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Abstract
Supervised machine learning is becoming increasingly popular - and so is the need for annotated training
data. Such data often needs to be manually labeled by human workers, not unlikely to negatively impact
the involved workforce. To alleviate this issue, a new information systems class has emerged - interactive
labeling systems. However, this young, but rapidly growing field lacks guidance and structure regarding
the design of such systems. Against this backdrop, this paper describes antecedents, design features,
and outcomes of interactive labeling systems. We perform a systematic literature review, identifying 188
relevant articles. Our results are presented as a morphological box with 14 dimensions, which we evaluate
using card sorting. By additionally offering this box as a web-based artifact, we provide actionable
guidance for interactive labeling system development for scholars and practitioners. Lastly, we discuss
imbalances in the article distribution of our morphological box and suggest future work directions.

Keywords: Interactive Labeling, Annotation, Interactive Machine Learning, Crowdwork.

1 Introduction

Machine learning (ML) has become pervasive in our daily lives and work. Current approaches are often
based on supervised ML, which, allows scaling beyond hundreds of thousands or even millions of training
instances to achieve accurate results on complex problems (Hestness et al., 2017). This strength of scaling,
however, is also one of the main drawbacks, i.e. it requires copious amounts of labeled training data.
When suitable data is not available and alternatives like synthetic data do not suffice, such labels must be
created manually. In this regard, labeling is often performed on crowdworking platforms like MTurk, and
is repeatedly referred to as “the blue-collar job of the age of artificial intelligence (AI)” (Gahntz, 2018;
Reese, 2016). However, this also has serious downsides: Labeling, being defined as adding information
to existing data (Zankl et al., 2012) by human workers has been called a costly, error-prone, and labor-
intensive process that often negatively impacts the workers involved (Bernard et al., 2018; Nadj et al.,
2020; L. Zhang et al., 2008b). Specifically, in homes across the globe, crowdworkers perform labeling
tasks in minuscule pieces (Alpar and Osterbrink, 2020) often leading to motivational problems, adverse
performance effects, or boredom (Gadiraju et al., 2019).
1 Research funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project number 447287107.

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway 1



Knaeble et al. / Interactive Labeling Tools of Trade

To alleviate these issues, labeling tasks are nowadays performed in cooperation with machine intelligence.
Hereby, a new class of information systems has emerged - that of interactive labeling (IL) systems.
IL is defined as “combining automatic steps with incremental user input” (Bernard et al., 2018). IL
differentiates from plain labeling tasks by incorporating machine intelligence in an interactive fashion, as
opposed to using manual work start to end. For instance, when having crowdworkers annotate documents,
Ramos et al. (2020) provide guidance in form of an iterative, incremental process, leveraging the workers
capabilities to teach humans a skill. With only minimal training, their novices matched the performance
of professionals. Their guidance further leads to lower frustration among participants. Chang et al. (2017)
have worked on designing IL systems leveraging the scalability of crowdworking platforms. When having
images labeled, they used a series of synchronized stages involving multiple workers each. By allowing
for ambiguity and labeling as structures instead of binary decisions, they could decrease instruction effort
and allow for an ex-post setting of label boundaries. While it may be easy to decide that a photo of a
house cat should be labeled ’cat’, and that of a Caterpillar-branded (short CAT) excavator should not
be, the decision for a wild leopard is not straight forward. Hereby the stages of their system allow for
labeler-led creation of new subcategories, if disagreement occurs. This is especially helpful to prevent
fatal inconsistencies in the dataset, if, for instance, some labelers find leopards to be cats, while others do
not. The IL system asks labelers for explanations for such disagreement, extracts sub-category names, and
uses these as new labels to allow for the task issuers to resolve the question after labeling has concluded.
So far, a considerable number of articles have already been published despite the young nature of this
new class of information systems. Amershi et al. (2014) provide an initial overview, differentiate IL from
previous works, and introduce the mistreatment of users as oracles. Further, we have previously studied
user archetypes addressed in IL research illustrating two competing perspectives of how users are treated
(Knaeble et al., 2020): (a) oracle (e.g. users are asked if a label is correct) versus (b) teacher (e.g. users
can provide deeper explanations in labeling tasks). Moreover, recently, we derived five general design
principles along prominent literature findings and exemplary IL approaches illustrating that the design of
such systems is diverse, and can significantly vary in scope and functionality (Nadj et al., 2020).
However, this diversity encompasses a complex of dimensions and characteristics across different IL
systems that is not currently well understood. Y. Zhang et al. (2022) have recently argued for more
support for those developing IL systems, as they commonly need to be tailor-made. Knowing which
design features IL systems offer (and which alternatives exist) is therefore of utmost importance. Hereby,
designers and developers of IL systems require an overview of the available design features of IL systems,
to be able to make educated decisions. Furthermore, research needs to draw connections between such
design features, foregoing antecedents, and following outcomes. Recent research in crowdworking has
highlighted the importance of both (Alpar and Osterbrink, 2020). Antecedents are hereby task and context
specific requirements and necessities, in the context of IL systems this could be what data is supposed
to be labeled, whereas outcomes are goals which are seen as desirable by designers, such as efficiency.
By understanding such antecedents and outcomes, IL designers and developers get examples on how to
optimize their systems regarding given antecedents or desired outcomes. As IL is a young and popular field
of research the need for conducting such a study is exacerbated further. As we will show, the amount of
relevant research is increasing rapidly. While we have derived knowledge about how IL systems currently
treat users (Knaeble et al., 2020) and we outlined general goals to aim for when creating IL systems (Nadj
et al., 2020), there is a gap of design knowledge on how to achieve such goals. Specifically there is no
overview of existing design features, foregoing antecedents, and following outcomes. Hereby, research
has created, implemented, and evaluated numerous design features of IL systems, but is yet to aggregate
such results for a holistic picture. On this basis, we formulate the following research question (RQ): How
to describe antecedents, design features, and outcomes of interactive labeling systems in a morphological
box? Hereby, we rely on a systematic literature review (SLR), deductive and inductive coding, as well as
a card sorting evaluation.
Our theoretical contributions lie in the following. First, we present a literature-grounded and user-
evaluated systematic overview of a new class of information systems, along antecedents, design features,
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and outcomes in form of a morphological box. Thereby, any given IL system can be described along
the dimensions and respective characteristics of the box. Second, we provide guidance and a starting
point for future research in IL, whereas information systems scholars may use the box to identify gaps in
existing research, i.e. dimensions with little previous work. Practically, we contribute by delivering our
morphological box not only in form of a static table in this research paper, but also instantiated it as a
web-based living artifact. Therefore, one can filter through our 188 included papers by selecting desired
configurations of the box. Practitioners thereby benefit from an overview of the possibilities in IL system
design and development, as well as a clear outline of required antecedents and expectable outcomes.
Further, we invite others to propose new additions to the box, as well as to use its code to serve other
paper’s boxes. The remainder of this article is structured as follows. Initially we explain foundational
concepts in IL. Afterwards we outline our methodology to make our research process transparent. We
then present and discuss our results, limitations, and future work, before coming to a conclusion.

2 Foundations

IL belongs to the broader research area of IML, which focuses on “building ML models iteratively”
(Trivedi, 2016). Within IML, researchers have found benefits in collaborative approaches combining the
complementary strengths of humans and ML models. They identify challenges, as well as advantages,
ranging in application contexts from teaching robots (Cakmak et al., 2010) to organizational learning
(Sturm et al., 2021). Hereby researchers repeatedly identify the need for a guiding overview to coordinate
such efforts and call for further research on the topic (Amershi et al., 2014; Sturm et al., 2021) and find
strong performance benefits from combining manual and automated approaches in labeling (Gu and Leroy,
2019). T. Zhang et al. (2020) report an increase in label granularity without negative effects on mental
workload, while Hamidi-Haines et al. (2019) discuss avenues to increase users trust in the product of their
labeling efforts. Figure 1 shows an overview of previous conceptualizations of IL research. Firstly, we
outline the related domains of IL and IML, as explained by Amershi et al. (2014), based on a visualization
of Trivedi (2016). This is in contast to the user-centered perspective we take in Knaeble et al. (2020),
whereas IL systems treat users either as the as teachers or oracles. Lastly, in Nadj et al. (2020) we have
already offered five design principles as a guiding lens for IL systems design (c.f. Figure 1).

Interactive 
Machine 
Learning Interactive

Labeling

Active 
Learning

Reinforcement 
Learning

Preference 
Learning

Oracles

Teachers

vs. Increase perceiv. relevance

Embrace intent of users

Support engagement

Assess interruptability

Adjust transparency

Figure 1. Previous Conceptualizations of IL Research Based on Amershi et al. (2014), Knaeble et al.
(2020), Nadj et al. (2020), and Trivedi (2016) .

The IML paradigm has been founded as a reaction to the shortcomings of active learning (AL) with regard
to its user involvement (Amershi et al., 2014). Hereby, established AL approaches mistreat the user as an
oracle (e.g. users are repeatedly asked if a label is correct). AL thereby works by querying a label for the
unlabeled data instance in which the system is most uncertain, i.e. sees the most potential for learning. Such
approaches may lead to frustration, a loss of trust, and ultimately a lower perceived system performance
(Amershi et al., 2014; Cakmak et al., 2010). Further research implies motivational deficiencies for
crowdworkers in such restricted setups (Durward et al., 2020). Organizational shortcomings like wage-
theft further contribute to this issue (Shafiei Gol et al., 2019). On the technical side, AL has difficulties
with modern architectures like deep learning, as they cannot deliver the early uncertainty estimations that
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AL requires for sample selection, nor quickly retrain on a single instance. Additionally long training cycles
could delay each user interaction. These two-fold criticisms have led to the IL paradigm as a derivative
of AL (Amershi et al., 2014). IL further intersects with preference learning, as well as reinforcement
learning. Preference learning hereby defines preferences towards certain errors or error types, to “refine
the decision boundaries” (Amershi et al., 2014). Techniques from preference learning could indicatye
tendency towards certain errors. Imagine, e.g. a production scenario in which quality assurance might
rather falsely discard an actually good part, in place of mistakenly keeping a faulty one. Reinforcement
learning on the other hand is a paradigm in which the learning agent bases its decision on feedback in
form of rewards or punishments, issued by a human, an automated judge, or another ML system (Knaeble
et al., 2020; Trivedi, 2016). Cakmak et al. (2010) have shown how the IL paradigm helps to differentiate
between human and machine judges.

3 Methodology

To address our RQ, we combine several methodological approaches in sequence. Our initial set of
publications is derived from a SLR. Based on these SLR results, we employ qualitative methods combining
bottom-up with top-down coding, to derive a morphological box organized along the three focal points of
interest (i.e. antecedents, design features, and outcomes). Finally, we evaluate and subsequently adapt
our box with a card sorting study, relying on both qualitative insights from interview workshops, and
quantitative measures of fit.

3.1 Systematic Literature Review

SLRs are an established research method in the field of information systems, and are commonly used to
create an overview of emergent information system classes (e.g. Haug and Maedche, 2021). Thereby, we
follow established guidelines to plan, conduct, and report upon our review and its results (Kitchenham
and Charters, 2007; Webster and Watson, 2002).
Replicating the successful search strategy of Knaeble et al. (2020), who have previously investigated user
roles in IL, we employ a search string along two parts. Part I is (’interactive machine learning’ AND
(’annot*’ OR ’label*’)) OR ’interactive annot*’ OR ’interactive label*’, with word-stemming, whereas
’annot*’ matches e.g. ’annotate’, ’annotation’, or ’annotates’. We created this part I as we identified early
IL works, and such from different fields, to be using the terms IL and interactive annotation synonymously.
Additionally, we added a criterion to include works referencing the IML paradigm in conjunction with
labeling or annotation. As IL and IML intersect with several underlying learning approaches, as explained
by Trivedi (2016), we include part II to capture articles that refer only to them. However, as such terms
not necessarily relate to IL we employed further filtering to place an emphasis on the interactive user role
in the labeling process: (’annot*’ OR ’label*’) AND ’data*’ AND ’interact*’ AND ’user*’ AND (’active
learning’ OR ’preference learning’ OR ’reinforcement learning’). These related fields are mirrored in the
overview in Figure 1. We joined the two parts with an OR operator (I OR II).
Knaeble et al. (2020) identified six highly cited luminary articles within IL (introducing the IML paradigm,
Fails and Olsen, 2003; acknowledging AL drawbacks, Culotta and McCallum, 2005; introducing IL, Tian
et al., 2007; using dynamic termination, Branson et al., 2011; considering labeling costs, Joshi et al., 2012;
contrasting previous user mistreatment against new interactive approaches, Amershi et al., 2014). We
chose the four databases that returned hits on any of these six luminary papers: the ACM Digital Library,
Web of Science, Scopus, and IEEE Xplore. Knaeble et al. (2020) offer a detailed account of the luminary
articles and their return on these databases. Hereby, we included only peer-reviewed articles in English.
Also, we only considered articles that introduced an IL system. The aim of this had to be to interactively
collect training data. Among those articles excluded, most either mentioned that as a prerequisite to their
training process data needed to be labeled (without offering details), or emphasized the need for iteratively
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refining their resulting ML model in an IL process. Articles that focused on algorithm development,
primarily from AL, and on how to optimize training cost were excluded as well.

ACM

Scopus

WoS

IEEE

770 
articles

557 
articles

133 
articles

188 
articles

initial search

duplicate removal

selection criteria

forward/backward search

Figure 2. Search Results of the Systematic Literature Review.

We visualize our hit statistics in Figure 2. All steps in our search process were performed by two different
researchers working in parallel. Upon conflicts they re-reviewed the article with a third research to reach a
consensus. This was invoked for 14 articles, all of which were decided to be kept. Our literature search
process therefore produced an inter-coder agreement of 97.49%. Applying our search string, we retrieved
a total of 770 hits across the four databases. After removing duplicates, we were left with 557 unique
articles to consider. We then applied our above mentioned selection criteria, to identify 133 articles. We
followed the iterative approach outlined by Kitchenham and Charters (2007), reading titles, keywords, and
abstracts to exclude clear cases. For remaining articles the authors retrieved the full text and decided upon
this basis. As a last step, we followed the recommendations of Webster and Watson (2002) to perform a
so-called forward/backward search. Hereby, we iterated over each of the 133 search results and applied
the identical filter criteria to the papers cited in its reference list (backward search), as well as to papers
citing the identified paper via Google Scholar (forward search). During this, we identified a total of 55
additional articles, for a total of 188 relevant hits for further analysis. With Fails and Olsen (2003) we find
our earliest matching article from 2003, while more than half of all articles found are from 2020 or later.
This further supports our argument of IL as a recently emerging class of information systems.

3.2 Morphological Box & Coding

We choose to present our results in form of a morphological box (Zwicky, 1967). Such boxes have been
used successfully as a reliable classification scheme to structure results of literature reviews (Álvarez and
Ritchey, 2015; Haug and Maedche, 2021) and are commonly defined as “a creative way of illustrating all
the potential solutions to existing problems in a structured format” (Kley et al., 2011). Morphological
boxes break down subjects into their fundamental dimensions, and describing each dimension by potential
characteristics (Wissema, 1976). In our case, beyond an overview of predominant antecedents and
outcomes, as well as available design features, it serves to compare among them and identify most feasible
approaches (Kley et al., 2011).
We performed inductive coding, i.e. the characteristics were derived bottom-up. As a methodological guide
for inductive coding, we relied on the grounded theory approach (Corbin and Strauss, 1990; Wolfswinkel
et al., 2013) along open, axial, and selective coding. Hereby, open coding is to extract excerpts, so that
concepts may start to emerge, and to capture underlying information (Wolfswinkel et al., 2013). The
initial goal of our coding was to identify users, data/label properties, as well as design features of the IL
systems. The latter remained in our morphological box, whereas users split into antecedents (merging
with data/label properties) and outcomes. Axial coding strives to begin aforementioned aggregation by
identifying main characteristics. At this point we had identified 146 characteristics in 22 dimensions.
Lastly, selective coding refines the results. Key actions are revisiting the reasoning behind such emerging
characteristics and dimensions, eliminating duplicate coverings, and re-organizing the results (Kley et al.,
2011). All authors collaborated on this. We completed the coding process with the 14 dimensions and
their characteristics as visualized in Figure 4, however at this stage differently named. To perform our
coding, two researchers worked in parallel. For mismatches, a third researcher as involved to reach a
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consensus. During bottom-up coding for each of the 188 articles we thus decided the characteristic for
all 14 dimensions. 484 of this total of 2632 assignment decisions were discussed in the aforementioned
format, leading to an inter-coder agreement of 81.61%.
To complement this bottom-up approach, we applied deductive coding (top-down) by deriving dimen-
sions and characteristics from existing literature. Specifically, we identified two dimensions of integral
components of IL systems, already covered by previous work. These were integrated into our bottom-up
box (c.f. our Results chapter, on the design features of guidance and instance relations).

3.3 Card Sorting Evaluation

For structured classification schemes like morphological boxes or taxonomies to be beneficial to its users,
the categories it is based on matter most (Bailey, 1994; Nickerson et al., 2013), their names and definitions
should be meaningful, following a clear logic (Gregor, 2006). To evaluate such categorical groupings card
sorting procedures are the method of choice (Moore and Benbasat, 1991). Using a web-based card sorting
tool (https://kardsort.com), we presented participants with either all dimensions in the antecedents,
in the design features, or in the outcome space as categories to sort cards (i.e. the characteristics) into. In a
randomized order, the participants were presented with a list of all the characteristics, and were asked to
assign them. They could reconsider and change each assignment until they confirmed their submission,
but had to assign all in order to proceed. For both characteristics and dimensions, we provided a definition
(as can be found in our following Section as well as Tables 1, 2, and 3). Trivial characteristics in form of
“not reported” (none of the characteristics applicable) or “mixed” (combination of other characteristics)
were not included in the sorting procedure.
We used a crowdworking platform (https://www.prolific.co) to recruit participants that had at least
a Bachelor’s degree, as well as experience in software development. Further, we only recruited native
English speakers. One round of sorting was conducted for each of the antecedents and outcomes. In turn,
for the design features we performed two rounds of sorting and one round of interviews. For each round
of sorting, we recruited 10 participants, and an additional five for the round of interviews. On average,
participants were 35 years old (with a standard deviation of 10.5). Among our total of 45 participants
were 26 women and 19 men. One participant held a doctorate, 11 a Master’s, and 33 a Bachelor’s degree.
We briefed them on the concept of IL and the method of card sorting. The round durations varied between
those sorting antecedents (average of 9 min), design features (32 min for the first round, 15 min for the
second), and outcomes (11 min) as would be expected due to the difference in complexity. Interviews took
34 minutes on average. Notably, the sorting time was cut in half between the two rounds of sorting the
design features. We compensated according to this duration, resulting in an effective hourly wage of over
9 USD. Participants could only take part in one round. Following the recommendations of Moore and
Benbasat (1991), we iterated over our process, until two established measures of inter-rater and agreement
with our results confirm a meaningful and natural organization.
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Figure 3. Results of the Card Sorting Evaluation.
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To assess inter-rater agreement, we rely on Fleiss’ Kappa, an extension of Cohen’s Kappa for more than
two raters (Fleiss, 1971). Such agreement measures indicate reliability, hence that different raters or users
understand the same concepts. Moore and Benbasat (1991) define a value of 0.65 as acceptable. Landis
and Koch (1977) give a range of values, whereas they define values starting from 0 as slight, above 0.21
as fair, such above 0.41 as moderate, over 0.61 as substantial, and finally values above 0.81 as almost
perfect. It must be noted, however, that the thresholds from Landis and Koch (1977) were initially defined
for scenarios with comparably few raters (in their case 2) and few categories (4). Increasing either will
lead to a lower expected measure. Further, we measure how much the raters agree with our morphological
box by calculating the placement ratio (i.e. how many characteristics are placed in the correct dimension)
following Moore and Benbasat (1991). They do not define a threshold value for this metric, as for one
they frame it more as an exploratory tool, and second they argue that desired values are context dependent.
However, they report and accept a value of 0.85 for a complex task, and one of 0.92 for a simplified one.

Figure 3 shows an overview of our results, as well as the aforementioned thresholds. We began by
evaluating the more complex sorting of the design features. In our initial round I, participants produced
low scores for Fleiss’ Kappa (0.437) as well as placement ratio (0.671). Following the suggestions by
Rugg and McGeorge (2005), we then performed a round of five interviews to better understand thoughts
and conflicts. Interviews were performed online, while the screen was shared. We recorded all interviews
for later analysis. The task presented to the participants was identical to the card sorting rounds. To gain
insights into their approach, the interviewer asked, and continuously reminded, participants to think aloud.
Questions for clarification purposes were asked intermittently, based on the articulated thoughts. After
sorting has commenced, the interviewer iterated over those design features that were sorted wrongly,
asking to explain their reasoning behind their choice. Following each interview, we refined the naming
and definitions in our box. After the fifth interview, we had reached a stage, where only minor changes
needed to be made. Hence, we performed round II to confirm our assumption of a stable arrangement.
High inter-rater agreements (0.941) and placement ratios (0.970) confirm this.

For the considerably less complex antecedents and outcomes, the initial round of sorting already produced
Fleiss’ Kappas (0.875 and 0.911) as well as placement ratios (0.954 and 0.986) exceeding all thresholds.
Hence, here we accepted without further adjustment.

Type of Label

Type of Data

Type of 
Labeler

Error 
Treatment

Guidance

Label Input 
Format

Proactivity

Subset 
Sampling
Order of 

Presentation
Termination 

Criterion
Instance 
Relations

Model 
Training

Performance

Psychology

O
ut

co
m

es Efficiency (54) Effectiveness (24) Both (79) Not Reported (31)

Well-being (18) Trust (8) Perceived 
Usefulness (8)

Cognitive Load 
(8) Motivation (5)

Pre-trained (14) On-the-fly (53) Pre- and Re-trained (79) Ex-post (42)

Boredom (2) Mixed (17) Not Reported 
(122)

User Dependent (28) Prediction Quality (11) All Data is Labeled (18) Budget Constraint (131)

Instance Between-Group (16) Instance Within-Group (30) Instance Neighbors (27) Instance Only (115)

Uncertainty-based 
(50) Error-based (3) Random (45) Mixed (32)

By Instance (84) By Label (3) Random (101)

D
es

ig
n 

Fe
at

ur
es

Unerring Oracle (129) Ignore User Errors (36) Identify User Errors (23)

Prescribing (37) Directing (51) Orienting (54) Not Reported (46)

Creation from Scratch (69) Approval or Correction (23) Approval or Rejection (9) Mixed (87)

System (90) User (98)

Choice-based (42) Comparison-based 
(16)

Crowdworkers (11)A
nt

ec
ed

en
ts

Binary Classification 
(32)

Multi-Class 
Classification (97)

Bounding Box / 
Rough Location (17)

Segmentation / Exact 
Location (20)

Domain Experts (67) Nondescript Users (110)

Other Types (7)

Imagery (66) 3D Imagery (11) Audio-Visual 
Recordings (20) Text (31) Compound & 

Structured Data (43) Time-Series Data (17)

Meta Labels (15)

Figure 4. Resulting Morphological Box (Number of Papers per Characteristic in Parentheses).
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4 Results

Figure 4 illustrates the resulting morphological box. We show the number of articles representing each
characteristic in parentheses. The dimensions are structured along our three points of focus: antecedents,
design features, and outcomes. In this context, we define antecedents as externally given requirements
directly related to the goal of the labeling process. Design features are commonly referred to as “elements
that users see, hear, touch, or operate” (Han et al., 2000; Liu and Yu, 2017). Notable exclusions in the
context of labeling systems would be technical features like choice of ML algorithm, data structure, or
data transmission. We focus on the user side of IL systems. Lastly, we define outcomes as the measurable
consequences of the labeling process, be it on the product of the work, on the time and money required to
perform it, or on the people doing so. In the following subsections, we define the dimensions and their
respective characteristics. In addition to the overview in Figure 4 we offer our morphological box as a
web-based artifact2. Our artifact allows for filtering the list of references, also attached to this paper, by
selecting characteristics. Tables 1, 2, and 3 list all dimensions, along with their definitions.

4.1 Antecedents

Type of Label The kind of label the system seeks to assign to each data instance.
Type of Data The data format of the unlabeled data instances.
Type of Labeler The level of expertise, involvement, and origin of users.

Table 1. Dimensions and Associated Definitions for the Antecedents.

The dimension type of label describes the kind of label the system seeks to assign to its data instances. If
it is a binary classification task, the user provides one of two classes (e.g. yes/no type of decisions). In
contrast, in multi-class classification tasks there are three or more class labels to be chosen from when
assigning labels to instances. Further types of labels are the bounding box / rough location, where the user
provides a bounding box or another rough location input (e.g. center of body), and a class label. More
accurate is the segmentation / exact location, referring to pixel perfect segmentation or another exact
location inputs (e.g. polygon trace as in Ling et al., 2019), again with a class label. For meta-labels the
user provides labels that are not directly connected to the output the system wants to achieve, e.g. general
performance feedback. In rare cases, we find diverse other types.

A second antecedent dimension is the type of data, which is the format of the unlabeled data instances
present. Common are imagery data, i.e. two-dimensional photography. We call their three-dimensional
counterpart, e.g. from LIDAR cameras as shown by Boyko and Funkhouser (2014), 3D imagery. Audio-
visual-recordings refer to videosas well as sound recordings. Text data are for instance messages, reviews,
or interview transcripts. Tabular and multidimensional data-sets are referred to as compound & structured
data. Lastly, time-series data are sequences of data points with timestamps, e.g. sensor data-streams.

Four our third dimension of antecedents, we identify different types of labelers, hence a user’s level
of expertise, type, and involvement with the system. On one hand, we find domain experts, which have
experience in the target field required to execute the respective labeling, e.g. doctors labeling diseases in
radiology images (X. Wu et al., 2021b). A large group is represented within the nondescript users, with
no clearly specified expertise, but also with no distinct optimization towards crowds. These are within the
crowdworker characteristic, specifically designed for scaling.
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Error Treatment The acknowledgement of user input errors and their handling.
Guidance The support being provided by the system for the user.
Label Input Format The format of the labels, exactly as provided by the user.
Proactivity The active component that requests or provides label input.
Subset Sampling The strategy to choose which data to assign labels to.
Order of Presentation The arrangement in which instances are shown to the user.
Termination Criterion The benchmark upon which to stop the labeling process.
Instance Relations The application of label information beyond one instance.
Model Training The usage of machine learning models during labeling.

Table 2. Dimensions and Associated Definitions for the Design Features.

4.2 Design Features

With our first design feature error treatment, we identify three options for the acknowledgment of user
input errors and how to handle them. For the unerring oracle, the user input is considered as completely
error free and there is no error treatment taking place. The system designers ignore user errors if they
recognize that input may be erroneous, but do not take up countermeasures. They trust the learning system
to cope with faulty data. They may instead identify user errors by acknowledging erroneous input, and
installing precautionary features to detect and prevent (at least some) user errors. Commonly this is done
by aggregating labels across multiple coders via majority voting (e.g. T. Zhang et al., 2020).
We base our definition of guidance, as well as its three main characteristics on the works of Ceneda et al.
(2017). It refers to whether the system provides any support for the user, hence advice or information
aimed at resolving a problem, or pre-structuring of the data. Following Ceneda et al. (2017), the highest
degree of guidance is prescribing, hence supporting the user by steering them toward a predefined goal by
specifying a fixed process, giving explanations on why automated steps are undertaken, and enabling the
user to intervene. S. Das et al. (2020) provide such support by depicting by color where in the feature
space the user has already taken influence and what effect this had on the model, hence steering them
away from regions not promising further improvement. At a medium level is directing guidance, which
supports the user by presenting them with a potential course of action, e.g. previews to make informed
decisions or assistant-like features to show options. Lowest ranks orienting, i.e. supporting the user by
building or maintaining their mental map of the system by providing visual cues or overviews to resolve
knowledge gaps, like visually structuring or presenting the data. We additionally include a characteristic
for papers that do not report guidance features.
The label input format is the form of input that the user provides for the system. Here lies an important
distinction to the antecedent of type of label, which refers to the types of labels that the system wants to
assign, not how the user enters them. For instance, in label creation from scratch, the user enters exactly
what is expected as the type of label, hence labels are provided and entered by the user without any further
support. They could however also interact via label approval or correction in which case the user decides
whether a predetermined label is correct and approves it if so. If not, they enter a new label manually.
Hollandi et al. (2020), for instance, allow the user to accept accurate cell segmentations, or to redraw
them if the suggestion turns out erroneus. The characteristic label approval or rejection further abstracts
the input from the desired type of label, whereas the user then also decides whether a predetermined
label is correct and approves it if so. If not, however, they simply reject the suggestion. There also exist
mixed implementations of these three input formats, whereas the system may switch between them, e.g.
depending on whether it can yet make a sufficiently confident suggestion.
Proactivity refers to which party is the leading one in the labeling process, especially with regard to
requesting or giving input. As such there are two options. A proactive system requests specific label input

2 https://human-centered-systems-lab.github.io/ilmbox/
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interactions from the user. Whereas alternatively, the user may provide input proactively and freely at their
discretion by requesting where to interact and provide label input for the system. For instance, Majumder
and Yao (2019) rely on the user in such a regard.
If there are more unlabeled data instances available than can be labeled, a subset sampling needs to be
performed. It can be choice-based if the user selects a subset on whatever basis they find appropriate
(e.g. selecting representative examples for each class). System strategies encompass a comparison-based
selection by comparing unlabeled instances, e.g. by selecting similar or dissimilar examples. For an
uncertainty-based subset, the system performs the selection via its prediction uncertainty on yet unseen,
hence unlabeled, examples. Like Joshi et al. (2012), such IL systems are typically grounded in the AL
paradigm. Whereas for the test-based subset the system’s predictions are evaluated against an externally
given ground truth, i.e. labeled examples. We define systems without an explicitly stated strategy as having
a random selection process, as there is no conscious decision on what data to label. Even if all available
data is labeled, this also constitutes a random subset of the real world data that will have to be assessed in
the future. Lastly, we identify mixed strategies, combining the aforementioned ones.
Label interactions can be seen as tuples (x,y) of data instances x and label classes y. For instance, you
might have a series of family photos as instances. Imagine, as label classes you might want to identify
which photos contain your mother, your brother, daughter, best friend, or other relatives and acquaintances.
To now decide how to arrange this series of labeling decisions (x,y) for the user we refer to as the order
of presentation. There exist three fundamental options to sort such (x,y) tuples. One option is ordering
the presentation by instance first, hence presenting all decisions on one instance (i.e. all label classes for
this instance), before moving to the next instance. In our example you would label all known faces in a
photo, before moving to the next. With this order of presentation you avoid having to review one instance
multiple times. For complex multi-class labeling tasks, this could however be difficult. An alternative is
ordering by label first, hence presenting all decisions on one label class ordered subsequently (i.e. all
instances for this label class), before moving to the next label class. Hence, you would first search for
(and consequently label) photos containing e.g. your daughter. Such an order of presentation has unique
advantages, e.g. if this label class has specific importance, or if you have system-based suggestions already
grouping probable occurrences together. Lastly, one could sort at random with no specific arrangement
to the order in which the user is presented with their task (i.e. neither by label nor by instance). In our
example, the system could ask you whether this vacation photo contains your spouse, and in the next
image show you a selfie, asking if the person in the background is your best friend from college. While
such an arrangement may seem inconsequential at first sight, from a user’s perspective, random ordering
is what e.g. typical AL model training involves. If the system selects the next instance and label based on
an internal metric, the user has no transparent ordering by either one of the tuple’s components.
To stop the labeling process, either as invoked by the user or by the system, IL systems rely on predefined
termination criteria. A user dependent stop is performed manually, based on the user’s assessment of
the system performance or an inter-labeler agreement. Vargas-Munoz et al. (2019) argue that this allows
for expert users to better decide on the trade-off between exploration and exploitation. Alternatively, one
system based termination criterion is when a certain prediction quality has been reached. The system thus
stops the labeling process when the prediction quality of the model it has been training with the labeled
data exceeds a certain threshold. Further, the system may choose to stop only when all data is labeled, i.e.
the best possible base for training a capable model has been created. Lastly, the violation of certain budget
constraints play a role. Here, the system stops the labeling process when a certain budget is exceeded, e.g.
time/money spent on labeling, or amount of labels assigned.
As with guidance, for the instance relations we rely on a pre-existing top-down structure comprising
a range of four categories by Bernard et al. (2021) and adapted the following definitions from their
work. Therefore, this dimension represents how label information is applied beyond the focus instance,
suggestions the system makes regarding relationships between instances, and how the labels are spread
through the instances. Highest on the spectrum proposed by Bernard et al. (2021) rank the instance
between-group relations. Hereby, label information is applied to not only the focus instance it was
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assigned to, but also to instances across multiple pre-defined groups of instances. Clustering approaches,
pre-structuring the available unlabeled data into such groups, are one example of such instance relations.
Next lower are the instance within-group relations, where information is only applied within a pre-defined
group around the focus instance. Whereas for the instance neighbors information applies only to instances
in the focus instances local spatial region. Lowest rank instance only approaches, that represent no further
use of the label information beyond the focus instance it was initially assigned to.
As a last design feature, we identify model training. This dimension reflects how ML models support the
labeling, when they are trained, and whether feedback is being redirected back into the learning process.
For once, the IL system could rely on a pre-trained model. For such designs, the ML model used to
support the labeling process was trained beforehand, but is not being refined during the interaction process.
Data to train such a model could come from other labeling sources, synthetic generation, from a general
training-dataset not offering the specific classes required, or be an old dataset in need of updating due to
e.g. concept drift. A different approach is being taken in on-the-fly model training, where the supporting
model is created only during the interaction process. The pre- and re-trained approach combines the
previous two. A model trained beforehand is refined with user input during the interaction. Lastly, there
could be no ML model being used during the labeling process. If such a model is being trained only after
the interaction is finished, we categorize the IL systems under ex-post model training.

4.3 Outcomes

Performance The objectively measured system output in form of resulting labels.
Psychology The subjective impacts the system interaction had on involved workers.

Table 3. Dimensions and Associated Definitions for the Outcomes.

We identify two performance measures. Herein we categorized reports regarding the objectively measured
system output with a focus on results of the labeling task. Efficiency is improving the amount of time
(measured as such, in interactions/clicks, or in monetary terms) required to assign a label or a set amount
of them. Effectiveness on the other hand refers to improving the accuracy and completeness of the labels
that are being assigned as compared against a factual ground truth. There are also articles within our
search measuring both or not reporting performance measures at all.
The second dimension refers to psychological outcomes, i.e. reports on the impacts the interaction with
the labeling system had on its users, generally measured subjectively via a user’s perceptions. We find
the following constructs among the identified papers. Well-being refers to a user’s psychological health,
functioning, and pleasantness in and after the labeling task. Trust, often addressed in explainable ML
approaches, is defined as the perceived reliability and trustworthiness in the system. Perceived usefulness,
as a well established construct in technology acceptance studies in information systems research is present
for IL as well. It refers to the degree to which users believe the system enhances their labeling task and
outcome. The cognitive load is defined as the mental effort it takes to assign labels with the system,
whereas motivation refers to internal or external factors driving user behaviour. Additionally, we find
boredom being investigated as a user’s adaption to monotony or absence of autonomy. Furthermore, some
articles report a mixed combination of the aforementioned outcomes, or do not report any.

5 Discussion

To answer our RQ, we have provided our morphological box (c.f. Figure 4). In the following, we will
discuss noticeable insights about the distribution of articles within it. Hereby, these insights may serve as
a starting point for future work on the topic of IL systems.
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Regarding the types of label and data, we find no such insights, as articles are spread evenly across
the characteristics. However, we find little focus on IL systems optimized for crowdworking. Such
endeavours could coincide with rectifying the misalignment towards accepting input as error-free, or
ignoring such potential input errors. For instance, Chang et al. (2017) introduce a crowd-centric approach
with several synchronised stages involving many workers simultaneously. Hereby, they allow for inter-
worker comparison administrated by workers themselves. Further, they allow workers to explicitly state
their own inconfidence in certain label decisions. Such approaches, if transferred to other contexts, could
aim to resolve two shortcomings (crowdworking and error treatment) of recent IL works at once.
As with the label and data types, there seems to be a wide-covered spread of work on different stages of
guidance, formats of label input, options for proactivity, and subset sampling strategies. However, for the
latter, there is tendency to use uncertainty-based samples (typical for AL, no ground truth required), as
compared to error-based ones. A reason for this could be the issue of a cold start, whereas such a ground
truth dataset to evaluate errors on would have to be labeled firstly. We find a further misbalance regarding
the order of presentation. As such, we identify only three articles ordering their interaction by label. One
of them is Arendt et al. (2019), who focus on labeling handwritten digits. They allow for selection and
review ordered by classes, allowing users to focus on peculiarities of certain digits, e.g. ones with and
without left-downward tick, or sevens, with and without a cross-bar. While their approach benefits from
the limited amount of label classes, as well as a good pre-classification, this approach to structuring the
fundamental sequence of labeling interactions demands further investigation.
While there is a strong focus on budget constraints, as compared to other termination criteria, it seems
logical that such decisions are often made due to practical limitations. Whereas with the instance relations,
we find the majority of articles working with only the current in-focus instance to disregard potential
benefits of other approaches. By structuring and interconnecting unlabeled instances, label propagation
can be applied to rapidly label large datasets. For instance, Lee et al. (2021) use superpixel segmentation
to create disjunct groups of similar cells in medical whole-slide imaging for cancer detection. These
superpixels can then be labeled with one click, instead of having to repeat the label assignment for every,
almost identical cell within it. They have however yet to perform a real-world user evaluation, confirming
the initially good results from simulated tests. For the last design feature of model training, we find a
sensible focus on model improvement during the labeling process. Training only after the labeling has
concluded seems to be mainly motivated by high training times for e.g. deep neural nets.
For our outcome dimensions of performance and psychology, we find a severe imbalance towards the
former. All but 31 articles report at least either one of efficiency or effectiveness, if not both. In contrast,
122 articles do not report any user-centered psychological outcomes. The spread of the remainder over six
different constructs, often with different operationalizations, underlines the recentness of the field of IL
and its rapid growth across different research domains. Regardless, our results show a concerning lack of
regard for the labeling workers in many of the studies.

5.1 Limitations & Future Research

Although we followed established methodological guidelines to ensure a high rigor of our morphological
box of IL systems, this study is not without limitations to consider.
While our search strategy has been adopted from Knaeble et al. (2020), any potential bias in it, will replicate
here. Following the recommendations of Webster and Watson (2002), we conducted a forward-backward
search to mitigate potential biases from the search string or the selection of the databases. Furthermore, we
addressed potential biases during the coding and article selection with a multi-coder approach. As IL is a
young and rapidly growing discipline around an emergent class of information systems, this morphological
box cannot claim exhaustive coverage of all possible design feature dimensions. Researchers could come
up with entirely new ones, leading to the potential future need to update our results accordingly. The same
holds true for characteristics. This becomes most apparent for the psychological outcomes, where studies
must simply include a new construct in their user evaluations, to demand inclusion in an updated box.
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Figure 5. Screenshots from https: // human-centered-systems-lab. github. io/ ilmbox/

Future research could further expand our box by including technical features. For instance the choice of
ML algorithms or the underlying data structures could also be assessed.
Our evaluation was only performed with potential users of IL systems. While this has its strengths
in supporting the comprehensibility of the box, general recommendations extend to additional expert
evaluations in a real-world context (Moore and Benbasat, 1991; Nickerson et al., 2013). In the future, a
study should be carried out with IL practitioners as target audience, allowing researchers to observe how
such a morphological box is used for IL design and development. To facilitate such an endeavour, we have
already provided our results as an easy to access web-based artifact, and invite the IL community to use it,
to jointly transform this static framework into a living one, which can grow with the field of IL research.
This web-based artifact can also be of use to address the aforementioned point of the design features of
IL systems expanding in the future, eventually demanding an extension of the morphological box we
provide here. Researchers could also expand our artifact into a recommender system, e.g. integrating
empiric evidence about the effects of certain design features. Furthermore, context can determine quite
powerful restrictions and requirements for the IL system. Our web-based artifact allows for filtering of the
morphological box based on such restrictions. If for instance, the IL system is supposed to be used for
segmenting images in the medical context, and only domain experts can be used as a labeler type, then
this can be selected in our artifact. The result will then show a box specific for domain expert IL systems,
omitting, e.g. design features commonly found for crowdworker application. We see further use for this
artifact to be spun-off into other literature reviews resulting in morphological boxes and have consequently
made it open source. Future researchers may therefore simply provide their coded list of papers, as well
as the structuring of a morphological box, and the artifact will generate a matching front-end.

6 Conclusion

In the age of AI the creators of such models often rely on cheap labor - for instance from crowdworking
platforms, home of a potential new blue-collar job - to generate labeled data. Labeling workers typically
perform their tasks supported by IL systems, a new class of information systems, which form their tools
of trade. Research has, until now, not offered a morphological box of antecedents, design features, and
both task- and worker-centric outcomes of such systems. With this work we provide such an overview to
support future development of the tools of trade of an emergent class of blue-collar workers.
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