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Abstract 

To make sense of their increasingly digital and complex environments, organizations strive for a future 

in which machine learning (ML) systems join humans in collaborative learning partnerships to 

complement each other’s learning capabilities. While these so-called artificial assistants enable their 

human partners (and vice versa) to gain insights about unique knowledge domains that would otherwise 

remain hidden from them, they may also disrupt and impede each other's learning. To explore the 

virtuous and vicious dynamics that affect organizational learning, we conduct a series of agent-based 

simulations of different learning modes between humans and artificial assistants in an organization. We 

find that aligning the learning of humans and artificial assistants and allowing them to influence each 

other’s learning processes equally leads to the highest organizational performance. 

 

Keywords: Organizational learning, machine learning, human-AI collaboration, simulation. 

1 Introduction 

Organizational performance and survival are significantly influenced by organizations’ ability to learn 

about and adapt to the environment (external reality) surrounding them (e.g., Levitt and March, 1988; 

March, 1991; Argote et al., 2003). Since organizations learn through the learning of their members (e.g., 

Fiol and Lyles, 1985; Levitt and March, 1988; Huber, 1991; Argote et al., 2021), human peculiarities 

such as their cognitive biases, learning myopia, and bounded rationality have plagued organizational 

learning from its very beginning (e.g., Simon, 1972, 1979; Levinthal and March, 1993). As learning 

about the many facets of reality is a challenging endeavor, humans have gradually developed ever more 

sophisticated tools to enhance their ability to learn (e.g., March, 2006). This has led to the emergence of 

information systems with ever-increasing information processing capabilities (e.g., Alavi and Leidner, 

2001; March, 2006; Berente et al., 2021). Recently, this trend has driven the widespread adoption of 

artificial intelligence (AI) based on machine learning (ML) algorithms (e.g., Mitchell, 1997; 

Brynjolfsson and Mitchell, 2017; Russell and Norvig, 2021). By learning from vast amounts of digital 

information (e.g., digital trace or machine data), ML systems can uncover insights about domains of 

knowledge that would otherwise remain hidden from humans due to humans’ bounded rationality (e.g., 

Ransbotham et al., 2020). For instance, by better navigating trading markets’ vast complexity, ML 

systems can help identify previously overlooked strategies to improve stock market trading. While non-

ML systems only capture human knowledge (e.g., in the form of human-defined rules) and thereby 

exclusively support human learning (e.g., Alavi and Leidner, 2001), ML systems’ unique learning 
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capability allows them to act as a new type of organizational learner and join humans in organizations’ 

search for knowledge with their own contributions (e.g., Argote et al., 2021; Sturm et al., 2021). 

Since “complexity is all around us in this increasingly digital world” (Benbya et al., 2020, p. 1), we 

anticipate that the importance of ML systems will continue to increase as more organizational processes 

rely on digital information and digital domains of knowledge outside of humans’ bounded rationality 

(e.g., Baskerville et al., 2020; Benbya et al., 2020; Kane et al., 2021; Sturm et al., 2021). At the same 

time, certain domains of knowledge are likely to remain exclusively within the realm of human 

expertise, as they have yet to be captured or inherently cannot be digitized (e.g., analog or privacy-

protected information, intuition, or certain social cues). To complement human learning capabilities, 

practitioners and researchers alike envision ML-based assistance for all individuals in both private and 

professional settings (e.g., Kane et al., 2021; Young et al., 2021). For instance, the recent emergence of 

ML systems that utilize large language models to engage in an ongoing dialogue with individual users 

increasingly leads to the integration of ML-based assistance for daily work routines (e.g., Microsoft’s 

ChatGPT-based Copilot). Therefore, we conceptualize an artificial assistant as an information system 

that (1) can learn and can thus contribute its own knowledge (i.e., is an ML system; e.g., Argote et al., 

2021; Sturm et al., 2021), and (2) engages in a bilateral one-to-one relationship with a single human 

partner (i.e., an artificial assistant learns from and adapts to the experiences, suggestions, and feedback 

provided by an individual and vice versa; e.g., Kane et al., 2021; Young et al., 2021). The emerging 

interplay, however, requires organizations to effectively coordinate learning between humans, artificial 

assistants, and each other (e.g., Berente et al., 2021; Young et al., 2021). Due to their complementing 

learning capabilities, promoting collaborative partnerships between humans and artificial assistants may 

enhance learning effectiveness (i.e., increase the stock of knowledge), leading to higher organizational 

performance. Yet, at the same time, poor coordination of such partnerships may cause human or ML-

based expertise to be lost or displaced by misinformation, which may threaten organizational survival 

(e.g., March, 1991; Sturm et al., 2021; Young et al., 2021; Balasubramanian et al., 2022). Thus, we aim 

to contribute to a better understanding of the learning dynamics between collaborating humans and 

artificial assistants by asking the following research question: How can organizations coordinate 

humans’ and artificial assistants’ mutual learning to increase organizational learning effectiveness? 

To answer this question, we aim to unpack the dynamics that arise from the interplay between humans 

and artificial assistants in organizations. Although numerous technologies such as Microsoft’s Copilot 

have been announced recently, the widespread adoption of artificial assistants by organizations is yet to 

come. As this currently complicates the collection and analysis of empirical evidence, we rely on agent-

based simulations to study a future state of an organization in which humans learn side-by-side with 

artificial assistants (in line with recent long-term-focused research, such as Kane et al., 2021; Sturm et 

al., 2021; Young et al., 2021). With our explorative study, we hope to preemptively inform managerial 

strategies that allow an effective future collaboration between humans and artificial assistants. 

2 Organizational Learning and Artificial Assistants 

To make sense of reality, organizations learn “by encoding inferences from history into routines that 

guide behavior” (Levitt and March, 1988, p. 319). Organizations thus learn from their past to gradually 

improve future actions (e.g, Levitt and March, 1988; Argote et al., 2021). As learning thereby essentially 

defines organizations’ actions and resulting performance, organizational learning represents a crucial 

process that lies at the heart of organizational behavior and organizations’ long-term survival (e.g., 

Huber, 1991; March, 1991; Argote et al., 2021). Although learning is vital to organizations, they cannot 

learn on their own but rely on their members’ learning (e.g., through socialization or education of peers; 

Fiol and Lyles, 1985; Levitt and March, 1988; March, 1991). Yet, as interactions affect individual 

learning, organizational learning is more than just the sum of individual learning (e.g., Fiol and Lyles, 

1985). This positions organizational learning as a coordination problem, aiming to optimize the learning 

between organizational members (e.g., Argote and Miron-Spektor, 2011; Argote et al., 2021). 

A core issue of organizational learning is the coordination of exploration and exploitation of beliefs 

(e.g., norms, practices, and routines; March, 1991; Gupta et al., 2006; Argote et al., 2021). While 
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exploration reflects the search for unorthodox beliefs (e.g., experimenting with new technologies or 

strategies), exploitation represents the reinforcement of established beliefs (e.g., relying on established 

products and adapting them only gradually; March, 1991; Gupta et al., 2006). As famously demonstrated 

by March (1991), organizational learning is most effective if it balances exploration and exploitation 

(e.g., March, 1991; Gupta et al., 2006). If organizations only explore, they will fail to ever make use of 

developed competence. If organizations only exploit, they will fail to innovate and adapt to pivotal 

trends in a competitive environment (e.g., March, 1991; Sturm et al., 2021). Yet, achieving the 

exploration-exploitation balance is challenging. Decades of research have revealed numerous factors 

that introduce exploitative or explorative tendencies in organizations (excellent overviews exist; e.g., 

Gupta et al., 2006; Raisch et al., 2009), such as varying organizational structures (e.g., Fang et al., 2010; 

Schilling and Fang, 2014) and imperfections of learning processes (e.g., Simon, 1991; Levinthal and 

March, 1993; March, 2010). Especially overcoming the so-called learning myopia (i.e., the tendency to 

favor exploitation over exploration; Levinthal and March, 1993) still occupies the minds of our greatest 

scholars (e.g., Levinthal and March, 1993; Balasubramanian et al., 2022; Koçak et al., 2023). 

For decades, only humans were able to contribute to organizational learning (e.g., Levitt and March, 

1988; Argote et al., 2021). With their ability to learn, ML systems represent a new type of organizational 

learner contributing their own knowledge (e.g., their own chess, shogi, or Go strategies; Silver et al., 

2018) to an organization’s stock of knowledge (e.g., Ransbotham et al., 2020; Lyytinen et al., 2021). 

Surprisingly, research on how information systems affect organizational learning remains in its infancy 

(e.g., Argote and Miron-Spektor, 2011; Argote et al., 2021). Yet, with the rise of ML, researchers have 

started to investigate the role and consequences of ML systems in organizational learning (e.g., Argote 

et al., 2021; Berente et al., 2021). However, research on the impact of ML on organizational learning 

remains scarce (i.e., Afiouni-Monla, 2019; Seidel et al., 2019; Ransbotham et al., 2020; Lyytinen et al., 

2021; Sturm et al., 2021; Balasubramanian et al., 2022), although numerous calls for research strongly 

stress the lack of research (e.g., Baum and Haveman, 2020; Argote et al., 2021; Berente et al., 2021). 

Only recently, scholars have started to discuss consequences of humans and ML systems entering closer 

relationships (e.g., Schuetz and Venkatesh, 2020; Kane et al., 2021). Although shifts towards closer 

relationships are known to affect learning (e.g., Lounamaa and March, 1987; Miller et al., 2006; 

Schilling and Fang, 2014), no study exists that uncovers artificial assistants’ impact on organizational 

learning—despite scholars stressing the great relevance of further unpacking organizational impacts of 

human-AI relationships (e.g., Grønsund and Aanestad, 2020; Kane et al., 2021; Raisch and Krakowski, 

2021). For instance, the integration of ChatGPT with Microsoft Azure may soon enable it to learn from 

an organization’s enterprise data, making ChatGPT’s suggestions readily available to individuals when 

they face work-related issues (Boyd, 2023). So far, however, it is unclear to what extent individuals 

should rely on the knowledge provided by ChatGPT, verify its suggestions by consulting colleagues, or 

turn to different knowledge sources—and, in turn, when and how much ChatGPT should calibrate its 

knowledge to the knowledge of the individuals interacting with it. To address this ambiguity, we now 

aim to unpack the consequences of learning dynamics between humans and artificial assistants. 

3 Simulation Model 

We now analyze how the interplay between humans and artificial assistants influences exploration and 

exploitation in organizations. We first replicate March’s (1991) seminal simulation model as our 

baseline model. Following numerous extensions of March’s (1991) model (e.g., Miller et al., 2006; Fang 

et al., 2010; Butler and Grahovac, 2012; Schilling and Fang, 2014), we then extend the model by adding 

human interpersonal learning. Finally, we introduce artificial assistants as a new type of learning agent. 

3.1 Replicating March’s Model of Organizational Learning 

March (1991) developed an agent-based simulation model in which an organization’s members 

gradually learn about reality. He considers organizational learning in terms of the mutual learning of the 

organization and its members. On the one hand, the organization gathers and stores its members’ 

knowledge within norms, practices, and routines, forming the so-called organizational code. On the 
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other hand, each individual within the organization is socialized to the organizational code (i.e., the 

organization’s beliefs) over time. The organizational code thus forms and is formed by individuals in 

the organization.2 Following this rationale, March’s (1991) model comprises three main entities: 

M1: External reality is represented as a multidimensional vector consisting of m elements, each of 

which has a value of either 1 or -1. This vector is unknown to the organizational members and 

independent of their beliefs about it. Initial values are randomly assigned with equal probability. 

M2: The organization comprises n individuals that each form m beliefs about external reality. Beliefs 

can take on values of either 1 or -1, or individuals can remain agnostic, represented by a value of 0. 

Initial beliefs are randomly assigned with 1, 0, and -1 having equal probability of occurring. 

M3: The organizational code reflects the organization’s beliefs about external reality and is modeled 

as an m-dimensional vector. Like individuals’ beliefs, the organizational code takes values of 1, 0, and 

-1. The organizational code starts without beliefs about reality and thus initially consists only of zeros. 

Individuals and the organizational code can have both correct and incorrect beliefs (i.e., beliefs that do 

or do not correctly represent external reality). The knowledge levels of all individuals and the 

organizational code are computed as the percentage of beliefs that match external reality. The average 

knowledge level represents the average accuracy of beliefs in the organization and is computed as the 

mean of all individuals’ knowledge levels (e.g., March, 1991; Miller et al., 2006). Organizational 

learning aims to achieve the highest average knowledge level—that is, to maximize the number of 

matches between individuals’ beliefs and the external reality (e.g., March, 1991; Sturm et al., 2021). 

Individuals’ beliefs and the organizational code change over time (i.e., a sequence of time steps). In each 

step, individuals learn from the code: For each individual and each of their m beliefs, a belief’s value 

changes to the corresponding value in the organizational code with probability p1. If the organizational 

code’s value is 0, individuals’ beliefs are not affected. Learning from the organizational code reflects 

the socialization of individuals into the organization’s beliefs (e.g., norms, practices, and routines). At 

the same time, the organizational code learns from individuals that are more knowledgeable than itself: 

For each of the m beliefs in the organizational code, the code’s value can change to the majority belief 

held among superior individuals. The probability of learning by the organizational code is a function of 

the code learning rate p2 and the level of agreement among the superior individuals (see March, 1991, 

Footnote 1). Learning by the code represents the adaptation of organizational norms to best practices 

among the members of the organization (e.g., March, 1991; Miller et al., 2006; Fang et al., 2010). 

Based on a series of simulations, March (1991) demonstrated that beliefs in an organization converge 

over time, eventually leading to a stable knowledge equilibrium. Exploitation occurs when individuals 

and the organizational code learn from each other rapidly, resulting in premature convergence on 

homogeneous beliefs that leads the organization to a suboptimal equilibrium. Exploration occurs when 

slower learning from and by the organizational code conserves belief diversity within the organization. 

March (1991) observed that slower learning from the organizational code coupled with fast learning by 

the code lead to the highest average knowledge levels (e.g., Kane and Alavi, 2007; Fang et al., 2010). 

This means that organizations need to balance exploration and exploitation to optimize their knowledge. 

3.2 Introducing Interpersonal Learning and Artificial Assistants 

Interpersonal learning. March (1991) did not permit individuals to learn directly from each other, but 

instead simplified interpersonal learning to learning from and by an organizational code. Decades of 

research following March’s (1991) influential study highlight that much of organizational learning 

occurs directly from one individual to another in an interpersonal setting and that the emergent dynamics 

should not be neglected (e.g., Orlikowski, 2002; Borgatti and Foster, 2003; Ethiraj and Levinthal, 2004; 

Ren and Argote, 2011). Once we consider interpersonal learning, access to potential learning partners 

 

2 March (1991) does not consider different types of individuals or knowledge to limit the complexity of emerging system 

dynamics. In line with several other simulation extensions (e.g., Fang et al., 2010; Sturm et al., 2021), we adopt this abstraction 

as these details are not core to our study objective (following established simulation practices; e.g., Taber and Timpone, 1996).  
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within an individual’s interpersonal network becomes an important factor. Prior research has recognized 

that people suffer from bounded rationality that causes spatial myopia, which leads them to frequently 

compare and share their beliefs with a few physically proximate peers (e.g., Simon, 1972; Kauffman 

and Levin, 1987; Miller et al., 2006). Only if the local search for knowledge among immediate neighbors 

fails to produce satisfactory results, individuals turn to distant knowledge sources (Cyert and March, 

1963). The positive relationship between physical proximity and communication of organizational 

members is consistent with a large body of research on information flow within organizations (e.g., 

Monge and Kirste, 1980; Allen, 1984; Zahn, 1991). Though individuals may recognize that some of 

their peers perform better than themselves (i.e., hold more correct beliefs), they do not know which 

beliefs in particular lead to better performance (e.g., March, 1991; Kane and Alavi, 2007; Schilling and 

Fang, 2014). This is corroborated by the fact that an individual’s better-performing peers may still have 

contradicting beliefs about some dimensions of external reality (e.g., how to approach certain routines 

or decisions). To face this ambiguity, we assume that individuals adopt a majority decision rule similar 

to the one used to update the organizational code in March’s (1991) model: individuals gather the beliefs 

of other, better-performing individuals with whom they interact, and consider updating each of their 

beliefs to the majority view. Individuals using a majority decision rule is affirmed by numerous studies 

on organizational decision making (e.g., Castore et al., 1971; Davis and et al, 1975; Kameda and Davis, 

1990). Thus, we follow Fang et al. (2010) and substitute direct interpersonal learning between 

individuals and their peers for March’s (1991) organization-wide learning from the organizational code. 

In line with prior simulation studies (e.g., Miller et al., 2006; Miller and Lin, 2010), we model 

interpersonal networks by placing all individuals on a spatial grid with access to distant connections: 

E1: The n individuals are situated in a grid in which each individual has four immediate neighbors 

located to the north, east, south, and west. In order to ensure that all individuals have the same number 

of neighbors, we constructed the grid so that it has no edges. 

E2: Individuals engage in local and distant search for learning partners. In each time step, individuals 

search locally by identifying better-performing peers (i.e., peers with higher knowledge levels) among 

their four immediate neighbors. Each individual then determines the majority belief among these 

better-performing peers for each dimension of the m-dimensional belief vector. For each of the m 

dimensions, the individual adopts the corresponding majority belief with probability pint. Only nonzero 

beliefs can be adopted. When there is a tie (i.e., the number of peers with a belief of 1 is equal to that 

of those with a belief of -1), the individual’s belief is not affected. Only if none of their four neighbors 

perform better than themselves, individuals engage in distant search. Distant search involves 

identifying the better-performing peers among four remote agents (i.e., all individuals excluding the 

searcher and their neighbors) that are randomly drawn at the start of the simulation. Individuals again 

choose to learn from the superior performers using a majority decision rule. This time, if no superior 

performers are identified, the individual will not learn. In each time step, the n individuals search in 

random order, since a consistent search order would favor late searchers (e.g., Axelrod, 1997). 

Representation of artificial assistants. In March’s (1991) model, humans are the only learning agents. 

However, this assumption is being challenged by the widespread adoption of ML systems. Early ML 

systems are highly specialized and tailored to specific tasks rather than specific individuals (e.g., 

Brynjolfsson and Mitchell, 2017; Mitchell et al., 2018; Sturm et al., 2021). However, we recently 

observe more and more organizations (especially tech giants such as Amazon, Google, and Microsoft) 

and researchers (e.g., Kane et al., 2021; Young et al., 2021) envisioning personal ML-based assistance 

for each and every individual in private and professional settings (e.g., OpenAI, 2023). For example, a 

journalist could team up with a large language model to generate media content. While the first real-

world applications of artificial assistants designed to support individuals already exist (e.g., Alexa, 

Google Duplex, ChatGPT), they do not yet exploit the full potential of ML systems (i.e., they only rarely 

and limitedly evolve with the assisted individual’s needs) as proposed by researchers (e.g., Kane et al., 

2021; Young et al., 2021). In line with ML research (e.g., Mitchell, 1997; Russell and Norvig, 2021; 

Sturm et al., 2021), we assume that artificial assistants rely on ML to derive models that represent reality. 

March (1991) assumes that all belief dimensions are accessible to all organizational members. However, 

we can observe that ML systems such as artificial assistants not only contribute knowledge to domains 
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where humans already have some level of expertise, but can also help them gain knowledge about 

domains that previously were inaccessible to them (e.g., Fügener et al., 2021; Jussupow et al., 2021; 

Sturm et al., 2021). For example, a broker’s artificial assistant could analyze vast amounts of digital 

trace data to help develop effective trading strategies. However, artificial assistants are no knowledge 

panacea, as certain knowledge domains have yet to be or inherently cannot be captured in large databases 

and thus cannot be interpreted by artificial assistants (e.g., Argote et al., 2021). ML systems are already 

complementing and, in some cases, substituting human decision making (e.g., Jussupow et al., 2021; 

Raisch and Krakowski, 2021). We anticipate that human dependence on artificial assistants will continue 

to grow as “reality becomes a reflection of our models in the digital world” (Baskerville et al., 2020, p. 

509) and as relevant organizational realities are shifted into digital contexts too complex for humans’ 

bounded rationality (e.g., Baskerville et al., 2020). In line with prior research (e.g., Baskerville et al., 

2020; Kane et al., 2021; Sturm et al., 2021), we propose that humans require assistance to comprehend 

certain dimensions of reality. For this purpose, we introduce artificial assistants as a new type of learning 

agent that can add to the formation of an organization’s norms, practices and routines: 

E3: A proportion q1 (0 ≤ q1 ≤ 1) of the m beliefs about external reality are interpretable by humans. 

Another proportion q2 (0 ≤ q2 ≤ 1) of the m beliefs about external reality are interpretable by artificial 

assistants. The two resulting sets of beliefs may intersect (i.e., some beliefs are interpretable by both 

types of learning agents). We always choose q1 and q2 so that the number of human-interpretable 

dimensions mhi (= q1m) and artificial-assistant-interpretable dimensions maai (= q2m) are integers. 

Knowledge base. The diffusion of beliefs (i.e., ML models) among artificial assistants is not tied to 

geographical proximity or interpersonal networks. ML researchers have proposed federated learning as 

a technical setup that enables mutual learning between multiple interconnected artificial assistants. In 

this setup, an integrated ML model is learned through several iterations of updates between a centralized 

server (i.e., the knowledge base) and personalized edge devices that learn local ML models (e.g., Hard 

et al., 2018; Yang et al., 2019; Ding et al., 2022). Organizations already make use of federated learning 

to ensure personalization on each local device. For instance, Google uses federated learning for their 

Android keyboard to personalize writing suggestions locally for one user while gradually integrating all 

personalized ML models to optimize writing suggestions across all devices (Hard et al., 2018). To 

capture this notion, we assume that artificial assistants learn from each other only indirectly by updating 

their beliefs (i.e., their local ML models) through the knowledge base. The knowledge base serves as a 

centralized knowledge repository for all artificial assistants maintained either by the organization itself, 

or an external software provider (e.g., Amazon, Google, OpenAI). Learning from and by the knowledge 

base is modeled after March’s (1991) organizational code. Analogous to the mutual learning process 

between organizational members and the organizational code, diffusion of beliefs through the 

knowledge base involves two types of interactions: The knowledge base aggregates beliefs about 

external reality from a subset of artificial assistants. Contributors are selected based on their performance 

relative to the knowledge base’s performance—that is, only superior performing artificial assistants may 

contribute. A belief about external reality (i.e., a centralized ML model) is derived based on the majority 

view among superior performers. The knowledge base then pushes its beliefs to all artificial assistants, 

who will update their local beliefs. This again reflects real-world applications of federated learning (e.g., 

Hard et al., 2018; Yang et al., 2019; Ding et al., 2022). To incorporate mutual learning between artificial 

assistants and the knowledge base into our model, we implement the following model extensions: 

E4: The knowledge base reflects artificial assistants’ aggregated beliefs about reality and is modeled 

as an m-dimensional vector. Like all learning agents’ beliefs, the knowledge base takes values of 1, 0, 

and -1. The knowledge base starts without beliefs about reality and initially consists only of zeros. 

E5: Artificial assistants’ beliefs and the knowledge base change over a sequence of time steps. 

Learning from and by the knowledge base closely follows March’s (1991) implementation of learning 

from and by the organizational code. For each artificial assistant and each of its m beliefs, the belief’s 

value changes to the corresponding (nonzero) value in the knowledge base according to the artificial 

assistants’ update rate paa. The knowledge base learns by aggregating beliefs from better-performing 

artificial assistants. Knowledge levels for both the knowledge base and artificial assistants are 

computed across their interpretable dimensions (i.e., not considering exclusively human-interpretable 
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dimensions). The probability of learning by the knowledge base is a function of the knowledge base’s 

update rate pkb and the level of agreement among superior artificial assistants. 

Synchronization. Up to this point, we described two separate models of organizational learning: one 

model that involves humans and one that involves artificial assistants. However, humans and artificial 

assistants do not simply co-exist in isolated ecosystems within organizations, but are closely connected 

to each other. Organizational members in various domains (e.g., human resources, product innovation, 

sales) have started to collaborate closely with ML systems on a variety of tasks (e.g., Brynjolfsson and 

Mitchell, 2017; Raisch and Krakowski, 2021). Recently, we can observe that this relationship between 

humans and ML systems becomes increasingly personalized, evolving from centralized ML systems 

that are managed and evaluated by data scientists on behalf of the entire organization to the integration 

of ML systems at the team and individual level (e.g., Fügener et al., 2021, 2022). Artificial assistants 

can help their human partner explore belief dimensions that were previously inaccessible to them (e.g., 

Kane et al., 2021; Young et al., 2021). At the same time, artificial assistants can learn from their human 

partner, for example by using their domain knowledge as the basis for supervised learning (Raisch and 

Krakowski, 2021). We define synchronization as the process of mutual learning during which humans’ 

beliefs both shape and are shaped by artificial assistants’ beliefs. Through synchronization, humans’ and 

artificial assistants’ beliefs may become so tightly interwoven that their shared beliefs more accurately 

represent external reality than either of them could achieve on their own. This includes humans adopting 

beliefs about dimensions that can only be interpreted by artificial assistants, and vice versa. For example, 

a broker may not be able to interpret the vast amounts of data that led their artificial assistant to 

recommend a new strategy to sell a certain stock, but still choose to follow its recommendation (i.e., 

adopt and act upon one of the artificial assistants’ beliefs). Thus, we implement the following extensions: 

E6: Each of the n humans is assigned one artificial assistant. Both humans and artificial assistants 

form beliefs about external reality. Beliefs can take on values of either 1 or -1, or agents can remain 

indecisive represented by a value of 0. For both humans and artificial assistants, initial beliefs on their 

respective interpretable dimensions are randomly assigned with 1, 0, and -1 having equal probability 

of occurring. Beliefs on non-interpretable dimensions are initialized with all zeros. 

E7: In each time step, humans and their artificial assistants engage in synchronization. For each of 

their m beliefs, each human chooses to adopt the corresponding belief of their artificial assistant with 

probability psync1. Likewise, for each of its m beliefs, each artificial assistant chooses to adopt the 

corresponding belief of its human partner with probability psync2. Only nonzero beliefs can be adopted 

this way. Both directions of synchronization are independent of the learning agents’ performance. 

Summary. Figure 1 depicts an exemplary organization with four humans and four artificial assistants. 

Some beliefs about reality can only be interpreted by either humans or artificial assistants; others can be 

interpreted by both. After their initial interpretation, all learning agents can adopt all beliefs through all 

learning processes. In each time step, humans first engage in interpersonal learning (pint) with either 

local or distant peers and then in synchronization (psync1) with their artificial assistant. Artificial assistants 

first update their beliefs (paa) and then synchronize with their human partner (psync2). After all individuals 

acted in random order, the knowledge base learns from superior artificial assistants (pkb). 

 

Figure 1. Schematic model representation of organizational learning with artificial assistants. 
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4 Simulation Results 

We constructed our simulation model in Python using the Mesa framework for agent-based modeling.3 

Following previous simulation studies on organizational learning (e.g., March, 1991; Sturm et al., 2021), 

we tracked the organizational knowledge level (i.e., the average percentage of all learning agent’s beliefs 

that match external reality) for each time step and each simulation run. All simulation runs were 

terminated after 500 time steps, which we determined sufficient for the organizational knowledge level 

to converge to its equilibrium value. The reported organizational knowledge levels always refer to the 

long-term organizational knowledge levels measured at the end of a simulation run. To ensure the 

robustness of our analysis, the simulation was repeated 100 times for each parameter combination with 

different random seeds. The results reported in this section are averages calculated from the 100 

iterations. All parameters and parameter values used in the simulation are listed in Table 1. To explore 

learning dynamics that emerge between an organization’s human members and artificial assistants, we 

now analyze the long-term organizational knowledge levels along different parameter combinations. 

Parameter Description Values 

m Number of external reality and belief dimensions 90 

mhi Number of human-interpretable dimensions 60 

maai Number of artificial-assistant-interpretable dimensions 60 

n Number of humans (equal to the number of artificial assistants) 50 

pint Interpersonal learning rate: Probability with which humans adopt beliefs from other humans 
0.1, 0.3, 0.5, 

0.7, 0.9 

paa 
Artificial assistants’ update rate: Probability with which artificial assistants adopt beliefs 

from the knowledge base 

0.1, 0.3, 0.5, 

0.7, 0.9 

pkb 
Knowledge base’s update rate: Determines the probability with which the knowledge base 

adopts majority beliefs of artificial assistants 

0.1, 0.3, 0.5, 

0.7, 0.9 

psync1 
Humans’ synchronization rate: Probability with which humans adopt beliefs from their 

artificial assistant 

0, 0.1, 0.3, 

0.5, 0.7, 0.9 

psync2 
Artificial assistants’ synchronization rate: Probability with which artificial assistants adopt 

beliefs from their human partner 

0, 0.1, 0.3, 

0.5, 0.7, 0.9 

Note: psync1 = 0 and psync2 = 0 were included to model an organization without artificial assistants. 

Table 1. List of model parameters. 

Introducing artificial assistants. We first consider the implications of introducing artificial assistants 

to an organization. For this purpose, we compare the organizational knowledge levels for different 

configurations of collaboration between humans and artificial assistants: One configuration in which 

interpersonal learning is the only source of knowledge for humans as there are no artificial assistants 

(psync1 = psync2 = 0), and other configurations in which humans engage in both interpersonal learning with 

other humans and synchronization with their artificial assistants (psync1 > 0, psync2 > 0). Since artificial 

assistants enable humans to gain insights about belief dimensions that were previously inaccessible to 

them, introducing artificial assistants inherently increases the number of beliefs that can be formed about 

external reality (i.e., from 60 to 90 dimensions). To unpack this effect, we now focus on Figure 2 which 

depicts the organizational knowledge levels calculated based on the human-interpretable dimensions 

(i.e., 60 dimensions; see Figure 2A) and all dimensions (i.e., 90 dimensions; see Figure 2B). 

Without introducing artificial assistants (i.e., psync1 = psync2 = 0; see blue lines in Figures 2A and 2B), the 

knowledge level in a human-only organization decreases the stronger the humans exploit (i.e., the blue 

lines decline with increasing interpersonal learning rate pint in Figures 2A and 2B). This detrimental 

effect of increased human exploitation is consistent with the findings of previous simulation studies that 

introduced comparable mechanisms of interpersonal learning to March’s model and stressed the 

essential need for human exploration (see, e.g., Fang et al., 2010). 

 

3 We replicated March’s (1991) model by adhering closely to his conceptual description. We validated our replication by 

qualitatively reproducing the effects of learning rates on organizational knowledge levels (see March, 1991, Figure 1). 
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Figure 2. Effect of introducing artificial assistants on organizational knowledge. 

When introducing artificial assistants (i.e., psync1 > 0 and psync2 > 0; see non-blue lines in Figures 2A and 

2B), we can observe that the impact of the humans’ interpersonal learning on an organization’s 

knowledge level diminishes overall (i.e., the non-blue lines’ trend is weaker than the blue lines’ trend in 

Figures 2A and 2B). We can also observe that the trend of humans’ interpersonal learning tends to 

reverse; that is, the stronger humans exploit, the more an organization’s knowledge level increases (see 

the increasing green and red lines in Figures 2A and 2B) or at least remains relatively unaffected (see 

relatively horizontal yellow lines in Figures 2A and 2B). In line with the findings of Sturm et al. (2021) 

regarding more generic ML systems that abstract specific human-AI network structures, this observation 

indicates that an artificial assistant can shift its human partner away from exploration towards a more 

exploitative role—in other words, an organization using artificial assistants may free its human members 

from exploration without having to fear significant losses in its long-term knowledge. Thus, we propose: 

Proposition 1a: Artificial assistants can liberate humans from exploration without sacrificing an 

organization’s long-term knowledge. 

When focusing on Figure 2A, we can also observe that the inclusion of artificial assistants leads to a 

lower knowledge level on the dimensions that are amenable to a human-only setup (i.e., on the 60 

human-interpretable dimensions; see the blue line above all non-blue lines in Figure 2A). Thus, at first 

sight, artificial assistants appear to be detrimental to organizational learning. However, when turning to 

Figure 2B that captures an organization’s knowledge level across all dimensions (i.e., on the 90 human- 

and artificial-assistant-interpretable dimensions), this presumption no longer holds—if humans and 

artificial assistants can synchronize (i.e., psync1 > 0 and psync2 > 0), an organization can reach greater 

knowledge levels (i.e., all non-blue lines are above the blue line in Figure 2B). While the overall increase 

in knowledge is not surprising as we add dimensions that cannot be learned in human-only setups, this 

observation highlights that the coordination of humans and their artificial assistants involves an essential 

trade-off: While humans and artificial assistants can offer each other access to unique knowledge 

dimensions, they may simultaneously inhibit each other’s learning effectiveness. Thus, we propose: 

Proposition 1b: To reach great long-term knowledge, an organization must coordinate the effects of 

making further knowledge dimensions available between humans and artificial assistants, and their 

bilateral influence on each other’s learning processes. 

Next, to unpack how an organization can effectively coordinate this trade-off, we analyze the learning 

dynamics of the two learning subsystems that are included in our simulation and are connected via 

synchronization: (1) the learning process of humans focusing on human-interpretable dimensions and 

(2) the learning process of artificial assistants focusing on artificial-assistant-interpretable dimensions. 

Remember that Figures 2A and 2B show the average of all simulated parameter combinations and thus 

a mix of all (beneficial and detrimental) coordination strategies for artificial assistants (i.e., paa and pkb) 

and the synchronization between humans and artificial assistants (i.e., psync1 and psync2), leaving it still 

unclear how organizations can optimize their overall learning. As we have already observed in Figure 2, 
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the existence of artificial assistants can liberate the human learning process from exploration, tending 

to alleviate the importance of humans focusing on more exploration or exploitation (i.e., low or high 

interpersonal learning rate pint; see Proposition 1a). When turning to the upper quartile of achieved 

knowledge levels (i.e., the best 25% of configurations), this effect is further pronounced, rendering the 

specific choice of humans’ interpersonal learning rate pint irrelevant. When focusing on the learning 

process of artificial assistants that resembles March’s (1991) original learning system, March’s finding 

of balancing exploration and exploitation proves remarkably robust for artificial assistants despite being 

connected to the human learning process. Averaged across all configurations and for the upper quartile 

of achievable knowledge levels, the highest knowledge levels can be achieved with artificial assistants 

exploring beliefs from their knowledge base and the knowledge base exploiting the artificial assistants’ 

beliefs (i.e., low paa and high pkb). Those qualitative findings for the two learning subsystems hold true 

regardless of specific synchronization configurations (i.e., psync1 and psync2). To find optimal coordination 

strategies of the interplay of these two subsystems, we do not fixate humans’ interpersonal learning (i.e., 

keep averaging pint) and balance artificial assistants’ learning (i.e., paa = 0.1 and pkb = 0.9) to capture the 

best configuration for both subsystems in the following analyses of the subsystems’ synchronization. 

Synchronization. To effectively manage the observed trade-off between the two subsystems and 

thereby the collaboration between humans and artificial assistants, we need to understand the 

subsystems’ interplay (i.e., the synchronization rates psync1 and psync2). For this purpose, we turn to 

Figures 3A and 3B to examine effects of synchronization between humans and artificial assistants on an 

organization’s knowledge about human-interpretable and artificial-assistant-interpretable dimensions. 

 

Figure 3. Effect of synchronization between humans and artificial assistants on organizational 

knowledge for human-interpretable and artificial-assistant-interpretable dimensions. 

Focusing on optimizing human-interpretable dimensions in Figure 3A, we can observe that the less 

humans exploit their artificial assistants’ beliefs (i.e., decreasing psync1), the greater an organization’s 

knowledge level regarding human-interpretable dimensions becomes (see decreasing lines in 

Figure 3A). Yet, the stronger the artificial assistants exploit the beliefs of their human partners (i.e., 

increasing psync2), the weaker this effect is pronounced (see the decreasing knowledge gains between 

high and low psync1 from the blue to the purple line). Thus, an organization can achieve the greatest 

knowledge levels regarding human-interpretable dimensions when its human members explore their 

artificial assistants’ beliefs while the artificial assistants exploit their human partners’ beliefs (i.e., low 

psync1 and high psync2). This effect can be explained as follows: Artificial assistants cannot approximate 

the quality of beliefs about dimensions that are only interpretable by humans, leading to artificial 

assistants distributing rather random beliefs about human-only dimensions that nullify advances in the 

human learning process. To circumvent the dissemination of such detrimental random beliefs within the 

human learning process, reducing the extent of this dissemination benefits achievable knowledge levels 

regarding human-interpretable dimensions. By coordinating humans to rarely adopt their artificial 

assistants’ beliefs (i.e., low psync1) and artificial assistants to rapidly adopt human beliefs (i.e., high psync2), 
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an organization can simply minimize the dissemination of artificial assistants’ beliefs within the human 

learning process. Interestingly, this resembles the tendency of today’s organizations who primarily use 

their ML systems to imitate existing human knowledge (e.g., using ML systems to replicate prior human 

decisions as closely as possible) while humans remain reluctant to adopt knowledge in domains that are 

amenable to their own interpretation. Thus, we propose: 

Proposition 2a: To learn human-interpretable dimensions effectively, humans should explore artificial 

assistants’ beliefs while artificial assistants should exploit human beliefs. 

Focusing on optimizing artificial-assistant-interpretable dimensions in Figure 3B, we can observe that 

the stronger humans exploit the beliefs of their artificial assistants (i.e., increasing psync1), the greater an 

organization’s knowledge level tends to become (see increasing green, red, and purple lines in 

Figure 3B). This trend initially weakens and then reverses the less the artificial assistants also exploit 

the beliefs of their human partners (i.e., decreasing psync2; see relatively horizontal yellow line and 

decreasing blue line in Figure 3B). Thus, an organization can achieve the greatest knowledge levels in 

artificial-assistant-interpretable dimensions when its human members and artificial assistants exploit 

each other’s beliefs (i.e., high psync1 and high psync2). This can be explained as follows: When humans 

strongly exploit the beliefs of their artificial assistants (high psync1), they rapidly adopt beliefs in the short 

term when artificial assistants’ belief diversity is the greatest (March, 1991), which are then strongly 

exploited by the artificial assistants (high psync2). As humans cannot approximate the quality of artificial 

assistants’ beliefs, they tend to preserve rather random beliefs of artificial assistants and thereby help 

prolong belief diversity of artificial assistants’ beliefs. In other words, humans serve as an organizational 

memory of diverse beliefs for artificial assistants. Learning from humans can thereby act as a mechanism 

that induces exploration into the learning process of artificial assistants (comparable to the effects of a 

low personnel turnover rate in March (1991), representing a weaker form of employee turnover that has 

been shown to increase long-term organizational knowledge levels when applied in moderation (March, 

1991). Thus, we propose: 

Proposition 2b: To learn artificial assistants-interpretable dimensions effectively, an organization’s 

human members and artificial assistants should exploit each other’s beliefs. 

When comparing the optimal coordination of learning about human-interpretable and artificial-assistant-

interpretable dimensions (see Propositions 2a and 2b), an essential dilemma arises: while in both cases 

artificial assistants should exploit human beliefs, humans’ optimal learning from artificial assistants’ 

beliefs is contradictory (high vs. low psync1)—So, to learn all dimensions effectively, how should 

organizations coordinate the synchronization between their human members and artificial assistants? To 

help unpack this dilemma, we now turn to the Figures 4A and 4B which present an organization’s 

achievable knowledge levels regarding all belief dimensions along different synchronization 

configurations of humans and artificial assistants (i.e., psync1 and psync2). 

  

Figure 4. Effect of synchronization between humans and artificial assistants on organizational 

knowledge for all dimensions. 
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Surprisingly, we can observe in Figure 4A that neither human exploration nor exploitation of artificial 

assistants’ beliefs (i.e., neither high nor low psync1) generally leads to an organization’s greatest 

knowledge level (see the peaks of the different lines that vary along the x-axis in Figure 4A). Instead, 

the greatest knowledge levels can be achieved if humans and their artificial assistants tend to learn from 

each other on equal terms—that is, exploration and exploitation of each other’s knowledge are equally 

valid strategies as long as both humans and artificial assistants follow the same learning strategy (i.e., 

both tend to explore or exploit equally strong; psync1 ≈ psync2). When turning to Figure 4B that shows the 

upper quartile of achievable knowledge levels (i.e., the best 25% of synchronization configurations), 

this tendency solidifies and becomes clearly visible (see the peaks of the different lines being perfectly 

positioned where psync1 = psync2 in Figure 4B). For effective organizational learning of all dimensions, 

aligning the learning of human members and their artificial assistants therefore appears to represent a 

worthwhile compromise for organizations aiming to coordinate the involved trade-off between humans’ 

and artificial assistants’ contributions. Thus, we propose: 

Proposition 3: To learn all dimensions effectively, an organization’s human members and artificial 

assistants should explore/exploit each other’s beliefs with equal intensity. 

5 Discussion 

Presently, ML systems increasingly join organizations as a new type of organizational learner, 

contributing their own knowledge to organizations’ stock of knowledge (e.g., Sturm et al., 2021; 

Balasubramanian et al., 2022). Although research has started to investigate the impact of ML systems 

on organizational learning (e.g., Seidel et al., 2019; Ransbotham et al., 2020; Sturm et al., 2021), it 

remains largely unclear how the learning of such human-AI collaborations should be coordinated (e.g., 

Ransbotham et al., 2020; Argote et al., 2021; Berente et al., 2021). Moreover, research and practice 

stress the need for closer relationships between humans and ML systems, promoting one-to-one human-

AI partnerships with ML systems acting as so-called artificial assistants (e.g., Kane et al., 2021; Young 

et al., 2021). Although artificial assistants are primarily envisioned to help humans better cope with the 

complexity of our ever-more digitized world (e.g., Benbya et al., 2021; Kane et al., 2021), the 

consequences of artificial assistants joining humans in organizational learning remain largely unknown. 

With our study, we aim to provide new insights into the learning dynamics of humans and artificial 

assistants and how organizations can effectively coordinate these dynamics. 

In particular, we contribute to research that identified the great importance of a deliberate application of 

artificial assistants (e.g., Kane et al., 2021; Young et al., 2021). Our study confirms the concern that the 

imprudent use of artificial assistants can, indeed, inhibit human learning processes and thereby 

jeopardize the loss of human knowledge and organizational competitiveness in the long term. In addition 

to existing research that highlights the need for an effective technical design of artificial assistants (e.g., 

Kane et al., 2021; Young et al., 2021), our study stresses that successful use of artificial assistants not 

only reflects a technical but also a managerial issue—that is, managers should expect both potentially 

virtuous and vicious consequences that are not solely determined by the technical qualities of artificial 

assistants, but emerge from the specific coordination of artificial assistants’ interplay with humans. Our 

study suggests that focusing solely on optimizing humans’ or artificial assistants’ learning is not a viable 

strategy for achieving high levels of organization-wide performance. Instead, the key for increasing 

organizational learning effectiveness seems to lie in managing the synchronization between humans and 

artificial assistants: An organization’s overall learning requires both types of learners to provide each 

other access to learnings from their unique knowledge domains, which requires the organization to 

compromise between optimizing both types of learners’ knowledge domains.  

To address this dilemma, our study suggests that organizations should aim to match the learning modes 

of humans and artificial assistants (i.e., both exploring or both exploiting each other) to improve 

organizational learning as a whole by influencing each other’s learning processes on an equal footing. 

This requires humans and artificial assistants to be equally receptive to each other’s beliefs in order to 

mutually inform and be informed. Organizations should therefore be cautious about fostering only one 
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type of learner (e.g., through increased automation of human tasks or avoidance of human feedback), 

and instead encourage the development of mutually rewarding human-AI partnerships. 

Recognizing equalized synchronization as a desirable managerial practice is, however, only half the 

story of managing learning in the era of artificial assistants. Now it becomes crucial to understand how 

organizations can effectively achieve such an equality. This requires us to identify relevant factors that 

influence this equality as well as managerial mechanisms that allow organizations to steer humans and 

artificial assistants towards mutual exploration or exploitation of each other, thereby enabling 

organizations’ control of the synchronization equality. While there are decades of organizational 

learning research that has examined numerous factors and managerial mechanisms for human 

exploration and exploitation processes (e.g., Gupta et al., 2006; Argote et al., 2021), the novel artificial 

assistant context requires us to revisit existing theories and to potentially create new ones to address the 

peculiarities and unique issues of collaborative human-AI partnerships, which merits further research: 

As organizational learning is primarily coordinated by humans, facilitating an equalized synchronization 

between humans and artificial assistants can be challenging: Knowledge domains that remain 

exclusively interpretable by artificial assistants due to humans’ bounded rationality (e.g., Simon, 1979; 

Raisch and Krakowski, 2021) limit managers’ ability to assess and control the optimization across 

humans’ and artificial assistants’ knowledge domains. Hence, the coordination appears to be inevitably 

biased towards human-interpretable domains of knowledge. This induces the risk of organizational 

learning favoring the success of human learning at the expense of artificial assistants’ knowledge, 

thereby impairing overall organizational learning effectiveness. Indeed, this human-biased optimization 

can already be observed with today’s organizations using ML systems to exclusively imitate historic 

human behavior while neglecting to promote potentially useful but unorthodox ML-based ideas. 

Especially with the advent of large language models (e.g., ChatGPT) that are designed to generate 

persuasive but not necessarily well-founded statements, determining whether contributions by ML 

systems represent established knowledge, fruitful original ideas, or harmful misinformation can pose a 

major difficulty for humans within organizational learning endeavors. In addition, learner-driven issues 

such as human attitudes toward artificial assistants’ beliefs may further complicate managing this 

synchronization equality. Here, recent phenomena such as algorithm aversion (e.g., Jussupow et al., 

2021) or humans’ blind obedience to convincing yet false claims made by ML systems (e.g., ChatGPT; 

OpenAI, 2023) highlight the multifaceted challenges inherent to managing synchronization equality. 

Especially the latter may also point to novel forms of learning myopia (i.e., the tendency to favor 

exploitation over exploration; Levinthal and March, 1993) that arise from and reinforce flawed 

synchronization setups, even though our findings have demonstrated that effective synchronization can 

also help alleviate existing human learning myopia (supporting research highlighting that effectively 

coordinated ML systems can help alleviate myopia; e.g., Sturm et al., 2021). 

Of course, our study has limitations. By using a simulation, we risk modeling relevant contextual factors 

and processes as overly simplistic or idealized (e.g., humans are inherently motivated to learn and share 

their knowledge with others, learn only from knowledgeable peers, and are unaffected by potential 

power dynamics and cultural differences within an organization). While we tried to reduce this risk by 

grounding considered factors and processes in a seminal simulation model and comprehensive theory, 

further research is required to uncover effects of additional factors and process nuances. While our 

explorative study allowed us to identify potential consequences of abstract organizational learning 

processes, our findings would greatly benefit from empirical validation and nuance along varying 

technical and organizational contexts. 

We hope that our study can provide a theoretical foundation and stimulate future research on relevant 

factors and managerial strategies to help advance our understanding of how organizations can optimize 

learning across the knowledge domains of humans and artificial assistants. While our study is a first 

step, further research is needed to unpack the emergent dynamics of human-AI partnerships. 
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