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Abstract 

Anxiety about performing numerical calculations is becoming an increasingly important 

issue. Termed mathematics anxiety, this condition negatively impacts performance in 

numerical tasks which can affect education outcomes and future employment prospects. The 

disruption account proposes this poor performance is from the anxiety and its worrying 

thoughts disrupting the limited resources of working memory (specifically the attentional and 

inhibitory functions) leaving less cognitive resources available for the current task. There are 

many behavioural studies on mathematics anxiety. However, its underlying cognitive and 

neural mechanisms remain unclear. This thesis examines the relationship between 

mathematics anxiety and attentional control using neural network modelling, there are no 

neural network models simulating mathematics anxiety. The numerical Stroop task and the 

symbolic number comparison task were modelled with a single neural network model 

architecture examining the effect of modifications to both tasks. Different model 

modifications were used to simulate high and low math-anxious conditions by modifying 

attentional processes and learning. The model simulations suggest that mathematics anxiety is 

associated with reduced attention to numerical stimuli. These results are consistent with 

attentional control theory where anxiety decreases the influence of the goal-directed 

attentional system and increases the influence of the stimulus-driven attentional system. 

Notably, when simulating the numerical Stroop task, the high math-anxious model with 

reduced attention to numerical stimuli experienced less neural activation in the response layer 

for the inhibitory condition than the low math-anxious model, suggesting an under activation 

of working memory resources when experiencing conflict. Furthermore, the model was able 

to account for several other cognitive conditions, including reduced learning, the physical 

Stroop task across learning, and the speed-accuracy trade-off. 

  



2 

Chapter 1: Introduction 

Numerical skills such as counting and arithmetic calculations are an important part of 

life and our ability to function effectively in society. However, many people have trouble 

processing numbers and performing mathematics. Deficiencies in number-related skills can 

impact education outcomes, career choices, or even affect day-to-day life skills such as 

calculating the cost of groceries or budgeting to buy a home. Furthermore, anxiety about 

performing numerical calculations and mathematics is becoming an increasingly important 

issue. The term mathematics anxiety has been defined as “a feeling of tension, apprehension, 

or even dread that interferes with the ordinary manipulation of numbers and the solving of 

mathematical problems” (Ashcraft & Faust, 1994, p.98). The Organisation for Economic Co-

operation and Development (OECD) Program for International Student Assessment (PISA) 

that monitors the outcomes of education systems reported an increase in mathematics anxiety 

from 2003 to 2012 (OECD, 2013). Approximately 30% of fifteen-year-old students across 

OECD countries in 2012 reported feeling helpless or nervous when solving a mathematics 

problem, and 59% of students across OECD countries reported they worry about mathematics 

classes being difficult. Mathematics anxiety negatively impacts performance in numerical 

and mathematical tasks (Beilock, 2008; Braham & Libertus, 2018; Lyons & Beilock, 2012; 

Ramirez et al., 2013, 2018). Moreover, mathematics anxiety can lead to avoidance of 

mathematics subjects at both school and university levels that impact students’ choices in 

science, technology, engineering, and mathematics (STEM) careers (Ashcraft & Krause, 

2007; Daker et al., 2021; Hembree, 1990; Levy et al., 2021). A position paper released by the 

Australian Government’s Office of the Chief Scientist (2015) discusses the importance of 

STEM education, suggesting students will enter a very different work force in 2030. 

Therefore, given the importance of learning numerical and mathematical skills, understanding 
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and treating mathematics anxiety is essential to reducing students’ emotional stress around 

the subject, and improving education and employment outcomes. 

1.1 Mathematics Anxiety and Low Achievement 

A robust finding in the mathematics anxiety literature is that mathematics anxiety is 

consistently related to poor math performance (Hembree, 1990; Ma, 1999; Zhang et al., 

2019). In Hembree's (1990) influential meta-analysis, mathematics anxiety was negatively 

correlated with mathematics aptitude measures across Grade 5 to Grade 12, and with 

mathematics grades in both high school and college. Subsequently, a meta-analysis by Ma 

(1999) found the relationship between mathematics anxiety and mathematics achievement is 

consistent across all grades from four to twelve. Confirming these findings, a recent meta-

analysis also reported a negative relationship between mathematics anxiety and mathematics 

performance, which was strongest in senior high school students (Zhang et al., 2019). There 

are two main frameworks that have been proposed to explain the negative link between 

mathematics anxiety and mathematics achievement (for reviews see Carey et al., 2016; 

Ramirez et al., 2018): the disruption account (Ramirez et al., 2018), also referred to as the 

debilitating anxiety theory (Carey et al., 2016); and the reduced competency account 

(Ramirez et al., 2018), also referred to as the deficit theory (Carey et al., 2016).  

The disruption account proposes that anxiety about performing mathematics results in 

underperforming in mathematical tasks (Ramirez et al., 2018). Mathematics anxiety can 

affect learning due to avoidance of mathematics situations (Hembree, 1990). Mathematics 

anxiety can also affect processing and recall (Carey et al., 2016) whereby anxiety and 

worrying thoughts can reduce the limited resources of working memory (specifically the 

attentional and inhibitory functions; see Working Memory and Mathematics Anxiety section 

for a description) leaving fewer cognitive resources available for the current task (Derakshan 

& Eysenck, 2009; Eysenck et al., 2007). The reduced competency account proposes that 
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individuals with mathematics anxiety have poorer mathematical skills that leads to 

compromised learning and performance which results in mathematics anxiety (Ramirez et al., 

2018). Within the reduced competency account, it has been suggested that deficits in basic 

numerical abilities may compromise the learning of more complex mathematical skills 

(Maloney et al., 2010, 2011). However, Carey et al. (2016) suggests that the findings showing 

deficits in basic numerical skills for individuals with mathematics anxiety may also be 

consistent with the disruption account. These studies were conducted on adults and their basic 

numerical skills may have been impaired because they have avoided mathematics due to their 

high levels of mathematics anxiety. The direction of the relationship between mathematics 

anxiety and mathematics performance discriminates the two theories. A third possibility has 

been proposed by Carey et al. where the relationship between mathematics anxiety and 

performance influence each other in a bidirectional relationship resulting in a cycle whereby 

poor performance in some individuals can bring about anxiety which subsequently results in 

reduced performance that continues in a vicious cycle. This theory of reciprocal influence of 

anxiety and mathematics ability is referred to as the reciprocal theory.  

1.2 The Current Study 

The aim of the current research is to model the relationship between mathematics 

anxiety and cognition in the context of the disruption account and theories of attentional 

control and anxiety. Specifically, the current research will study the relationship between 

mathematics anxiety and cognition using neural network modelling. To do this a single  

neural network model for mathematics anxiety will examine the effects of specific 

impairments on the outcomes of two different experimental tasks. The effect of impairments 

of attention and learning due to mathematics anxiety will be modelled and compared to 

experimental data of these tasks. In addition, novel predictions will be derived from the 
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model to suggest additional ways for assessing the effects of mathematics anxiety on 

performance and to further isolate the specific source of the impairment.   

Mathematics anxiety has primarily been studied in behavioural experiments, and more 

recently using brain imaging and electrophysiological recording techniques. However, to the 

best of the author’s knowledge, there have been no studies simulating mathematics anxiety 

with neural network modelling. A neural network model is a computational simulation that is 

loosely based on a biological neural network (Moustafa et al., 2009, 2017; Moustafa & 

Gluck, 2011a, 2011b; O’Reilly & Munakata, 2006). It performs mathematical calculations to 

simulate how information is processed within brain circuits. Neural network modelling is a 

tool that can be used to test theories and make predictions that suggest directions for future 

research (Chakravarthy & Moustafa, 2018; Huber et al., 2016; Moustafa, 2017). One of the 

main strengths of neural network model simulations is that they can identify underlying 

cognitive mechanisms associated with particular brain impairments (Amos, 2000). 

Researchers are still in the process of understanding the cognitive factors affecting 

mathematics anxiety. Therefore, as the cognitive mechanisms underlying mathematics 

anxiety are still under investigation, neural network modelling will be used in the current 

study to elucidate a better understanding of those mechanisms.  

I have specified a novel and theoretical integrative neural network model to simulate 

the neural and behavioural studies of mathematics anxiety (Moustafa et al., 2020). This 

model integrates previous neural network models of numerical cognition to examine the 

relationship between mathematics anxiety and impairments in inhibition, attention, and 

working memory. This thesis describes an initial implementation of specific aspects of this 

model that are related to attention. Accordingly, two mathematical tasks will be simulated on 

one neural network model architecture to study cognitive factors underlying mathematics 

anxiety. These tasks are the numerical Stroop task and the symbolic number (single-digit) 
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comparison task. The numerical Stroop task involves deciding which of two numbers has the 

largest numerical magnitude when they are presented in different physical sizes. It requires 

attentional control to inhibit the irrelevant physical size dimension during the assessment of 

numerical size. The symbolic number comparison task involves deciding which of two 

single-digit numbers has the largest magnitude when the numbers are presented with the 

same physical sizes. This task can identify deficits in basic numerical skills and does not 

require inhibiting task irrelevant stimuli. A previous neural network model architecture that 

simulates multi-symbol number comparison (Huber et al., 2016) will be used as the basis of 

the neural network model for the current simulations. This architecture will be adapted to 

simulate the numerical Stroop task and the symbolic number comparison task. Both tasks will 

be simulated on this one neural network model architecture by making minor adjustments to 

the architecture to account for different task requirements. High math-anxious (HMA) and 

low math-anxious (LMA) implementations of the model will be realised for both the 

numerical Stroop task and the symbolic number comparison task that simulate individuals 

with and without mathematics anxiety respectively. Adjustments to the parameters of the low 

math-anxious model to demonstrate the effects of reduced attentional control and/or reduced 

learning on task performance will simulate these effects to compare with the experimental 

results from high math-anxious individuals. The pattern of results of the LMA and HMA 

model simulations will be compared to experimental studies of mathematics anxiety to 

determine whether the direction of the differences between conditions are analogous. Results 

of simulations across the difference tasks will be compared to determine whether a single 

model can reproduce the veridical pattern across both the numerical Stroop task and the 

symbolic number comparison task. The results will be interpreted in the context of theories of 

mathematics anxiety and cognition and the deficits that they hypothesise. The models also 
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produce predictions for mathematics performance of high and low mathematics anxiety 

groups under novel conditions that are discussed in the Discussion section. 

1.3 Thesis Structure 

 This chapter has provided an introduction to mathematics anxiety and described the 

aims of the current research including an introduction to using neural network modelling as 

the methodology. 

 Chapter 2 provides a review of the mathematics anxiety literature. This includes 

describing working memory, attentional control and theories of anxiety, deficits in basic 

numerical skills, neural network modelling of numerical cognition effects, and learning. This 

chapter concludes with a more in-depth explanation of the aims of the current study. 

 Chapter 3 describes the methodology used for this study. It describes the neural 

network modelling process that has been employed, prior relevant neural network models that 

the current model has been based upon, and the model architecture used to simulate the 

numerical Stroop task and the symbolic number comparison task. 

 Chapter 4 and Chapter 5 present the neural network model simulations of the 

numerical Stroop task and the symbolic number comparison task respectively. These chapters 

describe the procedure and results of the simulations and conclude with a discussion of the 

results. 

 Chapter 6 presents a general discussion of the results across both tasks. 
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Chapter 2: Literature Review 

2.1 Inhibitory and Attentional Performance: Relation to Mathematics Anxiety 

2.1.1 Working Memory and Mathematics Anxiety 

 Working memory refers to “a brain system that provides temporary storage and 

manipulation of the information necessary for such complex cognitive tasks as language 

comprehension, learning, and reasoning” (Baddeley, 1992, p. 556). Working memory 

consists of the central executive whose function includes an attentional control system, and a 

number of subcomponents. Several studies have reported a positive relationship between 

working memory and performance in mathematical activities (Meyer et al., 2010; see also 

Alloway et al., 2010; Passolunghi et al., 2016). It has been argued that the impact of 

mathematics anxiety on mathematical activities is mediated by working memory (Skagerlund 

et al., 2019). Furthermore, it is well-established that general anxiety impacts working 

memory performance (Lukasik et al., 2019). Therefore, it is reasonable to conclude that 

working memory does impact mathematics anxiety, which can in turn impair performance in 

mathematics activities (Moustafa et al., 2020). 

2.1.2 Theories of Attentional Control 

 Several theories have been proposed to explain the effects of anxiety on cognitive 

performance. These theories suggest that anxiety leads to an impairment in the cognitive 

control system, which is the system responsible for the ability to adapt behaviour to the 

current circumstances. Specifically, to modify behaviour depending on the current goals and 

reject behaviour that is inappropriate for the circumstances. According to the processing 

efficiency theory (Eysenck & Calvo, 1992), anxiety and its associated thoughts consume the 

limited resources of working memory. Specifically, anxiety uses attentional resources of the 

central executive, leaving fewer resources available for the current task. The attentional 

control theory (Derakshan & Eysenck, 2009; Eysenck et al., 2007), which is an extension of 
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the processing efficiency theory, describes how anxiety decreases attentional control and 

impairs the inhibition and shifting functions through the reduced efficiency of working 

memory. The inhibition function of the central executive component of working memory (as 

described by Friedman and Miyake (2004) and Miyake et al. (2000)) involves the deployment 

of attentional control to resist interference or distraction from task-irrelevant stimuli or 

responses. Eysenck et al. (2007) proposed that anxious individuals have an imbalance 

between the top-down goal-directed attentional system and the bottom-up stimulus-driven 

attentional system. Consequently, anxiety is associated with an increased influence of the 

stimulus-driven attentional system and a decreased influence of the goal-directed attentional 

system which results in an inability to inhibit distracting or irrelevant information to the task 

at hand. Furthermore, Eysenck et al. suggested that this inability to inhibit distracting 

information occurs regardless of whether the distraction is external (such as task irrelevant 

sensory stimuli), or internal (such as anxious thoughts). Accordingly, it is hypothesized that 

anxiety impairs processing efficiency to a greater extent than it impairs performance 

effectiveness. That is, anxious individuals exert increased effort to counter the negative 

effects of anxiety to attain a comparable quality of task performance (such as response 

accuracy) compared to less anxious individuals. Moreover, anxiety increases the allocation of 

attention to threat-related stimuli. Thus, the effects of anxiety on task performance are greater 

with threat-related stimuli than with neutral stimuli. 

 Whether anxious individuals continuously monitor conflict is a matter of contention. 

The conflict-monitoring hypothesis (Botvinick et al., 2001) proposes the existence of a 

system in the anterior cingulate cortex that monitors for conflict and triggers an adjustment of 

attention to exert top-down control (see section on Neural Network Modelling: Previous 

Relevant Models for more information). However, the existence of conflict monitoring is 

currently under debate within the literature. Other cognitive mechanisms, such as learning 
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and memory biases, have been proposed to explain the various congruency effects either 

alternatively or in conjunction with conflict monitoring and adaptation (see Schmidt, 2019 for 

a review). The dual mechanisms of control framework (Braver, 2012; Braver et al., 2009; 

Hutchison, 2011) further suggests that anxious individuals do not maintain top-down control 

continuously in a proactive manner, but instead they exert control reactively only as needed 

when conflict or a task-irrelevant stimulus is detected. To conclude, these theories suggest 

that anxiety impairs the cognitive control system affecting the individual’s ability to inhibit 

distracting information and adjust top-down control to maintain goal-directed behaviour. 

2.1.3 The Stroop Task to Study the Ability to Inhibit Attention 

 The Stroop task is a standard test of cognitive control assessing the ability to inhibit 

irrelevant information. In Stroop’s (1935) classic article, he sought to investigate the effects 

of inhibition by comparing word reading (a more automatic process) with colour naming (a 

less automatic task). By presenting a colour word and an ink colour stimulus simultaneously 

where the word was incongruent with the ink colour the task produces interference (see 

MacLeod, 1991 for a review). He defined a measure of interference of the conflicting word 

stimuli on colour naming as the difference in time between naming the colours and reading 

the words. Since Stroop’s landmark study, variations of the Stroop task have been developed 

to investigate the role of interference across different types of stimuli. A widely used version 

is the colour-word Stroop task. Participants are presented with a written coloured word and 

must name the colour of the ink while ignoring the word’s meaning. For example, the word 

BLUE is presented in a black coloured font, and the participant names the font colour as 

black while inhibiting the written word BLUE. Stimuli can be incongruent when the colour of 

the word and word meaning are mismatched (e.g., BLUE written in colour black), or 

congruent when they are the same (e.g., BLACK written in colour black). The interference 

effect is manifest by incongruent stimuli having slower response times than congruent 
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stimuli. It is a measure of the extent to which attention is captured by distracting (or 

conflicting) information. 

2.1.4 Mathematics Anxiety Studies on Inhibitory and Attentional Performance 

The Stroop task provides an instrument to measure the effects of attentional capture 

and hence inhibition of this attentional capture, and thus how anxiety may affect inhibition 

(Hopko et al., 2002; Suárez-Pellicioni et al., 2014). Studies implementing a colour-word 

version have found that interference is greater under conditions of anxiety and stress 

(Hochman, 1967, 1969; Kalanthroff et al., 2016; Pallak et al., 1975; Richards et al., 2000). 

Consistent with these findings in general anxiety, early research on individuals with 

mathematics anxiety suggests that they may have trouble inhibiting attention to distracting 

information (Hopko et al., 1998, 2002). Hopko et al. (1998) investigated whether individuals 

with mathematics anxiety have a deficient inhibition mechanism where they have difficulty 

inhibiting attention to intrusive thoughts which overburden the working memory system. 

Participants performed a self-report mathematics anxiety questionnaire (Abbreviated 

Mathematics Anxiety Rating Scale [sMARS]; Alexander & Martray, 1989) where they 

answered questions about their feelings towards mathematical situations. A continuous scale 

of mathematics anxiety was obtained from the self-report questionnaire and participants were 

divided into low, medium, and high mathematics anxiety groups based on their individual 

score. Participants then performed a reading task designed to measure their ability to inhibit 

attention to distracting information. The medium and high math-anxiety groups made more 

errors and took significantly longer to read paragraphs with distracters than those in the low 

math-anxiety group. Furthermore, individuals with mathematics anxiety were less able to 

inhibit attention to distracters even when paragraphs were unrelated to mathematics, 

indicating a general deficit of the inhibition mechanism. 
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Subsequently, a math-related Stroop paradigm was employed to investigate the effect 

of mathematics anxiety on inhibitory deficits (Hopko et al., 2002). The math-related Stroop 

paradigm was relatively unexplored in the field of mathematics anxiety. Participants who 

were high and low in mathematics anxiety were tested on a card task in both a numerical and 

letter condition. In the numerical condition, cards were presented with repeated numerals 1 to 

9 (e.g., 444) and participants responded with the quantity of numerals displayed on the card 

(e.g., three). The task required participants to inhibit reading the numerals and to respond by 

counting the digits. In the letter condition, cards were presented with repeating letters (e.g., 

EEEE) and participants responded by counting the number of letters on the card (e.g., four). 

Additionally, a modified version of the colour-naming Stroop task was performed where 

mathematical words and neutral words were displayed in different colours. Participants were 

required to name the colour of the word while ignoring the word meaning. Overall, the 

researchers found that individuals who were high in mathematics anxiety had longer response 

times in the letter and numerical counting task than individuals who were low in mathematics 

anxiety, and this difference between the groups was more pronounced in the numerical than 

the letter condition. Response times did not differ between the LMA and HMA groups on the 

modified Stroop colour-word task for either mathematical or neutral words. The results 

suggested that interference effects of mathematics anxiety may be a function of inhibitory 

deficits that are compounded when exposed to more salient (i.e., numerical) stimuli. The 

authors concluded that there needs to be further exploration of the specific deficiencies 

associated with mathematics anxiety. 

To investigate the effect of mathematics anxiety on the execution of attentional 

control when encountering conflict during processing, Suárez-Pellicioni et al. (2014) used the 

event-related potentials (ERP) technique to understand whether mathematics anxiety is 

related to early (i.e., detection) or late stages of the processing of conflict. Their research was 
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first to study interference effects in mathematics anxiety using techniques which assess more 

automatic responses to numerical stimuli, observed by measuring cortical electrical signalling 

that may be difficult to observe behaviourally. LMA and HMA groups were formed based on 

a self-report mathematics anxiety questionnaire (Abbreviated Mathematics Anxiety Rating 

Scale [sMARS]; Alexander & Martray, 1989). The LMA group comprised individuals who 

scored within the lowest quartile. The HMA group comprised individuals who scored within 

the highest quartile. Groups differed in mathematics anxiety but not trait anxiety, state 

anxiety, or simple math ability. Electroencephalogram (EEG) was recorded while participants 

were tested on a numerical Stroop paradigm, a standard test for examining cognitive control 

and the ability to inhibit irrelevant information during a numerical task. In this version a 

participant is presented with two single-digit numbers each in different physical sizes and 

must decide which number is numerically larger (see Figure 1). A conflict can occur where 

the physical size is mismatched with the numerical size and needs to be inhibited. The size 

congruity effect, or numerical interference effect, is observed where it is easier to decide 

which number is numerically larger, when this number is also physically larger (the 

congruent condition), than when this number is physically smaller (the incongruent 

condition). For example, if presented with 2 and 8 (the numbers as displayed in the left panel 

of Figure 1), it is easier to decide 8 is numerically larger than if presented with 2 and 8 (as 

displayed in the right panel of Figure 1). In line with previous studies, the authors calculated 

a single score index of interference, subtracting congruent from incongruent response times, 

and incongruent from congruent for hit rates (i.e., accuracy). The greater the value, the 

greater the interference. 
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Figure 1  

Congruent and Incongruent Stimuli for the Numerical Stroop Task 

 

Note. Panel A shows an example of a congruent trial in the numerical Stroop task, when the 

numerically larger number is also physically larger, and hence there is no conflict between 

numerical and physical size. Panel B shows an example of an incongruent trial when the 

numerically larger number is physically smaller and hence there is conflict between the 

numerical and physical size. 

 

Suárez-Pellicioni et al. (2014) found that individuals with mathematics anxiety had 

larger interference effects for response times. This result supports the existence of an 

impaired inhibition mechanism and the claims of attentional control theory as it relates to 

mathematics anxiety. Specifically, it suggests that individuals with mathematics anxiety are 

more easily distracted by task irrelevant, stimulus driven features of the environment. 

Additionally, through correlation of participants’ sMARS test scores with the interference 

effect for response times, the authors found that those with the greater level of mathematics 

anxiety, showed the largest difference in responding to incongruent trials compared to 

congruent trials. Furthermore, they found no differences between the LMA and HMA groups 

in accuracy when identifying the numerically larger item which supports the hypotheses that 

anxiety impairs processing efficiency (i.e., response times) to a greater extent than 
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performance effectiveness (i.e., accuracy). Moreover, their results from the ERP technique 

suggested that mathematics anxiety does not affect the early stages of cognitive control 

processing, where the system monitors for conflict, but affects the later stages of processing, 

with an abnormal upregulation of resources to adapt to the conflict that has been encountered. 

Notably, their results converge with theories of general anxiety. Specifically, the results were 

interpreted to support the dual mechanisms of control theory where anxious individuals do 

not maintain top-down attentional control continuously in a proactive manner, but instead 

exert control reactively only as needed when conflict is encountered. Suárez-Pellicioni et al. 

therefore concluded that attentional control and susceptibility to distraction are important 

factors related to mathematics anxiety that deserve further investigation. 

Impairments in attentional control and inhibition amongst individuals with 

mathematics anxiety has been the focus of recent empirical research. Studies have found 

individuals with mathematics anxiety show deficits in inhibitory abilities (Justicia-Galiano et 

al., 2016; Mammarella et al., 2018; Passolunghi et al., 2016) and in attentional control 

(Ashkenazi, 2018; Hartwright et al., 2018; Liu et al., 2019; Pizzie & Kraemer, 2017). In an 

attentional deployment paradigm using functional magnetic resonance imaging (fMRI), 

Pizzie and Kraemer (2017) observed that mathematics anxiety is associated with attentional 

disengagement (threat avoidance) that is specific to numerical stimuli. Ashkenazi (2018) 

investigated the effect of intentional versus automatic processing in individuals with 

mathematics anxiety by combining a numerical Stroop paradigm with emotional priming 

involving mathematically related words. Participants were tested on separate tasks where the 

physical size was the irrelevant dimension and when the numerical size was the irrelevant 

dimension. The author found a larger interference effect among individuals with mathematics 

anxiety when physical size was irrelevant (as in Suárez-Pellicioni et al. (2014)) but not when 

numerical size was irrelevant. The findings of a greater processing of non-numerical 
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irrelevant information, such as the physical size dimension, aligns with attentional control 

theory where anxiety reduces attentional control to the intended dimension and increases 

attention to the irrelevant (and more automatic) dimension. 

In summary, early research suggested that individuals with mathematics anxiety may 

experience deficits in attentional control and inhibition of task irrelevant information during 

mathematical tasks. Furthermore, results of these studies are in line with research on general 

anxiety. More recently, neuroimaging and electrophysiological techniques have provided 

further support for these proposals, attempting to describe the underlying cognitive 

mechanisms in more detail. 

2.2 Deficits in Basic Numerical Skills: Relation to Mathematics Anxiety 

2.2.1 The Magnitude Comparison Task 

As outlined previously, deficits in numerical skills can lead to compromised learning 

and performance that in turn can result in developing mathematics anxiety. Studies have 

investigated the effects of mathematics anxiety on basic numerical skills by examining 

performance on magnitude comparison tasks for non-symbolic quantities (e.g., deciding 

which of two dot arrays presented on a screen has largest magnitude) and for symbolic 

quantities (e.g., deciding which of two Arabic digits is numerically larger). The non-symbolic 

magnitude comparison task can be used to assess the acuity of the approximate number 

system (ANS) (see Dietrich, Huber, & Nuerk, 2015 for a review). The ANS is assumed to 

represent magnitude in an approximate way and can be used to estimate quantities in 

comparison tasks without explicitly counting the items (Dehaene, 1992). The symbolic 

number comparison task includes several cognitive components including digit identification, 

digit to number-word matching, digit ordering, and general comparison (see Sasanguie et al., 

2017 for a review). The task of number comparison is related to the underlying hypothesis 

that numbers are mentally represented as a number line (Dehaene, 2001). For example, the 
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number 9 is larger than the number 2 because of its spatial location on the number line, as it 

is located to the right of the number 2 and numbers increase in size as they move to the right. 

Each number on the mental number line is thought to share representational features with the 

numbers that are in close proximity to it. Furthermore, the representation of numerical 

magnitude is thought to vary between individuals due to the degree of overlap between the 

numbers. A larger degree of overlap indicates a less precise representation of numerical 

magnitude (Dehaene et al., 1998). Additionally, the representation of numerical magnitude on 

the mental number line has been described as having tuning curves following a Gaussian 

distribution (see Feigenson et al., 2004 for a review). Each specific numerical magnitude 

activates neurons maximally with adjacent magnitudes activated to a lesser extent. 

The numerical distance effect and the size effect are robust findings observed in 

magnitude comparison tasks. The numerical distance effect occurs when it is easier to 

compare two quantities and decide which is numerically larger when the numbers are further 

apart than when they are closer together (Moyer & Landauer, 1967). For example, it is easier 

to compare the numbers 2 and 9 and decide which is larger than it is to compare the numbers 

5 and 6 (see Figure 2). Previously, the main theory regarding the origins of the numerical 

distance effect proposes that it indexes the overlap of numerical representations on the mental 

number line where magnitudes that are positioned close to each other share more 

representational overlap than those that are further apart. This overlap results in numbers that 

are closer together being harder to discriminate during a number comparison task. Another 

theory regarding the origins of the numerical distance effect in numerical comparisons is that 

it indexes comparison processes between the numerical stimuli representations and the 

response (van Opstal et al., 2008; van Opstal & Verguts, 2011; Verguts et al., 2005). 
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Figure 2  

The Numerical Distance Effect Shown on the Mental Number Line 

 

Note. Based on the mental number line, the numerical distance effect is observed in number 

comparison tasks, where it is easier to decide which number is larger when the numbers are 

further apart than when they are closer together. 

 

The size effect shows it is easier to compare two numbers that have the same 

numerical distance between them, when the numbers are small than when they are large 

(Moyer & Landauer, 1967). For example, it is easier to compare the numbers 1 and 2 and 

decide which is larger, than it is to compare the numbers 8 and 9. The main theory describing 

the size effect attributes it to the overlap between ANS representations which increases with 

numerosity such that larger numbers are represented more vaguely than smaller numbers and 

are therefore more difficult to discriminate (Feigenson et al., 2004). However, Verguts et al. 

(2005) provided an alternative explanation for the size effect that it can be explained as 

(response-related) comparison processes as a result of the frequency of numbers experienced 

in daily life (Dehaene et al., 1990) where larger numbers occur with a lower frequency. 

2.2.2 Mathematics Anxiety Studies of the Number Comparison Task 

  The number comparison task has been studied within the mathematics anxiety 

literature with mixed results. Researchers have proposed different theories to explain these 

mixed findings. Previous research had suggested that the effects of mathematics anxiety 

affected more complex arithmetic rather than simple arithmetic skills (Ashcraft & Faust, 
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1994; Faust et al., 1996), so Maloney et al. (2010) investigated whether mathematics anxiety 

affects basic numerical processing. Participants were first tested on a visual enumeration task, 

then measures of working memory capacity were administered. In the enumeration task 

participants were presented with one to nine squares and responded with the number of 

squares that were displayed. The HMA group performed worse than the LMA group counting 

squares in the range of five to nine (the counting range). Differences between the groups 

appeared to occur due to working memory capacity. Maloney et al. (2010) proposed that the 

effects of mathematics anxiety extend into basic numerical processing where a deficit in basic 

numerical skills compromises the development of higher-level mathematics. Moreover, the 

effect of anxiety on working memory further exacerbates these deficits. 

The nature of deficits in basic numerical skills in individuals with mathematics 

anxiety has been further investigated with symbolic number comparison tasks to examine 

whether mathematics anxiety was associated with deficits in the representation of numerical 

magnitude (Maloney et al., 2011). Maloney et al. (2011) examined the numerical distance 

effect in individuals who were high and low in mathematics anxiety. The numerical distance 

effect can show individual differences in numerical representation and processing. Response 

times for the numerical distance effect were more pronounced in the HMA group than for the 

LMA group. The authors interpreted these findings as indicating that individuals high in 

mathematics anxiety may have a less precise representation of numerical magnitude than 

individuals who are low in mathematics anxiety. Furthermore, they found no differences 

overall between the LMA and HMA groups for response times or error rates. In conclusion, 

the authors proposed that a hybrid theory is likely: a less precise representation of magnitude 

would lead to a difficulty with higher-level mathematics and this difficulty can lead to 

mathematics anxiety where reduced working memory further exacerbate the effects of 

deficits in basic numerical skills. 
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The extent to which mathematics anxiety is related to a less precise representation of 

numerical magnitude is contentious. Núñez-Peña and Suárez-Pellicioni (2014) investigated 

the effects of the symbolic number comparison task on individuals with mathematics anxiety. 

They presented stimuli as extreme as possible to participants. The numerical distance effect 

and the size effect were studied as both measures relate to accessing numerical magnitude 

representations. Overall, the HMA group were slower than the LMA group. No differences 

were found in error rates. However, there were marginal differences between the groups for 

both the numerical distance effect and the size effect. Dietrich, Huber, Moeller et al. (2015) 

and Colomé (2019) claimed that recent research suggests that magnitude representations of 

non-symbolic numbers and symbolic numbers may be coded differently (Piazza et al., 2006, 

2007; Verguts & Fias, 2004). A deficient representation of numerical magnitude refers to a 

deficient ANS. Therefore, they questioned whether the acuity of the ANS could be tested 

with a symbolic number comparison task. A more appropriate and standard test to assess the 

acuity of the ANS is the non-symbolic dot comparison task (see Dietrich, Huber, & Nuerk, 

2015 for a review). 

To assess ANS representations and the influence of mathematics anxiety on symbolic 

and non-symbolic magnitude processing, Dietrich, Huber, Moeller, et al. (2015) tested 

participants on a non-symbolic dot comparison task and a symbolic comparison task. Several 

indices that measure ANS acuity along with standard measures of error rates, mean response 

times, and distance and size effects were measured. In the symbolic number comparison task, 

participants decided which of two single-digit numbers was the largest. All combinations of 

Arabic digits from 1 to 9 were presented. Dietrich, Huber, Moeller, et al. (2015) found no 

link between mathematics anxiety and any of the measures of ANS acuity in the non-

symbolic number comparison task. Furthermore, in the symbolic number comparison task 

they replicated results from previous studies (Maloney et al., 2011; Núñez-Peña & Suárez-
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Pellicioni, 2014) finding a significant association between mathematics anxiety and the 

numerical distance effect for response times. Individuals with high mathematics anxiety had 

more pronounced distance effects than individuals with low mathematics anxiety. They also 

found no significant association between mathematics anxiety and overall response times or 

the size effect in the symbolic number comparison task. Moreover, they found no difference 

in error rates for either of the tasks. The authors concluded that their results suggest that the 

acuity of the ANS is not impaired in individuals with mathematics anxiety and do not support 

the conclusion that these individuals may have a less precise representation of numerical 

magnitude. 

Consequently, the authors proposed an alternative theory to explain the findings that 

mathematics anxiety is associated with larger numerical distance effects in the symbolic 

number comparison task. Individuals with mathematics anxiety may have impaired 

comparison processes instead of an impaired representation of numerical magnitude, as the 

numerical distance effect can reflect comparison processes between the symbolic 

representation and the response in deciding which number is larger. Impaired comparison 

processes may be due to less training of the connection between the representation and the 

“which numeral is larger” response. Individuals with mathematics anxiety may have less 

trained connections because they may be less motivated to perform or more motivated to 

avoid numerical calculations. Dietrich, Huber, Moeller, et al. (2015) conclusion fits into the 

model by Ashcraft et al. (2007) who proposed that deficits in basic numerical skills or low 

motivation may be risk factors in developing mathematics anxiety. 

Other evidence concerning the nature of magnitude representations amongst those 

high and low in mathematics anxiety comes from the comparison of performance on a non-

symbolic number comparison task, a symbolic number comparison task, and a counting 

Stroop task (Colomé, 2019). The counting Stroop task (Pavese & Umiltà, 1998) involved 
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deciding how many Arabic digits were presented in an array of identical digits. Overall, no 

differences were found between the LMA and HMA groups on any of the tasks for response 

times, distance and size effects, or for error rates. The author concluded that the results do not 

support the hypothesis that individuals with mathematics anxiety have a less precise 

representation of magnitude for either non-symbolic or symbolic representations, regardless 

of whether the representations for non-symbolic and symbolic quantities are the same or not. 

Furthermore, as the counting Stroop task does not require the use of comparison processes, 

the findings support the claim by Dietrich, Huber, Moeller, et al. (2015) that larger distance 

effects in individuals with mathematics anxiety may be due to comparison processes (i.e., less 

trained connections between the representation and the “which numeral is larger” response). 

However, Colomé questioned this conclusion. Firstly, several studies had contradictory 

results. Secondly, if individuals with high mathematics anxiety have less trained connections, 

a size effect (which can reflect comparison processes) would show differences between the 

LMA and HMA groups. No differences in the size effect, however, were found for any of the 

above-mentioned studies with the exception that Núñez-Peña and Suárez-Pellicioni (2014) 

found differences that were marginal. Concluding, Colomé suggested that the differences in 

findings may be due to either experimental design or that motivation and attitudes towards 

mathematics were not controlled for in the studies and could explain the variability between 

them. Low motivation for mathematics could also be the result of a lack of attribution for the 

importance of mathematics that could be explained in part by the classroom environment 

(Middleton & Spanias, 1999). Moreover, although there were no differences between the 

LMA and HMA groups for behavioural measures, Colomé noted that the lack of these 

findings could also be related to the proposal that individuals high and low in mathematics 

anxiety could differ in attentional control. 
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 Further to the above-mentioned research, other studies have investigated the link 

between basic numerical skills and mathematics anxiety. Douglas and Lefevre (2016) did not 

find a direct link between basic numerical skills and mathematics anxiety when participants 

were tested on a range of mathematical tasks and memory measures. However, the authors 

found an indirect link between them that was fully mediated by complex mathematical 

performance. Furthermore, they didn’t find any evidence that basic numerical skills mediated 

the relationship between mathematics anxiety and complex math performance. Their results 

support the view that under certain conditions, basic numerical skills can elicit anxiety and 

impact mathematical skills. Artemenko et al. (2015) found that individuals with high 

mathematics anxiety showed less efficient neural processing during basic numerical skills. 

Chang et al. (2017) examined individuals high and low in mathematics anxiety performing 

simple arithmetic under fMRI. Their findings showed that individuals high and low in 

mathematics anxiety activated attention-related networks (specifically the front-parietal 

network) differently even though performance was similar for behavioural measures. 

Performance in the LMA group improved when the fronto-parietal attentional network was 

activated less. However, performance in the HMA group was not as dependent on the 

reduction of this network as the LMA group. The authors suggested several explanations for 

their findings, that individuals with high mathematics anxiety may recruit resources to reduce 

the negative thoughts associated with the anxiety induced by numerical stimuli, or that they 

employed different strategies for problem-solving which are related to avoidance of 

mathematics across their lifespan, or that they require increased effort and/or decreased 

efficiency to solve numerical problems. Pletzer et al. (2015) performed a two-digit number 

comparison task and a number bisection task while participants were imaged using fMRI. 

Individuals high in mathematics anxiety experienced a reduced deactivation of the default 

mode network compared to individuals low in mathematics anxiety, possibly due to 
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preoccupation with emotional content. This reduced deactivation was more pronounced when 

irrelevant stimuli needed to be inhibited. The default mode network is related to emotional 

processing (see Raichle, 2015 for a review). Deactivating the default mode network supports 

goal-directed behaviour and processing efficiency (Fales et al., 2008). Ashkenazi (2018) 

combined a numerical Stroop task with a priming paradigm and found an abnormal numerical 

distance effect in individuals who were high in mathematics anxiety. It was concluded that 

impairments in basic numerical processing are context related. Rubinsten et al. (2015) and 

Batashvili et al. (2020) found that individuals high in mathematics anxiety may have a threat-

related response just by the process of observing simple numerical stimuli. 

In summary, results from mathematics anxiety studies examining behavioural 

measures of performance in the symbolic number comparison task are mixed. Some studies 

have found differences between the LMA and HMA groups for response times, the distance 

effect, and the size effect, and some have not. There may be several factors influencing the 

differences in findings. One of the suggestions for these differences between the LMA and 

HMA groups is that individuals high in mathematics anxiety may have impaired comparison 

processes from less training of the connections between the symbolic representation and the 

response (Colomé, 2019; Dietrich, Huber, Moeller, et al., 2015). Differences in training of the 

connections could be due to several different factors, including low motivation or avoidance. 

Furthermore, studies examining the effect of mathematics anxiety on basic numerical skills 

have found that individuals high in mathematics anxiety have less efficient neural processing, 

a threat-related response observing simple numerical stimuli, and differences in the way they 

activate attentional control networks. 

2.2.3 Neural Network Modelling of the Origins of the Distance Effect and the Size Effect 

To examine how numerical magnitude might be represented and to assess the 

consequences of different representations for behavioural effects, it is possible to model 
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neural network representations and simulate their behavioural results. These methods can be 

informative in helping to draw conclusions about the underlying factors affecting cognitive 

performance. Indeed, neural network modelling has been influential in describing the origins 

of the numerical distance effect and the size effect, and how numerical magnitude may be 

represented. Verguts and Fias (2004) implemented a neural network model to investigate the 

representation of numerical information for both non-symbolic and symbolic stimuli. In their 

first simulation they showed how number-selective neurons developed from unsupervised 

learning when non-symbolic stimuli (e.g., a collection of dots) were presented to the model. 

After the model was trained, nodes developed spontaneously that were attuned to a specific 

numerosity (i.e., number-selective neurons). The model was able to account for both the 

numerical distance effect and the size effect suggesting that these effects during non-

symbolic number comparison emerge from the representation of numerical information. The 

properties of these number-selective neurons in the model were similar to those discovered in 

monkeys (Nieder et al., 2002; Nieder & Miller, 2003). Nieder et al. (2002) found number-

selective neurons that responded to a specific numerosity maximally, and nearby neurons that 

responded with decreasing strength as they become further away. This property can account 

for the numerical distance effect. Numerosities that are closer together have overlapping 

distributions and are harder to discriminate than numerosities that are further apart. Nieder et 

al. also found these number-selective neurons had tuning curves that became increasingly 

broader for larger numerosities. This property can account for the size effect. Larger 

numerosities have more representational overlap than smaller numerosities. Therefore, larger 

numerosities are harder to discriminate than smaller numerosities. In line with these findings, 

the neurons in Verguts and Fias' model showed a filter property where a neuron activates 

maximally for its preferred numerosity with nearby neurons activating to a lesser extent as a 

function of distance, and an increasing bandwidth property where larger numbers have larger 
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bandwidths than smaller numbers. Verguts and Fias also fitted Gaussian functions for the 

tuning curves for each numerosity and found that a logarithmic rather than a linear or power 

transformation had the best fit for non-symbolic numerosities. They concluded by proposing 

that the internal mental number line can develop by unsupervised learning.  

In Verguts and Fias' (2004) second simulation both non-symbolic and symbolic 

stimuli were presented to the model simultaneously to simulate learning. These same 

number-selective neurons that had developed from non-symbolic input in the first simulation 

learned to represent the meaning of numerical symbols. However, only some of the properties 

of the number-selective neurons that emerged from presentation of non-symbolic stimuli 

were transferred due to the presentation of symbolic stimuli. After learning, the filter property 

was retained where number nodes that preferred a specific non-symbolic quantity also 

preferred the corresponding symbolic quantity. The bandwidths were smaller for the 

symbolic stimuli than for the non-symbolic stimuli. Thus, tuning curves became more peaked 

(i.e., less broad). This resulted in symbolic stimuli being represented more precisely than 

non-symbolic input and therefore efficiency was increased for symbolic numbers. There was 

no transfer of the increasing bandwidth property from non-symbolic to symbolic processing 

thus questioning the origins of the size effect which had occurred when non-symbolic stimuli 

had been presented to the model. This result suggested that the size effect may have different 

origins depending on the type of numerical stimuli. The authors proposed an alternative 

description of the origins of the size effect in their subsequent research. Furthermore, their 

neural network models have shown that the development of the symbolic representation of 

numerical magnitude is not just simply linking the symbol to the non-symbolic numerical 

representation because not all of the properties are transferred across. 

Subsequently, Verguts et al. (2005) implemented a neural network model (see section 

Neural Network Modelling: Prior Relevant Models for more details) to investigate the origins 
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of the distance effect and the size effect for symbolic numbers. The origins of the distance 

effect and the size effect can be explained by different assumptions about how numerical 

information is represented and processed. The authors proposed a unified framework that 

accounted for previous empirical findings for the distance effect and the size effect 

appropriately across different tasks. Their model proposed that the representation of 

numerical magnitude for symbolic numbers on the mental number line has place coding, 

linear scaling, and constant variability properties. In addition to these assumptions, they 

proposed an alternative to account for the origins of the size effect in the symbolic number 

comparison task. Numbers were presented to the model during the training phase with the 

frequencies that they occurred in daily life (Dehaene et al., 1990), where smaller numbers 

were presented more often than larger numbers. The model simulations suggested that the 

size effect for the symbolic number comparison task was the result of comparison processes 

(i.e., nonlinear mappings) between the mental number line and the output fields. These 

mappings were derived from the frequency that numbers were presented to the model during 

learning. Importantly, Verguts et al. explained the origins of the numerical distance effect and 

the size effect in the symbolic number comparison task as developing from the monotonicity 

(the condition of consistently increasing or decreasing in value) of the connection weights 

between the stimuli and the response units. 

 van Opstal et al. (2008) and van Opstal and Verguts (2011) further examined distance 

effects by neural network modelling proposing that the distance effect has different origins 

depending on the task context. Specifically, they showed that the “comparison” distance 

effect that is obtained from a symbolic number comparison task is derived from comparison 

processes between the stimuli and response and not from the overlap of the numerical 

representations of the stimuli. Furthermore, the authors claimed the importance of studying 
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the origins of the distance effect, and of choosing the correct experimental task to draw 

correct conclusions about cognition. 

2.2.4 The Symbolic Number Comparison Task Across Learning and/or Development 

 The symbolic number comparison task is related to children’s mathematics 

achievement (Brankaer et al., 2017; Schneider et al., 2017; Vogel et al., 2015). Mathematical 

competence across the lifespan is related more strongly with symbolic than non-symbolic 

numerical magnitude processing and it has been suggested that symbolic magnitude 

processing may be more suitable for diagnostics and interventions for adults and for children 

at risk of mathematical difficulties (Schneider et al., 2017). The numerical distance effect has 

been studied in children across development. Some studies report decreases in the size of 

numerical distance effect as age increases (Holloway & Ansari, 2008; Moore & Ashcraft, 

2015; Sekuler & Mierkiewicz, 1977). Further, de Smedt et al. (2009) found the size of the 

numerical distance effect predicted individual differences in mathematics achievement where 

larger distance effects predicted lower mathematics achievement. Other studies have found 

the size of the numerical distance effect to be stable during development and accompanied 

with an overall decrease in response times (Landerl, 2013; Reeve et al., 2012). Importantly, 

the authors of a recent meta-analysis of the comparison distance effect in symbolic and non-

symbolic tasks comparing typically developing children with children with mathematical 

learning difficulties concluded their findings support the view that the distance effect for 

comparison tasks is not an index of the representation of symbolic magnitude (Schwenk et 

al., 2017). Their research found that symbolic number comparison was more impaired than 

non-symbolic number comparison for children with mathematical learning difficulties 

compared to typically developing children. Furthermore, they found no qualitative 

differences in the numerical distance effect between typically developing children and 
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children with mathematical learning difficulties for either the symbolic or the non-symbolic 

number comparison task. 

Another task that is studied during development is the physical Stroop task, to 

investigate the automisation of symbols. This task is similar to the numerical Stroop task. 

However, the numerical and physical size dimensions are reversed where the physical size is 

the relevant dimension and the numerical size is the irrelevant dimension. The physical 

Stroop task entails deciding which of two numbers presented in different sized fonts is 

physically larger while ignoring their numerical value. The size congruity effect (or 

interference effect) refers to the difference in response times between incongruent and 

congruent trials. As the processing of the meaning of numerical symbols is automised they 

interfere with the physical size dimension in the physical Stroop task thereby increasing the 

size congruity effect. Consequently, the size congruity effect in the physical Stroop task 

increases with age as children learn the meaning of symbols (Girelli et al., 2000; Landerl & 

Kölle, 2009).  

2.3 The Current Study 

The current study investigates whether mathematics anxiety affects attentional control 

and inhibition and/or the amount of training in numerical comparisons which negatively 

impacts performance on numerical tasks. Mathematics anxiety studies have suggested that 

individuals with mathematics anxiety have impaired attentional control and inhibitory 

mechanisms (e.g., Hopko et al., 1998, 2002; Suárez-Pellicioni et al., 2014), as proposed by 

the disruption account that mathematics anxiety is characterised by a reduction in working 

memory resources which results in underperforming in mathematical tasks. However, the 

underlying cognitive mechanisms related to these impairments remain unclear. These 

impairments are proposed to impact processing efficiency (i.e., response times) to a greater 

extent than performance effectiveness (i.e., accuracy) as proposed by the attentional control 
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theory. Furthermore, individuals with mathematics anxiety may experience a threat-related 

response while observing numerical stimuli (e.g., Batashvili et al., 2020; Pizzie & Kraemer, 

2017; Rubinsten et al., 2015). Moreover, it has been suggested that individuals with 

mathematics anxiety may have less trained connections (i.e., comparison processes) between 

the numerical representation and the response in number comparison tasks (Dietrich, Huber, 

Moeller, et al., 2015).  

The current study will use a neural network model which simulates changes to 

attentional control, inhibition, and learning to examine how changes to these underlying 

processes impact performance on the numerical Stroop task and the symbolic number 

comparison task. First, the neural network model will be validated to ensure that it simulates 

empirical effects of the numerical Stroop task and the symbolic number comparison task. For 

the numerical Stroop task, the model should be able to simulate the size congruity effect and 

the numerical distance effect. Furthermore, the amount of energy (i.e., conflict) in the 

response layer should show the standard empirical effect that incongruent trials experience 

more conflict than congruent trials due to the interference of the physical size on the 

judgment of numerical size. The speed-accuracy trade-off and the physical Stroop task will 

also be simulated as part of the validation process to demonstrate the model’s performance in 

normal functioning individuals across a range of conditions. The speed-accuracy trade-off is 

a well-known and robust effect in cognitive studies where decisions made more slowly have 

increased accuracy than those made in a shorter response time (for a review see Heitz, 2014). 

For the symbolic number comparison task, the model should be able to simulate the standard 

empirical effects: the distance effect and the size effect. To simulate reduced learning, both 

models will be validated to ensure that increased learning improves response times and 

accuracy (i.e., performance outcomes).  
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Once the models have been validated and are a reasonable low math-anxious model of 

an individual without mathematics anxiety, the effect of reducing attention and reducing 

learning will be simulated and compared to the research literature to investigate the effect of 

these impairments in relation to mathematics anxiety on both tasks. For the numerical Stroop 

task, a model with mathematics anxiety should have longer response times for the 

interference effect and for incongruent trials, and no difference in response times for 

congruent trials or for error rates. Additionally, a high math-anxious model of the numerical 

Stroop task with reduced attention that simulates mathematics anxiety will be compared to a 

low math-anxious model without attention impaired to investigate differences in the amount 

of energy (i.e., conflict) in the response layer during congruent and incongruent trials. For the 

symbolic number comparison task, response times, accuracy, the numerical distance effect, 

and the size effect will be compared between the low math-anxious model and the impaired 

models to investigate the effect impairments have on these empirical effects. 
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Chapter 3: Methodology: Neural Network Modelling 

This chapter describes the neural network architecture used for modelling numerical 

representations and cognitive processes used in the current research. First it reviews prior 

relevant neural network models. Next it describes the process for simulating the LMA and 

HMA models. Finally, it describes the neural network architecture for the simulation of the 

numerical Stroop task and the symbolic number comparison task. 

3.1 Neural Network Modelling: Prior Relevant Models 

Although, to date, no neural network models exist simulating mathematics anxiety, 

neural network modelling has been used extensively to investigate the mechanisms of 

numerical cognition and cognitive control. In their seminal research article, Verguts et al. 

(2005) implemented a neural network model that proposed a place-coding system to explain 

how number-selective neurons, that are attuned to numbers (Nieder et al., 2002), are 

represented on the mental number line for symbolic numbers. Within the literature there are 

different assumptions about how numerical magnitude is represented. Summation coding 

(e.g., Zorzi & Butterworth, 1999) assumes that each number activates the corresponding 

number of units on the number line. For example, the number 3 activates the units 1, 2, and 3. 

Larger numbers activate a subset of smaller numbers (e.g., 5 activates a subset of those units 

activated for the number 3). Compressed scaling (e.g., Dehaene, 1992) assumes that the 

distance between the representation of numbers decreases as the numbers become larger. 

Increasing variability (e.g., Gallistel & Gelman, 1992) assumes that units close to the 

maximally activated unit are activated with increasing variability as the numbers increase 

with magnitude (thus the increase depends on the distance between the two numbers). These 

assumptions, however, do not hold across various tasks. Verguts et al. therefore, proposed a 

unified framework that accounted for findings from previous studies. Their model, called a 

model of exact small-number representation, proposed that the representation of numerical 
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magnitude for symbolic numbers has place coding, linear scaling, and constant variability 

properties.  

Verguts et al.’s (2005) place-coding model simulated several tasks including a 

symbolic number comparison task. This task involved deciding which of two numbers (from 

1 to 15) has greatest magnitude. The numerical magnitude representation reflected place-

coding properties as each input number presented to the model activates the same number of 

units on the number line. For example, if the number 2 or the number 5 is presented to the 

model only the second or fifth nodes respectively are maximally activated and not all 

preceding nodes as well. Each number presented to the model demonstrated constant 

variability by maximally activating its corresponding number line node with adjacent nodes 

being activated with decreasing strength the further they are from the number. For example, if 

number 4 is presented to the model the fourth node is activated maximally, adjacent nodes 3 

and 5 are activated to a lesser degree, nodes 2 and 6 are activated to a lesser degree than 

nodes 3 and 5, and so on. The model exhibited the properties of linear scaling where the 

distance between each of the number line nodes is fixed and has the same distance. When two  

numerical stimuli, presented on the left and right, were input to the model for comparison as 

to which was largest, the model activated either the left or right response unit corresponding 

to the left or right input stimuli, depending on which number was the largest. The model was 

able to simulate the numerical distance effect and the size effect. These effects originated 

from the monotonicity of the connection weights between the mental number line and the 

response units after training (see section The Connection Weights Between the Stimuli and 

the Response for a description). Verguts et al.'s place-coding model has been seminal in the 

development of computational models of numerical cognition. It has been the basis of 

subsequent neural network models simulating number magnitude comparison tasks (e.g., 

Chen & Verguts, 2010; van Opstal et al., 2008).  
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Santens and Verguts (2011) adapted the Verguts et al. (2005) model to simulate the 

numerical Stroop task, which involved deciding which of two single-digit numbers had 

greater magnitude when they were presented in different physical sizes. The numerical size 

and physical size dimensions can interact at different levels of processing, such as the input, 

representation, decision, or output level (Verguts & Fias, 2008). Thus, the size congruity 

effect which is central to the numerical Stroop task can originate at different levels of 

processing. The level of processing that the size congruity effect originates from is still under 

investigation. According to the shared representation account, numerical size and physical 

size interact at the representation level (Schwarz & Heinze, 1998). According to the shared 

decisions account, numerical size and physical size are initially processed separately then 

interact at the decision level of the task (Schwarz & Heinze, 1998). Santens and Verguts' 

neural network model implemented a dual route architecture to simulate the shared decisions 

account. This model was able to account for effects of the numerical Stroop task and several 

other tasks to explain findings that the shared representation account could not. 

Moeller et al. (2011) extended the Verguts et al. (2005) model to simulate a two-digit 

number comparison task, that is, deciding which of two two-digit numbers had the largest 

magnitude. The authors investigated how two-digit numbers are represented by creating three 

neural network models: a holistic model (e.g., Dehaene et al., 1990) where the entire two-

digit number is holistically represented on just one mental number line; a strictly decomposed 

model (e.g., Verguts & de Moor, 2005) that proposed a separate mental number line that is 

recycled for each place-value (for example both the tens and units of a two-digit number are 

decomposed to their own mental number line); and a hybrid model (e.g., Nuerk et al., 2001) 

containing both holistic and decomposed representations. The authors concluded that the 

strictly decomposed model simulated the empirical effects of two-digit number comparison in 

the best and most parsimonious way. The strictly decomposed model consisted of a single-
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digit number comparison network for each of the tens and units of a two-digit number. These 

networks represented the tens and units having their own mental number line respectively.  

An extension of the strictly decomposed model to include the modelling of cognitive 

control required to resolve conflict which may arise between tens and units in a two-digit 

number comparison was developed by Huber, Moeller, Nuerk, Macizo, et al. (2013). It was 

based on a neural network model by Verguts and Notebaert (2008) who proposed a conflict-

modulated Hebbian learning rule to show how the cognitive control system knows where to 

intervene when it detects conflict. The Verguts and Notebaert model consisted of a conflict 

monitoring unit that monitored the amount of conflict in the system during a cognitive task 

and signalled to strengthen connections between active representations (thereby strengthening 

task-relevant associations) when conflict was encountered. By integrating their two-digit 

number comparison model with a cognitive control network, Huber, Moeller, Nuerk, Macizo, 

et al. (2013) were able to model the conflict that occurs during a two-digit number 

comparison task, where the tens are initially compared while ignoring the units.  

Conflict processing has been modelled previously by Botvinick et al. (2001) who 

implemented a series of neural network models to propose how the cognitive control system 

detects the need to intervene during information processing. Botvinick et al.'s conflict 

monitoring hypothesis proposed that a conflict monitoring system evaluates the amount of 

conflict in the system and consequently regulates the amount of top-down cognitive control 

based on current task demands. The authors hypothesised that the detection of conflict may 

be a function of the anterior cingulate cortex (ACC) based on data from empirical studies . In 

a series of simulations, they extended existing neural network models to include a conflict 

monitoring unit that calculated the amount of response conflict at each step of processing. 

Conflict in the models was defined as the simultaneous activation of incompatible (i.e., 

alternative) responses of mutually inhibiting units. Quantitatively, conflict was measured as 
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the amount of energy (Hopfield, 1982) across the units in the response layer of each model. A 

model simulating the colour-word version of the Stroop task showed an increase in activation 

of the conflict monitoring unit for the incongruent condition compared to the congruent 

condition, which was in line with previous neuroimaging studies of ACC activation. In 

subsequent simulations, Botvinick et al. extended their models to create a feedback loop from 

the conflict monitoring unit, to use the amount of conflict detected on previous trials as a 

signal to adjust top-down control. When a large amount of conflict was detected, cognitive 

control was strengthened. Conversely, if a low amount of conflict was detected, cognitive 

control was weakened. 

Subsequently to their previous cognitive control model, Huber, Moeller, Nuerk, 

Macizo, et al.'s (2013) neural network model was extended to include number comparison of 

three-digit numbers (Huber, Moeller, Nuerk, & Willmes, 2013) and decimals (Huber et al., 

2014). Eventually, all the models were integrated into one general framework for multi-

symbol number comparison which also included negative numbers (Huber et al., 2016). The 

resulting model was validated by simulating most of the standard empirical effects for the 

number comparison task (e.g., the distance effect for two-digit and three-digit numbers). It is 

this general framework by Huber et al. (2016) which will be used as a basis for the neural 

network model utilised in the current project. This model will be adapted to integrate aspects 

of Santens and Verguts' (2011) numerical Stroop model. 

3.1.1 The Connection Weights Between the Stimuli and the Response 

 As described previously, Verguts et al. (2005) explained the origins of the numerical 

distance effect and the size effect in the symbolic number comparison task as developing 

from the monotonicity of the connection weights between the stimuli and the response nodes. 

In the symbolic number comparison task, a set of input number nodes (representing the 

mental number line) for the left and right stimuli are connected to the left and right response 
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nodes via a set of connection weights. When the model is trained to decide which input 

number is larger, the connection weights between the stimuli and the response are modified 

by the learning algorithm to improve accuracy. Subsequently, the left and right response 

nodes are activated in proportion to the strength of the connection weights between the input 

nodes and the response nodes (in addition to the strength of the numerical representation and 

other parameters within the model). The response node with the strongest activation becomes 

the winning node and the model decides that the input stimulus corresponding to that node 

(i.e., the left or the right) has the largest numerical value.  

After the model has been trained to perform the number comparison task these 

connection weights have a monotonic pattern. Small numbers from the left input stimulus and 

large numbers from the right input stimulus have weak connections to the left response node 

and strong connections to the right response node as they need to activate the left response 

node weakly and the right response node strongly to decide that the input number on the right 

is larger. Conversely, large numbers from the left input stimulus and small numbers from the 

right input stimulus have strong connections to the left response node and weak connections 

to the right response node, as they need to activate the left response node strongly and the 

right response node weakly to decide that the input number on the left is larger. The 

connection weights, therefore, are monotonically increasing or decreasing. Verguts et al. 

(2005) demonstrated that the comparison distance effect could emerge as a result of 

monotonic connection weights. When comparing two numbers that are close together, the 

similar connection weights (due to the monotonicity) activate both response nodes to a 

comparable degree thereby causing competition between the response nodes which increases 

the response time. When comparing two numbers that are further apart, the connection 

weights result in one of the response nodes being activated much more strongly than the 

other, reducing the amount of competition between the response nodes which decreases the 
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response time. Additionally, by training the model with numbers that mirror the frequency 

with which those numbers occur in daily life, the pattern of connection weights between the 

stimuli and response was compressive. This compressive pattern of monotonic connection 

weights resulted in the size effect. The difference in weights between smaller numbers was 

larger than the difference in weights between larger numbers. Thus, larger numbers activated 

the response nodes with more competition than smaller numbers thereby increasing response 

times. 

3.2 Procedure for the Model Simulations 

As mentioned in the introduction, this study creates a single neural network model for 

mathematics anxiety examining the effects of modifications to the model across two different 

experimental tasks to investigate how particular impairments influence task performance, 

which can then be compared to experimental findings and to make predictions for novel tasks 

or conditions. A previous neural network model architecture that simulates mulit-symbol 

number comparison (Huber et al., 2016) will be used as the framework for the current 

research. This architecture will be adapted to simulate the numerical Stroop task and the 

symbolic number comparison task. Both tasks will be simulated on this neural network model 

architecture, making minor changes to the architecture to account for different task 

requirements. The model architecture will subsequently be validated to ensure it is a suitable 

model of these tasks. This involves comparing the model’s results to experimental findings. 

After validation this model will become the LMA model for each task simulating an 

individual who does not have mathematics anxiety. To create the HMA model of an 

individual with mathematics anxiety, different parts of the LMA model will be impaired to 

simulate different cognitive conditions (e.g., for impairing a neural network model see Amos, 

2000; Yeung & Cohen, 2006). The models’ results will be compared to experimental findings 

of studies of participants with mathematics anxiety. The model which is able to accurately 
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simulate the pattern of experimental findings amongst individuals with mathematics anxiety 

on the numerical Stroop task and the symbolic number comparison task will be offered as an 

initial model of mathematics anxiety. This model can then be tested against future 

experimental results and used to generate novel predictions against experimental findings that 

can be compared.  

3.3 Model Architecture for the Current Study 

The integrated framework for the comparison of multi-symbol numbers developed by 

Huber et al. (2016) was adapted to simulate the numerical Stroop task (see Figure 3 for 

schematic illustration). Huber et al.’s (2016) model simulates Stroop-like effects of two-digit 

number comparison where the comparison of the tens digits have more relevance than the 

comparison of the units digits. Consequently, numerical size and physical size from the 

numerical Stroop model of Santens and Verguts (2011) were each mapped onto the tens and 

units networks of the Huber et al. (2016) model, respectively. This mapping facilitates the 

Stroop effect in the numerical Stroop task where numerical size has more relevance than 

physical size. The model uses a dual route architecture to reflect the shared decisions account 

(as in the study of Santens and Verguts) where numerical size and physical size only interact 

at the decision level. The model consists of four layers: an input layer, comparison layer, task 

demand layer, and a response layer; and includes a cognitive control network as implemented 

by Verguts and Notebaert (2008) and adapted by Huber, Moeller, Nuerk, Macizo, et al. 

(2013) and Huber et al. (2016). Additionally, features of the numerical Stroop model for 

magnitude judgment implemented in Experiment 1 of the study by Santens and Verguts were 

incorporated into the adapted architecture. The programming code written in Matlab by 

Huber and colleagues was downloaded from the supplementary materials of Huber et al. 

(2016) which is based on their previous neural network models of number comparison 

(Huber et al., 2014; Huber, Moeller, Nuerk, & Willmes, 2013; Huber, Moeller, Nuerk, 
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Macizo, et al., 2013; Moeller et al., 2011) and on previous neural network models of Verguts 

and colleagues (Verguts et al., 2005; Verguts & Notebaert, 2008).  

Figure 3  

Schematic Illustration of the Neural Network Model Architecture 

 

Note. Schematic illustration of the neural network model architecture for the simulation of the 

numerical Stroop task and the symbolic number comparison task. The model consists of two 

single-digit comparison networks, one for the numerical size and one for the physical size. 

The task demand units serve as an attentional bias to specify the relevant and irrelevant 

dimension of the task. Information is propagated to the decision nodes where a response is 

made. The conflict monitoring unit calculates the amount of conflict during the task and 

adjusts attention accordingly. ACC refers to the anterior cingulate cortex. 
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3.3.1 Single-digit Comparison Networks 

The input layer consists of a single-digit comparison network each for numerical size 

and physical size. The numerical size network contains two number line fields that code the 

representation of numerical magnitude for the left and right Arabic digits to be compared that 

are presented to the model. Each number line field is implemented as in Santens and Verguts 

(2011) and is a vector of nine nodes. Each of the nine nodes represent one Arabic digit to 

create an ordered sequence of natural numbers, allowing for the comparison of sizes 1 to 9. A 

number line field represents numerical magnitude using a place-coding system with linear 

scaling and constant variability as in the model of exact small number representation by 

Verguts et al. (2005) (see also Huber et al., 2016; Santens & Verguts, 2011). The single-digit 

number comparison network for physical size is represented identically to that of numerical 

size. Nine physical sizes (a - i) are mapped onto each of the nine number line nodes 

respectively as in the model of Santens and Verguts. The equation for the activation of node j 

when input number i is presented to the model is as per Huber et al. (2016) (and is analogous 

to Verguts et al. and Santens and Verguts who used an exponent of -1 instead of -10) as 

follows: 

 

f(i, j) = exp(-10 * |i - j|) where 1 ≤ i ≤ 9; 1 ≤ j ≤ 9.     (1) 

 

The numerical magnitude representation reflects place-coding properties as each input 

number presented to the model activates the same number of units on the number line. Each 

number presented to the model demonstrates constant variability by maximally activating its 

corresponding number line node with adjacent nodes being activated with decreasing strength 

as they become further away. The model exhibits the properties of linear scaling as the 
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exponent -10 * |i – j| relies on the distance between the number nodes and not on the actual 

value of the corresponding numbers i and j.  

3.3.2 Propagation of Input Layer to Comparison Layer 

 The propagation of the input layer to the comparison layer is identical to the study of 

Huber et al. (2016). All nodes in the number line fields for a single-digit comparison network 

are propagated via feed forward connections to all nodes in the hidden comparison layer for 

that network. The comparison layer for each single-digit comparison network consists of a 

left and right node coding for “left larger” or “right larger”. Activity is propagated similar to 

Equation (1) of Moeller et al. (2011): 

 

𝑛𝑒𝑡𝑖(t) = τ 𝑛𝑒𝑡𝑖(t) + (1 - τ)𝑛𝑒𝑡𝑖(t - 1).       (2) 

 

where 𝑛𝑒𝑡𝑖(t) is a weighted sum of inputs across time t for node i, τ is a constant of value 

0.01 reflecting the rate of activation, and 𝑛𝑒𝑡𝑖(t) represents the activation of place-coding 

nodes multiplied by the connection weights between the input and comparison nodes. The net 

input activation is then transferred by a sigmoid function with a gain of value 2. Lateral 

inhibitory connections between the left and right comparison nodes with 𝑤𝑖𝑛ℎ = -2 create 

competition between the nodes thereby strengthening the node with the largest amount of 

activation and weakening the node with the smallest activation. The activation 𝑓𝑖(t) of 

comparison layer node i is calculated as follows: 

 

𝑓𝑖(t) = 
1

1+ 𝑒
−2(𝑛𝑒𝑡𝑖(𝑡)+𝑤𝑖𝑛ℎ ∑ 𝑛𝑒𝑡𝑗(𝑡))𝑗≠𝑖  

.       (3) 
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3.3.3 Training of Connection Weights Between Input and Comparison Layer 

The connection weights between the input layer and comparison layer of the single-

digit comparison networks were trained identically to the general model framework of Huber 

et al. (2016) with the exception that the numerical size and physical size comparison 

networks were trained independently of each other. Huber et al. (2016) only trained one 

single-digit number comparison network and reused the weights for the other single-digit 

comparison network to implement their decomposed model of number magnitude comparison 

that recycles the number line for the tens and units of a two-digit number (Verguts & de 

Moor, 2005). As the numerical size and physical size dimensions are independent of each 

other in the numerical Stroop task, training was done similar to Santens and Verguts (2011) 

where the numerical size and physical size comparison networks were trained separately and 

independently of each other. 

The model was trained prior to running the simulations. Initial weights were random 

numbers generated from a uniform distribution in the interval U(-1,1). Training was 

performed using the delta rule (Widrow & Hoff, 1960) with a learning rate of 0.01. Each 

single-digit number comparison network was trained to compare all combinations of single-

digit numbers from 1 to 9 with the exception of the numbers being equal. The frequency of 

each number presented to the model during training was taken from a Google survey which 

observes the frequency of numbers observed in daily life and allows simulation of the 

problem size effect (see also Verguts et al., 2005; Verguts & Fias, 2006). The model was 

trained for 100,000 trials to ensure all combinations were compared correctly. Huber et al. 

(2016) arbitrarily chose the number of training trials as 100,000. Tuning the learning 

parameters to increase performance was outside the scope of the authors’ study whose 

objective was to create an abstract model to capture multi-symbol number comparison instead 

of creating a biologically plausible neural network model. Similarly, performance tuning of 
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the model is outside the scope of the present study as the aim was to create a model that 

simulates cognitive mechanisms related to mathematics anxiety and not a biological plausible 

model. 

3.3.4 Cognitive Control Network 

 The activation 𝑥𝑖
𝑖𝑛 of node i in the comparison layer at time t is calculated by equation 

(1) of Huber et al. (2016) with the exception that no noise was added to the calculation (as in 

Santens and Verguts (2011)) as follows: 

 

𝑥𝑖
𝑖𝑛(t + 1) = (1 - τ) 𝑥𝑖

𝑖𝑛(t) + τ (𝑓𝑖(t) + 𝛽𝑖𝑛).      (4) 

 

Huber et al. (2016) adapted the equation from equation (A1) of Verguts and Notebaert (2008) 

whereby the output of the single-digit comparison networks serves as input to the cognitive 

control network. The values of the constants τ = 0.25 and 𝛽𝑖𝑛 = 0.2 are the same as in Huber 

et al. (2016) and 𝑓𝑖(t) is the activation of the comparison nodes from the single-digit 

comparison network. 

            3.3.4.1 Task Demand Layer. The numerical size and physical size single-digit 

comparison networks have feed forward connections to the decision layer. Activation from 

the comparison layer to the decision layer is modulated by the task demand layer which 

comprises of two nodes, one node for numerical size and one node for physical size. The task 

demand layer serves as an attentional bias (Botvinick et al., 2001; Cohen et al., 1990) to 

specify the relevance of the numerical size dimension and irrelevance of the physical size 

dimension in the numerical Stroop task. The stronger the activation of the task demand nodes, 

the more relevant the dimension and greater the influence on the comparison process. The 

activation of the numerical size task demand node is set at 1.0 and the activation of the 

physical size task demand node is set at 0.15 allowing for more attention directed to the 
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relevant numerical size dimension. These values are identical to the amount of attentional 

bias of the relevant and irrelevant dimensions respectively of the numerical Stroop model of 

Santens and Verguts (2011). However, Santens and Verguts' model did not include a task 

demand layer and instead multiplied the representation layer of the irrelevant dimension by a 

parameter theta of 0.15 to act as a proxy in which the size congruity effect is modulated 

(Schwarz & Ischebeck, 2003). 

            3.3.4.2 Decision Layer. The decision layer is implemented as in Huber et al. (2016). 

A left and a right node code for the decision “left larger” or “right larger” respectively. The 

nodes have lateral inhibitory connections between them with 𝑤𝑖𝑛ℎ = -0.5 that cause response 

competition and reduce the amount of time taken for the model to make a decision. When the 

activation of one of the decision nodes reaches the prespecified threshold parameter theta, the 

model records the number of time steps t to reach that decision as the simulated response 

time. If the left node reaches the threshold value first, then the model has decided that the left 

input stimulus number has the largest numerical size while ignoring its physical size. If the 

right node reaches threshold first, then the right input stimulus number has the largest 

numerical size while ignoring its physical size. The value of the threshold parameter θ is 

0.75. A maximum number of time steps t is set at 200 in case the activation threshold is not 

reached. Similar to the comparison layer, the decision layer calculates a weighted sum of 

activation over time with a constant value of τ = 0.25 as the rate of activation that impacts the 

amount of time it takes to reach the decision unit threshold. 

 The activation 𝑥𝑗
𝑟𝑒𝑠 of decision layer node j at time t is the same as equation (2) of 

Huber et al. (2016) with the exception that no noise is added to the formula. The equation is 

identical to equation (A2) of Verguts and Notebaert (2008) as follows:  
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𝑥𝑗
𝑟𝑒𝑠(𝑡 +  1)  =  (1 −  𝜏) 𝑥𝑗

𝑟𝑒𝑠(𝑡)  + 𝜏 {∑ 𝑤𝑖
𝑖𝑟

𝑖 𝑥𝑖
𝑖𝑛(𝑡) [𝐶 +  ∑ 𝑤𝑘𝑖

𝑡𝑖𝑥𝑘
𝑡𝑑(𝑛𝑡𝑟𝑖𝑎𝑙)

𝑛𝑡𝑎𝑠𝑘
𝑘=1 ] +

𝑤𝑖𝑛ℎ ∑ 𝑥𝑘
𝑟𝑒𝑠

𝑘≠𝑗 (𝑡)}.         (5) 

 

where 𝑤𝑖
𝑖𝑟 are the bottom-up connection weights between the comparison and decision layers 

and 𝑥𝑖
𝑖𝑛 is the activation in the comparison layer for node i. The top-down attentional 

weighting of the task demand layer to the comparison layer is indicated by the term 

[𝐶 +  ∑ 𝑤𝑘𝑖
𝑡𝑖𝑥𝑘

𝑡𝑑(𝑛𝑡𝑟𝑖𝑎𝑙)
𝑛𝑡𝑎𝑠𝑘
𝑘=1 ], where 𝑤𝑘𝑖

𝑡𝑖  are the connection weights between the task demand 

layer for node k and the comparison layer for node i, 𝑥𝑘
𝑡𝑑(𝑛𝑡𝑟𝑖𝑎𝑙) is the activation of task 

demand nodes for trial 𝑛𝑡𝑟𝑖𝑎𝑙, 𝑛𝑡𝑎𝑠𝑘= 2 for the two nodes in the task demand layer one for 

each of the tasks of comparing numerical size and physical size, and C is a constant with 

value 0.7 that ensures irrelevant digits always contribute to the activation in the decision layer 

regardless of the attentional bias in the task demand layer (Huber et al., 2016; Verguts & 

Notebaert, 2008). The term 𝑤𝑖𝑛ℎ ∑ 𝑥𝑘
𝑟𝑒𝑠

𝑘≠𝑗 (t) represents lateral inhibition between the 

decision nodes.  

            3.3.4.3 Connection Weights between Comparison Layer and Decision Layer. As 

in Huber et al. (2016) the connection weights between the comparison layer and decision 

layer in the present model were fixed. The values of these weights reflect how automatic the 

processing route is where the larger the connection weight the more automatic and faster the 

task is. In the classical Stroop task where the font colour of the word is named while ignoring 

the meaning of the word, word processing is a more automatic and faster task than naming 

the font colour (Cohen et al., 1990). In the numerical Stroop task studies have shown that 

judging the physical size of the digit is a more automatic task than judging the numerical size 

of the digit and is therefore processed faster (Henik & Tzelgov, 1982; Szũcs et al., 2007; 

Szũcs & Soltész, 2007). Szũcs et al. (2007) investigated the speed of magnitude processing 

on numerical size comparison versus physical size comparison. Participants responded faster 
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on a physical task than a numerical task. The ratio of response time from the numerical task 

to the physical task in the study was equal to 0.94 and this ratio was applied to the connection 

weights for the numerical and physical size dimensions to the decision layer in the present 

model. Additionally, the values of these weights also affect the size of the size congruity 

effect and the amount of errors in the model. As in Huber et al. (2016), the values of these 

weights were arbitrarily chosen to ensure the size congruity effect and error rate were similar 

to empirical studies. The connection weights 𝑤𝑖𝑟 between the comparison layer and decision 

layer for the numerical size dimension are 0.85 and for the physical size dimension are 0.9. 

            3.3.4.4 Conflict Monitoring Unit. As in the models of Huber, Moeller, Nuerk, 

Macizo, et al. (2013) and Verguts and Notebaert (2008) a conflict monitoring unit calculates 

the amount of conflict during a trial as the energy in the decision layer which is calculated by 

the product of the activation of the decision nodes (Botvinick et al., 2001). At the end of each 

trial, if the level of conflict on the current trial is high compared to previous trials, the conflict 

monitoring unit can adapt the weights between the task demand layer and the comparison 

layer via the conflict-modulated Hebbian learning rule as described in equations (A3) and 

(A4) of Verguts and Notebaert. The learning rule has the effect of strengthening attention to 

the relevant numerical size dimension and weakening attention to the irrelevant physical size 

dimension as needed. The current research does not study conflict adaptation effects, 

therefore the conflict monitoring unit does not adapt the weights in the simulations. However, 

subsequent research could investigate conflict adaptation effects as they relate to mathematics 

anxiety. The initial weights between task demand nodes and comparison layer nodes were set 

as 0.5 (Huber, Moeller, Nuerk, Macizo, et al., 2013). All other parameters for the conflict 

monitoring unit equations remained the same as in Huber, Moeller, Nuerk, Macizo, et al. 

(2013). 

  



48 

Chapter 4: Neural Network Model Simulations of the Numerical Stroop Task 

 This chapter describes the neural network model simulations of the numerical Stroop 

task. This task involves deciding which number is numerically larger when the stimuli are 

presented in different physical sizes. First, the LMA model is validated to ensure it simulates 

experimental results. Next, the HMA model is simulated by making parameter changes to the 

LMA model. The HMA model is compared to results of experimental studies to evaluate 

whether it is a suitable model of mathematics anxiety.  

4.1 Validation of the Numerical Stroop Model 

Before impairing the LMA model to create the HMA model, the LMA model was 

validated to ensure it can simulate various experimental effects. Below is a description of the 

simulations of the numerical Stroop task assessing the behaviour of the model on empirical 

effects for this task. In addition to simulating standard effects of numerical Stoop and reduced 

learning, the speed-accuracy trade-off and the physical Stroop task were simulated to 

demonstrate the model’s behaviour in other cognitive conditions. 

4.1.1 Simulation of the Numerical Stroop Task 

            4.1.1.1 Procedure. The numerical Stroop neural network model created by Santens 

and Verguts (2011) simulated experimental effects which are reproduced using simulations of 

the current LMA model. These include the size congruity effect (or interference effect) where 

it is faster to compare stimulus pairs that are congruent than when they are incongruent, and 

the numerical distance effect where it is faster to compare stimulus pairs when the distance 

between the numbers is further apart than when the distance between the numbers is closer 

together. In these simulations the relevant dimension was the numerical size and the 

irrelevant dimension was the physical size. The current data set was constructed in a similar 

way to Experiment 1 of Santens and Verguts (2011) where all combinations of four sizes of 

Arabic digits for both the numerical size and physical size create 12 x 12 = 144 stimulus 
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pairs, excluding instances where the numerical size or the physical size are equal (e.g., 

numerical size 1 cannot be compared with numerical size 1 as trials are either congruent or 

incongruent and cannot be neutral). Congruent stimuli and incongruent stimuli were 

presented to the model in equal proportions. The four numerical sizes presented to the input 

layer of the current model were the Arabic digits 1, 2, 8, and 9 as used in the mathematics 

anxiety study of Suárez-Pellicioni et al. (2014) for which the current study’s HMA models’ 

results are compared. There were four physical sizes presented to the model a, b, h, and i. 

These were mapped onto the Arabic digits 1, 2, 8, and 9 for the purposes of the simulation 

(see Santens and Verguts for a similar approach which used Arabic digits 1, 2, 7, and 8 

mapped onto physical sizes a, b, g, and h). Suárez-Pellicioni et al. used a reduced set of 

numerical sizes and physical sizes in their mathematics anxiety study and the data set for the 

current study was reduced to their data set for the HMA model simulations once the LMA 

model was validated. The trial-to-trial adaptation of the conflict monitoring unit was turned 

off. The activation of neurons was reset at the beginning of each trial. Therefore, all 144 trials 

presented to the model were independent. The model simulated 30 participants who were low 

math-anxious. Distance effects between the numerical sizes and between the physical sizes 

were modelled. The distance was classified as small (also termed close) when the distance 

between the numerical sizes or between the physical sizes was 1 or 6. The distance was 

classified as large (also termed far) when the distance between the numerical sizes or 

between the physical sizes was 7 or 8. This allowed an equal amount of observations at each 

level (see Santens and Verguts (2011) for a similar approach who classified small when the 

distance between numerical or physical sizes was 1 or 5, and large when the distance between 

them was 6 or 7). 

            4.1.1.2 Results. The results for the LMA model were based on replicating the results 

from Santens and Verguts (2011) results in Experiment 1. The response time for each trial is 
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the number of time steps the model takes to reach a decision. The mean response times for 

successful trials was calculated in each condition. The size congruity effect was calculated as 

the mean response time for incongruent trials minus congruent trials. The results of the LMA 

model simulations are described below and were compared to the response patterns of 

Santens and Verguts as shown in Figure 4.  

1. The model was able to simulate the size congruity effect for response times where 

congruent trials were faster than incongruent trials (see Figure 4E and 4F).  

2. The model was able to simulate the numerical distance effect for response times with 

faster decision times when the numbers were far apart than when they were close 

(see Figure 4E).  

3. Importantly, the model simulated an interaction between the congruity effect and the 

numerical distance. The congruity effect was larger for a small numerical distance 

than for a large numerical distance (see Figure 4E). 

4. The current LMA model did not produce a difference in mean response times 

between the physical distance being small or large (see Figure 4F). Whereas, 

response times were faster when the distance between the physical sizes was small 

than when it was large in the behavioural data from Santens and Verguts (see Figure 

4B). 

5. The model simulated an interaction between the congruity effect and the physical 

distance. The congruity effect was larger for a large physical distance than for a small 

physical distance (see Figure 4F). 

6. Participants did not respond in time or made an error on 1.8% of trials in Santens and 

Verguts' behavioural study. In their simulations the model produced 1.5% errors. In 

both instances the errors were all made in the slower conditions (i.e., incongruent, 

small numerical distance, large physical distance). The current LMA model produced 
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5.3% errors that all occurred in the slower conditions where trials were incongruent 

and the distance between the numerical sizes was small. 
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Figure 4  

Validation of the Numerical Stroop Model 

 

 

Note. Results for the numerical Stroop task with numerical size as the relevant dimension and 

physical size as the irrelevant dimension. Panels A and C are mean response times of 

behavioural data from Santens and Verguts’ (2011). Panels B and D are the current study’s 

simulated LMA model mean response times. Panels A and B depict the numerical distance 

and panels C and D depict the physical distance. Error bars for behavioural data represent 

95% confidence intervals. Panels A and C: From “The Size Congruity Effect: Is Bigger 

Always More?,” by S. Santens and T. Verguts, 2011, Cognition, 118(1), p. 98 

(https://doi.org/10.1016/j.cognition.2010.10.014). Copyright 2010 by Elsevier B.V. Reprinted 

with permission from Elsevier. 
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4.1.2 Simulation of Changes in the Amount of Learning 

            4.1.2.1 Procedure. This simulation demonstrates the effect of training the 

connections less between the numerical representation and the response on the numerical 

Stroop task. The numerical size and physical size single-digit comparison networks were 

trained with different values for the number of learning trials (see section Model Architecture 

for the Current Study in Chapter 3 for a description of the training). This created a different 

set of weights for each training run. Training was performed such that the connection weights 

were identical for equal values of the number of learning trials. For example, on each trial, 

numerical stimuli were presented to the model such that when the training of the model 

reached 10,000 learning trials, during the training of a total of 17,000 trials, the connection 

weights were identical to the end weights of the previous training when the model was 

trained for a total of 10,000 learning trials. After training, model simulations were then run 

for these different amounts of learning trials. Larger numbers of learning trials represent 

increased learning. The mean response times for successful trials was calculated in each 

condition.  

            4.1.2.2 Results. In previous simulations the number of learning trials was 100,000 as 

in the general model framework of multi-symbol number comparison of Huber et al. (2016) 

which resulted in 100% accuracy for the single-digit comparison networks. In the current 

simulations, the model predicts that as the amount of learning increases, response times will 

decrease and errors will decrease (see Figure 5). This result is consistent with empirical 

research showing that learning of basic numerical processing skills across a variety of 

different tasks improves response times and accuracy (e.g., Landerl, 2013). 
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Note. Simulated models’ results for different numbers of learning trials on performance in the 

numerical Stroop task. Panel A shows mean simulated response times. Panel B shows the 

percentage of errors. Error bars depict the standard error of the mean. 

 

Figure 5  

The Effect of Changing the Amount of Learning in the Numerical Stroop Task 
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4.1.3 Simulation of the Speed-Accuracy Trade-Off 

            4.1.3.1 Procedure. This simulation demonstrates the speed-accuracy trade-off during 

performance of the numerical Stroop task. When one of the left or right response nodes in the 

numerical Stroop model reaches an activation threshold of 0.75 the model records the number 

of time steps as the simulated response time. To simulate the speed-accuracy trade-off, the 

value of the activation threshold parameter in the model was adjusted. Arbitrary values of 

0.65, 0.70, 0.75, 0.80, and 0.85 were simulated. Reducing the activation threshold parameter 

has the effect of reducing the simulated response time, and conversely increasing the 

activation threshold parameter has the effect of increasing the simulated response time. The 

number of learning trials was 100,000. 

            4.1.3.2 Results. For each of the model simulations the percentage of errors was 

calculated. Figure 6 shows the speed-accuracy trade-off where accuracy increases as the 

simulated response threshold increases. Some studies have noted speed-accuracy trade-offs 

while solving calculation problems in individuals with mathematics anxiety, which may have 

occurred due to avoidance of the numerical stimuli (Ashcraft & Faust, 1994; Faust et al., 

1996). The current study does not investigate the effect of mathematics anxiety on the speed-

accuracy trade-off. However, future work could involve simulating this condition. 
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Figure 6  

Model Simulations of the Speed-Accuracy Trade-Off During the Numerical Stroop Task 

 

Note. Simulated models’ results showing the percentage of errors (on the y-axis) for different 

values of the response activation threshold (on the x-axis). Error bars depict the standard 

error of the mean. 

 

4.1.4 Simulation of the Physical Stroop Task 

            4.1.4.1 Procedure. The physical Stroop task involves deciding which number has the 

largest physical size while ignoring the numerical value. The relevant and irrelevant 

dimensions are reversed from the numerical Stroop task. The physical size is the relevant 

dimension in this task. The numerical size is the irrelevant dimension. The conditions for the 

simulations of the physical Stroop task were the same as used to validate the LMA model of 

the numerical Stroop task but the relevant dimension in the model was physical size and the 

irrelevant dimension was numerical size. Several simulations were performed to demonstrate 

the change in the size congruity effect (i.e., the difference between mean response times for 

incongruent minus congruent trials) for different amounts of training (which were chosen 

arbitrarily). The size congruity effect was calculated for response times of successful trials in 

each of the simulations for the different amounts of learning. The congruity by numerical 
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distance was examined for one of the simulations where the number of learning trials was 

17,000 (chosen arbitrarily). For this simulation, the simulated mean response time was 

calculated in the congruent and incongruent conditions by the irrelevant numerical distance. 

            4.1.4.2 Results. The results for the simulation of the size congruency effect on 

response times in the physical Stroop task are shown in Figure 7. The results of the model 

suggest that the size congruity effect increases as the training trials increase. These results are 

consistent with empirical results where the size congruity effect increases as children learn 

the meaning of symbols (e.g., Landerl & Kölle, 2009). The results for the simulation as a 

function of the differences in numerical size are shown in Figure 8. In the congruent 

condition it is faster to decide which number has the largest physical size when the distance 

between the numerical sizes is large than when the distance between them is small. In the 

incongruent condition it is faster to decide which number has the largest physical size when 

the distance between the numerical sizes is small than when the distance between them is 

large. Furthermore, the size congruity effect is larger when the distance between the 

numerical sizes is large than when the distance between them is small. These results are 

consistent with empirical studies examining the speed of processing in the physical Stroop 

task (e.g., Henik & Tzelgov, 1982; Landerl & Kölle, 2009). 
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Note. The size congruity effect for different numbers of learning trials in the physical Stroop 

task. The y-axis depicts the size congruity effect which is the difference in the simulated 

mean response times for incongruent trials minus congruent trials. Error bars depict the 

standard error of the mean. 

 

 

 

 

 

 

 

 

 

Figure 7  

Model Simulations of the Physical Stroop Task Across Learning 
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Figure 8  

Congruity by Numerical Distance for the Physical Stroop Task 

 

 

Note. Simulation of the physical Stroop task. The physical size is the relevant dimension. The 

numerical size is the irrelevant dimension. The mean simulated response time is shown for 

the congruent and incongruent conditions when the distance between the numerical sizes is 

far and close. Error bars depict the standard error of the mean. 

 

4.2 Mathematics Anxiety Experimental Results for the Numerical Stroop Task 

The results from the model simulations for the current study aim to reproduce the 

pattern of results from the mathematics anxiety study by Suárez-Pellicioni et al. (2014). 

These authors tested LMA and HMA participants performing the numerical Stroop task. 

Their data set consisted of all combinations of the Arabic digit pairs 1-2, 1-8, 2-9, and 8-9 as 

numerical stimuli. Their physical stimuli consisted of two sizes, font size 40 as small and font 

size 80 as large. This produced 16 unique stimulus combinations. Congruent and incongruent 

trials were presented to participants in equal proportions. They calculated median response 

times for successful trials and the percentage of hits for both congruent and incongruent trials 
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for LMA and HMA participants. Subsequently, they calculated an overall mean of medians. 

An interference score was calculated for response times, incongruent minus congruent 

response times (i.e., the size congruity effect), and for accuracy, congruent minus incongruent 

percentage of hits. For both measures the larger the score the larger the degree of 

interference. Post-error trials were removed from the analysis of reaction times as they can 

have slower response times. Suárez-Pellicioni et al. did not report results for congruent and 

incongruent trials separately. However, results were acquired by contacting them. Their 

results are compared with the current study’s model simulation results to determine whether 

the simulation captures the important differences between LMA and HMA groups. A 

summary of the central characteristics of the behavioural data are as follows: 

1. There were no significant differences in response times between the LMA and HMA 

groups for congruent trials.  

2. The HMA group had significantly longer response times than the LMA group for 

incongruent trials. 

3. The interference effect for responses times was significantly larger for the HMA 

group than the LMA group. 

4. There were no significant differences in the interference score for accuracy between 

the LMA and HMA groups. Furthermore, the percentage of hits for the LMA group 

was 21.62%, and for the HMA group was 20%. 

4.3 Procedure for the Simulation of HMA Models 

For the HMA model simulations the data set was reduced to the stimulus pairs used 

by Suárez-Pellicioni et al. (2014). All combinations of the Arabic digit pairs 1-2, 1-8, 2-9, 

and 8-9 as numerical sizes with two physical sizes (small and large) were presented to the 

model producing 16 unique stimulus combinations. Physical sizes consisted of small font size 

40 presented to the model as number 2, and large font size 80 presented to the model as 
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number 8. The distance between the physical sizes was the same for all stimuli as there were 

only two sizes. The physical sizes presented to the model were chosen arbitrarily. The 

number of congruent and incongruent trials were presented in equal proportions. For these 

simulations the trial-to-trial adaptation of the conflict monitoring unit was turned off. The 

activation of neurons was reset at the beginning of each trial. Therefore, all 16 trials 

presented to the model were independent. Stimulus pairs were randomly presented to the 

model, however for these simulations randomising the data had no effect on the results as 

trials were independent and there is no noise in the model. The response time for each 

simulated participant is the number of time steps taken for the model to reach the specified 

threshold and decide which input stimuli has the largest numerical size. 

The single-digit comparison networks for numerical size and physical size were 

trained separately for 30 simulated participants, so that each simulated participant had a 

different set of weights. Those weights were subsequently used for each participant for both 

the LMA and HMA models. For example, the weights for simulated LMA participant 1 were 

the same as for simulated HMA participant 1. The weights for simulated LMA participant 2 

were the same for simulated HMA participant 2, and so on. Keeping the connection weights 

the same for the LMA and HMA models facilitated a comparison of results. The mean of 

response times for successful trials and percentage of hits were calculated for the congruent 

and incongruent conditions for the LMA and the HMA models. Similar to the study of 

Suárez-Pellicioni et al. (2014), the single score index of interference was then calculated from 

these means by taking incongruent response times minus congruent response times and 

congruent percentage of hits minus incongruent percentage of hits. The model does not 

account for post-error trials, they have not been excluded in the analysis for any of the 

study’s simulations. 
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4.4 Simulation of the HMA Model with Impaired Attention 

4.4.1 Procedure 

These simulations test the effect of reduced attentional control during performance of 

the numerical Stroop task. Model simulations of reduced attention to the numerical size 

dimension, reduced attention to the physical size dimension, and reduced attention to both the 

numerical and physical size dimensions were performed. To simulate reduced attentional 

control, the attention module of the model was impaired by reducing the activation of the 

neurons in the task demand units for the numerical size or physical size as appropriate. 

4.4.2 Results 

Figure 9 shows the experimental and simulated findings on the numerical Stroop task. 

Results from the model simulations of reduced attentional control were compared to the 

experimental findings of Suárez-Pellicioni et al. (2014). 

            4.4.2.1 Reduced Attention to Numerical Size. The HMA model was simulated with 

attention reduced to the numerical size dimension and not reduced to the physical size 

dimension. The results for reducing attention to 95% on the numerical size dimension for the 

HMA model are reported as this level of impairment was generally consistent with the 

experimental findings. Percentages close to 95% were also consistent with the above-

mentioned experimental findings. The more attention was reduced, the longer the response 

time. The HMA model produced longer response times than the LMA model in the 

incongruent condition, which had the effect of increasing the interference effect for response 

times compared to the LMA model (Figure 9B). The HMA model did not differ from the 

LMA model on response times for congruent trials or on the size of the interference effect for 

accuracy. The interference effect for the percentage of hits was similar to the experimental 

data with the LMA model having a value of 22.08% (experimental was 21.62%) and the 

HMA model was 20.83% (experimental was 20%). Further analysis of the comparison of the 
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LMA model and the HMA model for response times found that all congruent trials (with the 

exception of one trial where the distance between the numerical sizes was small) were equal. 

Furthermore, all incongruent trials that differed between the LMA model and the HMA 

model were by a simulated response time of 1. The model with reduced attentional control to 

the numerical size dimension produced results qualitatively consistent with the above-

mentioned experimental findings on mathematics anxiety. 

            4.4.2.2 Reduced Attention to Physical Size. The HMA model was simulated with 

attention reduced to the physical size dimension and not reduced to the numerical size 

dimension. The results for reducing attention to 95% on the physical size dimension for the 

HMA model have been reported. Results were similar for other values of reduced attention. 

For response times, the HMA model did not produce a difference to the LMA model in the 

congruent or incongruent conditions, or for the interference effect (Figure 9C). The model 

with reduced attention to the physical size dimension did not produce results qualitatively 

consistent with the above-mentioned experimental findings on mathematics anxiety. 

            4.4.2.3 Reduced Attention to Numerical Size and Physical Size. The HMA model 

was simulated with attention reduced to both the numerical and physical size dimensions. The 

results for reducing attention to 95% on both numerical and physical size dimensions for the 

HMA model are reported. Percentages close to 95% were also consistent with the above-

mentioned experimental findings. The more attention was reduced, the larger the response 

time. The HMA model produced longer response times than the LMA model in the 

incongruent condition and for the interference effect (Figure 9D). The HMA model did not 

differ from the LMA model on response times for congruent trials or on the size of the 

interference effect for accuracy. The model with reduced attention to the numerical and 

physical size dimensions produced results qualitatively consistent with the above-mentioned 

experimental findings on mathematics anxiety. 
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            4.4.2.4 The Amount of Energy (Conflict) in the Response Layer. To examine the 

amount of energy in the response layer when attention is impaired, the model with reduced 

attention to the numerical size dimension that was consistent with studies of mathematics 

anxiety was examined further. One simulated LMA and corresponding HMA participant was 

examined on a congruent and an incongruent trial. A congruent trial with stimulus small 1 

and large 8 where the LMA and HMA models produced the same simulated response time 

was chosen and graphed (see Figure 10A). An incongruent trial with stimulus large 1 and 

small 2 where the HMA model produced a larger simulated response time (by one time step) 

than the LMA model was chosen and graphed (see Figure 10B). The amount of conflict, 

which is defined as the amount of energy in the response layer, is graphed at each time step. 

The amount of energy in the response layer was calculated as the product of the activation of 

the decision nodes (see Botvinick et al., 2001 for a similar approach). The modelling shows 

that conflict is higher on incongruent trials than on congruent trials (as in previous studies). 

The HMA model with reduced attention to the numerical size dimension experienced less 

conflict than the LMA model.  
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Note. An example of the simulated conflict, which is defined as energy in the response layer 

(shown on the y-axis), at each simulated time step (shown on the x-axis) across the course of 

a trial for one simulated participant. Each panel shows the results for the low math-anxious 

model and the high math-anxious model with attention impaired to the (relevant) numerical 

size dimension. Panel A shows a congruent trial with stimulus small 1 and large 8. Panel B 

shows an incongruent trial with stimulus large 1 and small 2. 

Figure 10  

The Amount of Energy in the Response Layer During the Numerical Stroop Task 
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4.5 Simulation of the HMA Model with Reduced Learning 

4.5.1 Procedure 

Dietrich, Huber, Moeller, et al. (2015) examined the effects of mathematics anxiety 

on the symbolic number comparison task and suggested that individuals with mathematics 

anxiety may have less trained connections between the numerical representations and the 

response. These simulations test the effect of reduced learning with and without reduced 

attentional control to the numerical size dimension during performance of the numerical 

Stroop task. To examine the effect of reduced learning, an LMA model and an HMA model 

were chosen initially with a specific amount of learning trials such that the size of the 

interference effect for the percentage of hits for these models was close to the results of 

experimental studies and was consistent with experimental findings where there were no 

differences between them. A Mann-Whitney equivalent test was performed on the 

interference effect for the percentage of hits in the LMA and HMA models to confirm there 

were no significant differences as the data was not normally distributed. The LMA model 

was chosen with 20,000 learning trials and an interference effect for the percentage of hits of 

23.75% (experimental was 21.62%). The HMA model was chosen with 18,000 learning trials 

and an interference effect for the percentage of hits of 21.67% (experimental was 20%). 

These values were chosen so that there were no differences in the percentage of hits between 

the LMA and HMA models, yet the number of learning trials were far enough apart for there 

to be a difference between the models in response times. Subsequently, the chosen LMA and 

HMA models were simulated with and without reduced attention. To simulate reduced 

attention, the numerical size dimension of the HMA model was reduced to 95%. This 

impairment was chosen because it produced a model of mathematics anxiety in previous 

simulations. 
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4.5.2 Results 

Figure 11 shows the simulated findings of the numerical Stroop task. Results from the 

model simulations of reduced learning with and without reduced attentional control to the 

numerical size were compared to the experimental findings of Suárez-Pellicioni et al. (2014) 

(see Figure 9A for their experimental results).  

            4.5.2.1 Reduced Learning Without Attention Impaired. The results of the model 

simulation of reduced training trials on the response times for congruent and incongruent 

trials when there was no impairment in attention are presented. From Figure 11B you can see 

that there are no differences in the response times to congruent and incongruent trials as a 

result of the reduction in the number of training trials in the HMA model results. The model 

with reduced learning did not produce results qualitatively consistent with the above-

mentioned experimental findings on mathematics anxiety.  

            4.5.2.2 Reduced Learning with Reduced Attention to Numerical Size. The HMA 

model was simulated with reduced learning trials and attention reduced to the numerical size 

dimension. The HMA model produced longer response times than the LMA model in the 

incongruent condition and for the interference effect (Figure 11C). The HMA model did not 

differ from the LMA model on response times for congruent trials or on the size of the 

interference effect for accuracy. The model with reduced learning and reduced attention 

produced results qualitatively consistent with the above-mentioned experimental findings on 

mathematics anxiety. 
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Verguts, 2011) and multi-symbol number comparison (Huber et al., 2016). The LMA model 

was validated to ensure it replicated various empirical effects. Importantly, the model 

simulated effects of the numerical Stroop task including reduced learning. It also simulated 

the speed accuracy trade-off and the physical Stroop task demonstrating the model’s 

behaviour across a variety of tasks. The results of the LMA model simulation of the 

numerical Stroop task were compared to the behavioural results of Santens and Verguts 

(2011). This included simulating the size congruity effect where incongruent trials had longer 

response times than congruent trials and the numerical distance effect where comparison of 

numbers that are further apart was faster than comparison of numbers that are closer together. 

The model also simulated changes in learning where increased learning improves response 

times and accuracy. 

 Next, the HMA model simulations were performed. Several parameter modifications 

were made to the LMA model to simulate different cognitive conditions and impairments. 

The results of these HMA models were qualitatively compared to the experimental results of 

the mathematics anxiety study by Suárez-Pellicioni et al. (2014) to decide whether they were 

a suitable model of mathematics anxiety. Suárez-Pellicioni et al. found that individuals with 

mathematics anxiety had longer response times for the interference effect (incongruent minus 

congruent) than individuals without mathematics anxiety. Furthermore, they found that high 

math-anxious individuals had longer response times in the incongruent condition than low 

math-anxious individuals, and there was no difference in response times between the groups 

for congruent trials or for error rates.  

4.6.2 Reduced Attentional Control 

In the first series of simulations the effect of impairments of attention were 

investigated. Results of the simulations suggested that when attention was impaired (i.e., 

reduced) to the numerical stimuli (either by impairing attention to the numerical size 
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dimension only, or by impairing attention to both the numerical size and physical size 

dimensions together), that the models’ results qualitatively match those of experimental 

studies on mathematics anxiety. However, when attention was impaired to the non-numerical 

and irrelevant dimension (by impairing attention to the physical size dimension in the model 

only), the results did not match those of experimental studies on mathematics anxiety. These 

results are consistent with previous studies that suggest that mathematics anxiety is associated 

with reduced attentional control and an attentional disengagement to numerical stimuli (e.g., 

Ashkenazi, 2018; Hartwright et al., 2018; Liu et al., 2019; Pizzie & Kraemer, 2017). This 

response is specific to numerical stimuli, as it may be perceived as threatening information. 

Consequently, this response to numerical stimuli decreases attention to the relevant numerical 

dimension which increases attention to the irrelevant physical dimension. Therefore, the 

model predicts that mathematics anxiety reduces attention and triggers an attentional 

disengagement that is specific to numerical stimuli. The HMA model consistent with these 

findings (with attention reduced to the numerical size dimension only) simulated longer 

response times overall, in the incongruent condition, and for the interference effect than 

simulated by the LMA model. However, there were no differences in the error rates between 

these LMA and HMA models. These results are consistent with previous studies where 

individuals high in mathematics anxiety experience more interference than individuals low in 

mathematics anxiety (Hopko et al., 1998, 2002; Suárez-Pellicioni et al., 2014). Furthermore, 

they are consistent with the attentional control theory (Derakshan & Eysenck, 2009; Eysenck 

et al., 2007) suggesting anxiety reduces the attentional resources of working memory. This 

results in an increased influence of the bottom-up stimulus-driven attentional system and a 

decreased influence of the top-down goal-directed attentional system. Consequently, 

mathematics anxiety is associated with a reduced ability to inhibit distracting or irrelevant 

information (such as to the physical size dimension) during the numerical Stroop task. 
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Moreover, the HMA model supports the view by attentional control theory that anxiety 

impairs processing efficiency (i.e., response times) to a greater extent than it impairs 

performance effectiveness (i.e., accuracy). The HMA model exerted more effort as shown by 

longer response times than the LMA model to achieve a similar quality of response accuracy 

where there were no differences between the error rates. Therefore, the model predicts that 

reduced attention due to the presence of mathematics anxiety results in longer response times 

in the incongruent condition and for the interference effect. When attention was reduced 

further to the numerical size dimension in the HMA model, response times for the 

interference effect increased. Therefore, the model further predicts that the more attention is 

reduced due to an increased level of mathematics anxiety, the larger the interference for 

response times. Concluding, these results support the disruption account that mathematics 

anxiety disrupts attentional control resulting in poor performance on numerical tasks. 

4.6.3 Conflict Processing 

 The HMA model which involved reducing attention to the numerical size dimension 

(and not the physical size dimension) was examined further in relation to conflict processing. 

The amount of conflict experienced during a trial was compared for the LMA and HMA 

models. Conflict was defined as the amount of energy in the response layer. Consistent with 

previous studies (Botvinick et al., 2001), for both models incongruent trials experienced more 

conflict than congruent trials. This is because there is minimal competition during a 

congruent trial as both the numerical and physical size comparisons activate the same 

response nodes. However, during an incongruent trial the numerical and physical size 

comparisons activate competing response nodes, thereby resulting in conflict (that needs to 

be overcome). Comparison of the LMA and the HMA models showed that in a congruent 

trial both models activated a similar amount of conflict. However, during an incongruent trial 

where the HMA model had a longer response time than the LMA model, the HMA model 



73 

experienced less conflict. Reducing attention to the numerical stimuli for the HMA model 

produced a weaker activation of the response units which produced less of an opportunity for 

the existence of conflict. These results suggest that the ability to recognise conflict may be 

beneficial. Recognising conflict would allow a potential adapting of cognitive control to 

improve performance. However, as the current neural network model architecture did not 

have the conflict adaptation module turned on, the simulations did not investigate the effects 

of conflict adaptation. Therefore, it is unclear as to the potential benefit of recognising the 

existence of conflict by the LMA model. Future work can examine conflict adaptation effects 

due to reduced attentional control from mathematics anxiety. In conclusion, the models 

predict that reduced attention to the numerical stimulus dimension due to mathematics 

anxiety reduces the amount of conflict (i.e., energy in the response layer) which may affect 

the ability to be able to adapt to the presence of conflict during processing. Bishop (2009) 

found that individuals with high trait anxiety showed less prefrontal cortex activation and 

slower responses when processing competition than individuals with low trait anxiety in a 

response-conflict task that required attentional resources. The findings suggested a 

dysregulation of the recruitment of prefrontal mechanisms required to adjust attentional 

control when conflict is experienced. Klados et al. (2015) used ERP to investigate neural 

activity in individuals with mathematics anxiety during working memory and arithmetic 

tasks. They found that individuals with higher levels of self-reported mathematics anxiety 

showed lower cortical activation at frontocentral and centroparietal locations during the early 

stages of cognitive processing during simple arithmetic tasks. The results were independent 

of state and trait anxiety levels. 

4.6.4 Reduced Learning 

 The effect of reduced learning on the numerical Stroop task was investigated by 

changing the parameter for the number of learning trials in the model. These simulations 
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were motivated by the suggestion of previous authors (Dietrich, Huber, Moeller, et al., 2015) 

that individuals with mathematics anxiety may have less trained connections between the 

numerical representations and the response. An LMA model and an HMA model with 

reduced learning were chosen with error rates similar to those of experimental studies. 

Subsequently, the LMA model and the HMA model with and without reduced attention were 

simulated and compared. Only the HMA model with reduced learning and reduced attention 

were consistent with empirical findings of mathematics anxiety. This model produced longer 

response times than the LMA model for the interference effect and in the incongruent 

condition. Therefore, this model supports the disruption account where if individuals with 

mathematics anxiety have less trained connections, mathematics anxiety is characterised by a 

disruption to attentional control that leads to poor performance on numerical tasks. Carey et 

al. (2016) describes that mathematics anxiety can impact learning due to avoidance and 

subsequently impact processing and recall because the anxiety disrupts working memory 

resources (the disruption account). The model simulations did not investigate the effect of 

anxiety during learning. This was outside the scope of the current study. Future work could 

involve impairing attention to the models during training.  
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Chapter 5: Neural Network Model Simulations of the Symbolic Number Comparison 

Task 

 This chapter describes the neural network model simulations of the symbolic number 

comparison task. This task involves deciding which number is numerically larger when the 

stimuli are presented in the same physical sizes. First, the LMA model is validated to ensure 

it simulates experimental results. Next, the HMA model is simulated by making parameter 

changes to the LMA model to assess the effects of these changes and to compare with the 

results from a group of participants with mathematics anxiety. 

5.1 Validation of the Symbolic Number Comparison Model 

Before impairing the LMA model to create the HMA model, the LMA model was 

validated to ensure it can simulate various experimental effects. Below is a description of the 

simulations of the symbolic number comparison task assessing the behaviour of the model on 

the distance effect, the size effect, and reduced learning for this task.  

5.1.1 Simulation of the Symbolic Number Comparison Task 

            5.1.1.1 Procedure. To simulate the symbolic number comparison task, the neural 

network model that simulated the numerical Stroop task was adapted such that the single-

digit comparison network for physical size (used for the irrelevant dimension of the 

numerical Stroop task) was turned off and the response is generated by comparing numerical 

sizes. The model simulations use the data set from Dietrich, Huber, Moeller, et al. (2015) 

which consists of all combinations of single-digit numbers from 1 to 9 resulting in 72 pairs. 

The model simulated 30 participants who were low math-anxious. The trial-to-trial adaptation 

of the conflict monitoring unit was turned off. The activation of neurons was reset at the 

beginning of each trial. Stimulus pairs were randomly presented to the model, however for 

these simulations randomising the data has no effect on the results as trials are independent 
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and there is no noise in the model. Means for response times on correct trials and error rates 

were calculated for each simulated participant. 

            5.1.1.2 Results. The simulations that validated the numerical Stroop model in Chapter 

4 included a validation of the symbolic number comparison task, a symbolic number 

comparison is an inherent requirement of the numerical Stroop task. Consequently, no 

additional validation of the comparison process of symbolic numbers was required. The 

model simulations successfully simulated the numerical distance effect and the size effect. 

5.1.2 Simulation of Changes in the Amount of Learning 

            5.1.2.1 Procedure. The following simulation demonstrates the effect that a reduction 

in the training of the connections between the numerical representation and the response has 

on response times, accuracy, and the distance effect. The previous chapter investigated the 

effect of a reduction in the training of connection weights between the numerical 

representations and the response on simulations of the numerical Stroop task. In those 

simulations the single-digit comparison networks were trained with different values for the 

number of learning trials, which generated a different set of weights for each training run. 

The following simulations use these same weights. Model simulations were run for different 

amounts of training and no other impairments were made to the model (i.e., all models 

retained 100% attention). The procedure for training the single-digit comparison networks 

has been described previously in Chapter 3. Mean response times on correct trials and error 

rates were calculated for each condition. 

            5.1.2.2 Results. The results of the simulations on response times, accuracy, and the 

numerical distance effect were graphed for arbitrary values of the amount of training. In 

previous simulations when the number of learning trials was 100,000, the models produced 

100% accuracy. In the current simulation, the model predicts that as the amount of learning 

increases, response times will decrease and errors will decrease (see Figure 12). This result is 
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consistent with studies that show learning of basic numerical processing skills across a 

variety of different tasks improves response times and accuracy (e.g., Landerl, 2013). Figure 

13 shows the results for the numerical distance effect where overall response times decrease 

for each numerical distance as learning increases. This result is consistent with studies 

showing changes in the numerical distance effect for symbolic number comparison during 

development (e.g., Landerl & Kölle, 2009). 

 

  



78 

 

 

 

 

 

                                                                                                                                                        

 

 

 

 

Note. Simulated models’ results for different numbers of training trials on performance in the 

symbolic number comparison task. Panel A shows mean simulated response times. Panel B 

shows the percentage of errors. Error bars depict the standard error of the mean. 

 

Figure 12  

The Effect of Changing the Amount of Learning in the Symbolic Number 

Comparison Task 
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Figure 13  

The Numerical Distance Effect Across Learning in the Symbolic Number Comparison Task 

 

 

Note. The numerical distance effect is shown for different values of learning trials. The x-axis 

depicts the distance between the numerical stimuli.  

 

5.2 Mathematics Anxiety Experimental Results for the Symbolic Number Comparison 

Task 

The symbolic number comparison task has been studied within the mathematics 

anxiety literature with mixed results. Some studies have found differences between 

individuals high and low in mathematics anxiety in overall response times, for distance and 

size effects, and some have not. Most studies have found that there are no differences in error 

rates between individuals high and low in mathematics anxiety.  
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5.3 Procedure for the Simulation of HMA Models 

The model simulations use the same data set and conditions that were used to validate 

the symbolic number comparison model in the previous section. There were 30 simulated 

participants for both the LMA and the HMA models. As in the numerical Stroop model, the 

connection weights between the input layer and the comparison layer of the single-digit 

comparison network for numerical size were different for each simulated participant within 

each LMA or HMA model, and were the same for each matched LMA and HMA participant. 

Keeping the connection weights the same for the LMA and HMA models facilitated a 

comparison of the results of the LMA and HMA models. Several model simulations were 

performed investigating the difference between the LMA and HMA models for changes in 

parameter values that simulated the impairments. Means for response times on correct trials 

and error rates were calculated for each simulated participant in each condition. 

5.4 Simulation of the HMA Model with Impaired Attention 

5.4.1 Procedure 

This simulation investigates the effect of reduced attention during performance of the 

symbolic number comparison task. The numerical size single-digit comparison networks 

were trained to 100% accuracy in the initial simulations of the numerical Stroop task. The 

errors in those simulations resulted from the conflict between the relevant and irrelevant 

dimensions. The first simulation here retains these same connection weights between the 

input layer and the comparison layer resulting in 100% accuracy for the single-digit 

comparison task. The results from the numerical Stroop model simulations proposed that 

impairing attention to the numerical size dimension qualitatively replicated results from 

experimental studies on mathematics anxiety. Therefore, for this simulation attention was 

impaired to the HMA model on the numerical size dimension. This was achieved by reducing 
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the activation of the neurons in the task demand units for the numerical size to 95% as in the 

numerical Stroop model simulations. 

5.4.2 Results 

 Figure 14 shows the results for the mathematics anxiety experimental data of Dietrich, 

Huber, Moeller, et al. (2015) and the model simulations. These authors did not find overall 

differences in response times between the LMA and HMA groups. However, they found a 

more pronounced distance effect in response times for the HMA group than the LMA group. 

The simulation results show that the HMA model produced longer response times than the 

LMA model. The more attention was reduced, the longer the response time. The LMA model 

and the HMA model produced reliable numerical distance effects where it is faster to 

compare two numbers and decide which is the largest when the distance between the numbers 

is large than when the distance between the numbers is small. The size of the distance effect 

for the HMA model was similar to the distance effect in the LMA model. As the single-digit 

comparison network was trained to 100% accuracy, there were no differences in error rates 

between the LMA and the HMA model. 
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A                                                                              B   

 

Note. Response times for the distance effect in symbolic number comparison, as a function of 

mathematics anxiety, are shown for experimental and modelling results. Panel A: 

Experimental results of the estimated distance effects for participants with low mathematics 

anxiety (Abbreviated Math Anxiety Scale (AMAS) score = 10), middle mathematics anxiety 

(AMAS score = 22), and high mathematics anxiety (AMAS score = 39). Reprinted from “The 

Influence of Math Anxiety on Symbolic and Non-Symbolic Magnitude Processing” by J. F. 

Dietrich, S. Huber, K. Moeller, and E. Klein, 2015, Frontiers in Psychology, 6(1621), p. 6 

(https://doi.org/10.3389/fpsyg.2015.01621). CC BY 4.0. Panel B: Results of the high math-

anxious model simulation with attention to the numerical sizes impaired. The y-axis shows 

the simulated mean response time. The x-axis shows the distance between the numerical 

stimuli. Error bars depict the standard error of the mean. 

 

 

 

Figure 14  

Model Simulations of the Symbolic Number Comparison Task With Attention Impaired 



83 

5.5 Simulation of the HMA Model with Reduced Learning 

5.5.1 Procedure 

These simulations test the effect of reduced learning with and without reduced 

attentional control to the numerical size dimension during performance of the symbolic 

number comparison task. To examine the effect of reduced learning, an LMA model and an 

HMA model were chosen initially with a specific amount of learning trials such that the error 

rates for these models were close to the results of experimental studies and were consistent 

with experimental findings where there were no differences between them. A Mann-Whitney 

equivalent test was performed on the percentage of errors in the LMA and HMA models to 

confirm there were no significant differences as the data was not normally distributed. 

Dietrich, Huber, Moeller, et al. (2015) reported an overall error rate for symbolic number 

comparison of 3.82%. The LMA model was chosen with 20,000 learning trials and 3.7% 

errors. The HMA model was chosen with 18,000 learning trials and 3.61% errors. These 

values were chosen so that there were no differences in the percentage of errors between the 

LMA and HMA models, yet the number of learning trials were far enough apart for there to 

be a difference between the models in response times. Subsequently, the chosen LMA and 

HMA models were simulated with and without reduced attention. To simulate reduced 

attention, the numerical size dimension of the HMA model was reduced to 95%. This 

impairment was chosen because it produced a model of mathematics anxiety in previous 

simulations. Incidentally, these values are the same as the LMA model and the HMA model 

with reduced learning that simulated the numerical Stroop task. To simulate reduced 

attention, the numerical size dimension of the HMA model was reduced to 95%. This 

impairment was chosen because it produced a model of mathematics anxiety in previous 

simulations. 
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5.5.2 Results 

Figure 15 shows the results of the simulations with reduced learning, with and without 

reduced attentional control. 

            5.5.2.1 Reduced Learning Without Attention Impaired. The results of the model 

simulations of reduced training trials on response times when there is no impairment in 

attention are presented. From Figure 15A you can see that there are no differences in the 

response times as a result of the reduction in the number of training trials in the HMA model 

results. The LMA model and the HMA model produced reliable numerical distance effects. 

The size of the distance effect for the HMA model was similar to the distance effect in the 

LMA model. 

            5.5.2.2 Reduced Learning with Reduced Attention. The HMA model was 

simulated with reduced training trials and attention reduced to the numerical size dimension. 

The HMA model produced longer overall response times than the LMA model (Figure 15B). 

The HMA model did not differ from the LMA model on the percentage of errors. Both 

models produced a reliable numerical distance effect. The size of the distance effect for the 

HMA model was similar to the distance effect in the LMA model. The size effect was 

examined for the combination of stimulus pairs “1 2” (which includes “2 1’) and “8 9” 

(which includes “9 8”) as they were as extreme as possible to compare, as in the study by 

Núñez-Peña and Suárez-Pellicioni (2014) who found marginal differences between the LMA 

and HMA groups for the size effect. As in these authors’ study, an interference effect was 

calculated for the size effect where the response times for small numbers was subtracted from 

large numbers. Both models produced a reliable size effect. The interference effect for the 

size effect of the HMA model was similar to the interference effect in the LMA model. 
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physical size dimension was turned off. The model was validated to ensure it simulates 

various empirical effects of the symbolic number comparison task. The network’s parameters 

were then modified to simulate reductions in attention to numerical stimuli and a reduction in 

training. The results were compared to experimental results on mathematics anxiety. Previous 

research has generally found that there are no differences in error rates between individuals 

high and low in mathematics anxiety on basic numerical skills. However, research findings 

have been mixed between the two groups for overall response times, the distance effect, and 

the size effect. 

5.6.2 Reduced Attentional Control 

 The model firstly simulated the effect of reducing attentional control to numerical 

stimuli. This resulted in longer response times for the HMA model than for the LMA model. 

Furthermore, the more attention was reduced, the longer the response times. Studies on 

mathematics anxiety have found that performance is affected more on tasks that require more 

working memory resources, as these resources are specifically disrupted by anxiety (Ashcraft 

& Faust, 1994; Faust et al., 1996). Recent research involving neuroimaging and ERP during 

numerical tasks have shown that cognitive processing differs between individuals with and 

without mathematics anxiety, even though they may achieve similar performance outcomes 

(see Artemenko et al., 2015). Furthermore, Rubinsten et al. (2015) and Batashvili et al. 

(2020) found that individuals with mathematics anxiety experienced a threat-related response 

just by observing simple numerical stimuli. Therefore, the model of reduced attention to 

numerical stimuli is consistent with the findings that mathematics anxiety may reduce 

attention to numerical stimuli, even on basic numerical tasks if there is sufficient anxiety.  

However, there are limitations of the simulations of reduced attention to numerical 

stimuli as a model of mathematics anxiety. The LMA and HMA models did not produce any 

errors as the single-digit numerical size comparison network had been trained to successfully 
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compare the numbers and decide which was numerically largest. Even though error rates are 

extremely low for the symbolic comparison task and that generally there are no differences 

between the LMA and HMA groups in the literature for accuracy, this model simulation did 

not account for error rates. Further, in some studies individuals with and without mathematics 

anxiety show similar performance outcomes for response times and accuracy, yet they have 

shown differences in the processing of numerical stimuli as demonstrated by ERP measures 

(e.g., Pletzer et al., 2015). The current simulations did not account for the condition where the 

LMA and HMA models produced similar performance outcomes for response times. 

However, the model was not designed to model all aspects of working memory and it is not a 

biologically plausible model. Instead, it’s aim was to identify the underlying cognitive factors 

associated with mathematics anxiety, and the modelling supports the view that mathematics 

anxiety affects attentional processes. 

5.6.3 Reduced Learning 

 The effect of reduced learning on the symbolic number comparison task was 

investigated by changing the parameter for the number of learning trials in the models. These 

simulations reduced the accuracy of trials. As previously described, these simulations were 

motivated by the suggestion of previous authors (Dietrich, Huber, Moeller, et al., 2015) that 

individuals with mathematics anxiety may have less trained connections between the 

numerical representations and the response. The result of these simulations was similar to 

those in the numerical Stroop simulations. The model simulations showed the standard 

empirical effect where increased learning improves response times and accuracy. An LMA 

model and an HMA model with reduced learning were chosen with error rates similar to 

those of experimental studies. Subsequently, the LMA model and the HMA model with and 

without reduced attention were simulated and compared. Only the HMA model with reduced 

learning and reduced attention produced longer response times than the LMA model. As in 
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the numerical Stroop simulations, the model supports the disruption account where if 

individuals with mathematics anxiety have less trained connections, mathematics anxiety is 

characterised by a disruption to attentional control that leads to poor performance on 

numerical tasks. Furthermore, as in the numerical Stroop simulations, the modelling did not 

investigate the effect of anxiety during learning as it was outside the scope of the current 

study. Future work could involve investigating this.  

5.6.4 The Numerical Distance Effect and the Size Effect 

The distance effect and the size effect were simulated with reduced learning and 

reduced attention to the numerical stimuli. The size effect was examined for number pairs 

that were as extreme as possible, as in the study by Núñez-Peña and Suárez-Pellicioni (2014). 

These authors found marginal differences between the LMA and HMA groups for the 

distance effect and the size effect. Some subsequent findings in the research literature show 

no differences between groups suggesting that the marginal differences between LMA and 

HMA groups may be unreliable. In the current modelling, both the LMA and HMA models 

produced reliable distance and size effects. The HMA model did not produce more 

pronounced distance or size effects than the LMA model. Dietrich, Huber, Moeller, et al.’s 

(2015) suggestion that individuals with mathematics anxiety may have less trained 

connections was motivated by the fact that in some experimental studies individuals high in 

mathematics anxiety had more pronounced distance effects than individuals low in 

mathematics anxiety, and the distance effect in symbolic number comparison indexes 

comparison processes between the numerical representation and the response. Furthermore, 

Colomé (2019) suggested that the differences in the behavioural studies may also be due to 

either experimental design or that motivation and attitudes towards mathematics were not 

controlled for in the studies and could explain the variability between them. The results of the 

current modelling do not predict that reduced attention due to mathematics anxiety affects the 
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distance effect and the size effect. These findings are consistent with the results of 

behavioural studies where more pronounced distance and size effects in individuals with 

mathematics anxiety is not a robust finding. Furthermore, the current modelling suggests that 

mathematics anxiety may be more effectively modelled by changes in attention than 

modelling distance or size effects. Alternatively, another interpretation of the results of the 

current modelling is that there may be other factors related to working memory or attentional 

control that the model does not account for that could produce more pronounced effects.  

The model’s performance of the distance effect across learning was also simulated as  

part of the model validation prior to the HMA model simulations. The results suggest that 

response times decrease with training across all numerical distances. Furthermore, it is worth 

mentioning that the model presented here is not a biologically plausible model. Accordingly, 

the neural network modelling process for learning involves setting the initial connection 

weights to randomly generated numbers between the numerical representation and the 

response, presenting numbers to the model with specific frequencies which were taken from a 

Google survey of those experienced in daily life, and performing a learning algorithm to train 

the model to decide which number is the largest that updates the connection weights between 

the numerical representation and the response. These learning processes, such as the starting 

position of the connection weights between the numerical representation and the response, 

the type of numerical stimuli exposed to while learning, and the type of learning, may 

influence response outcomes of the numerical distance effect. It is outside the scope of the 

current study to examine the effect of differences in the type of numerical experiences and 

the types of number comparisons that are presented during training on task performance, as 

the current research focus is on attentional control. Moreover, research suggests that number 

skills attained before starting school improve education outcomes (Butterworth, 2019), and 
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exposure to numerical activities in everyday situations may support mathematical learning 

(see Hannula-Sormunen et al., 2019 for a review).  
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Chapter 6: General Discussion 

 The aim of the current study was to simulate using neural network modelling the 

effects of various types of impairments of numerical processing that are hypothesised to be 

important in mathematics anxiety. Specifically, to simulate the consequences for accuracy 

and response times on numerical tasks which have been empirically investigated amongst 

individuals with mathematics anxiety. The disruption account suggests that individuals with 

mathematics anxiety experience a disruption of working memory resources (in particular the 

attentional control and inhibitory mechanisms) that leads to poor performance during 

numerical tasks. Research has shown that mathematics anxiety impacts attentional control. 

However, the underlying mechanisms remain unclear and deserve further research. The 

methodology used for this study was neural network modelling. To the author’s knowledge, 

this is the first study simulating mathematics anxiety by neural network modelling. By using 

this methodology, underlying cognitive factors related to mathematics anxiety were able to be 

examined in such a way that they could be compared to the outcomes of behavioural 

experimental conditions. Consequently, neural network modelling has provided a means to 

test theories on mathematics anxiety and attentional control. It has allowed investigation of 

specific impairments in addition to performing exploratory work. Two numerical tasks were 

modelled on one neural network model architecture by making similar modifications to the 

network that resulted in similar conclusions for both tasks. The first task modelled was the 

numerical Stroop task as it specifically requires attentional control to inhibit irrelevant 

information during a numerical task. There are limited mathematics anxiety studies of this 

task. The second task modelled was the symbolic number comparison task. This task is a 

basic numerical task and the role of attention during a basic numerical task was investigated. 

Previously, it has been proposed that tasks that involve more working memory resources are 

affected more by disruptions to attentional control. However, recent studies have suggested 
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that cognitive function operates differently between individuals with and without 

mathematics anxiety, regardless of whether performance outcomes of these individuals differ. 

Furthermore, mathematics anxiety studies of the symbolic number comparison task have 

mixed results. One suggestion for the differences in these studies could be due to less training 

of the connection between the numerical representation and the response, possibly due to 

avoidance of mathematics because of the high levels of anxiety. This idea was proposed 

based on differences in the distance effect. The distance effect in the symbolic number 

comparison task has been proposed to be an index of comparison processes between the 

numerical representation and the response (van Opstal et al., 2008; van Opstal & Verguts, 

2011; Verguts et al., 2005). Therefore, the current network architecture simulated both tasks 

with reduced learning and additionally with and without impaired attentional control. 

 Both tasks were firstly simulated with impaired attention to the numerical stimuli by 

reducing the activation of the task demand units representing attention. The models both 

showed that reduced attention to numerical stimuli resulted in longer response times and no 

changes in accuracy. Further, the more attention was reduced, the longer the response times. 

The numerical Stroop task additionally involves inhibiting attention to the irrelevant physical 

size dimension. When the modelling involved simulating reducing attention to the numerical 

size dimension it produced results qualitatively similar to those of experimental studies on 

mathematics anxiety. However, when attention was only reduced to the physical size 

dimension it did not produce results that matched those of experimental studies on 

mathematics anxiety. These findings are in support of the attentional control theory which 

claims that anxiety increases the influence of the stimulus-driven attentional system and 

decreases the influence of the goal-directed attentional system which results in an inability to 

inhibit distracting or irrelevant information for the current task. Moreover, they support 

recent research that numerical information may be perceived as a threat for individuals with 
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mathematics anxiety and can be associated with impaired attentional control, even on basic 

numerical tasks. 

 Next, both tasks were simulated with reduced learning with and without reduced 

attention to the numerical stimuli. For both tasks results were again in agreement. The models 

with reduced learning and no impairments of attention did not produce a good qualitative fit 

to empirical data. However, the models with reduced learning and reduced attention to the 

numerical stimuli provided the best qualitative fit to previous studies in mathematics anxiety 

and resulted in impaired performance. These results support the view that if individuals have 

less trained connections possibly due to avoidance of numerical tasks, that mathematics 

anxiety is further characterised by a disruption of attention to numerical stimuli during 

processing and recall. Overall, the results provide further support of the disruption account 

that mathematics anxiety disrupts working memory resources that results in 

underperformance in mathematical tasks (Carey et al., 2016; Ramirez et al., 2018). 

Interestingly, the HMA model with attention reduced to the numerical stimuli showed less 

conflict then the LMA model over the time of an incongruent trial during the numerical 

Stroop task. Conflict in the model was defined as the amount of energy in the response layer. 

These results predict an impairment of prefrontal mechanisms due to mathematics anxiety. 

The model is not a biologically plausible model and does not provide a simulation of 

all of the features of the empirical findings. The model simulates reduced attention but it does 

not account for other factors related to working memory and attention that may be impacting 

performance due to mathematics anxiety. The modelling provides a first neural network 

architecture for simulating mathematics anxiety and provides evidence that reduced attention 

impacts mathematics anxiety. It is the authors hope that it will open a new field of enquiry on 

the topic using this method as an adjunct to behavioural experiments. Further, the model 

could be used to investigate other conditions related to numerical processing. For example, 
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studies show that individuals with mathematics learning disability show mathematics anxiety 

(Carey et al., 2016). Mathematics learning disability is a condition related to difficulty in 

understanding numbers (Soares et al., 2018). 

Mathematics anxiety is highly prevalent and developing interventions to help treat the 

underlying cognitive factors is important for improved education outcomes and STEM career 

prospects for students. Current interventions that focus on the cognitive processes underlying 

mathematics anxiety include expressive writing about emotions before completing 

mathematical tasks to reduce the intrusive thoughts associated with anxiety and release 

working memory resources (Park et al., 2014), reappraisal therapy to assist in emotion 

regulation (Pizzie et al., 2020), and focused relaxation training (Brunyé et al., 2013). Brunyé 

et al. (2013) examined a behavioural mindfulness intervention that included a focused 

breathing exercise to train attentional control. The exercise was designed to reduce the 

feelings of worry and anxiety by assisting students to effortfully control their attention. 

Individuals with mathematics anxiety experienced an increase in calmness and enhanced 

performance on an arithmetic test that was performed immediately afterwards. Besides 

Brunyé et al.'s study, mindfulness meditation has shown potential to reduce anxiety and 

increase attentional control (see Tang et al., 2015 for a review on the neuroscience of 

mindfulness meditation). Moreover, several authors have suggested the importance of 

specifically tailoring interventions to the individual to reduce their mathematics anxiety and 

increase performance (Moustafa et al., 2021; Ramirez et al., 2018; Skagerlund et al., 2019). A 

novel individualised cognitive behavioural therapy (i-CBT) has been suggested by Moustafa 

et al. (2021) where students are initially assessed to determine the factors that are underlying 

their mathematics anxiety. Subsequently, the students will have targeted sessions based on 

their assessment. These could include the above-mentioned interventions. 
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6.1 Conclusion 

 This study created neural network models to simulate the effect of impaired 

attentional control on mathematics anxiety. The models were consistent with the disruption 

account of mathematics anxiety as it relates to the attentional control theory, finding that 

mathematics anxiety is characterised by impaired attentional control on mathematical tasks 

that affects performance. Further investigations on the underlying factors related to impaired 

attention due to mathematics anxiety are recommended.  
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