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1  |  INTRODUC TION

The colouration of animals is produced via an array of pigmentary 
and structural mechanisms (Caro, 2005) and can affect evolution-
ary fitness through communication within and among species, and 
through thermoregulation. Colouration—the overall combination of 
colour (hue and chroma), brightness and pattern on the whole body 
of the animal—can be highly variable within species and be subject 
to multiple, potentially conflicting selection pressures. For exam-
ple, potential trade-offs in brightness (e.g. percentage reflectance) 

between thermoregulation and camouflage can be important for 
ectotherms. Most terrestrial ectothermic species bask to reach 
and maintain active body temperatures (Smith, Cadena, Endler, 
Kearney, et al.,  2016), and the body temperature of animals with 
darker colouration can increase faster than a paler animal (Bakken 
& Gates, 1975; Clusella-Trullas et al., 2009; Smith, Cadena, Endler, 
Porter, et al., 2016; Watt, 1968). However, a mismatch between ani-
mal and background colouration may increase predation risk (Smith, 
Cadena, Endler, Kearney, et al.,  2016). While functions of animal 
colouration have received considerable attention, the genetic and 
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Abstract
The underlying drivers of variation in the colouration (colour and pattern) of animals 
can be genetic, non-genetic, or more likely, a combination of both. Understanding the 
role of heritable genetic elements, as well as non-genetic factors such as age, habi-
tat or temperature, in shaping colouration can provide insight into the evolution and 
function of these traits, as well as the speed of response to changing environments. 
This project examined the genetic and non-genetic drivers of continuous variation 
in colouration in a lizard, the jacky dragon (Amphibolurus muricatus). We leveraged a 
large captive experiment that manipulated parental and offspring thermal environ-
ment to simultaneously estimate the genetic and non-genetic drivers of variation in 
colouration. We found that the overall brightness, the elongation of the longitudinal 
stripes on the dorsum and the contrast between light and dark patches of the pattern 
were all heritable. Colouration varied according to the age of the hatchling; however, 
the thermal environment of neither the parents nor offspring contributed significantly 
to colouration. It appears that developmental plasticity and maternal effects asso-
ciated with temperature are not important drivers of variation in our measures of 
colouration.
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non-genetic drivers of variation in animal colouration remain ob-
scured in many cases (Bérénos et al., 2014).

The genetics that underpins colouration are well studied in a 
few species that have discrete colour polymorphisms in which in-
dividuals exhibit one of a few distinct, stable morphs that vary in 
hue (White & Kemp, 2016). The clearest examples come from work 
on species in which colour morphs have different behavioural or 
reproductive strategies (Reviewed in: Cuthill et al.,  2017; Olsson 
et al., 2013). For example, in the side-botched lizard (Uta stansburi-
ana), three co-occurring colour morphs (blue, yellow and orange) 
exhibit different male reproductive strategies and arise from a 
few genes with Mendelian inheritance (Sinervo et al., 2001). Work 
identifying individual loci driving discrete, adaptive colour variation 
(Hubbard et al., 2015; Pardo-Diaz et al., 2015) has focused on dorsal 
colouration that varies with habitat substrate colour among popula-
tions of moths, mice, amphibians and reptiles (Cadena et al., 2017; 
Hoekstra et al., 2005; Kettlewell, 1961; Krohn & Rosenblum, 2016). 
For example, in south-western USA, hair colour in rock pocket mice 
(Chaetodipus intermedius) is darker in populations living on dark-
coloured lava flows than for non-lava-dwelling populations, and this 
variation is controlled by a single locus (Hoekstra et al.,  2004). A 
small number of loci also underpin variation associated with mimetic 
evolution of wing colour patterns of Helioconus butterflies (Martin 
et al.,  2012) and the red and orange ecotypes of monkey flowers 
(Mimulus aurantiacus), which appear to be driving incipient specia-
tion (Streisfeld et al., 2013).

In most species, colouration exists not in discrete polymor-
phisms but as continuous variation among individuals in a popula-
tion. Continuous variation in colouration is also likely the product 
of adaptive evolution in many species, yet its genetic underpinnings 
have received substantially less research attention particularly 

within a quantitative genetics framework (San-Jose & Roulin, 2017). 
Where it has been examined, additive genetic variance is generally 
high for continuous variation associated with changes in colour sat-
uration (chroma) or the size of individual colour patches (Table 1). 
Remarkably, there has been very little examination of heritability 
in colour patterns despite their ubiquity in nature (Table 1; but see 
Feiner et al. (2022) for recent genetic markers of colour pattern).

In addition to genetic factors, non-genetic factors can strongly 
influence colouration (Olsson et al., 2013). Non-genetic factors can 
include those experienced recently by individuals such as diet, body 
temperature and substrate colour (Norris & Lowe, 1964; Stuart-Fox 
et al.,  2017; Umbers et al.,  2016), those experienced early during 
ontogeny (Biard et al.,  2007; Evans & Sheldon,  2015; Hubbard 
et al.,  2015) and those experienced by their parents (Jensen 
et al., 2006; Spivak et al., 1990; Tsuruta et al., 1989). Temperature is 
important through all of these pathways of exposure and can have 
a long-lasting influence on colouration (Kooi & Brakefield,  1999). 
Parental thermal environment has emerged as an important driver 
of variation in offspring phenotype and fitness, yet its impact on 
offspring colouration as a parental effect has not been examined 
(Donelson et al., 2012; Schwanz, 2016; Schwanz et al., 2020; Shama 
et al.,  2014; So & Schwanz,  2018). Thus, given that colouration is 
important in thermoregulation of ectotherms (Forsman, 1995; Key & 
Day, 1954; Norris, 1967; Smith, Cadena, Endler, Kearney, et al., 2016; 
Stuart-Fox & Moussalli, 2009; Umbers et al., 2013; Watt, 1968) it 
is possible that temperatures experienced early in life or tempera-
tures that parents are exposed to can lead to long-lasting changes 
in colouration and associated thermoregulatory ability (Spivak 
et al., 1990; Tsuruta et al., 1989).

Understanding the relative importance of non-genetic factors, 
particularly temperature, compared with genetics in shaping animal 

TA B L E  1  Representative studies investigating the heritability of colouration

Species Trait h2 References

Great tit (Parus major) Carotenoid content of ventral plumage ~0.03–0.2 Evans and Sheldon (2015)

Barn swallows (Hirundo rustica erythrogaster) Melanin based breast plumage colouration 0.21–0.35 Hubbard et al. (2015)

Barn owl (Tyto alba) Sexually dimorphic melanin and 
pheomelanin-based plumage traits

0.57–0.84 Roulin and Jensen (2015)

Atlantic charr (Salvelinus alpinus) Carotenoid content of dorsal skin 
pigmentation

0.76 Nilsson et al. (2016)

Tawny dragon (Ctenophores decresii) Proportion yellow on throat 0.67 Rankin et al. (2016)

Tawny dragon (Ctenophores decresii) Proportion orange on throat 0.84 Rankin et al. (2016)

Lake Erie island water snake (Nerodia 
sipedon)

Number and height of dorsal and lateral 
blotches

0.34–0.79 King (1993)

Common gartersnake (Thamnophis sirtalis) Mean dorsolateral blotch pigmentation 0.57–0.79 Westphal and Morgan (2010)

Threespined stickleback (Gasterosteus 
aculeatus)

Intensity (varying from black at 0 to white at 
255) of lateral body pigmented area

0.33–0.82 Kim and Velando (2015)

Banana shrimp (Fenneropenaeus merguiensis) Whole-body colour of raw and cooked 
shrimp (light or dark)

0.03–0.55 Nguyen et al. (2014)

Orange Sulphur Butterfly (Colias eurytheme) Male dorsal wing colouration, iridescent UV 
and orange pigment

0.278–0.950 Kemp and Rutowski (2007)

Note: For each study, we report the study species, the trait investigated, the heritability index (h2) and the reference.
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colouration could illuminate the developmental and evolutionary 
capacity of animals to respond to novel or changing selective pres-
sures. Unfortunately, research on the genetic and non-genetic driv-
ers of colouration has typically proceeded in nearly separate fields 
of research, with little integration of these different drivers of varia-
tion. However, considering them together is important to gain a full 
and clear picture of the drivers behind animal colouration (Cadena 
et al., 2017; Hoekstra, 2006; Olsson et al., 2013). Few studies have 
partitioned colouration variation into genetic and non-genetic 
drivers, and only two (Kemp & Rutowski,  2007; Lewandowski & 
Boughman, 2008), to our knowledge, have done so while manipu-
lating environmental conditions of potential functional importance. 
Lewandowski and Boughman (2008) found colour was both genet-
ically heritable and significantly influenced by light environment in 
benthic threespine sticklebacks, Gasterosteus aculeatus. Similarly, in 
male Colias eurytheme butterflies, dorsal wing colouration (iridescent 
UV and orange pigment) is impacted by nutrition and temperature 
as well as being heritable (Kemp & Rutowski, 2007). These studies 
highlight that investigating the effects of environmental variables 
alongside genetic heritability can be important in understanding the 
outcome of colouration in many species. Here, we examine variabil-
ity in colouration by considering potential genetic and non-genetic 
drivers together. We studied the jacky dragon, Amphibolurus muri-
catus, a medium-sized agamid lizard found across the south-east of 
Australia (Harlow & Taylor,  2000). Jacky dragons have been used 
as model species to study temperature-dependent sex determina-
tion (Harlow & Taylor, 2000), maternal effects (Schwanz, 2016) and 
signalling (e.g. Peters & Evans, 2003). To date, no other study has 
investigated colour or pattern in jacky dragons.

We used a lab population for which a pedigree was available to 
estimate the heritability of colouration while simultaneously ac-
counting for the effect of experimental manipulation of parental and 
offspring thermal environment. We focused on three elements of 
dorsal colouration: brightness, elongation of dorsal pattern and con-
trast between the lightest and darkest elements in the pattern. Our 
hypothesis was that these measures of colouration would be her-
itable and be influenced by parental and offspring thermal environ-
ment. Specifically, we predicted that reduced thermal opportunities 
in both parental and offspring environmental would be associated 
with lower brightness, elongation and contrast compared with their 
experimental counterparts as an adaptive means to absorb greater 
incident radiation.

2  |  MATERIAL S AND METHODS

2.1  |  Study species and housing conditions

The jacky dragon (Amphibolurus muricatus) is a small Australian aga-
mid that exhibits substantial variation in colouration (Cogger, 2018). 
The lizards used in this study were captive-bred hatchlings sired 
by wild-caught and lab-born parents. The captive colony was col-
lected from Wamboin, Australia (35.25001S, 149.29171E; elevation 

∼800 m a. s. l.) and housed indoors at the University of New South 
Wales. As part of a larger project on parental effects (Schwanz, 2016; 
Schwanz et al., 2020), parents and hatchlings were maintained under 
two thermal basking treatments, with offspring treatment randomly 
assigned (in a split-clutch design) to match or mismatch their par-
ents' treatments, in a full-factorial design. The two treatments were 
long bask (11 h of access to a basking lamp per day) or short bask 
(7 h of access) conditions, which are ecologically relevant conditions 
for long day/short day access to thermoregulation (Schwanz, 2016; 
Schwanz et al., 2020). Data for this study were collected across two 
consecutive breeding seasons, 2015/2016 (n = 155) and 2016/2017 
(n = 104).

Adult jacky dragons were housed in groups of four during the 
breeding season: (three females to one male) in opaque plastic en-
closures (500 mm × 300 mm × 300 mm) with sand substrate. Each 
breeding cage was assigned to a basking treatment at the beginning 
of the breeding season, which could be different for an individual 
across the 2 years of measurement. The basking lamps created a 
temperature gradient within the cage (~24–57°C) that allowed in-
dividuals to thermoregulate to their preferred temperature while 
the lamp was on (~35°C; Schwanz et al., 2018). Previous work has 
shown jacky dragons in both basking treatments remain near their 
preferred temperature for the majority of the time the lamps are 
on (Halstead & Schwanz, 2015). Bark, branches and tiles served as 
shelter and basking objects. Each enclosure lid was aluminium mesh 
(300 mm × 200 mm) with a 10% UVB light tube adjusted biweekly to 
match the natural daylight schedule. Adults were fed domestic crick-
ets (Acheta domestica) three times a week, with vitamin (calcium and 
multi-vitamin) supplementation 1–2 times a week and had ad libitum 
access to water. Females were monitored for gravidity, and most 
deposited their eggs in nests within their cage. Jacky dragon eggs 
were collected after deposition and then incubated at a constant 
temperature of 28°C, which typically produces a 50/50 sex ratio 
(Schwanz,  2016). As jacky dragons have temperature-dependent 
sex determination (TSD), incubation at a constant temperature al-
lows any phenotypic effect arising from sex (male or female) to be 
de-confounded from temperature. A week after hatching (the first 
week is spent in isolation to resorb residual yolk), jacky dragons were 
placed into either long-bask or short-bask treatment conditions 
themselves. Hatchlings were housed in groups of 1–8 in opaque, 
white plastic enclosures (250 mm × 300 mm × 300 mm) with white, 
paper towel substrate. Number of hatchlings within a cage varied in 
order to split clutches across offspring treatments and to ensure all 
cagemates were within 1 week of age to each other. Cage and light-
ing conditions were otherwise the same as for adults. Hatchlings 
were fed crickets 1 cm in size every day until 1 month old, then five 
times a week until 3 months old.

2.2  |  Data collection

We quantified three aspects of jacky dragon colouration using digital 
photography following methods by Troscianko and Stevens  (2015) 
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and Endler (2012). Photographs were taken of individual lizard hatch-
lings from the 2015/2016 season (n = 155) and 2016/2017 breeding 
season (n = 104). A total of 259 photographs were taken (one of each 
jacky dragon). Photographs were discarded if they were not in focus 
enough to analyse (n = 80). We aimed to take photographs of jacky 
dragons at 30 days old (n  =  179, mean ±  SD  =  29 ± 11.8 days old). 
Immediately following photography, individual body surface tem-
peratures were recorded using a non-contact infrared thermometer.

We photographed jacky dragons in a large cardboard box to 
prevent escape. The box was lined with a sheet of white PTFE 
(polytetrafluoroethylene) to standardize the background of 
each photograph. A Spectralon 99% white reflectance standard 
(Labsphere, USA; herein referred to as the ‘white standard’) was in-
cluded in each image to standardize the photograph for analysis. An 
Iwasaki eyeColour MT70D E27 6500K arc lamp, a broad-spectrum 
light source (300–700 nm) with the UV coating removed (sanded 
lightly with wet/dry sandpaper), was used as the light source for 
photography (Troscianko & Stevens, 2015). To capture photographs 
across 400–700 nm, a Nikon DSLR (D90) camera with hot mirror 
filter removed was used with a JENOPTIK UV–VIS-IR 60 mm F1.4, 
quartz optics lens (sensitive to 290–1500 nm). Images were taken of 
each lizard with a ‘visible’-pass lens filter to capture 400 to 700 nm 
wavelengths. Each jacky dragon was placed next to the white stan-
dard and photographs were taken in RAW format, using the expo-
sure bracketing function on the camera to ensure at least one image 
was correctly exposed (Troscianko & Stevens, 2015). The identical 
set-up was used for all photographs. Time taken to photograph each 
lizard once it was placed inside the photography box (2–5 min) was 
determined by how long it took for them to remain still enough for a 
sharp photograph to be taken.

2.3  |  Image analysis

Images of each lizard were white balanced (using the white stand-
ard as a reference) and visually inspected for correct exposure using 
the histograms associated with the images and focus using the 
photo screening function in the program micaToolbox (Troscianko 
& Stevens,  2015). The photograph of each lizard was then ori-
ented vertically according to the lizards' longitudinal body axis and 

cropped into rectangular images ‘swatches’ using the ‘Image J' plugin 
‘multispectral imaging’ (Troscianko & Stevens, 2015). Swatches were 
made by selecting the same area on all individuals: the dorsal area 
from under the forelegs, over the back, and then extending as far 
down to the base of the tail as possible without including any pixels 
of background colour in the swatch (Figure 1).

To quantify colouration, we generated three metrics: ‘brightness’, 
‘elongation’ and ‘contrast’ (Endler, 2012). These metrics were cho-
sen from an established set of pattern metrics, many of which have 
been shown to have functional relevance for antipredator or thermal 
strategies (Endler, 2012; Rojas et al., 2014; Shine & Madsen, 1994, 
Trullas et al., 2007). In our study population, the dorsal blotches vary 
substantially in shape and connectedness (elongation: a measure 
of separate blotches versus connected stripes) and how bright and 
distinct they are from the rest of the dorsum colour (contrast and 
overall brightness). To measure ‘brightness’ for each lizard, we first 
calculated the brightness of each pixel in the swatch as a value be-
tween 0 and 1 (brightness =  [R/255 + G/255 + B/255]/3) and then 
took the mean R, G and B of all pixels as brightness for the whole 
swatch. ‘Elongation’ and ‘contrast’ (the difference in brightness be-
tween the brightness and darkest colour class in the pattern) were 
generated using the ‘adjacency’ function in the ‘Pavo2’ package (Maia 
et al.,  2019) in R version 3.5.0 (R Core Team,  2020). This method 
uses a k-means clustering algorithm to assign pixels to one of a 
user-defined number of colour classes (k, see also Supplementary 
Materials; Endler, 2012; Maia et al., 2019). The adjacency function 
surveys each image's pixels at a given grid density to generate met-
rics that describe the geometry of the pattern and provides the RGB 
values of each k. Measurement of elongation was based on the num-
ber of colour class transitions, which are defined as a transition at the 
pixel level when one colour class changes to another (Endler, 2012). 
The elongation value is higher if there are fewer up/down (dorsally 
longitudinal) pixel colour class transitions, than left/right (dorsally 
transverse) pixel colour class transitions (Figure 1). Contrast was cal-
culated by subtracting the brightness (as calculated above) for the 
colour class with the lowest brightness from colour class with the 
highest brightness.

Jacky dragons showed substantial variation in the number of co-
lour classes present to the human observer. To take a rigorous and 
transparent approach to assigning user-defined k-values, we took 

F I G U R E  1  (a) Whole animal 
photograph focused on its dorsum. The 
red colouration on the tail was used to 
temporarily mark lizards for the long-term 
study and does not reflect their natural 
colouration. (b) The corresponding swatch 
we sampled to quantify their colouration. 
(c) The artificial colourized representation 
of how pixels were categorized into colour 
classes (in this case k = 3).

(a) (b) (c)
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two approaches and then compared them. First, we assigned the 
number of colour classes to each individual swatch manually based 
on human visual assessment (assigned by KDLU and LES; k = 2–5) 
(Table  S1). Second, we assigned all swatches the same number of 
colour classes for both k = 3 and k = 4. We compared the two ap-
proaches statistically using KU visual assignment (Tables S2 and S3). 
Both elongation and contrast values from manually assigned ks were 
strongly correlated with values calculated when all animals were all 
assigned k = 3 and k = 4 colour classes; thus, we felt confident that 
human manual assignment would not introduce substantial bias to 
the results (Tables S2 and S3).

To determine whether colour change impacted our measure-
ments, time spent on white background of photography box and 
body temperature were analysed as potential confounding variables 
in our study. In addition, to investigate an effect of time on white 
background, a small experiment was run using five jacky dragons. 
We found that the time on white background did not influence any 
of the colouration metrics (see Supplementary Materials for meth-
ods and results). To investigate the effect of body temperature, we 
ran simple linear regressions using the ‘lm’ function from the ‘stats’ 
R package (R Core Team, 2020). We found that elongation was im-
pacted by skin temperature (F = 8.69, df = 1, p < 0.01), but contrast 
(F = 0.85, df = 1 p = 0.36) and brightness (F = 0.37, df = 1, p = 0.55) 
were not. However, body temperature also differed between study 
years (t = 11.25, df = 120, p < 0.01, analysed using the ‘t-test’ func-
tion in the ‘stats’ R package; R Core Team,  2020). Thus, year and 
body temperature were confounded effects and could not both be 
included in our models. We opted to include year in our models, 
as including for the effect of year controlled for both the effect of 
body temperature as well as differences between researchers and 
any other unknown variables that differed between study years (see 
Statistical Methods for more details).

2.4  |  Statistical methods

To estimate the heritability of jacky dragon colouration, we used 
the animal model (Wilson et al., 2010) with a Bayesian Markov chain 
Monte Carlo (MCMC) sampling technique in the ‘MCMCglmm’ R 
package (Hadfield, 2010). The animal model is a quantitative genetic 
mixed-effect model that includes a pedigree (Wilson et al., 2010). 
Prior to running the animal model, data were explored to check 
for outliers, normality of data, and to ensure no collinearity be-
tween fixed effects using the data exploration protocol of Zuur 
et al. (2009). The priors for the regression and variance parameters 
were: V = 1, n = 0.002 (Hadfield, 2010). For all models, we estimated 
parameters 1 500 000 times (iterations) and sampled every 1000th 
estimation (thinning rate) after the first 1000 iterations were dis-
carded (burn-in).

We analysed each of the three colouration metrics (brightness, 
elongation and contrast) separately, using models that contained 
identical fixed and random effects. All models included the fixed 
effects of: sex (male or female), parental treatment (long-bask and 

short-bask), offspring treatment (long-bask and short-bask), liz-
ard age when photographed (days) and sampling year (2015 and 
2016). A previous study with a subset of these lizards found evi-
dence for a three-way interaction effect between sex, offspring and 
parental basking treatment on offspring behaviour (McDonald & 
Schwanz, 2018). So, we also included this three-way interaction in 
all our models.

To account for variation due to dependencies in our data and 
estimate the variance parameters required for calculating the herita-
bility (see below), models also included random effects. Each model 
included random intercepts for maternal identity (to account for 
non-genetic maternal effects), parental cage (to account for cage-
based environmental effects not associated with basking treatment, 
including non-genetic paternal effects) and offspring cage (to ac-
count for early development conditions not associated with basking 
treatment). Models also included a random intercept for lizard iden-
tity, which linked an individual's data to the pedigree.

In our pedigree, there was a small amount of uncertainty of pater-
nity. A small percentage of hatchlings in our sample (6%) were from 
females that were housed with different males between seasons, 
and sperm storage is possible in this species (Olsson et al.,  1994, 
2009; Rankin et al., 2016; Uller et al., 2013). Here, we used the cur-
rent male, a female was paired with, as the entire clutch's father. 
Assuming full-sib status of offspring in these clutches may, there-
fore, overestimate relatedness. For our pedigree, we assigned a 
unique ‘dummy’ father for each wild-conceived clutch, which as-
sumes full-sib relationships (multiple paternity in wild jacky dragons 
is 30%; Warner et al., 2008).

Before interpretation of model outputs and calculation of her-
itability estimates, model assumptions of normality of residuals 
and homogeneity of variance were verified (Zuur et al., 2009). We 
visually inspected all trace plots to ensure they were well mixed. 
Autocorrelation of the chains of both fixed and random effects 
was assessed to ensure levels were low (lag < 0.01) using the ‘au-
tocorr’ function, and we also performed Geweke and Heidelberg 
autocorrelation diagnostics (from the R package ‘coda’; Plummer 
et al., 2015). We present the posterior modes and associated 95% 
credible intervals for each parameter estimate (β) and variance (σ2) 
within the models. Parameter estimates were considered significant 
when 95% credible intervals did not include 0, and the ‘pMCMC’ val-
ues calculated by ‘MCMCglmm’ were <0.05 (Hadfield, 2010).

Variance (σ2) estimates from each animal model were used to cal-
culate heritability (h2) of their respective colouration metric (bright-
ness, elongation and contrast). The narrow-sense heritability (h2) is 
defined as the proportion of phenotypic variance (�2

p
) explained by 

additive genetic variance (�2
A
), which can be estimated using the fol-

lowing formula:

Phenotypic variance (�2
p
) is the sum of all variance components, 

including the residual variance (�2
R
), �2

A
, variance (σ2) due to mother 

identity and variance (σ2) from offspring and mother housing 

h2 = �
2
A
∕�2

p
.
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enclosures (see Table 2 for σ2 estimates from all models). Thus, the 
formula that was used to estimate heritability in this study was as 
follows:

3  |  RESULTS

We recorded substantial variation across our three colouration met-
rics, ‘brightness’, ‘elongation’ and ‘contrast’ (Endler, 2012; Figure 2). 
‘Brightness’ captured the overall colour brightness across the dorsal 
image. ‘Elongation’ quantified the connectedness of the longitudinal 
blotches (i.e. blotches or stripes). ‘Contrast’ captured how well the 
bright blotches stood out from the dark inter-blotch background.

All jacky dragon colouration metrics were heritable (Figure  3). 
Heritability (h2) of brightness was 0.1619 (95% CIs  =  0.0630, 
0.3774), elongation was 0.1810 (95% CIs = 0.0826, 0.4066), and con-
trast was 0.2304 (95% CIs = 0.0676, 0.4721). There were also non-
genetic factors that explained significant variation in jacky dragon 
colouration metrics. Lizard age affected all colouration metrics, as 
lizards increased in age (days) dorsal colouration became brighter, 
more elongated and higher in contrast. Sampling year affected two 
colouration metrics (brightness and contrast); animals in the 2016 
sampling year were brighter with higher contrast (Table 2). The two 
experimental sources of environmental variation—basking treatment 
in offspring and parents (long-bask or short-bask conditions)—did 
not significantly influence any colour metric. In addition, coloura-
tion did not differ between the sex (male or female) of young jacky 
dragons (Table 2).

4  |  DISCUSSION

Our study suggests that three components of colouration in our 
captive population of Jacky dragons are heritable: overall bright-
ness, longitudinal stripes on the dorsum (elongation) and degree 
of difference between light and dark patches of the pattern (con-
trast). The thermal environment of the parents and offspring that 
we predicted may have functional importance for these lizards did 
not significantly influence their colouration. However, more immedi-
ate elements of the environment and the individual, as captured in 
variation across years and animal age, had significant influences on 
colouration, suggesting that colouration in this lizard is responsive to 
short-term conditions.

Interestingly, the levels of heritability of three components 
of colouration in our population (h2  = 0.16–0.23) suggest that co-
louration could exhibit a robust evolutionary response to selection. 
Heritability of colouration is often high across a wide array of animal 
taxa (Table  1). Compared with these studies, our heritability esti-
mates are low (h2 = 0.16–0.23). This finding could be attributed to 

low additive genetic variance or high non-genetic drivers of phe-
notypic variance that we could not account for in this study. For 
example, unmeasured components of individual quality (e.g. re-
source provisioning and immunocompetence) could be important 
non-genetic drivers of variation in jacky lizard colouration, as occurs 
for many elements of colouration across animals (Pérez-Rodríguez 
et al., 2017). However, many of the published colouration heritabil-
ity estimates come from analysis of either chroma or small colour 
patches, with a limited number of studies taking into consideration 
colour and pattern of a whole-body surface (King, 1993; Westphal 
& Morgan, 2010; Table 1). The few studies that are similar to ours 
in examining colouration across large parts of the body (rather 
than colour patches) similarly report lower heritability estimates. 
For example, heritability is comparatively low for body coloura-
tion (whole-body colour pattern) in honeybees (Apis mellifera; 0.21 
for queens and 0.49 for drones; Szabo & Lefkovitch, 1992), ventral 
body colouration (reflectance) in great tits (Parus major; 0.03–0.2; 
Evans & Sheldon, 2015) and body colour (chroma) in banana shrimp 
(Fenneropenaeus indicus; 0.03–0.55; Nguyen et al., 2014). Therefore, 
it is possible that whole-body colouration in general is more likely to 
have lower heritability than smaller (relative to animal size) patches 
of colour. The differences in the strength of heritability estimates 
between colour patches and ‘whole-body’ colouration raise the pos-
sibility that chroma and size of individual colour patches experience 
different selective pressures than colour patterns, generating differ-
ences in standing genetic variance. One possibility is that variation 
in chroma or patch size tends to be associated with sexual signalling 
and may thus be driven primarily by directional selection (Olsson 
et al., 2013), which generally maintains genetic variation. In contrast, 
if whole-body colouration is more often associated with non-sexual 
functions (e.g. camouflage) and primarily driven by stabilizing se-
lection, then genetic variation would be reduced (Lewandowski & 
Boughman, 2008; Nguyen et al., 2014; Nilsson et al., 2016; Rankin 
et al., 2016). Such a hypothesis could only be tested with substantial 
data across species or focused measures of heritability on compo-
nents of colouration known to experience different forms of selec-
tion within a population.

We found no support for our hypothesis that long-term ther-
mal environment contributes to variation of colouration in jacky 
dragons, as neither parental nor offspring thermal environment 
was significant predictors of colouration. The overall brightness of 
dorsal colouration in particular has been strongly linked with tem-
perature in other species (Clusella-Trullas et al., 2009; Kingsolver & 
Huey, 1998; Rosenblum & Beaupre, 2005). In addition, animal co-
louration has been shown to change in response to maternal effects 
(Biard et al., 2007; Tschirren et al., 2012) and environmental effects 
(Caro,  2005). Our lack of a significant effect of temperature may 
have several explanations. Firstly, it is possible the selection pres-
sure for camouflage is stronger than thermoregulation. Like many 
species that live in visually complex habitats, jacky dragons prefer to 
rest on complex backgrounds (Salisbury & Peters, 2019). Whether 
or not background choice provides antipredator protection for jacky 
dragons is unknown; however, birds of prey (Carlile et al.,  2006), 

h2 = �
2
(individual)

∕�2
(individual)

+ �
2
(residual)

+ �
2
(mother identity)

+ �
2
(individual cage)

+ �
2
(mother cage)
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formidable visual hunters, are important jacky dragon predators that 
could impose strong selection for detection avoidance through cryp-
tic camouflage. Second, exposure of offspring to a given thermal 
environment may not have been sufficient to induce a detectable 

response in colouration (20 ± 1 days exposure; 5% of lizards spent 
<10 days in their thermal group environment before their photo-
graph was taken). Third, colouration in jacky dragons, or at least the 
elements that we quantified, may have no functional link to thermo-
regulation and associated parental effects. While parental thermal 
environment in jacky dragons alters maternal stress hormone levels 
as well as offspring post-hatching growth and size (Liu et al., 2020; 
Schwanz, 2016; Schwanz et al., 2020), our results suggest that early 
offspring colouration is not an important component of these paren-
tal effects. Lastly, the thermal environment of the parent or young 
hatchling may not be a good predictor of thermal environment for 
the rest of the animal's life and thus not be subject to selective 
pressure within the developmental environment for a particular co-
louration (Marshall & Uller, 2007). In particular, basking availability 
changes across days and seasons, so colour change in response to 
immediate thermal conditions may be more useful than developing 
fixed differences in colouration early in life.

Whereas our study intentionally minimized variation in three 
immediate environmental factors (body temperature, light expo-
sure and background) in order to examine other non-genetic driv-
ers of variation, our significant effects of lizard age and sampling 

F I G U R E  2  Variation of colouration in jacky dragons that we observed in this study reflected in our three response variables: overall 
brightness (top), elongation (middle) and contrast (bottom). For each response variable, we present the histogram of values we observed, as 
well as representative swatches of jacky dragons from the bottom and top range of values of each variable within the study.

F I G U R E  3  Heritability estimates (h2) of colouration metrics: 
brightness, elongation and contrast depicted with associated 95% 
credible intervals.

 14209101, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jeb.14066 by U

niversity O
f W

estern Sydney, W
iley O

nline L
ibrary on [30/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1237RAYNAL et al.

year are likely attributed to uncontrolled ‘immediate’ factors. 
The effect of lizard age is most likely attributed to shedding cy-
cles differing over the age range at which the photographs were 
taken (range: 6–62 days). During this time, agamid species can 
shed their skin 1–2 times depending on individual growth rate 
(Doneley,  2006). Leading up to a shedding event, jacky drag-
ons' skin will slowly change to a paler, milky appearance, which 
reduces contrast in their overall colouration, though we would 
have expected a decline in contrast with age rather than the in-
crease observed. That being said, ontogenetic colour change can 
be adaptive and is common across invertebrates and vertebrates 
(Booth,  1990; Medina et al.,  2020); thus, exploring how colour 
differs across ontogeny in this species and linking it to fitness is 
a potential fruitful direction for future research. The effect of 
sampling year is most likely due to different researchers taking 
photographs in each year, perhaps resulting in a slightly different 
sampling set-up between the 2 years (e.g. slightly different cam-
era positions). Overall, these effects highlight the importance of 
short-term environmental and physiological (non-genetic) fac-
tors influencing variation in the continuous colouration of jacky 
dragons.

In this study, we examined genetic and non-genetic drivers of 
variation in a type of animal colouration that is often neglected in 
this field—continuous variation in colouration and colour pattern. 
Moreover, we applied methods for quantifying colour patterns 
(Endler, 2012) to one of the first analysis of heritability in whole co-
lour patterns. We found that the three components of jacky dragon 
colouration we assessed—brightness, elongation and contrast—are 
modestly heritable. Rather than focusing on only the genetic driv-
ers of variation, we leveraged an environmental experiment on a 
pedigreed population to also examine non-genetic drivers of vari-
ation in colouration. Although we hypothesized that long-term 
thermal environment contributes to the variation of colouration in 
jacky dragons, we found no evidence for this. Future avenues of 
research could be directed at investigating other possible environ-
mental drivers of variation in colouration, such as complexity of the 
environment (opportunities for camouflage), short-term thermal 
environment and resource availability. In addition, examining the 
impact of colouration for predator detection, thermoregulation and 
substrate selection would illuminate the functional significance of 
this variation. Overall, understanding the genetic and non-genetic 
drivers of phenotypic variation can provide a window into the evo-
lutionary past and adaptive potential of colouration.
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