in the development of charging facilities, how to plan charging infras-

tructure and e↵ectively use existing charging resources have become

the top priority for governments, related industry and research com-

munities. This study aims to address two key issues related to EV

charging - charging station planning and charging resource allocation.

The major contributions of the study are: (1) Introduced a model

for charging infrastructure planning based on origin-destination data

of EV tra�c flows. I first showed how to use the gravity model to

calculate point-to-point tra�c flows from tra�c data at each inter-

section and further induce the origin-to-destination flow data. Then,

I introduced an optimization model for charging allocation based on

origin-destination tra�c flow data and extended it into a formal model

for charging station planning by minimizing the total waiting time of

EVs. (2) Applied the charging infrastructure planning model to Syd-

ney Metropolitan charging station planning. I selected a set of rep-

resentative areas from Sydney metropolitan and collected tra�c data

for these areas. I then used the gravity model to calculate the EV

flow for each route based on possible portions of EVs among all traf-

fic. The optimisation constraints under consideration include charging



station locations, total budget and feasibility of charging allocations.

Optimisation for chargers at each intersection for di↵erent scenarios

is solved using the least squares method. (3) Designed an algorithm

for charging facility allocation to balance the load of charging sta-

tions. By considering the maximum driving range, the number of

chargers at charging stations, and waiting time and queue length at

each charging station, a queue balancing algorithm is proposed. Nu-

merical experiments were conducted to validate the algorithm based

on a linear road scenario. I believe that the outcomes of this research

have a great potential to be used for government/industry planning of

charging stations and improvement of utilization of charging stations

resources.
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Chapter 1

Introduction

1.1 Background

Over the past decade, electric vehicles (EVs) are becoming more and more pop-

ular due to their advantages in terms of reducing carbon dioxide emissions and

improving energy e�ciency [1]. However, EVs are accounted for only 0.6% of new

vehicle sales in Australia in 2020 [2]. One of the main obstacles for EV uptake is

insu�cient charging facilities [3; 4]. Although many cities are actively promoting

the development of charging infrastructure, it still cannot meet the fast-growing

charging demand from EV users [5]. In real life, with limited charging resources

and uneven distribution of charging demand, the high-demand charging activities

may cause long queue at some charging stations while other charging stations are

underutilised. Therefore, both planning and utilising of charging infrastructure

are crucial for local/federal governments, related industries and EV users not

only for now but also for the future. Although great amount of work in both

topics has been done in the literature, most approaches are only applicable to the
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data sources they designed for. This thesis investigates the approaches of charg-

ing infrastructure planning and charging resource allocation to origin-destination

EV flow data. We found that most publicly available data for tra�c flows only

record tra�c volumes on road segments or crossing intersections. A vehicle would

have been counted several times in di↵erent road segments and/or intersections

even though it only needs to be charged once or twice for its whole trip. To solve

the problem, we introduced an approach to induce origin-destination tra�c flows

from tra�c volume data and developed an specific model for charging station

planning and charging facility allocation. Based on the model, we conducted a

case study of charging station planning for Sydney metropolitan road network

and designed an algorithm of queue balancing for charging facility allocation for

highway scenario with linear road network. We believe that our approach can be

applied to a wide range of application domains in EV charging.

1.2 Major contributions

The research aims to plan charging infrastructure and provide charging guidance

for EV users to make the best use of available charging resources. The main

contributions of this thesis can be summarized as follows:

• Introduced the optimization model for charging station planning based on

origin-destination tra�c flow data. I first showed how to use the grav-

ity model to calculate the point-to-point tra�c volume data of each in-

tersections, which can induce the origin-destination tra�c data. Then, I

proposed a optimization model for charging station assignment based on

origin-destination tra�c flow data. Finally, I extended the model to a for-
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mal model for charging station planning by minimizing the total waiting

time for electric vehicles. Based on this model, we can calculate the num-

ber of chargers that should be installed at each charging station and the

optimal allocation of vehicles at each charging station.

• Conducted a case study for Sydney metropolitan charging station planning.

Firstly, I selected several representative areas in Sydney metropolitan and

collected tra�c volume data from the New South Wales Department of

Transport in Australia (Transport for NSW). Then, I used the gravity model

to calculate EV flows for each origin-destination route. Finally, I applied

the optimization model to calculate the number of charging posts required

for each intersection under di↵erent scenarios by the least squares method.

• Designed a queue-balancing algorithm to minimise EV charging time and

test it with a scenario of linear road network. Given the tra�c volume of EV

flow in a linear road network and distribution of allowed driving range, we

first estimate the length of queues at each charging station based on M/M/n

queuing model. We then developed an algorithm that can recursively re-

allocation of EVs to charging stations based on their remaining driving

range. The algorithm is tested with a scenario simulating EV charging on

a highway.

1.3 Literature review

This research covers three main research categories, including charging infrastruc-

ture planning, queuing theory and the resource allocation for electric vehicles. I

3



will provide a brief review on each of the topic in the following subsections.

1.3.1 EV charging demand

The charging demand of electric vehicles has significant implications for the plan-

ning of charging stations. Early studies have used questionnaires and histor-

ical data to understand the charging demand and behavior of electric vehicle

users [6; 7; 8]. With the further research, there are two widely applied models

for electric vehicle charging demands. One is a spatial-temporal probabilistic

model [9; 10; 11] and the other is a rough probabilistic model [12; 13; 14; 15].

Zhang et al. proposed a method to predict the spatial and temporal distribution

of EV charging load based on EV parking behavior. The spatial and temporal dis-

tributions of EV charging demand are developed by quantifying the EV parking

behavior and parking generation rate thereby [16]. A model of electric vehicle

user driving and charging behavior based on random trip chains and Markov

decision processes is developed by Tang and Wang. The model is used to eval-

uate the charging demand resulting from the temporal and spatial distribution

of electric vehicles [17]. Mu et al. have incorporated a Monte Carlo simulation

approach in the spatial and temporal models to obtain the charging load of elec-

tric vehicles. That model to evaluate the impact of large-scale deployment of

electric vehicles on the urban distribution grid and compare di↵erent types of

electric vehicle charging strategies to verify the validity of the model [18]. Shun

et al. developed a trip-chain stochastic simulation-based approach to model the

driving patterns of electric vehicle users. In this way, the spatial and temporal

distribution characteristics of electric vehicle charging demand are reflected [19].
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In [20], the authors identify a probabilistic distribution model for electric vehicle

charging demand based on the U.S. National Household Travel Survey dataset

and propose a queuing theory based probabilistic approach to calculate electric

vehicle charging demand. Zhou et al. considered the charging characteristics of

various types of electric vehicles and improved the sampling method of the initial

charging state of electric vehicles, thereby establishing a probabilistic model of

the charging load of electric vehicles [21]. Lojowska et al. obtained stochastic

properties of vehicle behavior based on Dutch tra�c dataset, and proposed a

Monte Carlo simulation method to model the charging demand of electric vehi-

cles from simulated electric vehicle user commuting and electric vehicle charging

scenarios [22]. In [23], an improved model of Monte Carlo simulation is presented

to predict the charging demand of electric vehicles. The modified model takes

into consideration the number of electric vehicles, the charging duration and the

driving distance of electric vehicles. Yang et al. developed a probabilistic electric

vehicle charging load model through a set of equations that introduces charg-

ing tra�c flow to describe a discrete sequence of electric vehicle charging events,

which contains both spatial and temporal properties of the electric vehicles charg-

ing load [24]. An auto-regressive integrated moving average method is proposed

by Amini et al. to predict the charging demand for conventional electrical loads

and electric vehicle parking lots. This model is used as input based on driving

patterns and distances, and the accuracy of the model prediction is improved by

optimizing the integrated and auto-regressive order parameters [25].

5



1.3.2 Waiting time at charging station

In order to specify waiting time of charging, queuing theory is widely used in both

charging infrastructure planning and charging resource allocation [26; 27; 28].

Seyedhoesini et al. [29] proposes the application of two M/M/C queues being

used to describe the operation of indoor and outdoor trucks in each terminal,

and proposes a mixed integer model that incorporates queuing theory to opti-

mize the location and operational success of the terminal. Selinka et al. [30] de-

veloped a fixed backlog-handling method based on a queuing model to evaluate

the performance of truck loading and unloading operations at air cargo termi-

nals. A three-level supply network system consisting of supplier, cross-docks,

and producer-distributors is designed using M/M/M queues by Maghsoudlou et

al. [31]. And the authors proposed a bi-objective optimization model. The first

objective is to minimize supplier, producer, and distributor costs. The second

objective is to minimize the vehicle travel time and waiting time. Shahram fard

and vahdani [32] proposed a bi-objective optimization model for the truck assign-

ment problem at terminals. The model provides an M/M/1 queuing system to

minimize the waiting time of trucks. The second objective function is to min-

imize the energy consumption of trucks at the terminal, and the authors use a

multi-objective heuristic to perform the optimization. Chen et al. [33] developed

a data-driven planning model for plug-in electric vehicle charging stations. The

model uses real data on electric taxicab trips and uses queuing theory to model

and analyze the charging congestion of service sharing electric taxicab in central

Beijing. In [34], a charging model is proposed to reduce the cost of electricity as

well as the waiting time of electric vehicle users. The authors show that queues of
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multiple charging stations in a certain area are consolidated into one queue in ad-

vance, i.e., all electric vehicles in multiple charging stations are centrally assigned

to available charging stations. The results obtained from model simulations show

that concentrating charging at one charging station not only reduces the cost

of battery degradation by 80% but also reduces the queuing time by more than

60%. Jung et al. [35] proposed a two-level simulation optimization framework

that incorporates an M/M/K queuing system to determine the optimal location

of charging stations and the allocation of chargers.

1.3.3 Charging infrastructure planning

With the increase in the number of EVs, the demand for charging stations from

EV users is also gradually increasing. How to plan electric vehicle charging ser-

vice areas and charging stations has also attracted the interest of more and more

scholars [36; 37; 38; 39; 40]. Zhu et al.[41] proposed a genetic algorithm based ap-

proach to determine the location of charging stations and the number of chargers

that should be built at each charging station. Liu et al. [42] developed a method

that combines the sitting of charging stations and the reduction of charging sta-

tion costs. In [43], they presented a method to determine the location and

optimize the size of charging stations for EVs. The model introduces the concept

of candidate charging stations and develops a mathematical model that mini-

mizes the construction of charging stations as well as the consumption of electric

vehicle users. Micari et al. [44] proposed a methodology to incorporate charg-

ing stations in a road network by determining 1) the total number required of

charging stations and 2) their corresponding locations. Zhu et al. [28] presented

7



a model for planning charging stations. The model takes the minimum cost of

EV users and charging station construction as the optimization objective, the

EV charging queuing time and the safety of distribution network operation as

the constraints, and finally the charging stations division by a weighted Voronoi

diagram. In [45], the authors proposed a smart charging strategy that supports

multiple charging options. The model considers multiple charging options as a

multi-server queuing system to estimate the waiting time at the charging station

for each charging option. The model is a multi-objective optimization problem

with the goal of minimizing travel time, waiting time, and charging cost. Ge et

al. [46] aims to minimize the travel cost of EV users to the charging station, and

on the basis of considering the tra�c flow and the electric capacity constraint

of the chargers, the charging stations is partitioned by the grid division method

and finally adjusted iteratively to obtain the location of the charging station. To

overcome the limited driving range of EVs and satisfy the increasing charging de-

mand, researchers have made great e↵orts on locating EV charging stations and

allocating charging resources for both private cars [47; 48] and public transport

such as electric buses [49; 50]. Nie & Ghamami [51] investigated the problem

of battery sizing, charging facilities locating with the objective to minimise the

total social cost considering a given level of service. Zheng et al. [52] proposed a

bi-level model to optimise the deployment of charging stations with tra�c equi-

librium. The upper level aimed to optimise the locations of charging stations,

and the lower level determined the users’ path selection considering tra�c equi-

librium based on the charging stations obtained in the upper level. Micari et

al. [44] proposed an approach to determine the number of required charging sta-

tions in the road network of a highway and corresponding locations with simple

8



assumption of the same remaining battery of each EV. By applying the queuing

theory, Lu & Hua [53] developed a flow-refuelling location model to investigate

the location-sizing problem for EV charging stations considering customers’ tol-

erance. With a focus on users’ benefits, Jung et al. [54] proposed a stochastic

dynamic itinerary-interception refuelling location model to optimise the locations

and sizing of charging stations to minimise the average delay, which referred to

the travel time to the facility and waiting time at the facility. Yang et al. [55]

formulated an integer linear programming model to optimise the locations and

size of charging stations with the objective to minimise the total investment cost.

The M/M/x/s queuing model was adopted to estimate the probability of EV

taxis being charged, and a data-driven approach was employed to analyse taxis’

dwell patterns. Xiao et al. [5] proposed a charging station planning model with

consideration of finite queue length and charging queuing behaviour. Konara et

al. [56] propose a charging operation strategy that coordinates and reallocates

charging resources by giving priority to fast charging EVs. This strategy can

improve the utilization of charging stations and maximize the profitability of

charging stations.

1.3.4 Charging resource allocation

The majority of current research on electric vehicle resource allocation is directed

towards electric vehicle route selection. There are many studies on EV routing

selection. [57; 58; 59; 60; 61]. A general Electric Vehicle Routing Problem (EVRP)

was proposed by Lin et al. [62]. The model finds the optimal routing strategy

that results in the shortest travel time and lowest energy cost for EVs. Goeke and
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Schneider [63] present the Electric Vehicle Routing Problem with Time Window

and Hybrid Fleet (E-VRPTWMF) to optimize the routing of two hybrid fleets.

They developed an adaptive large domain search algorithm, which, according to

experimental results, was shown to find better results for EVRP in less time.

Zhang et al. [64] proposed a metaheuristic approach based on ant colony (AC)

algorithm to reduce the energy consumption of electric vehicles and developed

a corresponding mathematical model to find a routing plan for EVs. Yang et

al. [65] proposes an EV route selection and charging navigation optimization

model that reduces travel costs as well as charging costs for EV users. Olle and

Carl [66] demonstrate a new method for planning electric vehicle charging with

grid constraints, including voltage and power. The method creates an individual

charging plan for each EV, avoiding congestion on the distribution grid while

meeting the requirements of individual vehicle owners.

1.4 Summary

Although many studies have investigated the location and sizing problem of charg-

ing stations for EVs, the majority focused on seeking the optimal locations of

charging stations and the number of chargers at corresponding locations. This

study not only addresses the charging station planning problem but also pro-

poses a corresponding solution to the problem of uneven distribution of charging

resources. For charging station planning, the main contribution of this study is

the introduction of a charging infrastructure planning model based on the origin

and destination data of EV flow, which is extended to a formal model for charging

station planning by minimizing the total waiting time for EVs. For the charging

10



resources allocation, the investigation on balancing the charging load between

charging stations to maximize the utilization of existing charging resources and

minimize the total queuing time of EV users is still missing. To fill the gap, this

research formulates an optimization model to allocate the charging demand to a

proper charging station to minimize the total queuing time while satisfying each

EV user’s charging demand.

The remainder of this thesis is organized as follows. In Chapter 2, we will

introduce the optimization model for charging station planning based on origin-

destination tra�c flow data. In Chapter 3, we will conduct a case study for

Sydney metropolitan charging station planning. In Chapter 4, we will design

a queue-balancing algorithm to minimize EV charging time and test it with a

scenario of a linear road network.

11



Chapter 2

A formal Model for Charging

Infrastructure Planning

In this chapter, I will introduce an origin-destination based model for charging

station planning. Section 2.1 will briefly describe the idea of the origin-destination

approach. Section 2.2 shows how to use the gravity model to induce origin-

destination flows based on tra�c flows of intersections. Section 2.3 will present

an optimization model for charging station planning over a road network based

on origin-destination tra�c flow data. The target of charging station planning is

to minimise waiting time for EV charging by optimise the number and location

of charging stations and chargers under certain road configuration and budget.

Section 2.4 will give a brief summary of the chapter.

12



2.1 Introduction

Charging infrastructure planning is to determine where and how many charging

stations (chargers) to be built in an area/region based on EV charging demand.

However, the data for EV charging demand is not always available, especially

for the areas where EVs are relatively low. Most of existing studies on charging

infrastructure planning are based on tra�c data for generic vehicles with a pro-

jection of generic tra�c flow onto EV tra�c flow in terms of the percentage of

EV over general tra�c [36; 37; 38; 39; 40; 41; 42; 45]. Although there are many

sources to acquire data for general tra�c flows, the data mostly record the tra�c

volumes on a road segment or an intersection. A plan of charging stations based

on such data can be very inaccurate because a vehicle may travel allow di↵erent

segments of a road across di↵erent intersections along his trip but would just

need to charge once for the whole trip. In this research, I will introduce an ap-

proach to charging station planning based on origin-destination (O-D) flows. To

describe my idea, let us consider a simple scenario for charging station planning.

Figure 2.1 shows two origin-destination paths, o1-d1 and o2-d2, in a road network.

If each vehicle from its origin to destination only needs to charge once and can

be charged at any charging station along its path 1. For any given EV tra�c flow

on each path, the cost of building a charging station at each location and a total

budget, I can optimise the selection of locations to build charging stations and

number of chargers so that the overall waiting time for charging is minimal.

1
In Chapter 4, I will consider more complicated scenarios in which choice of charging stations

of a vehicle is subject to its remaining battery level.
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Figure 2.1: A simple scenario for origin-destination based charging station plan-
ning

2.2 Estimation of point-to-point tra�c flow

As mentioned above, most available data for tra�c flow record only tra�c vol-

umes on road segments or crossing intersections while our approach requires

origin-destination flow data. There have been quite a number of approaches

to estimate point-to-point tra�c flows from tra�c volumes [67; 68; 69; 70]. In

this research, I use a gravity model to estimate the point-to-point matrix based

on the data of intersection flows. This approach has been widely used for trip dis-

tribution, which is inspirited by Newton’s fundamental law of attraction [71; 72].

Consider a road network G = (V,E) where the set V of vertices represents a

set of intersections and the set E of edges represents the set of road segments that

link the intersections. For each vertex (intersection) i 2 V in a road network,

let Oi denote the number of EVs that enter the road network at i and Di denote

the number of EVs that exit from the network at vertex i. For each i and j,

let cij represent the distance between i and j. Furthermore, we let f(·) be the
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deterrence function for the gravity model, which takes into account the fact that

the accessibility of an opportunity decreases as the distance increases between

two road nodes [71]. Finally let Qij be the number of vehicles that travel from i

to j. (Qij)i,j2V is called the point-to-point matrix.

Based on the gravity model [71], the point-to-point matrix is recursively de-

fined by the following equation:

Qij = AiBjOiDjf(cij), for each i, j 2 V (2.1)

where Ai and Bj are the balancing factors defined as follows:

Ai =
1P

j2V (BjDjf(cij))
(2.2)

Bj =
1P

i2V (AiOif(cij))
(2.3)

while Oi and Dj are determined by the following constraints on total out-

movement and in-movement:

Oi =
X

j 6=i

Qij (2.4)

Dj =
X

i 6=j

Qij (2.5)

According to our data setting shown in Chapter 3, I will use the following

negative exponential function as the deterrence function:
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f(cij) = e
��cij (2.6)

Intuitively � reflects the average travel cost of vehicles - the lower the � value,

the higher the average travel cost of vehicles. Obviously, the value of � a↵ects

the iteration of point-to-point matrix (see Equation 2.1). In Chapter 3, I will use

Hyman’s method [73] to determine the value of �.

With the gravity model we can get point-to-point tra�c flows in a road net-

work. In Chapter 3, I will use this approach to induce tra�c flows for origin-

destination based on the tra�c data in Sydney Metropolitan and use the infor-

mation to plan charging stations for Sydney Metropolitan. To facilitate the data

analysis, let me present a generic formal model for charging station planning.

The model is a simplification of Roughgarden’s selfish routing game [74].

2.3 The model for charging allocation

As mentioned above, I use a directed graph G = (V,E) to represent a road net-

work, where the set V of vertices represents intersections and the set E of edges

represents the roads that link the intersections. I assume that there are a set of

k paths, P = {p1, · · · , pk}, in the road network that link a set of origins and a

set of destinations1. We assume that all EVs that need to be charged are charged

only once on the road network. We also assume that charging stations are all

1
Di↵erent from Roughgarden’s model [74], our purpose of formalisation of road networks

is to present an optimisation model rather than a game theoretical model. We do not specify

which intersections in the network are origins and which are destinations but simply assume

that the collection of the starting points of the paths are origins and the collection of the end

points of the paths are destinations.
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located in a vertex of the road network rather than on an edge (linked road)1.

For each p 2 P , v 2 p means that v is a vertex (intersection) in path p. For

each p 2 P , rp denotes the number of EVs on path p that need to be charged2.

Since each vehicle only needs to be charged at most once, r =
P
p2P

rp represents

the total demand of charging in the whole road network (per time unit under

consideration).

A charging allocation f : P ⇥ V ! Z is a function that maps a path and vertex

into an integer. Intuitively, for each path p 2 P and v 2 V , f(p, v) represents the

number of EVs travel on path p choose to charge at v. Obviously, we require for

each p 2 P

f(p, v) = 0 if v 62 p (2.7)

which means that if a path p does not go through intersection v, no vehicle on

the flow of path p can choose to charge at v.

Furthermore, we require any vehicle which needs to be charged has to be

charged at a vertex on its way:

Definition 2.1. A charging allocation f is feasible if it satisfies Equation (2.7)

and the following condition
X

v2p
f(p, v) = rp (2.8)

Giving a charging allocation function f , for each v 2 V , let

fv =
X

p2P s.t v2p

f(p, v) (2.9)

1
If a charging station is on the way between two intersections, we consider the charging

station as an intersection, or more accurately, a vertex in the road network.
2
it also represents the total vehicles travel on the path from the orign (the start point of the

path) to the destenation (the end point of the path) in a period of time under consideration.
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It is easy to see that fv represents the number of vehicles that charge at vertex

v. Put all the assumption together, we have

Lemma 2.1. Given a road network and a charging allocation f for the network,

if f is feasible,
X

v2V

fv = r (2.10)

Proof. The proof is straightforward based on the assumptions and definitions

above. In fact, we know r =
P
p2P

rp. By Equation (2.7 and 2.8) we further have

r =
X

p2P

X

v2V

f(p, v)

=
X

v2V

X

p2P

f(p, v)

=
X

v2V

(
X

p2P s.t v2p

f(p, v) +
X

p2p s.t v 62p

f(p, v))

=
X

v2V

X

p2P s.t. v2p

f(p, v)

=
X

v2V

fv

Next, we consider the cost of the EV users. For simplicity, we assume that

all the chargers installed in the road network are with the same type and each

vehicle is charged for the same time (more complicated cases will be considered

in Chapter 4). Since all vehicles are charged only on the path they travel, the

basic time cost of each vehicle except for waiting for chargers is the same when

we plan for charging stations. Therefore the objective of charging station plan is

to minimise the total waiting time for charging for all the vehicles.
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Formally, let `v(h) be waiting time of each vehicle for charging at vertex v

when there are h vehicles choose to charge there during the time period under

consideration1. Assume that for each v 2 V the waiting function `v(·) is non-

negative and non-decreasing.

For any feasible charging allocation f , we let C(f) be the total cost of waiting

time for EV charging in the road network, that is,

C(f) =
X

v2V

`v(fv)fv (2.11)

If we let `(f) represent the sum of the waiting time of all the vehicles travel

on path p:

`p(f) =
X

v2p
`v(fv)f(p, v) (2.12)

we will have the following

Lemma 2.2. If charging allocation f is feasible,

C(f) =
X

p2P

`p(f) (2.13)

Proof. Similar to the proof of Lemma 2.1 and the condition of feasibility of a

1
The vehicles are not necessarily queue at v at the same time but they have chosen to

charge there during that period of time.
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charging allocation, we have

C(f) =
X

v2V

`v(fv)fv

=
X

v2V

`v(fv)
X

p2P s.t v2p

f(p, v)

=
X

v2V

`v(fv)
X

p2P

f(p, v)

=
X

v2V

X

p2P

`v(fv)f(p, v)

=
X

p2P

X

v2V

`v(fv)f(p, v)

=
X

p2P

`p(f)

as desired.

I would like to emphasize that the total cost of vehicles on a path `p(f) is a

crucial concept in a game theoretical model of charging infrastructure planning

because it determines the utility of the agent representing all the vehicles from the

same origin to the same destination if it chooses the path to travel. Unfortunately

I have no time to go into the detail of the game-theoretical model. I leave this

investigation for my PhD research.

Now I am ready to present the model of charging allocation. To decide which

spots are needed to install chargers and how many chargers to be installed at each

of the spots, we first find the charging demand of each path in a road network and

then find the best charging allocation that minimises the total waiting time of

the EVs. In other words, we need to find a solution to the following optimisation
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problem:

min
f

X

p2P

X

v2p
`v(fv)f(p, v) (2.14)

subject to

f(p, v) = 0 if v 62 p, 8p 2 P & v 2 V (2.15)

X

v2p
f(p, v) � rp, 8p 2 P (2.16)

X

p2P :v2p

f(p, v) = fv, 8v 2 V (2.17)

f(p, v) � 0, 8p 2 P & v 2 V (2.18)

Here, Equation 2.15 and 2.16 require an optimal charging allocation must be

feasible (note that f is non-decreasing). Equation 2.17 defines the variable fv.

Equation 2.17 sets the boundary conditions for the charging allocation function.

By Lemma 2.2, Equation (2.19) can be simplified as

min
f

X

p2P

`p(f) (2.19)

2.3.1 The model for charging station planning

The major concerns for an EV user to decide when and where to charge include

the remaining battery level of their vehicles, the distance to the charging stations

they choose to charge, and the waiting time at each charging station. For charging

infrastructure builders, the major concerns are where to build a charging station

and how many charger to install. Note that since land prices vary from place

to place. The costs of maintenance also vary from region to region, a detailed

cost analysis can be very complicated and goes beyond the scope of the research.
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For simplicity, I will ignore the cost of building the infrastructure of a charging

station, including the cost of land, parking space and roadside facilities, but

only the cost of chargers at each charging station. We also assume the chargers

installed at each charging station are in the same type with the same costs.

For planning purpose, we assume that the total budget for building chargers

is W (for simplicity, we assume that no charging facility exists) while the cost of

each charger is w.

Let n : V ! Z be a function such that for each vertex v, n(v) represents the

number of chargers to build at vertex v. Then we have the following budget limit:

X

v2V

wn(v)  W (2.20)

With the optimal model of charging allocation shown in the previous section,

we can calculate the demand of charging at each vertex in a road network. Based

on the demand, we can decide how many chargers to install at each charging sta-

tion based on the available budget. However, to use the optimal model, we need

to estimate the waiting time at each charging station. Ideally we can calculate the

average waiting time at a charging station based on queuing theory (see Chapter

4). This can be very hard at the stage of charging infrastructure planning because

there is no running data support the estimation. In this research, we use a simple

method to estimate the waiting time at each charging station [75].

Assume that fv is the number of EVs that choose to charge at station v as

defined in Equation (2.9). These mv EVs can be roughly divided into the queues
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shown in the following equation:

m̂v = d fv

n(v)
e (2.21)

where m̂v is the number of EVs waiting for each charger at charging station v.

Next, we assume that the length of charging time per EV is t. Based on [75],

the average waiting time of each EV can be calculated as:

`v(fv) =
t

m̂v
·

m̂vX

i=1

i (2.22)

where m̂v is determined by Equation (2.21). Note that I do not consider the

actual time each electric vehicle arrives the charging station but assume they will

be charged at the charging station in the given time period thus the estimated

time could be longer than actually needed.

Finally we can present our model for charging station planning as an extension

of the optimisation model for charging allocation:

min
n,f

X

v2V

`v(fv)fv (2.23)

subject to

f(p, v) = 0 if v 62 p, 8p 2 P & v 2 V (2.24)

X

v2p
f(p, v) � rp, 8p 2 P (2.25)

X

p2P :v2p

f(p, v) = fv, 8v 2 V (2.26)

X

v2V

wn(v)  W (2.27)

23



f(p, v) � 0, 8p 2 P & v 2 V (2.28)

n(v) � 0, 8v 2 V (2.29)

Since the cost function `v(·) is defined by Equations (2.21 and 2.22), these

two equations can also be viewed as constraints for the cost minimisation.

Note that the optimisation problem is non-linear with two optimisation vari-

ables, n and f , both of which are functions thus the computation of optimisation

for real-world applications can be quite challenging. I will leave the computational

issues for charging infrastructure planning for PhD research.

2.4 Summary

In this Chapter, I introduced an optimisation model for charging station plan-

ning. Firstly, I showed how to use the gravity model to calculate point-to-point

tra�c flows from tra�c data at each intersection, which can induce the origin-

to-destination flow data. Then, I presented an optimization model for charging

allocation based on origin-destination tra�c flow data. Finally, I develop an op-

timization model for charging station planning by minimizing the total waiting

time of EVs. Based on the model, we can calculate the number of chargers should

be installed at each charging station and the optimal allocation of vehicles to each

station. The real life examples of charging station planning is analyzed in detail

in the Chapter 2.
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Chapter 3

Charging Station Planning for

Sydney Road Network

In this Chapter, I will apply the model presented in Chapter 2 to calculate op-

timal locations and number of chargers of each charging station for Sydney road

network. Section 3.1 will briefly describe the chosen study area, as well as the

data source. Section 3.2 will present the EV flows for each route, which obtained

by the gravity model. And the number of chargers required at each intersection

for di↵erent scenarios solved by the least squares method. Section 3.3 will give a

brief summary of the chapter.

3.1 Introduction

In the last few years, the number of EVs in Australia has increased significantly,

as shown in Figure 3.1. From this figure, it is clear that the increase in the

number of charging stations has not fluctuated significantly. I analyzed a 10-year
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public dataset from the New South Wales Department of Transport in Australia

(Transport for NSW), which data contains the number of EVs and the number of

charging stations in Australia from 2011 to 2021. Based on Figure 3.2, it is clear

that although New South Wales has the highest number of charging stations, the

number of the public charging station is far from meeting the future demand for

EVs relative to the annual growth of EVs. Therefore, I use the model introduced

in the previous Chapter to plan the location and the number of chargers for

part of the road network in Sydney Metropolitan, using the city of Sydney as an

example.

Figure 3.1: The number of electric vehicles in Australia
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Figure 3.2: The number of public charging stations in Australia

3.2 Data preparation

In the case study, an application has been made on a real case study considering

the city of Sydney. Based on the percentage of EVs in 2021 in Figure 3.1, the

number of EVs at each intersection in Figure 3.3 can be roughly estimated. Note

that the number of EVs in Figure 3.3 is the tra�c volume for all day.

I obtained the intersection tra�c volumes from the NSW open access data

and based on the proportion of EVs to total vehicles in Australia in 2021, I can

roughly estimate the number of EVs in one hour at each of the 17 intersections

in this experiment. It is clear from Figure 3.3 that there are 5 routes with 17

intersections. Parramatta and Ryde, North Wahroonga, and Sydney Center have

more EVs, and it also can be said that the North and East Districts have more

EVs and high concentrations of EVs compared to the South and West Districts.

Since I am with a real dataset, but only intersection tra�c is available in
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Figure 3.3: Number of electric vehicles at intersections on the Sydney road net-
work

that dataset. Therefore, I use a gravity model to estimate the O-D matrix by

the intersection tra�c [71]. Based on the gravity model and the number of EVs

at the intersection, I obtain the EV flow for each route in this experiment after

iterations of processing, as shown in Table 3.1. Further, I can obtain the hourly

intersection EV flow after redistribution through the gravity model, as shown in

Figure 3.4.

Table 3.1: Calculated origin-destination matrix in Sydney city
St Mary Sydney Center Campbelltown Ingleside North Wahroonga Mipkerra

St Mary 0.02 0.20 0.20 3.14 0.29 0.15
Sydney Center 0.09 0.00 0.28 0.00 6.81 3.82
Campbelltown 0.11 0.36 0.94 0.50 1.39 0.71
Ingleside 2.37 0.00 0.70 0.37 1.04 0.53
North Wahroonga 0.13 7.40 1.18 0.63 1.76 0.89
Mipkerra 0.07 4.48 0.65 0.34 0.96 0.49
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Figure 3.4: Number of electric vehicles at intersections on the Sydney road net-
work (After gravity modeling)

3.2.1 Numerical results

In this case study, I assume that EVs at each intersection need to be charged

if the EV flow at each intersection is greater than 1 in one hour. Assuming the

cost of per charger is 25,000 AUD, and the total cost of charger investment is

2,000,000 AUD. Based on the model and the above assumptions, I can obtain

the location and number of chargers to be allocated as shown in Figure 3.5.

According to Table 3.1 I can know the EV flow of these five routes after the

gravity model redistribution. Let us take route 1 as an example. In Table 3.2,

baseline indicates the hourly EV flow at each intersection after gravity redistri-

bution. Then, baseline+20% indicates that the EV flow in route 1 is increased

by 20%, and the flow of other routes remains unchanged. By analogy, I can get

baseline+40% etc. In this case study, I have five routes. Taking route 1 as an
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Figure 3.5: Number of chargers at intersections on the Sydney road network
(After gravity modeling)

example, I analogously obtain the number of EVs per hour at the intersections

for route 2, route 3, route 4, and route 5 in the road network under di↵erent

situations. They are shown in Tables 3.3, Table 3.4, Table 3.5 and Table 3.6,

respectively.

3.2.2 Optimal results for di↵erent scenarios

When the EV flow in the road network changes, the allocation of the number of

chargers in the whole road network will change accordingly. Therefore, after I

obtain the number of EVs per intersection for each route separately in di↵erent

situations, I can calculate the number of chargers allocated to each intersection

by minimizing the mathematical model of waiting time.

Although the EV flow increases proportionally for each route, the number of
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Table 3.2: The number of electric vehicles at intersection for route 1

Intersection

(Suburb)

Number of electric vehicles (per hour)

baseline baseline baseline baseline baseline baseline

+20% +40% +60% +80% +100%

St Marys 5.79 5.85 5.91 5.97 6.03 6.08

Parramatta 5.79 5.85 5.91 5.97 6.03 6.08

Homebush West 0.29 0.35 0.41 0.46 0.52 0.58

Sydney Center 23.11 23.17 23.23 23.29 23.34 23.40

Rydalmere 8.30 8.30 8.30 8.30 8.30 8.30

Merrylands 8.59 8.59 8.59 8.59 8.59 8.59

Baulkham Hills 5.51 5.51 5.51 5.51 5.51 5.51

Cherrybrook 5.51 5.51 5.51 5.51 5.51 5.51

North Wahroonga 19.72 19.72 19.72 19.72 19.72 19.72

Ingleside 5.51 5.51 5.51 5.51 5.51 5.51

Campbelltown 0.30 0.30 0.30 0.30 0.30 0.30

Milperra 8.61 8.61 8.61 8.61 8.61 8.61

Croydon Park 0.30 0.30 0.30 0.30 0.30 0.30

West Pymble 14.22 14.22 14.22 14.22 14.22 14.22

Warrawee 14.22 14.22 14.22 14.22 14.22 14.22

West Ryde 8.30 8.30 8.30 8.30 8.30 8.30

East Ryde 8.30 8.30 8.30 8.30 8.30 8.30

Table 3.3: The number of electric vehicles at intersection for route 2

Intersection

(Suburb)

Number of electric vehicles (per hour)

baseline baseline baseline baseline baseline baseline

+20% +40% +60% +80% +100%

St Marys 5.79 6.90 8.00 9.10 10.20 11.30

Parramatta 5.79 6.90 8.00 9.10 10.20 11.30

Homebush West 0.29 0.29 0.29 0.29 0.29 0.29

Sydney Center 23.11 23.11 23.11 23.11 23.11 23.11

Rydalmere 8.30 8.30 8.30 8.30 8.30 8.30

Merrylands 8.59 8.59 8.59 8.59 8.59 8.59

Baulkham Hills 5.51 6.90 8.00 9.00 10.10 11.20

Cherrybrook 5.51 6.90 8.00 9.00 10.10 11.20

North Wahroonga 19.72 20.82 21.92 23.02 24.12 25.22

Ingleside 5.51 6.61 7.71 8.81 9.91 11.01

Campbelltown 0.30 0.30 0.30 0.30 0.30 0.30

Milperra 8.61 8.61 8.61 8.61 8.61 8.61

Croydon Park 0.30 0.30 0.30 0.30 0.30 0.30

West Pymble 14.22 14.22 14.22 14.22 14.22 14.22

Warrawee 14.22 14.22 14.22 14.22 14.22 14.22

West Ryde 8.30 8.30 8.30 8.30 8.30 8.30

East Ryde 8.30 8.30 8.30 8.30 8.30 8.30
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Table 3.4: The number of electric vehicles at intersection for route 3

Intersection

(Suburb)

Number of electric vehicles (per hour)

baseline baseline baseline baseline baseline baseline

+20% +40% +60% +80% +100%

St Marys 5.79 5.79 5.79 5.79 5.79 5.79

Parramatta 5.79 5.79 5.79 5.79 5.79 5.79

Homebush West 0.29 0.29 0.29 0.29 0.29 0.29

Sydney Center 23.11 23.17 23.23 23.29 23.35 23.41

Rydalmere 8.30 8.30 8.30 8.30 8.30 8.30

Merrylands 8.59 8.59 8.59 8.59 8.59 8.59

Baulkham Hills 5.51 5.51 5.51 5.51 5.51 5.51

Cherrybrook 5.51 5.51 5.51 5.51 5.51 5.51

North Wahroonga 19.72 19.72 19.72 19.72 19.72 19.72

Ingleside 5.51 5.51 5.51 5.51 5.51 5.51

Campbelltown 0.30 0.36 0.42 0.48 0.54 0.60

Milperra 8.61 8.67 8.73 8.79 8.85 8.91

Croydon Park 0.30 0.36 0.42 0.48 0.54 0.60

West Pymble 14.22 14.22 14.22 14.22 14.22 14.22

Warrawee 14.22 14.22 14.22 14.22 14.22 14.22

West Ryde 8.30 8.30 8.30 8.30 8.30 8.30

East Ryde 8.30 8.30 8.30 8.30 8.30 8.30

Table 3.5: The number of electric vehicles at intersection for route 4

Intersection

(Suburb)

Number of electric vehicles (per hour)

baseline baseline baseline baseline baseline baseline

+20% +40% +60% +80% +100%

St Marys 5.79 5.79 5.79 5.79 5.79 5.79

Parramatta 5.79 5.79 5.79 5.79 5.79 5.79

Homebush West 0.29 0.29 0.29 0.29 0.29 0.29

Sydney Center 23.11 25.95 28.79 31.63 34.47 37.31

Rydalmere 8.30 8.30 8.30 8.30 8.30 8.30

Merrylands 8.59 8.59 8.59 8.59 8.59 8.59

Baulkham Hills 5.51 5.51 5.51 5.51 5.51 5.51

Cherrybrook 5.51 5.51 5.51 5.51 5.51 5.51

North Wahroonga 19.72 22.56 25.40 28.24 31.08 33.92

Ingleside 5.51 5.51 5.51 5.51 5.51 5.51

Campbelltown 0.30 0.30 0.30 0.30 0.30 0.30

Milperra 8.61 8.61 8.61 8.61 8.61 8.61

Croydon Park 0.30 0.30 0.30 0.30 0.30 0.30

West Pymble 14.22 17.06 19.90 22.74 25.58 28.42

Warrawee 14.22 17.06 19.90 22.74 25.58 28.42

West Ryde 8.30 8.30 8.30 8.30 8.30 8.30

East Ryde 8.30 8.30 8.30 8.30 8.30 8.30
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Table 3.6: The number of electric vehicles at intersection for route 5

Intersection

(Suburb)

Number of electric vehicles (per hour)

baseline baseline baseline baseline baseline baseline

+20% +40% +60% +80% +100%

St Marys 5.79 5.79 5.79 5.79 5.79 5.79

Parramatta 5.79 5.79 5.79 5.79 5.79 5.79

Homebush West 0.29 0.29 0.29 0.29 0.29 0.29

Sydney Center 23.11 24.77 26.43 28.09 29.75 31.41

Rydalmere 8.30 9.96 11.62 13.28 14.94 16.60

Merrylands 8.59 10.25 11.91 13.57 15.23 16.89

Baulkham Hills 5.51 5.51 5.51 5.51 5.51 5.51

Cherrybrook 5.51 5.51 5.51 5.51 5.51 5.51

North Wahroonga 19.72 19.72 19.72 19.72 19.72 19.72

Ingleside 5.51 5.51 5.51 5.51 5.51 5.51

Campbelltown 0.30 0.30 0.30 0.30 0.30 0.30

Milperra 8.61 10.27 11.93 13.59 15.25 16.91

Croydon Park 0.30 0.30 0.30 0.30 0.30 0.30

West Pymble 14.22 14.22 14.22 14.22 14.22 14.22

Warrawee 14.22 14.22 14.22 14.22 14.22 14.22

West Ryde 8.30 9.96 11.62 13.28 14.94 16.60

East Ryde 8.30 9.96 11.62 13.28 14.94 16.60

chargers increases di↵erently for each route because of the di↵erent numbers of

EVs on each route. For example, in route 1, although the intersection EVs flow

of route 1 increases by 20%, 40%, etc. in sequence, however, the flow of EVs in

route 1 is much smaller than the flow of the other routes. Therefore the change

in the number of chargers for route 1 is small. In Figure 3.6, the change in the

number of chargers because of changes in the flow of EVs on route 1 is shown.

Only two graphs are shown in this figure for comparison because the number of

chargers required is the same for the EV flow scenarios from baseline in sequence

increment to baseline+60%. The number of chargers at the Homebush West

intersection increases by one for baseline+80% and baseline+100% EV flows.

Figure 3.7 and Figure 3.8 show that the increase in EV flow at the intersection

in route 2 leads to a change in the number of chargers across the whole network.

The increase in the number of chargers at intersections on route 2 also leads to
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(a) Various changes in charger demands as EV flows increase from

Baseline to Baseline+60%

(b) Various changes in charger demands as EV flows increase from

Baseline+80% to Baseline+100%

Figure 3.6: Number of chargers increased at each intersection of route 1 for
di↵erent EV flows scenarios
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(a) Various changes in charger demands as EV flows increase from

Baseline to Baseline+20%

(b) Various changes in charger demands as EV flows increase from

Baseline+40% to Baseline+60%

Figure 3.7: Number of chargers increased at each intersection of route 2-1 for
di↵erent EV flows scenarios
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(a) Various changes in charger demands when EV flows is Base-

line+80%

(b) Various changes in charger demands when EV flows is Base-

line+100%

Figure 3.8: Number of chargers increased at each intersection of route 2-2 for
di↵erent EV flows scenarios
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a decrease in the number of chargers allocated to other road intersections when

the total investment of chargers is kept constant. It is easy to find that the

intersection that reduce the number of chargers are di↵erent when the EV flow

is baseline+40% and baseline+80%. This is because our objective function is to

reduce the overall queuing waiting time.

Figure 3.9 has only two comparison graphs because route 3 has less EV flow

than the other routes. Therefore, when the EV flow increases, it still does not

have a large impact on the increase of the number of chargers.

In Figure 3.10 and Figure 3.11, which is worth noting that when the EV

flow is Baseline+40%, both intersections Warrawee and West Pymble in route 4

increase by one charger. In contrast, North Wahroonga decreases by one charger.

This is because the North Wahroonga is also on route 2, and in addition to that

the number of chargers allocated to this intersection is much higher than other

intersections, and the optimization algorithm is aimed at minimizing the waiting

time. Reducing the number of chargers at North Wahroonga intersection has the

least impact on the overall waiting time.

In Figure 3.12, Figure 3.13 the number of chargers added to the Rydalmere

intersection on route 5 is two, while Merrtlands and Ryde have only one additional

charger.

After I have introduced the e↵ect of the change in EV flow on each route on

the number of charger on the whole road network. Next, I move on to discuss the

relationship between EV flow and the amount of investment at all intersections

in the whole road network.

In Figure 3.14, I show the relationship between these six di↵erent EV flow

scenarios and the budget. Where scenario 1 represents the hourly flow of EVs at
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(a) Various changes in charger demands as EV flows increase from

Baseline to Baseline+60%

(b) Various changes in charger demands as EV flows increase from

Baseline+80% to Baseline+100%

Figure 3.9: Number of chargers increased at each intersection of route 3 for
di↵erent EV flows scenarios
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(a) Various changes in charger demands as EV flows increase from

Baseline to Baseline+20%

(b) Various changes in charger demands when EV flows is Base-

line+40%

Figure 3.10: Number of chargers increased at each intersection of route 4-1 for
di↵erent EV flows scenarios
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(a) Various changes in charger demands as EV flows increase from

Baseline+60% to Baseline+100%

Figure 3.11: Number of chargers increased at each intersection of route 4-2 for
di↵erent EV flows scenarios

each intersection after redistribution by the gravity model, scenario 2 represents

a 20% increase in the flow of EVs based on scenario 1, and by analogy I get

scenarios 3, 4, 5 and 6. By observing Figure 3.14, it can be found that the

functions of waiting time and budget for scenario 1 and scenario 2 can be almost

approximated as the same curve. That is, when the EV flow increases by 20%,

the relationship between the waiting time and the budget in the road network is

the same as the relationship function between the two in the initial flow scenario

1. And with this figure, I can see that although the waiting time decreases when

the budget becomes larger, the waiting time for EVs will infinitely converge to a

constant value when the budget increases infinitely. That is, when the budget of

chargers increases from AU$1,000,000 to AU$4,000,000, the sum of the average
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(a) Various changes in charger demands as EV flows increase from

Baseline to Baseline+20%

(b) Various changes in charger demands when EV flows is Base-

line+40%

Figure 3.12: Number of chargers increased at each intersection of route 5-1 for
di↵erent EV flows scenarios
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(a) Various changes in charger demands as EV flows increase from

Baseline+60% to Baseline+80%

(b) Various changes in charger demands when EV flows is Base-

line+100%

Figure 3.13: Number of chargers increased at each intersection of route 5-2 for
di↵erent EV flows scenarios
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waiting time at all intersections in the whole road network decreases from 60 -

120 minutes to 30 - 40 minutes.

Figure 3.14: The relationship between budget and waiting time in di↵erent sce-
narios

3.3 Summary

In this chapter, a portion of the Sydney city road network is selected as a case

study based on the model in the previous chapter. The optimal location and

number of chargers to deploy EV charging infrastructure within the constraints

of various charging station locations, budgets and number of chargers. First, I

selected several representative areas in the Sydney metropolitan area. Then, I

used a gravity model to calculate the tra�c flow on each route. Finally, the in-

tersection flows processed by the gravity model are brought into the optimization

model in the previous chapter to solve for the number of chargers required at

each intersection under di↵erent scenarios using the least squares method.
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Chapter 4

A Queue Balancing Approach for

Electric Vehicle Charging

Allocation

Based on Chapter 2 and Chapter 3, I have determined the location and number

of charging stations in the road network. Next, this Chapter is about how to

e�ciently utilize and manage the available charging resources. This Chapter

presents a proposed queue balancing algorithm to balance the uneven charging

demand at di↵erent charging stations and to minimize the total average waiting

time. Section 4.1 will present the background and significance of this study.

Section 4.2 will provide a detailed description of the definition of linear road

network. Section 4.3 will introduce Remaining battery modelling. Section 4.4

will present a multi-server queuing model with finite waiting time to describe the

queuing process of electric vehicles. Section 4.5 will show a charging resource

allocation model to minimize the total waiting time in the charging network.
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Section 4.6 will present a queue balancing algorithm. Section 4.7 will present

a case study to demonstrate the e↵ectiveness of the optimization model and

algorithm. A brief summary of the chapter will be presented in Section 4.8.

4.1 Introduction

With increasing number of electric vehicles but relatively insu�cient charging

facilities, how to utilise and manage the existing charging resource in an e�cient

and e↵ective way becomes an important challenge to address. In this Chapter,

a charging resource allocation model is proposed to balance the uneven charging

demand at di↵erent charging stations and minimise the total of average waiting

time. A queue balancing algorithm is proposed to solve the problem. Case study

is conducted on a linear travel corridor. The results show that the proposed

approach can balance the charging load among di↵erent charging stations and

maximise the utilisation of charging resources. Moreover, the proposed model

can help reduce the total of average waiting time at charging stations.

4.2 Basic definition

Given multiple charging stations distributed in a road network and each charging

station with a limited number of chargers, EV drivers are allowed to book their

charging activities in advance. A centralised management system will collect all

the charging request and make decision to allocate charging stations to drivers to

minimise the total of average waiting time at charging stations while satisfying

charging demand.
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To simplify the presentation, a major travel corridor is adopted as a linear

road network in this study [76]. As shown in Figure 4.1, it is assumed that there

are a set of EVs leaving from the origin to the destination along a travel corridor.

There are n charging stations V = {1, 2, · · · , v} along the corridor, and each

charging station consists of at least one charger. Charging station 1 is located in

the origin area and charging station v is in the destination area. The distance

from the origin to charging station v is denoted by dv. Note that d1 = 0.

Figure 4.1: EV charging stations along a travel corridor

It is assumed that the number of EVs departing from the origin and the

driving range that an EV can travel with the remaining battery level conform to

a certain probability distribution. Based on the assumptions, I first calculate the

current queuing length at each charging station and the average waiting time of

each EV based on its remaining battery level, and then allocate those available

charging stations to corresponding EV drivers with the objective to minimise the

total of average waiting time.

Relevant parameters and variables used in the model formulation are intro-

duced in Table 4.1, followed by the remaining battery capacity model and queuing

theory model presented in the subsequent sections.
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Table 4.1: Parameters and variables
Notation Description
Parameters
V The sets of charging station, v 2 V

dv The distance from the origin to the charging station v

nv The number of chargers at charging station v

mv The number of EVs at charging station v

⇢v The charging service intensity at charging station v

�v The arrival rate of EVs at charging station v

µv The service rate of EVs at charging station v

Pv(mv) The probability of mv EVs waiting at charging station v

Variables
Lv The average queuing length at charging station v

`v The average waiting time at charging station v

Tv The maximum waiting time at charging station v

4.3 Remaining battery modelling

The related literature shows that the state-of-charge (SOC) of EV battery has

a stochastic characteristic [77; 78; 79; 80]. When the number of EVs becomes

larger, the remaining battery level of EVs shows a certain regularity, and as the

number of EVs increases to a certain extent, the probability distribution of the

allowed driving range conforms to a certain probability density function.

As aforementioned, I assume that the distance that an EV can travel with

its remaining battery level from the origin is a random variable X, which follows

a probability density function, f(x) (see Figure 4.2). x denotes the number of

kilometres that can be traveled by the remaining power of an EV. The shaded

part indicates the probability that an EV can travel with the remaining battery

capacity between the distance [↵, �], i.e., P (↵  X  �).

Assume the total number of EVs that leave the origin in a unit of time is M ,

M 2 [0,1), Equation 4.1 shows the total number of EVs, N(↵, �), which can
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Figure 4.2: Probability distribution of driving range

travel between the range of [↵, �] with the remaining battery level.

N(↵, �) = M · P (↵  X  �) = M ·
Z �

↵

f(x)dx (4.1)

4.4 Charging queues

To better understand how to allocate a charging station to an EV along the travel

corridor, a simple scenario is used for illustration. Assume that an EV is running

along the corridor from the origin to the destination, and its remaining battery

level can only a↵ord the vehicle to reach the second charging station as furthest.

In this case, this EV driver can only choose to charge at the origin, the first or

the second charging station. Therefore, each vehicle’s candidate charging stations

are determined by its remaining battery capacity. Accordingly, I can calculate

the number of EVs queuing for charging at each charging station.

I propose to use queuing theory to calculate the queuing time of each charging

station. [81; 82; 83; 84], which will be used to describe our queuing charging model
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for EV users. That means at each charging station, the arrival of EVs forms a

Poisson flow. We assume that EVs arrive as Poisson flow and the charging service

at each charging station is based on first-come, first-served (FCFS) [27; 85; 86;

87; 88]. To calculate the average waiting time at each charging station, I use the

M/M/n queuing model.

It should be noted that a necessary condition for a stable queuing system is

that there is a finite queue in the steady state, which is ⇢v < 1. In there, �v is

denote the arrival rate of electric vehicles at vertex v per time unit, and µv is

represent the service rate of electric vehicles at vertex v per time unit. We can

use ⌘v to represent �v/µv. According to queuing theory, I need to consider two

cases. For each charging station v 2 V , assume there are mv electric vehicles go

to a simultaneously for charging, and nv is the number of chargers at charging

station v, then I have:

Case 1: The number of EVs is less than the number of chargers at charging

station v, i.e., mv < nv. Then the average charging service intensity is expressed

as follows:

⇢v = ⌘v/mv (4.2)

Case 2: The number of EVs is no less than the number of chargers at charging

station v, i.e., mv � nv. The average charging service intensity is:

⇢v = ⌘v/nv (4.3)

Based on the principle of Markov chains [89; 90], there are always EVs coming

in for charging and EVs leaving after charging, hence the length of the queuing
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system is always changing. However, eventually the queuing system will reach

an equilibrium status that the number of EVs coming in for charging and the

number of EVs completing charging are considered to be equal, as described

below [91; 92]:

8
>>>>>>>>>>><

>>>>>>>>>>>:

�vPv(0) = µvPv(1)

�vPv(k � 1) + (k + 1)µvPv(k + 1) = (�v + kµv)Pv(k),

1  k < nv

�vPv(k � 1) + nvµiPv(k + 1) = (�v + nvµv)Pv(k),

k � nv

(4.4)

Based on the above derivation, I can obtain the expression for Pv(0), which

stands for the probability that there is no EV at charging station v as follows:

Pv(0) =

2

4
nvX

mv=0

⌘
mv
v

mv!
+

⌘
nv
v

nv!(1� ⇢v)

3

5
�1

(4.5)

According to the function of state equilibrium described above. When there

are mv EVs at charging station v. There exist two cases of Pv(mv):

Pv(mv) =

8
><

>:

1
mv !

(⌘v)mvPv(0), mv < nv

1
nv !n

mv�nv
v

(⌘v)mvPv(0), mv � nv

(4.6)

Then, I can calculate the average waiting length at charging station v as

follows:

Lv =
(nv⇢v)nv⇢v

(1� ⇢v)2nv!
Pv(0) (4.7)
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Furthermore, according to the Little law [93], the average waiting time can

be expressed as

`v =
Lv

�v
(4.8)

By integrating Equation 4.6, Equation 4.7 and Equation 4.8, the average

waiting time at charging station v can be calculated as follows:

`v =

8
><

>:

(nv⇢v)nv⇢v
�v(1�⇢v)2nv !

Pv(0), mv < nv

(⌘v)nv⇢v
�v(1�⇢v)2nv !

Pv(0), mv � nv

(4.9)

4.5 Optimisation of charging resource allocation

Combining the finite average waiting time constraint and the associated equations

in the previous section, a charging resource allocation model is proposed in this

section to re-balance the charging demand between charging stations to minimise

the total of average waiting time along the travel corridor.

With the remaining battery level, if the maximal driving range of an EV covers

charging station v, then charging station v is a feasible charging location for this

vehicle. However, when the total number of EVs choosing to charge at charging

station v is larger than the amount of chargers available at charging station v,

queue will form at charging station v, and it will cause uneven distribution of

charging demand. Therefore, a balance coe�cient �v 2 [0, 1] is introduced to

reallocate the vehicles at di↵erent changing station. Moreover, based on the

arrival rate of EVs at each charging station, the waiting time for EVs at each

charging station can be calculated by combining with the queuing theory model.

Assume �v 2 [0, 1] for each v 2 V and
P
v2V

�v = 1. I will use these coe�cients

51



to rebalance queues at the charging stations. The idea is that if the total number

of vehicles from the origin is M , the number of vehicles allocated to charging

station v will be �vM . Due to the limitation of battery capacity, a vehicle can

only be reallocated to an earlier charging station rather than a later charging

station. This means

vX

i=0

�iM � M

Z dv+1

0

f(x)dx, for all v 2 V (4.10)

Let’s calculate the waiting time at each charging station after rebalance.

Firstly, we calculate the arrival rate of EVs at each charging station after balance.

Assume that the arrival rate of EVs at station v before balance is �v. The total

arrival rate of EVs at all stations will be

⇤ =
X

v2V

�v (4.11)

The arrival rate of EVs, �⇤
v, at station v after the balance is:

�
⇤
v = �v⇤ (4.12)

Secondly, we calculate the average waiting time of EVs at charging station

v. Combing with Equation 4.9 and Equation 4.12, we can get the function as

follows:

Case 1: The number of EVs is less than the number of chargers at charging

station v, �vM < nv.

`v
⇤
=

(nv�v⇤
mvµv

)nv �v⇤
mvµv

�v⇤(1� �v⇤
mvµv

)2nv!
Pv(0) (4.13)
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Case 2: The number of EVs is more than the number of chargers at charging

station v, �vM � nv.

`v
⇤
=

(�v⇤
µv

)nv �v⇤
nvµv

�v⇤(1� �v⇤
nvµv

)2nv!
Pv(0) (4.14)

Finally I optimise the total of average waiting time by adjusting the balance

coe�cients.

min
8v2V, �v2[0,1]

X

v2V

`v
⇤

(4.15)

s.t.
nX

v=1

�v = 1 (4.16)

vX

i=0

�i �
Z dv+1

0

f(x)dx, for all v 2 V (4.17)

`v
⇤ 2 [0,'], v 2 V (4.18)

mv`v
⇤

nv
 Tv, v 2 V (4.19)

Equation 2.17 denotes that the sum of balance coe�cients equals to 1. Equa-

tion 2.18 describes that the probability of EVs charged at charging station v

obtained in the optimal solution should be greater than or equal to the EVs that

may be charged at charging station v. To restrain the charging waiting time

to a limited range, I use ' to represent the maximum waiting time, then `v
⇤

is restricted as Equation 2.27. Considering the user satisfaction, Equation 2.21
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express the total of average waiting time of EV users at each charger should not

exceed its accepted maximum value Tv.

4.6 Solution algorithms

To solve the charging resource allocation model, queuing time algorithm and

queue balancing algorithm are developed as follows.

4.6.1 Queuing time algorithm

Here I use queuing theory to calculate the average queuing time at a charging

station, which requires knowing the following information: (a) How many electric

vehicles are at charging station v. (b) How many chargers are at charging station

v. (c) The service rate of charging station v. (d) The relationship between

the number of electric vehicles and the number of charging stations in terms

of numbers. After obtaining those information, I can use the Algorithmic 1 to

estimate the queuing time of electric vehicles arriving at charging station v at a

moment.

4.6.2 Queue balancing algorithm

Initialization: Input parameters: N , mv, nv, µv, P .

Step 1: Based on the input, I can get µv for each charging station, and the

sum of µv on the path p.

Step 2: Comparing the service intensity of the second charging station with

the first charging station. Scenario (1) - if the service intensity of EVs at the first

charging station is greater than the intensity at the second charging station, then
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Algorithm 1 Queuing time algorithm
Input: nv: number of chargers;

mv: number of electric vehicles to charging station v;
⌘v: Ratio of arrival rate to service rate at charging station v

Output: `v: average waiting time of each electric vehicle at charging station
v

1: if mv  nv then
2: ⇢v :=

⌘v
mv

3: else
4: ⇢v :=

⌘v
nv

5: end if
6: FACTORIAL(i)
7: if i := 1 then
8: return 1
9: else

10: return i ⇤ FACTORIAL(i)
11: end if
12: EXPONENTIAL(i)
13: return ⇢v ⇤ ⇤i
14: SUM(j)
15: sum := 0
16: for i := 0 to j do
17: sum := EXPONENTIAL(i)/FACTORIAL(i)
18: end for
19: return `v

the service intensity of EVs at the charging station does not need to be adjusted.

Scenario (2) - if the service intensity of EVs at the first charging station is smaller

than the intensity at the second charging station, then the service intensity of

EVs allocated to these two charging stations will be averaged.

Step 3: In Scenario (2) of Step 2, if the service intensity of EVs allocated to

the second charging station is smaller than the intensity at the third charging

station, then the service intensity of EVs allocated to the first three charging

stations will be averaged. If the service intensity of EVs allocated to the second

charging station is greater than the intensity at the third charging station, then
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the service intensity at these three charging station remain the same. Next, com-

paring the service intensity of EVs allocated to the first three charging stations

with the intensity of EVs at the fourth charging station. Following this procedure,

comparison and adjustment will continue until the last charging station.

Step 4: According to Step 3, the service intensity of EVs at each charging sta-

tion and the number of EVs allocated to each charging station can be calculated

to reach a balanced allocation result.

Step 5: When the allocation of path p is completed, the loop is entered again

and the same calculation is used to obtain the allocation of other paths.
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Algorithm 2 Queue balancing algorithm
Input: N : number of charging stations on path p;

mv: number of EVs allocated to charging station v;
nv: number of chargers at charging station v;
µv: service rate of EVs at charging station v;
P : number of paths in the whole network
Output: mv: number of EVs allocated to charging station v;

Array: number of EVs allocated to each charging station in the whole network

1: for i := 1 to P do
2: Array := [NULL]
3: totalµ := 0
4: for i := 0 to N do
5: totalµ := totalµ + µi

6: end for
7: for i := 0 to N do
8: µi :=

µi

totalµ
9: end for

10: for i := 1 to N do
11: j := i� 1
12: hold := mi

µi⇤ni

13: sum := hold

14: while j � 0 and hold >
mj

µi⇤ni
do

15: hold :=
(sum+

mj
µi⇤ni

)

(i�j+1)

16: sum := sum+ mi
µi⇤ni

17: j := j � 1
18: end while
19: total := 0
20: chargers := 0
21: for k := 0 to (i� j) do
22: total := total +mi�k

23: chargers := chargers+ ni�k ⇤ µi�k

24: end for
25: total := total

chargers

26: for k := 0 to (i� j) do
27: mi�k := ni�k ⇤ µi�k ⇤ total
28: end for
29: end for
30: Array := extend([mv])
31: end for
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4.7 Case study

In this section, a case study is conducted with results discussed as follows. The

variation of the arrival flow of EVs obeys a Poisson distribution. The relevant

parameter values are given as follows.

• Length of the travel corridor: 500km.

• Total number of EVs: 1000.

• Total number of charging stations: 10.

• Number of chargers at each charging station: [25, 30, 20, 15, 30, 40, 30, 30,

20, 30].

• Service rate of EVs: [1/12, 2/15, 7/60, 3/20, 1/12, 1/20, 1/10, 7/60, 2/15,

1/12].

• Arrival rate of EVs: [1.12, 2.92, 1.38, 0.70, 0.57, 0.98, 2.22, 3.30, 2.48, 1.00].

The probability density function of the allowable driving range of an EV used

in this experiment is as follows:

f(x) =
500p

2⇡(x(500� x))
e
�

(ln( x
500�x )�0.65)2

2 (4.20)

According to the logistic probability density distribution, the majority of EVs

have remaining battery level between 50% and 80%. Usually EV users will not

charge the battery as long as it is within a safe threshold. They are likely to

recharge the battery at charging stations close to their destination if the remaining

battery level is enough. In this case, if all EV users choose to charge when they
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almost run out the battery, then the distribution of charging load at each charging

station will be unbalanced. As a result, long queue and significant waiting time

will be caused at charging stations close to the destination.

To test the proposed algorithm, I define the following two situations.

Unbalanced: The average waiting time is calculated based on the logistic

probability density function without using the proposed algorithm for optimised

results.

Balanced: The number of EVs at each charging station is redistributed using

the proposed algorithm, and the average waiting time is calculated again.

Figure 4.3: Comparison of EV amounts at each charging station under di↵erent

situations
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Figure 4.3 illustrates the di↵erence of the amounts of EVs at each charging

station before and after optimising the charging resource allocation. It can be

observed that, in an unbalanced situation, the number of EVs is much higher at

charging stations 2 and 8, followed by charging stations 7 and 9, which shows

uneven charging distribution. In a balanced situation, the di↵erence at each

charging station is significantly reduced based on the optimised charging resource

allocation.

Figure 4.4: Number of vehicles for each charging station in queuing balancing

progress
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Figure 4.5: Average waiting time for each charging station in queuing balancing

progress

By analysing the number of vehicles for each charging station in Figure 4.3

and total average waiting time in Figure 4.4, it can be observed that the number

of electric vehicles per charging station is more even, and the total average waiting

time is significantly reduced by using the queue balancing algorithm. It indicates

that the proposed model and algorithm can better help to utilise the charging

resources for EVs according to their driveable mileage and the service intensity

at each charging station. Thus, the overall charging e�ciency and the charging

resource utilisation are improved.
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Figure 4.6: Average waiting time under di↵erent situations

Figure 4.5 shows the average waiting time for EVs at each charging station

under the unbalanced and balanced situations. It can be found that in the un-

balanced situation, as shown in the blue circles in Figure 4.5, the average waiting

time for EVs at each charging station is unevenly distributed. The larger the blue

circles in the figure, which shows significantly longer waiting time at charging sta-

tions 8 and 9. At the initial stage, when EV drivers depart from the origin of

the corridor, most EVs have the remaining battery level equal to a driving range

between 300km and 400km, so the EV users tend to charge at a further charging

station such as 8 and 9 when the power almost runs out, which causes the average

waiting time at these two charging stations increase significantly. In the balanced
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situation, after optimisation, the average waiting time at each charging station is

quite similar, as shown in the brown circles in Figure 4.5 Compared to the total

average waiting time at all charging stations in the unbalanced situation, the

total average waiting time in the balanced situation is significantly lower, which

further validates the proposed model and algorithm.

To sum up, the numerical results show that the charging resource allocation

model and the proposed queue balancing algorithm can, on the one hand, balance

the charging load between each charging station and maximise the utilisation of

charging resources; on the other hand, reduce the total average waiting time at

charging stations for EV users.

4.8 Summary

In this chapter, to maximise the utilisation of existing charging resources and

reduce EV users’ average waiting time at charging stations, a charging resource

allocation model and the corresponding queue balancing algorithm were proposed.

The model took into account various practical situations, such as the remaining

battery level and corresponding maximal driving range, di↵erent number of charg-

ers at di↵erent charging stations, and heterogeneous departure rates of EVs at

di↵erent charging stations. Numerical experiments were conducted in considera-

tion of both unbalanced and balanced situations to validate the proposed model

and algorithm with promising results.
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Chapter 5

Conclusion and Future Work

This research addresses two research questions related to charging station plan-

ning and charging resource allocation. Three specified research tasks will be

conducted from the perspectives of charging station construction, electric vehi-

cle queuing, and electric vehicle allocation. The research will be significantly

di↵erent from the existing research in the following aspects:

• In Chapter 2, I introduced the optimization model for charging station

planning. And show how to use the gravity model to calculate the point-to-

point tra�c flow from the tra�c data of each intersection, which can induce

the origin-destination tra�c data. Then, I propose an optimization model

for toll assignment based on origin-destination tra�c flow data. Finally, I

build an optimization model to plan charging stations by minimizing the to-

tal waiting time for electric vehicles. Based on this model, we can calculate

the number of chargers that should be installed at each charging station,

and the optimal allocation of vehicles at each charging station.
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• In Chapter 3, a portion of the Sydney city road network is selected as a case

study based on the model in the previous chapter. First, I selected several

representative areas in the Sydney metropolitan area. Then, I used a gravity

model to calculate the tra�c flow on each route. Finally, the intersection

flows processed by the gravity model are brought into the optimization

model in the previous chapter to solve for the number of chargers required

at each intersection under di↵erent scenarios using the least squares method.

• The Chapter 4 is about how to e�ciently utilize and manage the avail-

able charging resources and presents a proposed queue balancing algorithm

to balance the uneven charging demand at di↵erent charging stations and

minimize the total average waiting time. I conducted a case study on a

linear travel corridor. The results show that the proposed approach can

balance the charging load among di↵erent charging stations and maximize

the utilization of charging resources. In addition, the proposed model can

help reduce the average waiting time at charging stations.

All the research tasks and research training during the course of Master of

Philosophy will provide a solid foundation for me to further study and work

in the research direction. I plan to further work on game-theoretic models for

charging infrastructure planning and resource allocation, comparing the outcome

of equilibria and optimization to gain the price of anarchy. I believe that further

theoretical and experimental investigations will make a significant contribution

to the area of research.
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