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Abstract  

The transition from fossil fuels to renewable energy sources poses major challenges for balancing 

increasingly weather-dependent energy supply and demand. Demand-side energy flexibility, offered 
particularly by companies, is seen as a promising and necessary approach to address these challenges. 

Process mining provides significant potential to prevent a deterioration of product quality or process 

flows due to flexibilization and allows for exploiting monetary benefits associated with flexible process 
operation. Hence, we follow the design science research paradigm to develop PM4Flex, a prescriptive 

process monitoring approach, that generates recommendations for pending process flows optimized 
under fluctuating power prices by implementing established energy flexibility measures. Thereby, we 

consider company- and process-specific constraints as well as historic event logs. We demonstrate and 
evaluate PM4Flex by implementing it as a software prototype and applying it to exemplary data from a 

heating and air conditioning company, observing considerable cost savings of 1.56ct per kWh or 

34.35%. 

Keywords: process mining, prescriptive process monitoring, energy flexibility. 

1 Introduction 

Mitigating climate change is one of the major challenges of our time. Treaties like the Paris Climate 

Agreement or the European Climate Law provide goals for reducing emissions, e.g., greenhouse gas 

neutrality of the EU by 2050. Germany, currently the largest emitter of greenhouse gases in the EU, is 

even aiming at national climate neutrality by 2045. The rapid phase-out of nuclear power generation and 

conventional fuels as well as the expansion of renewable energy sources (RES) are needed at once to 

achieve this goal (BMWK and AGEE-Stat, 2022; Die Bundesregierung, 2011). The volatility of power 

generation and corresponding power prices will increase as a result of the high dependence of RES on 

uncertain weather conditions. Ultimately, on the one hand, the energy system faces the challenge of 

balancing volatile generation and demand to ensure a reliable power supply for consumers, maintaining 

grid stability. On the other hand, companies face the challenge of adapting to and exploiting fluctuating 

power prices (caused by a weather-dependent power supply of RES), e.g., by consuming power when 

prices are low and when the RES share is high, to decrease energy procurement costs and CO2 emissions. 

mailto:simon.rusche@fim-rc.de
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Both challenges can be addressed by energy flexibility (EF), which describes the ability to exploit the 

described variations on the supply side. EF is an opportunity for energy consumers since the greatest EF 

potential is attributed to demand-side EF compared to, e.g., energy storages that are still too expensive 

to be widely used. Within demand-side EF, industrial companies account for a considerable share of 

energy consumption (Heffron et al., 2020), with an EF potential estimated at up to 3.98 GW in Germany. 

Especially short-term demand adaptations within 15 minutes are already relevant today to compensate 

for short-term energy supply fluctuations (Sauer et al., 2019). Some energy-intensive companies already 

optimize the energy procurement for their processes, thus, increasing their competitiveness with reduced 

energy costs and additional revenues from EF marketing (Alcázar-Ortega et al., 2015; Sauer et al., 2019).  

Research has identified and discussed several options to exploit the EF potential (VDI, 2020). Many 

existing approaches flexibilize processes on highly simplified production systems (ignoring important 

characteristics of real-world processes) in a real-time manner or focus on control loads in buildings 

(Beier et al., 2017; Lu et al., 2020; Schultz et al., 2015; Sun and Li, 2014; Zhou and Li, 2013). Thus, 

they do not apply a sufficiently detailed process perspective and cannot be transferred easily to more 
complex processes as observed in practice. Power price developments are rarely considered for load 

control (Schultz, 2018; Nayak et al., 2019). Existing approaches further only regard a limited selection 

of available EF measures (EFM), potentially disregarding relevant EF (Schultz et al., 2015).  

Concerning practical implementations of EFMs, many companies have not yet recognized, let alone 

exploited, their EF potential at all (Schott et al., 2019), since no sufficient insights into revenues or cost 

savings of EF are available (Alcázar-Ortega et al., 2015; Leinauer et al., 2022). Many fear that providing 

EF by implementing EFM deteriorates both product quality and production flow. Moreover, the 

complexity of the used IT systems is often perceived to increase markedly (Leinauer et al., 2022).  

As we argue in this paper, the described concerns and challenges of EF can successfully be addressed 

with process mining. Process mining is a research area that focuses on data-based process insights and 

optimization and is already well-established in other fields of application (Eili et al., 2021). Hence, 

existing process mining applications can be extended by EF considerations without enlarging the IT 

landscape within a company. Further, due to a highly detailed process perspective, challenges regarding 

negative impacts on processes are inherently considered with process mining. In particular, process 

mining can be used for prescriptive process monitoring (PPM), which aims at triggering interventions 

to optimize processes (Shoush and Dumas, 2022a). PPM adds a recommendation perspective to the 

previously prevalent research focus on process predictions (Kubrak et al., 2022). Thus, it can be used in 

a recommender system (RS) that aims at process improvement. In PPM, the focus is mainly on the 

question of when and for which instances interventions can be applied rather than on the choice of 

interventions. Further, PPM is mainly used to optimize time-related key performance indicators (KPIs) 

and not to optimize energy consumption or cost (ibid.). For these reasons, it is worthwhile looking at 

the interface of PPM and EF to improve processes by exploiting the EF potential in processes.  

Currently, RS utilizing process mining mostly rely on historic process data, similarity metrics, 

frequency, and KPIs to generate recommendations (Dees et al., 2019; Dorn et al., 2010; Petrusel and 
Stanciu, 2012; Schobel and Reichert, 2017; Schonenberg et al., 2008; Terragni and Hassani, 2018; Triki 

et al., 2013; van der Aalst et al., 2010; Weinzierl et al., 2020b; Yang et al., 2017). Some approaches base 

their recommendations on predictions (Dees et al., 2019; Weinzierl et al., 2020a; Weinzierl et al., 
2020b). In many papers, only the next action is recommended, not the complete subsequent process flow 

like (Yang et al., 2017) do. There are only a few papers that consider time constraints (Barba et al., 2012; 

Dorn et al., 2010) or revise recommendations frequently (Barba et al., 2012; Petrusel and Stanciu, 2012). 

Thus, there is a research gap for KPI-optimizing, multi-activity recommendations using both process 

data and process-external prognostic data that trigger the review of generated recommendations. 

Enhancing EF-oriented scheduling of processes, we address the following research question: How can 

process mining be used to exploit the energy flexibility potential of intra-organizational processes?  

To answer this question, we develop a PPM approach that uses integer linear programming (ILP) to 

recommend an optimal processing schedule for pending activities within a specific time horizon. We 



Stay Flexible 

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway                             3 

optimize overall energy costs under time-varying power prices by implementing EFM. We adopt the 

design science research (DSR) methodology as proposed by Peffers et al. (2007). Our artifact, called 

PM4Flex, uses event logs enriched with information about energy consumption and power price 

forecasts from the spot market. Based on this data input, PM4Flex provides a real-time recommendation 

on how to adapt underlying processes to a power price development to minimize energy costs. The 

approach is applicable to flexible processes with an execution period no longer than the time horizon of 

the price forecast. With this approach, we extend existing PPM approaches to tackle two major demand-

side challenges in the energy system: adapting processes to volatile energy supply and prices.  

The remainder of this paper is structured as follows. In Section 2, we provide the theoretical background 

and related work on EF, process mining, and RS. We explain our research method in Section 3. Then, 

we present our artifact in Section 4 and report on our evaluation in Section 5. Finally, in Section 6, we 

conclude our work with a short discussion of our contribution, limitations, and future research directions. 

2 Theoretical Background and Related Work 

2.1 Energy Flexibility 

The dependence of RES on weather conditions induces volatility in power generation, which can be 

addressed by EF. The gap between decreasing supply-side EF and increasing levels of volatile RES is 

described by the so-called flexibility gap (Papaefthymiou et al., 2014; Papaefthymiou et al., 2018). This 

disparity in the power system challenges grid stability and supply security (Sauer et al., 2019). To close 

this gap, five main options for flexibilization have been identified. These options encompass supply-

side EF, storage flexibility, transmission flexibility through grid expansion, demand-side EF, and inter-

sectoral flexibility (Heffron et al., 2020; Tristán et al., 2020). Due to high costs for energy storage, slow 

progress on inter-sectoral flexibility, and a lack of acceptance of grid expansion, demand-side EF is a 

very promising option to address the flexibility gap (Heffron et al., 2020). Demand-side EF describes 

the ability of an energy-consuming system to modify its energy consumption in response to an external 

trigger (Eurelectric, 2014; Tristán et al., 2020). For corporate EF, the energy-consuming system is 

constituted by an operational system that is capable of cost-effectively adapting to power market signals 

or the variable supply of self-generated power in a short period of time (Tristán et al., 2020).  

There are two main options for marketing and, thus, economically exploiting demand-side EF in 

Germany: on the one hand, companies can market their EF on the power market, especially on spot 

markets. Both the day-ahead market and the intraday market in Germany are staggered and differ 

regarding the trading period and the length of the traded power products. Both spot markets enable short-

term trading of power products and, thus, a flexible adjustment of power demand through the use of EF 

(Bachmann et al., 2021). For example, on the EPEX SPOT power exchange, the day-ahead auction takes 

place daily at noon with hourly and block bids for the following day. This day-ahead auction is followed 

by the auction of quarter-hourly products for the next day in the intraday auction. Afterward, continuous 

intraday trading takes place, where quarter-hourly products can be traded up to five minutes before the 

delivery time. On the other hand, EF can be capitalized on balancing energy markets, such as the control 

reserve market or the control energy markets. In these markets, the provision and implementation of 

load increase and reduction measures are auctioned. It is mandatory to implement auctioned measures 

in response to frequency changes or signals from the transmission system operator. In this way, EFM, 

which can be reserved accordingly, can be monetized (Bachmann et al., 2021).  

The EF potential of a company's operating system can be realized and utilized by implementing EFM. 

Such EFM represent intentional actions to perform a specific change of state in the corresponding 

operating system to provide EF. A change of state can involve resources and process instances. It 

considers the related reciprocal effects in the operating system, e.g., interrupting an order impacts the 

possibility to adjust resource allocation given the fact that the currently used resource is occupied longer 

(VDI, 2020). The Association of German Engineers (VDI) has identified a set of 16 distinct generic 
EFM for production systems that can be structured along a temporal and an organizational axis. They 
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distinguish (i) corporate management for the medium term, (ii) production control for the short term, 

and (iii) manufacturing for real-time EFM. (i) includes the adaptation of staff free time, working shifts, 

and order of execution sequence, defer of production start, and capacity planning adjustment. 

Interrupting the manufacturing order, adapting the order of production sequence or resource allocation, 

deferring the order start, as well as dedicating the energy storage and energy carrier exchange are EFM 

within (ii). (iii) includes operation interruption, adjustment of operational sequence, adaptation of 

operation parameters, bivalent operation, and inherent energy storage. 

Existing approaches for short-term or real-time planning and control of EF can primarily be assigned to 

the manufacturing industry (Beier et al., 2017; Lu et al., 2020; Schultz et al., 2015; Sun and Li, 2014; 

Zhou and Li, 2013). The central object and subject of EFM are machines of specific production systems. 

Adjustments of load profiles are mainly due to a (partial) shutdown of power-consuming machines, 

which means temporarily shifting these machines into different energy states and allocating resources. 

An exception is the approach of Bank et al. (2021) for the integration of EF into production planning 

and control based on the generic EF Data Model (EFDM) (Schott et al., 2019). Starting from an 
optimized production plan without flexibilities, applicable EFM are specified and integrated in a cost-

efficient way. This requires precise knowledge and quantification of the inherent EF potential. While a 

production system only represents its different workstations (Schultz et al., 2015), a process depicts in 

detail which activities are actually executed on these working stations. However, none of the mentioned 

approaches considers a process perspective and, thus, process instances as the subject of EFM.  

2.2 Process Mining, Prescriptive Process Monitoring, and Recommender 
Systems 

Process Mining aims at discovering, monitoring, and improving business processes. It combines data 

science and approaches based on process models to analyze data in the form of event logs. These event 

logs contain information about the sequential order of process activities and can be extended by 

additional information, e.g., about resources or social networks. The general goal is to improve processes 

with regard to set KPIs (van der Aalst, 2011). PPM does so by recommending interventions during the 

process flow (Kubrak et al., 2022; Shoush and Dumas, 2022a; Weinzierl et al., 2020a). It focuses mainly 

on interventions triggered by an incident presumably impacting the process outcome negatively 

(Fahrenkrog-Petersen et al., 2019; Kubrak et al., 2022; Shoush and Dumas, 2022a; Teinemaa et al., 

2018; Weinzierl et al., 2020a). Thus, these approaches often neglect an opportunity-driven perspective. 

Since PPM provides recommendations, it can be performed by a recommender system (RS). RS are 

“software tools and techniques that provide suggestions for items that are most likely of interest to a 

particular user” (Ricci et al., 2022, p. 1). The basic goal of an RS is to provide a ranking of possible 

alternatives based on restrictions and preferences (Ricci et al., 2022). The specific type of knowledge-

based RS requires specified requirements for the recommendation and is subject to temporal changes 

(Aggarwal, 2016). RS based on process mining represent an emerging research area (Yang et al., 2017) 

which can be seen in PPM.  

RS based on process mining are not applied in the energy domain yet (Eili et al., 2021). All combined 

approaches, which we have found in the literature, are based on historic process data and disregard 

future developments. The approaches use different bases for their recommendations, which are KPI 

optimization (Barba et al., 2012; Petrusel and Stanciu, 2012; Terragni and Hassani, 2018; van der Aalst 

et al., 2010), similarity (Schobel and Reichert, 2017; Triki et al., 2013; Yang et al., 2017), predictions 

(Conforti et al., 2015; Dees et al., 2019; Weinzierl et al., 2020b), and combinations of these three aspects 

(Dorn et al., 2010; Schonenberg et al., 2008; Weinzierl et al., 2020a). Yang et al. (2017) provide multi-

activity recommendations in the form of entire following process flows while all other approaches make 

only next activity recommendations (Eili et al., 2021). Only a few approaches allow explicitly for 

replanning previous recommendations (Barba et al., 2012; Petrusel and Stanciu, 2012). Temporal 

dependencies or other restrictions are rarely taken into account (Barba et al., 2012; Dorn et al., 2010). 
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3 Method 

To answer our research question, we followed the established six-step DSR methodology by Peffers et 

al. (2007) (Figure 1). Our artifact is a PPM approach serving as RS, i.e., a method (Hevner et al., 2004; 

Hevner and Chatterjee, 2010; March and Smith, 1995) that generates recommendations for process 

flows optimized for energy costs. We have motivated our research (1) in Sections 1 and 2 and present 

design objectives (DOs) derived from the literature in Section 4.1 (2). For the design and development 

of PM4Flex (3), we applied situational method engineering (SME) (Ralyté et al., 2019). This entails 

setting the goal of the engineering task which we covered in (2) and constructing a suitable method for 

the problem at hand. We applied the method-driven strategy, particularly the assembly-based strategy 

by using justificatory knowledge from related work. SME evaluation is already included in DSR (5). 

Figure 1: Structure of the used method 

We demonstrated the feasibility of our artifact (4) using real-life data from a spiral pipe production 

process. Our evaluation (5) followed the framework for evaluation in DSR (FEDS), particularly the four 

steps of the evaluation strategy choice process for DSR (Venable et al., 2016) with a focus on the artifact 

itself (Cleven et al., 2009). First, we explicated the goal of the evaluation as demonstrating the efficacy 

and ensuring the rigor of our software prototype as an instantiation of our artifact. Second, we selected 

the technical risk & efficacy strategy (Venable et al., 2016) as we think the main design risk of our 

artifact is technical rather than social and a first artificial evaluation is sensible to avoid the risk of 

negatively influencing ongoing processes in a real-life setting. Third, we defined evaluation properties 

and criteria: approach-specific metrics like power cost savings, our DOs (Peffers et al., 2007), and the 

criteria validity, utility, and efficacy (Gregor and Hevner, 2013). The DOs are derived from a criteria-

based analysis of existing approaches in both EF and process mining literature. In line with the technical 

risk & efficacy strategy, we used two evaluation episodes for our research. The first one is artificial as 

it analyses the existing relevant literature and performs a criteria-based assessment of comparable 

approaches, coupled with presenting the practical relevance of our work. It is classified as formative 

since it was instrumental in improving the outcome of the outlined research process. The DOs as the 

central output of this first episode are input to the second evaluation episode (Peffers et al., 2007). 

Herein, based on real data sets and historical power prices, we deployed PM4Flex in an isolated 

environment, also classifying it as artificial. Thereby, we investigate to what extent the results of the 

artifact application match the expectations, classifying it as summative. 

4 PM4Flex Design Specification 

4.1 Definition of Objectives and General Concept 

Based on the relevant literature, we propose four DOs for PPM approaches for EF optimization:  

DO 1: A PPM approach for EF optimization should be transferable to complex, flexible processes within 

an EF context (Beier et al., 2017; Lu et al., 2020).  

DO 2: A PPM approach for EF optimization should allow for company- and process-specific constraints 

(Bahmani et al., 2022). Especially restrictions regarding time, energy, and sequence of activities are of 

importance. Therefore, a user-defined policy should be used to implement EF given the circumstances 

of the respective company and process (Kubrak et al., 2022). 

DO 3: A PPM approach for EF optimization should recommend entire pending process flows instead of 

focusing on isolated activities due to inherent interdependencies (Bahmani et al., 2022).  

DO 4: A PPM approach for EF optimization should be able to revise recommendations when 

circumstances change. For example, an external signal like new data triggers the artifact.  
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PM4Flex generates multi-activity recommendations for pending process flows of active process 

instances, thereby optimizing the energy cost based on the load profile of potential following process 

flows and a power price forecast. We use a knowledge-based RS since the requirements of our 

recommendation, e.g., the price forecast that the load profile must be adapted to, are explicitly stated 

and our recommendations need to be adjusted over time due to changing conditions (Aggarwal, 2016). 

The optimization run is triggered whenever a new energy price forecast is available. The approach is 

subject to the following prerequisites: The process and associated activities that PM4Flex is applied to 

must inhere a utilizable level of flexibility. The activities must not be fixed immutably in time and order, 

but must be reschedulable within a short time horizon. This is required since we use energy price 

forecasts from the spot market where ordering times are usually between one hour and 15 minutes before 

energy consumption respectively delivery. To enable the completion of all considered activities until 

their respective due dates, their duration should be considerably shorter than the time horizon of the 

forecast. As we consider short-term energy flexible planning and real-time process monitoring, 

PM4Flex only incorporates the following six EFM that can be deployed and are effective in the short 

term: interruption of activity, adjustment of activity sequence, interruption of instance, adjustment of 

instance sequence, deferral of instance starts, adjustment of resource (Tristán et al., 2020; VDI, 2020). 

In the following subsections, we describe the components of our RS, from input and data pre-processing 

to event log exploration, optimization, and output, which can be seen in Figure 2. 

 

Figure 2: Structure of the PM4Flex approach 

For explanatory purposes, we will use the assembly process of a radio throughout this paper. A 

corresponding process model is presented in Figure 3. 

4.2 Input and Data Pre-Processing 

PM4Flex incorporates five inputs. A current event log (I) of the as-is process containing at least a case 

identifier (ID) for respective instances, activity names, timestamps of the start and end time of each 

activity, and processing resources. Since not all relevant properties of process instances can be extracted 

from a standard event log, additional instance-specific information is considered (II). It includes relevant 

aspects like product type, customer, priority, or due dates which are necessary to, e.g., specify a suitable 

processing pattern or provide relevant constraints for the optimization model. Power consumption data 

(III) represents how much power is consumed by a specific resource in a specific time interval of the 

monitoring period. Based on that, load profiles are assigned to activity executions. The collection of 

resource-specific power consumption data with a sufficiently high temporal resolution can be supported 

by non-intrusive load monitoring, a technology that allows power consumption data from a central 

measuring point to be disaggregated for deriving reliable estimates of the consumption of individual 

resources (Klemenjak and Goldsborough 2016; Anderson et al. 2012; Schirmer and Mporas 2023). To 

Figure 3: Radio assembly process (source: Software AG, figure adapted from ARIS Process Mining) 
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allow for practical applicability, it is essential to incorporate company- and process-specific restrictions 

(IV). Such restrictions can address control flow, temporal, resource, or energy-related aspects. A current 

power price forecast (V) for a relevant spot market covering a certain period of the near future may be 

obtained from an external service provider. The time resolution of this forecast is determined by the 

length of the products traded and, thus, depends on company-specific choices of and on the spot market. 

The lead time, i.e., the time between the provision of the forecast and the start of the forecast horizon, 

should allow for technically feasible and practically realizable re-scheduling of active process instances. 

The subsequent step of pre-processing involves handling all input data types to provide an efficiently 

processable data set for both event log exploration and optimization. We did so as cleaning the data can 

improve the results of process mining considerably (Marin-Castro and Tello-Leal, 2021). The pre-

processing is structured along several data mining steps (García et al., 2015; García et al., 2016; Wirth 

and Hipp, 2000). Data preparation as the first step can be separated distinctly into data transformation 

and integration (García et al., 2016). In data transformation, raw data is converted into a manageable 

data format. First, the due dates provided in date format are converted into an integer value specifying 
the number of the period within the planning and optimization horizon corresponding to the respective 

due date. Second, the temporal resolution of the price forecast must be adapted to the temporal resolution 

of the process planning. For example, for a temporal resolution of the forecast of 15 minutes (intraday 

market) and a temporal planning granularity of 5 minutes, each data point of the price forecast must be 

duplicated twice. Data integration refers to merging data from different sources (García et al., 2016; 

Wirth and Hipp, 2000). We integrate the event log and power consumption data as follows: First, for 

each logged activity, the processing time is calculated as the difference between the start and end 

timestamps. Second, a specific load profile is assigned to each activity according to logged timestamps, 

processing resources, and power consumption data for that time interval. Third, the activities are 

grouped based on their case ID to form instances. Data reduction as the second part of pre-processing 

aims at reducing the number of considered data records to the relevant ones only (García et al., 2015; 

García et al., 2016) to make the model more efficient. In PM4Flex, we select only the relevant columns 

as well as quite recent activities and instances from the given data sets to minimize processed data and, 

hence, computation time. The latter is especially relevant due to the frequency of optimization runs of 

our artifact. 

4.3 Event Log Exploration 

Within the event log exploration, we use the prepared data to extract all relevant process information 

for the optimization model. To do so, we first enrich the prepared event log with instance-specific 

information and power consumption data. Second, since the process variants are not known upfront, we 

manually specify end events such that each process instance that includes these events is automatically 

classified as finished and as active otherwise. Only the latter ones are considered in the optimization. 

Third, already finished activities within each active instance are identified automatically within the 

logged data. Based on already completed process instances, we determine a set of all possible future 
activities in the process, compare it to the list of already finished activities, and receive a list of all 

activities that potentially are still to be done. Fourth, depending on the already finished activities and, 

for instance, on different product types, it is specified which process variants are possible for the instance 
at hand. E.g., if the instance represents a radio of a certain model, only process variants for this model 

are relevant, not the ones for another radio model. Fifth, depending on the identified variants, the list of 

potentially pending activities is reduced to the ones which actually have to be done to finish the process 

of that specific product adequately. Depending on the prevalence of the variants, the approach prioritizes 

them for the optimization of the pending process flow. Sixth, based on the information in the event log, 

values are assigned to the parameters needed for the optimization model. The parameters are described 

in Section 4.4 for the optimization model. 
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4.4 Optimization Model 

For the formulation of our optimization model, we assume perfect knowledge of all process-related 

parameters, e.g., processing duration or order of activities, as well as data given as time series, e.g., spot 

market prices for electricity or resource availability. This assumption infers that the scheduler knows 

the exact realizations of all parameters at the time of scheduling even if the actual realization of those 

parameters takes place in the future. Consequently, none of the considered parameters has a dynamic or 

stochastic nature. To reach a maximum, while striving for efficiency of computational effort, the 

optimization model is formulated as an ILP with all decision variables being expressed as binaries. The 

ILP finds an optimal processing schedule for the active process instances and their respective activities 

within a specific time horizon. Contrary to existing EF approaches, which focus on resources and their 

associated buffers (Beier et al., 2017; Lu et al., 2020; Schultz et al., 2015; Sun and Li, 2014; Zhou and 

Li, 2013), we adopt a process perspective. It includes constraints that ensure flexibilization within 

relevant boundaries. The majority of the input parameters can be determined through analysis of the 

event log. However, other parameters must be provided by human professionals or information systems 

(e.g., enterprise resource planning or energy management systems). Both input parameters and decision 

variables can have one or more indices, which refer to the four sets the model is based on: the active 

instances 𝐼 = {1, … , |𝐼|}, the possible activities 𝐽 = {1, … , |𝐽|}, the existing resources 𝑅 = {1, … , |𝑅|}, 
and the planning horizon 𝑇 = {1, … , |𝑇|}. 

Our model entails several control flow, time, resource, and energy-related parameters. Where the value 

of the parameter is derived from is indicated by: (I) event log exploration, (II) instance-specific 

information, (III) power consumption data, (IV) restrictions, and (V) power price forecast. Parameters 

considering the control flow of the process are the following: The binary parameter 𝑡𝑜𝐵𝑒𝐷𝑜𝑛𝑒𝑖,𝑗 (I) 

specifies whether an activity of an instance is still pending. Whether the two activities 𝑗1 and 𝑗2 can be 

parallelized is indicated by the binary parameter 𝑃𝑟𝑙𝑗1,𝑗2
 (I). Dependencies between activities are 

indicated by the binary parameter 𝑂𝑟𝑑𝑗1,𝑗2
 (I). The latter takes the value 1 if activity 𝑗1 must be carried 

out without overlapping before activity 𝑗2. If 𝑂𝑟𝑑𝑗1,𝑗2
 has the value 0, there is no restriction regarding 

the order of the 𝑗1 and 𝑗2 in this direction, but 𝑂𝑟𝑑𝑗2,𝑗1
 can still have the value 1. The maximum number 

of interruptions per 𝑗 is given by #𝐼𝑛𝑡𝑟𝑗 (I). Temporal characteristics are captured by the following 

parameters: The processing time of 𝑗, 𝜏𝑗
process

, must remain within the interval [𝜏𝑗
𝑡𝑜𝑡𝑎𝑙; 𝜏𝑗

𝑡𝑜𝑡𝑎𝑙
] (I). 

[𝜏𝑗1,𝑗2;
𝑏𝑡𝑤 𝜏𝑗1,𝑗2

𝑏𝑡𝑤
] (I) denotes the time interval after the end of processing 𝑗1 in which the processing of 𝑗2 

must start. The duration of interruptions is bound to [𝜏𝑗
𝑖𝑛𝑡𝑟; 𝜏𝑗

𝑖𝑛𝑡𝑟
] (I) and a lower limit of periods for 

which 𝑗 must be executed uninterruptedly 𝜏𝑗
𝑛𝑜𝑛𝑖𝑛𝑡𝑟 (I). Further, we have to stick to the due date 𝐷𝐷𝑖 ,𝑗 

(II) for each 𝑗 and 𝑖 due to temporal requirements, commitments, and consequential costs from non-

compliance. The following parameters consider resources: The binary parameter 𝑅𝑒𝑠𝐴𝑣𝑟,𝑡 (I) indicates 

whether 𝑟 is available in 𝑡. If this is the case, 𝑟 can process 𝑗 for #𝑃𝑟𝑙𝐼𝑛𝑠𝑡𝑗,𝑟 (I) instances simultaneously. 

Whether two resources 𝑟1 and 𝑟2 can operate in parallel is indicated by the binary parameter 𝑃𝑟𝑙𝑅𝑒𝑠𝑟1,𝑟2
 

(I). The following parameters depict the energy-related characteristics: 𝑃𝑗,𝑟
hist (I) denotes the estimated 

power consumption of 𝑟 while executing 𝑗. Lower and upper limits on power supply, indicated by 𝑃𝑡  and 

𝑃𝑡 (III), might occur due to physical limitations in the network (Bahmani et al., 2022) or contractually 

regulated purchase quantities. The forecasted spot market price in 𝑡 is denoted by 𝑝𝑡 (V). The risk factor 

𝛿𝑡 (V) incorporates the uncertainty of predicted 𝑝𝑡 and typically increases with incrementing 𝑡, since the 

predictive accuracy of 𝑝𝑡 forecasts decreases with decreasing temporal proximity to the time of 

fulfillment (Klobasa, 2007). If there are any additional restrictions (IV) that cannot be obtained from the 

event log or other input data, the parameter values are set by process experts either based on their 

experience or information from other systems before the rest of the values are determined. 

Our model further includes the following binary variables: 𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡 indicates whether the 

processing of instance 𝑖, activity 𝑗 on resource 𝑟 actively takes place in period 𝑡. Likewise, 𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡 
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indicates whether 𝑗 of 𝑖 is assigned to 𝑟 in 𝑡. If no allocation is made and, consequently, no processing 

is performed, both decision variables are 0. The start and end of 𝑗 to 𝑟 assignments and processing phases 

are signaled by the binary (auxiliary) decision variables 𝑜𝑐𝑐𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡, 𝑜𝑐𝑐𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡 , 𝑎𝑐𝑡𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡  and 

𝑎𝑐𝑡𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡. 𝐸𝑥𝑒𝑗,𝑟,𝑡 indicates whether 𝑟 is performing 𝑗 in 𝑡 or is (at least) occupied to execute 𝑗.  

Using all the introduced sets, parameters, and variables, our optimization model writes as follows: The 

objective function of PM4Flex minimizes power procurement costs. 

min ∑ 𝑝𝑡 ∙ 𝛿𝑡 ∙ ∆𝑡 ∙ ∑ ∑ ∑ 𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡
|𝑅|
𝑟=1 ∙ 𝑃𝑗,𝑟

hist|𝐽|
𝑗=1

|𝐼|
𝑖=1

|T|
𝑡=1   (1) 

The specified objective function is subject to energy (Eq. (2)), control flow (Eqs. (4), (5), (6)), resource 

(Eqs. (7), (8), (9)), and temporal (Eqs. (10), (11), (12), (13)) constraints, ensuring feasibility. As an 

energy constraint, Eq. (2) ensures compliance with power supply limitations. 

𝑃𝑡  ≤ ∑ ∑ ∑ 𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡
|𝑅|
𝑟=1 ∙ 𝑃𝑗,𝑟

ℎ𝑖𝑠𝑡|𝐽(𝑖)|
𝑗=1

|𝐼|
𝑖=1 ≤ 𝑃𝑡   ∀𝑡 ∈ 𝑇 (2) 

The processing of an activity cannot be (re-) started and ended in the same period. Eq. (4.1) to Eq. (4.6) 

ensure that the logical relationships between the six activity-based decision variables are complied with. 

𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡 − 𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡−1  = 𝑜𝑐𝑐𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡 − 𝑜𝑐𝑐𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4.1) 

𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡 − 𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡−1 = 𝑎𝑐𝑡𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡 − 𝑎𝑐𝑡𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4.2) 

𝑎𝑐𝑡𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡 + 𝑎𝑐𝑡𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡  ≤ 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4.3) 

𝑜𝑐𝑐𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡 + 𝑜𝑐𝑐𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡 ≤ 𝑎𝑐𝑡𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡 + 𝑎𝑐𝑡𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4.4) 

𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡  ≤ 𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4.5) 

𝑜𝑐𝑐𝑖,𝑗,𝑟,0 = 𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑇 = 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅 (4.6) 

Activities can be interrupted or paused while being executed. However, e.g., due to quality aspects 

(Leinauer et al), interruptions cannot take place arbitrarily and, thus, are restricted by Eq. (5.1) to (5.4). 

For example, when executing quality checks of the radio, there might be requirements that prevent from 

interrupting the process arbitrarily often and long such as testing the stable sound of the radio. 

𝜏𝑗
𝑖𝑛𝑡𝑟 ∙ 𝑎𝑐𝑡𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡  ≤ ∑ (1 − 𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑠)

𝑡+𝜏𝑗
𝑖𝑛𝑡𝑟−1

𝑠=𝑡   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (5.1) 

(𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡 − 𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡)  ≤ ∑ 𝑎𝑐𝑡𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡+𝑠
𝜏𝑗

𝑖𝑛𝑡𝑟

𝑠=1   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (5.2) 

#𝐼𝑛𝑡𝑟𝑗 + 1  
≥ ∑ ∑ 𝑎𝑐𝑡𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡

|𝑅|
𝑟=1

|𝑇|
𝑡=1   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (5.3) 

 𝜏𝑗
𝑛𝑜𝑛𝑖𝑛𝑡𝑟 ∙ 𝑎𝑐𝑡𝑆𝑡𝑎𝑟𝑡𝑖 ,𝑗,𝑟,𝑡  ≤ ∑ 𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑠

𝑡+ 𝜏𝑗
𝑛𝑜𝑛𝑖𝑛𝑡𝑟−1

𝑠=𝑡   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (5.4) 

Regarding the processing sequence and order of activities, it is necessary to specify dependencies 

between different activities as predecessor-successor relationships modeled by Eq. (6). As 

aforementioned, specific cables might need to be applied before the antenna can be screwed on the radio. 

In contrast, it might not matter whether you glue on the brand label or the model number first. 

𝑂𝑟𝑑𝑗1,𝑗2 ∙ 𝑡𝑜𝐵𝑒𝐷𝑜𝑛𝑒𝑖,𝑗1
 − 1 ≤ ∑ ∑ 𝑜𝑐𝑐𝐸𝑛𝑑𝑖,𝑗1,𝑟,𝑠 − 𝑜𝑐𝑐𝑆𝑡𝑎𝑟𝑡𝑖,𝑗2,𝑟,𝑠

|𝑅|
𝑟=1

𝑡
𝑠=1   ∀𝑖 ∈ 𝐼, 𝑗1, 𝑗2

∈ 𝐽, 𝑡 ∈ 𝑇 
(6) 

Eq. (7.1) ensures that processing only takes place if 𝑟 is available in 𝑡. In our model, a resource is not 

per se limited to the processing of only one 𝑖 at a time but instead, 𝑟 can process 𝑗 for #𝑃𝑟𝑙𝐼𝑛𝑠𝑡𝑗,𝑟 

instances simultaneously (Eq. (7.2)). In our radio assembly example, this could be a machine screwing 

antennas on several radios at the same time. 

𝑅𝑒𝑠𝐴𝑣𝑟,𝑡  ≥ ∑ 𝐸𝑥𝑒𝑗,𝑟,𝑡
|𝐽|
𝑗=1   ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (7.1) 

𝐸𝑥𝑒𝑗,𝑟,𝑡 ∙ #𝑃𝑟𝑙𝐼𝑛𝑠𝑡𝑗,𝑟  ≥ ∑ 𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡
|𝐼|
𝑖=1   ∀𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (7.2) 
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If more than one 𝑖 can be processed simultaneously by 𝑟 (#𝑃𝑟𝑙𝐼𝑛𝑠𝑡𝑗,𝑟 > 1), Eq. (8.1) and (8.2) ensure 

that processing of the corresponding 𝑖 indeed takes place parallelly, time-congruently, and not staggered.  

𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡 ≤ 𝐸𝑥𝑒𝑗,𝑟,𝑡 + (1 − 𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (8.1) 

𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡 ≥ 𝐸𝑥𝑒𝑗,𝑟,𝑡 − (1 − 𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (8.2) 

Our model allows for operating resources in parallel. For example, antennas can only be applied after 

the required cables are installed, so it is not sensible that the machine for adding cables and the one for 

adding antennas operate at the same time for one 𝑖. Also, several 𝑗 of 𝑖 can be allocated and processed 

parallelly. For instance, antennas and power buttons can be screwed onto the radio at the same time by 

the same machine. Eq. (9.1) and Eq. (9.2) limit parallelization to the technically feasible level. 

𝑃𝑟𝑙𝑗1,𝑗2
+ 1  ≥ ∑ 𝑜𝑐𝑐𝑖 ,𝑗1,𝑟,𝑡 + 𝑜𝑐𝑐𝑖,𝑗2,𝑟,𝑡

|𝑅|
𝑟=1   ∀𝑖 ∈ 𝐼, 𝑗1, 𝑗2 ∈ 𝐽, 𝑡 ∈ 𝑇 (9.1) 

𝑃𝑟𝑙𝑅𝑒𝑠𝑟1,𝑟2
+ 1  ≥ ∑ 𝐸𝑥𝑒𝑗,𝑟1,𝑡 + 𝐸𝑥𝑒𝑗,𝑟2,𝑡

|𝐽|
𝑗=1   ∀𝑟1, 𝑟2 ∈ 𝑅, 𝑡 ∈ 𝑇 (9.2) 

𝜏𝑗
process

 is estimated within the event log exploration and must be adhered to in the planning (Eq. (10.1)). 

Furthermore, the allocation of 𝑗 of 𝑖 can only occur once over the planning horizon and only for one 𝑟 

(Eq. (10.2)). For example, an assembly error at one cable of a radio can only be corrected by the one 

machine capable of installing it and, naturally, this specific error must be corrected only once. 

𝜏𝑗
process

∙ 𝑡𝑜𝐵𝑒𝐷𝑜𝑛𝑒𝑖,𝑗  = ∑ ∑ 𝑎𝑐𝑡𝑖𝑣𝑒𝑖,𝑗,𝑟,𝑡
|𝑅|
𝑟=1

|𝑇|
𝑡=1   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (10.1) 

𝑡𝑜𝐵𝑒𝐷𝑜𝑛𝑒𝑖,𝑗  = ∑ ∑ 𝑜𝑐𝑐𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡
|𝑅|
𝑟=1

|𝑇|
𝑡=1   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (10.2) 

We further limit the total duration of allocating 𝑗 to 𝑟, e.g., due to quality aspects or resource 

characteristics. Complying with this restriction is ensured by Eq. (11.1) and Eq. (11.2). In our exemplary 

process, the functionalities of a radio must be tested at least for a certain time to check all functionalities. 

However, testing it longer does usually not add value. 

𝜏𝑗
𝑡𝑜𝑡𝑎𝑙 ∙ 𝑜𝑐𝑐𝑆𝑡𝑎𝑟𝑡𝑖,𝑗,𝑟,𝑡  ≤ ∑ 𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑠

𝑡+𝜏𝑗
𝑡𝑜𝑡𝑎𝑙−1

𝑠=𝑡   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (11.1) 

𝑜𝑐𝑐𝑖,𝑗,𝑟,𝑡  ≤ ∑ 𝑜𝑐𝑐𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡+𝑠
𝜏𝑗

𝑡𝑜𝑡𝑎𝑙

𝑠=1   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (11.2) 

Practical rationales to constrain the time between two activities 𝑗1 and 𝑗2 exist. A minimum time span 

could be the consequence of a required transport or cool-down step. Exemplarily, a radio must be 

transported from the machine that finishes assembly to the manual testing station. An upper limit is 

reasonable for a case of sequential processing with 𝑗1 transitioning 𝑖 to a state necessary for executing 

𝑗2. After putting glue on a radio, the brand label can be applied for a limited time only before the glue 

is already dry. The required starting period of 𝑗2 after 𝑗1 is modeled by Eq. (12.1) and Eq. (12.2). 

1 − ∑ 𝑜𝑐𝑐𝐸𝑛𝑑𝑖,𝑗1,𝑟,𝑡
|𝑅|
𝑟=1   ≥ ∑ ∑ 𝑜𝑐𝑐𝑆𝑡𝑎𝑟𝑡𝑖,𝑗2,𝑟,𝑠

|𝑅|
𝑟=1

𝑡+𝜏𝑗1,𝑗2
𝑏𝑡𝑤 −1

𝑠=𝑡   ∀𝑖 ∈ 𝐼, 𝑗1, 𝑗2 ∈ 𝐽, 𝑡 ∈ 𝑇 (12.1) 

𝑡𝑜𝐵𝑒𝐷𝑜𝑛𝑒𝑖,𝑗2
∙ 𝑂𝑟𝑑𝑗1,𝑗2 ∙

∑ 𝑜𝑐𝑐𝐸𝑛𝑑𝑖,𝑗1,𝑟,𝑡
|𝑅|
𝑟=1   

≤ ∑ 𝑜𝑐𝑐𝑆𝑡𝑎𝑟𝑡𝑖 ,𝑗2,𝑟,𝑠
𝑡+𝜏𝑗1,𝑗2

𝑏𝑡𝑤
−1

𝑠=𝑡   ∀𝑖 ∈ 𝐼, 𝑗1, 𝑗2 ∈ 𝐽, 𝑡 ∈ 𝑇 (12.2) 

Compliance with due dates is necessitated by Eq. (13). If delivering a certain number of radios by a 

specified date is contractually agreed on, one has to adhere to it to maintain customer satisfaction. 

𝐷𝐷𝑖,𝑗 ≥ ∑ ∑ 𝑜𝑐𝑐𝐸𝑛𝑑𝑖,𝑗,𝑟,𝑡 ∙ 𝑡|𝑇|
𝑡=1

|𝑅|
𝑟=1   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (13) 

4.5 Output 

The proposed optimization model derives an optimal individual schedule for pending activities of active 

instances as an output. This schedule contains information about sequence, point in time, processing 

resources, duration, and interruption of activities. Periodic updates of the processing schedule due to a 

change in environmental conditions enable energy-oriented real-time scheduling of instances. From a 
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capacity planning perspective, a detailed occupancy schedule of the considered resources is also 

obtained. This resource-specific schedule provides information about the time, duration, and type of 

activities to be processed. Based on this, e.g., break or setup times can be planned. 

5 Demonstration and Evaluation 

First, we evaluate whether and to which extent PM4Flex fulfills the DOs presented in Section 4.1. 

PM4Flex fulfills DO1 as will be presented in this section by being applied to a flexible but complex 

process from a real-life production. PM4Flex allows for company- and process-specific constraints and 

satisfies DO 2 since they can be integrated by instantiating the input parameters, either derived from the 

event log or set manually, or by adding specific constraints. PM4Flex fulfills DO3 as it can recommend 

entire process flows including the pending activities, which is proven in our instantiation. Addressing 

DO4, PM4Flex can quickly adapt its recommendations to changes like a new price forecast or a change 

in the availability of a resource by automatically adjusting its input parameters. 

To demonstrate the added value of our artifact, we implemented an instantiation of PM4Flex1 as a 

software prototype in python. We used the pm4py package (Berti et al., 2019) for the event log 

exploration and the gurobipy package to create the proposed optimization model that we applied to a 

scenario based on a real-world event log and historical power spot market price data. To quantify the 

added value of the developed PM4Flex approach, we considered a benchmark approach.  

Comparing existing scheduling approaches from the energy domain (cf. Section 2.1) to PM4Flex, we 

found that there are no approaches that can serve as a direct quantitative benchmark, but rather as a 

qualitative one given our experimental setting and the used data. In comparison to PM4Flex, two classes 

of energy-oriented scheduling approaches can be distinguished in current literature: The first class 

relates to approaches for simple processes only, taking a resource-centric perspective and aiming at 

adjusting the power consumption according to external variables (spot market prices, self-generation, 

etc.) by changing the operational state of machines (Beier et al., 2017; Schultz et al., 2015; Sun and Li, 

2014). Since our data set contains complex control flow dependencies of a non-linear process, we cannot 

apply them to our evaluation setting. The second class of approaches (Bank et al., 2021; Bahmani et al., 

2022) considers power consumption and process-inherent EF on a higher level of abstraction, where 

comprehensive and detailed knowledge of the EFM properties (Schott et al., 2019) is needed. This 

requires extensive analysis of the relevant processes, involved resources, and historical power 

consumption in the form of an industrial EF audit (Tristán et al., 2020), which can be a considerable 

temporal and financial effort. For this reason, our partnering company could not provide such extensive 

insights, making a comparison infeasible.  

On the other hand, there are also no PPM approaches to quantitatively compare our artifact to. In fact, 

some approaches aim to optimize cycle times (Bozorgi et al., 2021), take resource constraints into 

account (Shoush and Dumas, 2022b, 2022a), recommend next best actions (Weinzierl et al., 2020a; 

Barba et al., 2012), and do so self-adjustedly (Dorn et al., 2010) and step by step similar to our approach 

(Yang et al., 2017). Many of them use machine learning (Barba et al., 2012; Bozorgi et al., 2021; Shoush 

and Dumas, 2022b), e.g., neural networks (Weinzierl et al., 2020a). However, we did not do so 

intentionally to avoid a black box, making the procedure of how the recommendation is made clear and 

replicable. This is important for users to understand and trust the recommendation and to evaluate 

whether they want to follow it. In contrast to learning algorithms, PM4Flex should be applicable to and 

achieve reasonable results with any kind and size of event log data basis. We lack a sufficiently large 

database for a reasonable utilization of learning algorithms as a benchmark. One approach in PPM is 

based on sequence graphs and process models (Dorn et al., 2010), which we could also derive from our 

data. However, this approach makes recommendations with regard to possible next activities only 

without considering cost, making a direct comparison impossible. We could overcome all of these 

 

1 https://www.dropbox.com/scl/fo/o9mppdugo3cn62tle4luq/h?dl=0&rlkey=hda2wu1oksltn7unx5k9cy4u2 
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drawbacks, however, none of the existing approaches optimizes the recommendations subject to a 

changing price forecast, which makes a direct comparison infeasible as well. 

Due to this lack of a reasonable benchmark, we use a widespread approach for production process 

optimization in the industry (Li et al., 2015) as our point of comparison. This approach is an optimization 

model that minimizes the maximum completion time and generates a process schedule from that. For a 

reasonable comparison, both the benchmark and PM4Flex account for control flow dependencies among 

activities and were tested with the same data set. Below, we present the investigated process and input 

parameters in more detail. 

The considered process is essentially based on the event log of a real-world process for spiral pipe 

production of a German medium-sized heating and air conditioning company. The corresponding 

process-related data contains the event log, power consumption data per workstation, and due dates as 

well as product allocations as instance-specific information. The process includes several activities from 

cutting, grinding, bending, welding, and lacquering the metal, to assembling, checking, packing, and 

shipping the spiral pipe. For the electricity price forecast, we used actual historic market data from the 
European power exchange (EPEX SPOT) for the German intraday market of 2022. It is important to 

note that we assume perfect knowledge of the realizations of electricity spot market prices, i.e., the 

forecasted prices used for the optimization equal actual realizations. Furthermore, we consider two 

business days, Monday, October 17th, and Tuesday, October 18th, 2022. The ILP considers discrete 

periods of 30-minute intervals.  

We consider several metrics (power procurement cost, maximum completion time, computation time) 

for our comparison. The first metric is calculated by summing up the products of electricity price and 

electricity consumption over all instances and time periods. The maximum completion time relates to 

the completion time of the last instance over all resources considered within the optimization run. 

Computation time is the time required to reach an optimal solution. The more complex a process gets, 

i.e., the more dependencies and constraints, the longer the execution time. Since the process we used for 

the evaluation is already quite complex with regards to dependencies, however, it can be said that the 

approach is applicable to complex processes. Depending on the frequency of replanning and the 

resulting need for fast optimization, the ability to extend the optimization model is, however, limited. 

Our evaluation results are summarized in Table 1. Both implemented approaches were run on a virtual 

machine with a 2.25 GHz 32-core CPU and 16 GB RAM using the Gurobi solver. 

As an output for our artifact and the benchmark, we obtain for each active instance and its pending 

activities a start and an end period, its duration, the resource on which it should be processed, as well as 

the associated electricity procurement cost (Table 1).  

Table 1: Output of PM4Flex (excerpt) 

Instance Activity Resource Start End Duration Electricity Cost 

Instance127 Activity13 Resource14 5 6 1 0.385255 

Instance133 Activity07 Resource10 41 46 5 2.706225 

… … … … … … … 

From the experimental setting and its outcomes, we receive the following results for the comparison of 

PM4Flex and the benchmark (Table 2) that enable us to quantify the added value of PM4Flex. As aimed 

for, PM4Flex yields lower power costs than the benchmark. Both approaches lead to a power 

consumption of 650.61 kWh for ten processed instances. However, PM4Flex identified a solution with 

minimal electricity costs of 19.36 € saving procurement costs of 10.13 € which equals 34.35 % compared 

to the processing according to benchmark scheduling. In contrast, PM4Flex yields a greater maximum 

completion time. However, the results are still compliant with the due dates, ensuring timely production 

and, hence, representing no issue for applying PM4Flex in practice. Regarding the computation time, 

PM4Flex exceeds the benchmark by 197.5 seconds. Nevertheless, it is still within a reasonable time 

span to be used with a 30 min replanning frequency. 
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Table 2: Comparison of PM4Flex and a benchmark 

approach power procurement cost maximum completion time computation time 

PM4Flex 19.36€ period 48 221.85s 

Benchmark 29.49€ period 21 24.37s 

Based on these results, we evaluate PM4Flex with respect to validity, utility, and efficacy. Comparing 

the recommendations with the actual process flows in the event log, it can be observed that PM4Flex 

indeed provides valid recommendations under the given circumstances and restrictions ensuring its 

validity (Gregor and Hevner, 2013). An isolated demonstration environment ensures that other factors 

besides PM4Flex do not influence and modify the recommendations and resulting savings guaranteeing 

the efficacy of the artifact (Gregor and Hevner, 2013). As PM4Flex outperforms the benchmark 

approach in terms of power costs, it achieves its set objective and, hence, adds value to the process it is 

applied to ensuring the utility of our artifact (Gregor and Hevner, 2013). 

6 Discussion and Conclusion 

Due to a high weather dependency on RES, power generation is becoming more volatile. Both the energy 

system and companies need to ensure a reliable energy supply and adapt to fluctuating energy prices. 

To support companies in exploiting the EF potential of their processes, we developed PM4Flex, 

following the DSR paradigm. PM4Flex helps companies to adjust flexible processes in the short term 

to volatile energy supply by implementing EFM in an energy-cost minimizing manner. For 

demonstration and evaluation, we instantiated PM4Flex as a software prototype and applied it to real-

world data from a spiral pipe production process. We compared it to a throughput time minimizing 

benchmark proving that PM4Flex outperforms this benchmark in terms of power costs.  

With PM4Flex, we contribute to research by creating descriptive design knowledge for both the energy 

and the process mining domain. On the one hand, we extend PPM with specific EFM as interventions 

as well as with a non-black box approach. PM4Flex focuses on energy consumption and energy-cost 

minimization rather than on time-related KPIs which is paired with power price data. Entire pending 

process flows rather than only one next activity are recommended. Hence, we add a new perspective to 

PPM. On the other hand, PM4Flex also allows for the exploitation of EF from a process perspective, 

extending established EF-oriented planning approaches. It considers power prices in the optimization 

which was rarely done in existing EF approaches. Overall, PM4Flex helps to exploit the potential of 

process mining for EF optimization, thereby addressing several research gaps.  

Our research, of course, is subject to limitations. First, given the assumptions described in Section 4.1, 

we cannot claim exhaustiveness. For example, due to PM4Flex’s focus on short-term adaptations of 

processes, not all EFM are considered. Moreover, the more requirements and circumstances are 

considered, the more complex the model gets, and, thus, the execution time increases. Additionally, we 

only considered power but did not take other kinds of energy like heat or cold into account. Further, due 

to growing complexity, we did not look at prosumers, energy storage, or other possibilities to adjust the 

energy consumption from the grid. Also, our approach is not fully automated. It is still necessary to 

manually adjust the constraints according to the company-specific requirements, resulting in the 

requirement for human expertise. On top of that, our evaluation is limited as we focused on artificial 

evaluation activities and a specific process. Therefore, we consider PM4Flex as an initial step towards 

the exploration of process mining for exploiting EF, opening the possibility for further research. 

Future work could, for example, focus on automating the derivation of constraints from past event logs. 

To increase its generalizability, our approach could also be extended by price forecasts for other forms 

of energy. Since the number of both prosumers and energy storages is rising, it would be interesting to 

consider their specific restrictions and potentials as well. Special attention could be paid to the extended 

demand-side EF potential when, e.g., owning energy storage. Additionally, a more comprehensive 

evaluation of our approach, especially in a real-life setting (i.e., not only with extracted real-life data), 

is sensible to assess the practical feasibility and utility further. 



Stay Flexible 

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway                            

 14 

7 References 

Aggarwal, C. C. (2016). Recommender Systems. Cham: Springer International Publishing. 

Alcázar-Ortega, M., C. Calpe, T. Theisen and J. F. Carbonell-Carretero (2015). “Methodology for the 

identification, evaluation and prioritization of market handicaps which prevent the implementation 

of Demand Response: Application to European electricity markets” Energy Policy 86, 529–543. 

Bachmann, A., L. Bank, C. Bark, D. Bauer, B. Blöchl, M. Brugger, H. U. Buhl, B. Dietz, J. Donelly, 

T. Friedl, S. Halbrügge, H. Hauck, J. Heil, A. Hieronymus, T. Hinck, S. Ilieva-König, C. Johnzén, 

C. Koch, J. Köberlein, E. Köse, M. Lindner, S. Lochner, T. Mayer, A. Mitsos, S. Roth, A. Sauer, C. 

Scheil, J. Schilp, J. Schimmelpfennig, J. Schulz, J. Schulze, J. Sossenheimer, N. Strobel, A. Tristán, 

S. Vernim, J. Wagner, F. Wagon, M. Weibelzahl, M. Weigold, J. Weissflog, S. Wenninger, M. 

Wöhl, J. Zacharias and M. F. Zäh (2021). Energieflexibel in die Zukunft. Wie Fabriken zum 
Gelingen der Energiewende beitragen können. VDI_Handlungsempfehlung Oktober 2021: 

Fraunhofer-Gesellschaft. 

Bahmani, R., C. van Stiphoudt, S. P. Menci, M. SchÖpf and G. Fridgen (2022). “Optimal industrial 

flexibility scheduling based on generic data format” Energy Informatics 5 (S1). 

Bank, L., S. Wenninger, J. Köberlein, M. Lindner, C. Kaymakci, M. Weigold, A. Sauer and J. Schilp 

(2021). Integrating Energy Flexibility in Production Planning and Control - An Energy Flexibility 

Data Model-Based Approach: Hannover : publish-Ing. 

Barba, I., B. Weber and C. Del Valle (2012). “Supporting the Optimized Execution of Business 

Processes through Recommendations”. In F. Daniel, K. Barkaoui and S. Dustdar (eds.) Business 

Process Management Workshops, pp. 135–140. Berlin, Heidelberg: Springer Berlin Heidelberg. 

Beier, J., S. Thiede and C. Herrmann (2017). “Energy flexibility of manufacturing systems for variable 

renewable energy supply integration: Real-time control method and simulation” Journal of Cleaner 
Production 141, 648–661. 

Berti, A., S. J. van Zelst and W. van der Aalst (2019). Process Mining for Python (PM4Py): Bridging 

the Gap Between Process- and Data Science. URL: http://arxiv.org/pdf/1905.06169v1. 

BMWK and AGEE-Stat (2022). Zeitreihen zur Entwicklung der erneuerbaren Energien in 

Deutschland. URL: https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/zeitreihen-

zur-entwicklung-der-erneuerbaren-energien-in-deutschland-1990-

2021.pdf;jsessionid=A9E564FD596BC1D4DEED0EEE1DAE7C3E?__blob=publicationFile&v=35 

(visited on 11/16/2022). 

Bozorgi, Z. D., I. Teinemaa, M. Dumas, M. La Rosa and A. Polyvyanyy (2021). Prescriptive Process 

Monitoring for Cost-Aware Cycle Time Reduction. URL: http://arxiv.org/pdf/2105.07111v2. 

Cleven, A., P. Gubler and K. M. Hüner (2009). “Design alternatives for the evaluation of design 

science research artifacts”. In: Proceedings of the 4th International Conference on Design Science 
Research in Information Systems and Technology - DESRIST '09. Ed. by V. Vaishanvi, S. Purao. 

New York, New York, USA: ACM Press. 

Conforti, R., M. de Leoni, M. La Rosa, W. M. van der Aalst and A. H. Hofstede (2015). “A 

recommendation system for predicting risks across multiple business process instances” Decision 

Support Systems 69, 1–19. 

Dees, M., M. de Leoni, W. M. P. van der Aalst and H. A. Reijers (2019). What if Process Predictions 

are not followed by Good Recommendations? (Technical Report). 

Die Bundesregierung (2011). Bundesregierung beschließt Ausstieg aus der Kernkraft bis 2022. 

Schrittweise will die Bundesregierung bis zum Jahr 2022 alle Kernkraftwerke hierzulande 

abschalten. Dies ist ein elementarer Teil der Fortschreibung des Energiekonzepts. URL: 



Stay Flexible 

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway                            

 15 

https://www.bundesregierung.de/breg-de/suche/bundesregierung-beschliesst-ausstieg-aus-der-

kernkraft-bis-2022-457246 (visited on 11/16/2022). 

Dorn, C., T. Burkhart, D. Werth and S. Dustdar (2010). “Self-adjusting Recommendations for People-

Driven Ad-Hoc Processes”. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. 

C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. 

Tygar, M. Y. Vardi, G. Weikum, R. Hull, J. Mendling and S. Tai (eds.) Business Process 
Management, pp. 327–342. Berlin, Heidelberg: Springer Berlin Heidelberg. 

Eili, M. Y., J. Rezaeenour and M. F. Sani (2021). “A Systematic Literature Review on Process-Aware 

Recommender Systems”. 

(2020). Energieflexible Fabrik - Grundlagen VDI 5207 Blatt 1. VDI. URL: 

https://www.vdi.de/richtlinien/details/vdi-5207-blatt-1-energieflexible-fabrik-grundlagen (visited on 

07/18/2022). 

Eurelectric (2014). Flexibility and Aggregation Requirements for their interaction in the market. A 

EURELECTRIC paper. URL: https://www.usef.energy/app/uploads/2016/12/EURELECTRIC-
Flexibility-and-Aggregation-jan-2014.pdf (visited on 11/16/2022). 

Fahrenkrog-Petersen, S. A., N. Tax, I. Teinemaa, M. Dumas, M. de Leoni, F. M. Maggi and M. 

Weidlich (2019). Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring. 

URL: http://arxiv.org/pdf/1905.09568v2. 

García, S., J. Luengo and F. Herrera (2015). Data preprocessing in data mining. Cham: Springer 

International Publishing AG. 

García, S., S. Ramírez-Gallego, J. Luengo, J. M. Benítez and F. Herrera (2016). “Big data 

preprocessing: methods and prospects” Big Data Analytics 1 (1). 

Gregor, S. and A. R. Hevner (2013). “Positioning and Presenting Design Science Research for 

Maximum Impact” MIS Quarterly 37 (2), 337–355. 

Heffron, R., M.-F. Körner, J. Wagner, M. Weibelzahl and G. Fridgen (2020). “Industrial demand-side 

flexibility: A key element of a just energy transition and industrial development” Applied Energy 

269, 115026. 

Hevner, March, Park and Ram (2004). “Design Science in Information Systems Research” MIS 
Quarterly 28 (1), 75. 

Hevner, A. and S. Chatterjee (2010). Design Research in Information Systems. Theory and Practice. 

Boston, MA: Springer US. 

Klobasa, M. (2007). “Dynamische Simulation eines Lastmanagements und Integration von 

Windenergie in ein Elektrizitätsnetz auf Landesebene unter regelungstechnischen und 

Kostengesichtspunkten”. ETH Zurich. 

Kubrak, K., F. Milani, A. Nolte and M. Dumas (2022). “Prescriptive process monitoring: Quo vadis ?” 

PeerJ Computer Science 8, e1097. 

Leinauer, C., P. Schott, G. Fridgen, R. Keller, P. Ollig and M. Weibelzahl (2022). “Obstacles to 

demand response: Why industrial companies do not adapt their power consumption to volatile 

power generation” Energy Policy 165, 112876. 

Li, W., H. Dai and D. Zhang (2015). “The Relationship between Maximum Completion Time and 

Total Completion Time in Flowshop Production” Procedia Manufacturing 1, 146–156. 

Lu, R., Y.-C. Li, Y. Li, J. Jiang and Y. Ding (2020). “Multi-agent deep reinforcement learning based 

demand response for discrete manufacturing systems energy management” Applied Energy 276, 

115473. 



Stay Flexible 

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway                            

 16 

March, S. T. and G. F. Smith (1995). “Design and natural science research on information technology” 

Decision Support Systems 15 (4), 251–266. 

Marin-Castro, H. M. and E. Tello-Leal (2021). “Event Log Preprocessing for Process Mining: A 

Review” Applied Sciences 11 (22), 10556. 

Nayak, A., S. Lee and J. W. Sutherland (2019). “Dynamic Load Scheduling for Energy Efficiency in a 

Job Shop with On-site Wind Mill for Energy Generation” Procedia CIRP 80, 197–202. 

Papaefthymiou, G., K. Grave and K. Dragoon (2014). Flexibility options in electricity systems. URL: 

https://www.ourenergypolicy.org/wp-content/uploads/2014/06/Ecofys.pdf (visited on 11/16/2022). 

Papaefthymiou, G., E. Haesen and T. Sach (2018). “Power System Flexibility Tracker: Indicators to 

track flexibility progress towards high-RES systems” Renewable Energy 127, 1026–1035. 

Peffers, K., T. Tuunanen, M. A. Rothenberger and S. Chatterjee (2007). “A Design Science Research 
Methodology for Information Systems Research” Journal of Management Information Systems 24 

(3), 45–77. 

Petrusel, R. and P. L. Stanciu (2012). “Making Recommendations for Decision Processes Based on 

Aggregated Decision Data Models”. In W. Abramowicz, V. Sakalauskas, D. Kriksciuniene and W. 

van der Aalst (eds.) Business Information Systems: 15th International Conference, BIS 2012, 
Vilnius, Lithuania, May 21-23, 2012, Proceedings, pp. 272–283. Berlin, Heidelberg: Springer 

Berlin Heidelberg. 

Ralyté, J., R. Deneckère and C. Rolland (2019). “Towards a Generic Model for Situational Method 

Engineering”. In R. King (ed.) Active Flow and Combustion Control 2018, pp. 95–110. Cham: 

Springer International Publishing. 

Ricci, F., L. Rokach and B. Shapira (2022). Recommender Systems Handbook. New York, NY: 

Springer US. 

Sauer, A., E. Abele and H. U. Buhl (eds.) (2019). Energieflexibilität in der deutschen Industrie. 

Ergebnisse aus dem Kopernikus-Projekt - Synchronisierte und energieadaptive Produktionstechnik 

zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung - 

SynErgie. Stuttgart: Fraunhofer Verlag. URL: https://opus.hs-

offenburg.de/frontdoor/index/index/docId/4061. 

Schobel, J. and M. Reichert (2017). “A Predictive Approach Enabling Process Execution 

Recommendations”. In G. Grambow, R. Oberhauser and M. Reichert (eds.) Advances in Intelligent 

Process-Aware Information Systems. Concepts, Methods, and Technologies, pp. 155–170. Cham: 

Springer International Publishing; Springer. 

Schonenberg, H., B. Weber, B. van Dongen and W. van der Aalst (2008). “Supporting Flexible 

Processes through Recommendations Based on History”. In M. Dumas (ed.) Business Process 

Management, pp. 51–66. S.L.: Springer Berlin / Heidelberg. 

Schott, P., J. Sedlmeir, N. Strobel, T. Weber, G. Fridgen and E. Abele (2019). “A Generic Data Model 
for Describing Flexibility in Power Markets” Energies 12 (10), 1893. 

Schultz, C., P. Sellmaier and G. Reinhart (2015). “An Approach for Energy-oriented Production 

Control Using Energy Flexibility” Procedia CIRP 29, 197–202. 

Schultz, C. M. (2018). “System zur energieorientierten Produktionssteuerung in der auftragsbezogenen 

Fertigung”. Technische Universität München. 

Shoush, M. and M. Dumas (2022a). “Prescriptive Process Monitoring Under Resource Constraints: A 

Causal Inference Approach”. In J. Munoz-Gama and X. Lu (eds.) Process mining workshops. ICPM 

2021 International Workshops, Eindhoven, The Netherlands, October 31 - November 4, 2021 : 

revised selected papers, pp. 180–193. Cham: Springer. 



Stay Flexible 

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway                            

 17 

Shoush, M. and M. Dumas (2022b). “When to Intervene? Prescriptive Process Monitoring Under 

Uncertainty and Resource Constraints”. In BPM 2022 (20th International Conference on Business 

Process Management), pp. 207–223. 

Sun, Z. and L. Li (2014). “Potential capability estimation for real time electricity demand response of 

sustainable manufacturing systems using Markov Decision Process” Journal of Cleaner Production 

65, 184–193. 

Teinemaa, I., N. Tax, M. de Leoni, M. Dumas and F. M. Maggi (2018). “Alarm-Based Prescriptive 

Process Monitoring”. In M. Weske, M. Montali, I. Weber and J. vom Brocke (eds.) Business 

Process Management Forum, pp. 91–107. Cham: Springer International Publishing. 

Terragni, A. and M. Hassani (2018). “Analyzing Customer Journey with Process Mining: From 

Discovery to Recommendations”. In: 2018 IEEE 6th International Conference on Future Internet of 
Things and Cloud - FiCloud 2018. 6-8 August 2018, Barcelona, Spain : proceedings. Ed. by M. 

Younas, J. P. Disso, I. I. C. o. F. I. o. T. a. Cloud. Piscataway, NJ: IEEE, pp. 224–229. 

Triki, S., N. B. B. Saoud, J. Dugdale and C. Hanachi (2013). “Coupling Case Based Reasoning and 
Process Mining for a Web Based Crisis Management Decision Support System”. In: 2013 

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 
2013). Hammamet, Tunisia, 17-20 June 2013. Ed. by S. Reddy. Piscataway, NJ: IEEE, pp. 245–

252. 

Tristán, A., F. Heuberger and A. Sauer (2020). “A Methodology to Systematically Identify and 

Characterize Energy Flexibility Measures in Industrial Systems” Energies 13 (22), 5887. 

van der Aalst, W. M. P. (2011). Process Mining. Berlin, Heidelberg: Springer Berlin Heidelberg. 

van der Aalst, W. M. P., M. Pesic and M. Song (2010). “Beyond Process Mining: From the Past to 

Present and Future”. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. 

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. 

Tygar, M. Y. Vardi, G. Weikum, R. Hull, J. Mendling and S. Tai (eds.) Business Process 

Management, pp. 38–52. Berlin, Heidelberg: Springer Berlin Heidelberg. 

Venable, J., J. Pries-Heje and R. Baskerville (2016). “FEDS: a Framework for Evaluation in Design 

Science Research” European Journal of Information Systems 25 (1), 77–89. 

Weinzierl, S., S. Dunzer, S. Zilker and M. Matzner (2020a). “Prescriptive Business Process 

Monitoring for Recommending Next Best Actions”. In D. Fahland, C. Ghidini, J. Becker and M. 

Dumas (eds.) Business Process Management Forum. BPM Forum 2020, Seville, Spain, September 
13–18, 2020, Proceedings, pp. 193–209. [S.l.]: Springer Nature. 

Weinzierl, S., M. Stierle, S. Zilker and M. Matzner (2020b). “A Next Click Recommender System for 

Web-based Service Analytics with Context-aware LSTMs”. In: Proceedings of the 53rd Hawaii 

International Conference on System Sciences. Ed. by T. Bui: Hawaii International Conference on 

System Sciences. 

Wirth, R. and J. Hipp (2000). “CRISP-DM: Towards a standard process model for data mining” 

Proceedings of the 4th International Conference on the Practical Applications of Knowledge 

Discovery and Data Mining. 

Yang, S., X. Dong, L. Sun, Y. Zhou, R. A. Farneth, H. Xiong, R. S. Burd and I. Marsic (2017). “A 

Data-driven Process Recommender Framework” KDD : proceedings. International Conference on 
Knowledge Discovery & Data Mining 2017, 2111–2120. 

Zhou, Z. and L. Li (2013). “Real time electricity demand response for sustainable manufacturing 

systems considering throughput bottleneck detection”. In: 2013 IEEE International Conference on 

Automation Science and Engineering (CASE): IEEE, pp. 640–644. 

 


	STAY FLEXIBLE: A PRESCRIPTIVE PROCESS MONITORING APPROACH FOR ENERGY FLEXIBILITY-ORIENTED PROCESS SCHEDULES
	Recommended Citation

	Abstract
	1 Introduction
	2 Theoretical Background and Related Work
	2.1 Energy Flexibility
	2.2 Process Mining, Prescriptive Process Monitoring, and Recommender Systems

	3 Method
	4 PM4Flex Design Specification
	4.1 Definition of Objectives and General Concept
	4.2 Input and Data Pre-Processing
	4.3 Event Log Exploration
	4.4 Optimization Model
	4.5 Output

	5 Demonstration and Evaluation
	6 Discussion and Conclusion
	7 References

