
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

ECIS 2023 Research Papers ECIS 2023 Proceedings 

5-11-2023 

Unleashing The Potential of Data Ecosystems: Establishing Digital Unleashing The Potential of Data Ecosystems: Establishing Digital 

Trust through Trust-Enhancing Technologies Trust through Trust-Enhancing Technologies 

Fabian Schäfer 
University of St. Gallen, fabian.schaefer@unisg.ch 

Jeremy Rosen 
University of St. Gallen, jeremy.rosen@student.unisg.ch 

Christian Zimmermann 
Robert Bosch GmbH, christian.zimmermann3@de.bosch.com 

Felix Wortmann 
University of St. Gallen, felix.wortmann@unisg.ch 

Follow this and additional works at: https://aisel.aisnet.org/ecis2023_rp 

Recommended Citation Recommended Citation 
Schäfer, Fabian; Rosen, Jeremy; Zimmermann, Christian; and Wortmann, Felix, "Unleashing The Potential 
of Data Ecosystems: Establishing Digital Trust through Trust-Enhancing Technologies" (2023). ECIS 2023 
Research Papers. 325. 
https://aisel.aisnet.org/ecis2023_rp/325 

This material is brought to you by the ECIS 2023 Proceedings at AIS Electronic Library (AISeL). It has been 
accepted for inclusion in ECIS 2023 Research Papers by an authorized administrator of AIS Electronic Library 
(AISeL). For more information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/
https://aisel.aisnet.org/ecis2023_rp
https://aisel.aisnet.org/ecis2023
https://aisel.aisnet.org/ecis2023_rp?utm_source=aisel.aisnet.org%2Fecis2023_rp%2F325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/ecis2023_rp/325?utm_source=aisel.aisnet.org%2Fecis2023_rp%2F325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway                            1 

UNLEASHING THE POTENTIAL OF DATA ECOSYSTEMS: 
ESTABLISHING DIGITAL TRUST THROUGH TRUST-

ENHANCING TECHNOLOGIES 

Research Paper 

 
Fabian Schäfer, University of St.Gallen, Switzerland, fabian.schaefer@unisg.ch 

Jeremy Rosen, University of St.Gallen, Switzerland, jeremy.rosen@student.unisg.ch 
Christian Zimmermann, Robert Bosch GmbH, Germany, 

christian.zimmermann3@de.bosch.com 
Felix Wortmann, University of St.Gallen, Switzerland, felix.wortmann@unisg.ch 

Abstract  
Companies increasingly innovate data-driven business models, enabling them to create new products 
and services. Emerging data ecosystems provide these companies access to complementary data, 
offering them additional potential. This, however remains untapped, as a lack of digital trust prevents 
companies from sharing data within these ecosystems. By using trust-enhancing technologies, 
companies can establish trust; this can be explained through the theoretical lens of system trust. Using 
a design science research approach helped us to unlock the knowledge of 21 experts and identify five 
technologies with the potential to solve the trust challenge: self-sovereign identities, differential privacy, 
fully homomorphic encryption, trusted execution environments and secure multiparty computation. We 
integrated these technologies into the data sharing process in data ecosystems and elaborated on their 
limitations and maturity. Ultimately, we derived two principles that allow for adapting our results to 
future technological developments: complementarity and customization. 
 
Keywords: Data ecosystems, Digital trust, Trust-enhancing technologies, System trust. 

1 Introduction 
In the realm of the networked economy, companies are increasingly sourcing data from smart connected 
products and digital applications and creating new data-driven business models (Gassmann and 
Ferrandina, 2021; Fadler and Legner, 2022). In these business models, data is considered a key resource, 
allowing companies to innovate their products, processes and services (Hartmann et al., 2016; Porter 
and Heppelmann, 2014). Such transformation requires companies to rethink their value creation 
structures and leads to the emergence of so-called data ecosystems (Gelhaar and Otto, 2020). In these 
ecosystems, companies can get access to complementary data from data providers (Chen et al., 2011; 
Russo and Albert, 2018). Hence, data becomes a shared resource thus offering significant potential for 
revenue growth for participating companies (Jiang et al., 2021; Oliveira et al., 2019). 
However, the potential of data sharing is not yet being tapped in company ecosystems. In the EU Data 
Strategy, the European Commission states “in spite of the economic potential, data sharing between 
companies has not taken off at sufficient scale” (European Commission, 2020, p. 7). One major reason 
for this is a lack of trust between participating actors (European Commission, 2020; Gelhaar and Otto, 
2020; Sahut et al., 2022). Although certain instruments exist that facilitate trust between these actors 
(e.g., contracts, certifications, guarantees), the degree of trust is often insufficient, thus causing every 
second ecosystem to fail (Aguiar et al., 2021). One ground for the lack of trust is that ecosystem actors 
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fear other parties will not use shared data in line with contractual agreements, regulations and ethical 
norms (Aguiar et al., 2021; Culnan, 2019; European Commission, 2020). Furthermore, the increasing 
usage of Internet of Things (IoT) technologies and cloud solutions for data sharing exposes companies 
and their data to new cybersecurity risks (Aguiar et al., 2021; European Commission, 2020). 
In addition, the emergence of new digital technologies has changed the way in which trust is established 
between companies in today's digital economy. Trust between companies is increasingly replaced by 
trust in a system based on digital technologies (e.g., secure multiparty computation, blockchain 
technologies) (Agahari et al., 2022; Lumineau et al., 2023; Mubarak and Petraite, 2020). While there 
are several reasons for lack of trust in data sharing, it is unclear which digital technologies have the 
highest potential to enhance trust in data sharing processes in data ecosystems and how they can be 
combined in a system (Mubarak and Petraite, 2020; Sahut et al., 2022). Accordingly, we conducted an 
exploratory study to shed light on the potential of digital technologies for creating trust in data sharing 
processes. We addressed the following two research questions: 
RQ1: What trust-enhancing potential for data sharing in data ecosystems do the most promising digital 
technologies provide, and what are their limitations and levels of maturity? 
RQ2: How can these technologies be integrated into the data sharing process in data ecosystems to 
enhance trust? 
Our study followed a design science research process and can be summarized in three steps. First, we 
elicited design requirements that address trust challenges in the data sharing process in today’s company 
data ecosystems. Secondly, we assessed the potential of digital technologies to fulfill these requirements, 
their limitations and maturity with regard to creating trust based on insights from experts in both data 
ecosystems and data sharing digital technology. Thirdly, we focused on the most promising technologies 
and proposed a design for integrating them into the data sharing process. 
Our answers should increase awareness of technological opportunities for improving trust in systems, 
support company executives in their digital technology investment decisions and help them to gain a 
competitive advantage (Boehm et al., 2022; Kluiters et al., 2023). 

2 Theoretical Background  

2.1 Data Ecosystems and Trust as a Major Challenge for Data Sharing 
Company data ecosystems are networks of actors, including companies and individuals, for whom data 
exchange is increasingly enabled by interconnectivity through the IoT, cloud computing and digital 
platforms (Beverungen et al., 2022; Curry & Sheth, 2018; Oliveira et al., 2018). According to Oliveira 
and Lóscio (2018) and Gelhaar and Otto (2020), these actors can be categorized into at least two parties: 
data providers and data consumers. The party that collects data and shares its data in a data ecosystem 
being the data provider and the party that obtains and generates value with this data (e.g., by offering a 
digital service) the data consumer (Badewitz et al., 2020; Gelhaar and Otto, 2020). Data sharing is the 
process of providing a specific data set for usage under defined conditions (Dalmolen et al., 2019; Jarke 
et al., 2019; Jussen et al., 2023). Recent IS literature describes the detailed process phases and related 
activities that are performed by one or both parties when data is shared. For instance, based on a literature 
review, Jussen et al. (2023) derived a five-phase process for data sharing (preparation of a data set, 
establish a data sharing agreement, planning of the data trading process, process of data sharing 
transaction and feedback to the actors). Dalmolen et al. (2019) focus on four phases that are required for 
the sharing of metadata (e.g., agreement, policies). These are defining and publishing a data set; making 
a data sharing agreement; performing a data sharing transaction; and logging, provenance and reporting. 
Krasikov et al. (2022) took a data consumer perspective decribing a process for sourcing and managing 
external data including six phases: start; screen; assess; integrate; manage and use; and retire. Ultimately, 
depending on the perspective (e.g., from data consumer, focus on meta data), the process has a different 
starting point or is structured differently. However, between the process models, there is a large overlap 
in terms of covered data sharing activities. 
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A lack of trust in the data consumers within this data sharing process is key to companies’ inability to 
leverage data sharing potential in data ecosystems (Gelhaar and Otto, 2020). This lack of trust is 
specified in existing literature that either focuses on specific trust challenges in the realms of data 
evaluation (Azkan et al., 2020; Song et al., 2021); securing data in use or the sharing of personal data 
(Culnan, 2019; Jansen, 2011; Weiss, 2018); or gives a broad overview of these challenges (Garrido et 
al., 2022; Otto and Jarke, 2019). It predominantly results from data providers’ fear their sensitive and 
confidential data may be misused by data consumers or shared further with third parties that misuse the 
data (Agahari et al., 2022; European Commission, 2020; Gelhaar and Otto, 2020). Such misuse can 
threaten business and put a data provider’s competitive advantage at risk and can be rooted in intended 
or unintended violations of contractual agreements, regulations or ethical norms (Agahari et al., 2022; 
Culnan, 2019; Guo et al., 2018; Joshi and Wade, 2020). The Cambridge Analytica (CA) scandal shows 
how shared data from 87 million Facebook users was misused by CA, violating contracts and resulting 
in a major loss of trust for Facebook (Casadesus-Masanell and Hervas-Drane, 2020). While intended 
violations are often driven by opportunism and bounded rationality (Lumineau et al., 2023; Simon, 1957; 
Williamson, 1985), unintended violations can be caused by the legal uncertainty that comes with new 
or upcoming regulations. As recent studies show, this is particularly the case around data privacy 
regulations (e.g., General Data Protection Regulation) (Bitkom, 2022). 
To mitigate these uncertainties, data providers demand privacy and security standards from partners in 
ecosystems that match or better their own (Garrido et al., 2022; Weiss, 2018). In addition, companies 
seek to retain control over the data they share, including the decisions with whom, and when to share 
what data (Otto, 2019; Pigni et al., 2016). This enhancement of privacy, cybersecurity and self-
determination of data use provides a basis for increased trust (Casadesus-Masanell and Hervas-Drane, 
2020; Lumineau et al., 2023). Although self-determination of data use in the case of personal data is 
often associated with data privacy (Westin, 1967), in a more general context it meets the definition of 
data sovereignty: self-determination regarding the use of data (Jarke et al., 2019). In contrast, 
cybersecurity focuses on protecting digital information from unauthorized access and maintaining 
confidentiality, integrity, and availability of digital assets (von Solms and von Solms, 2018; ISO 27032, 
2012). In summary, the digital trust dimensions data privacy, data sovereignty and cybersecurity are 
central for the success of data ecosystems as they form the basis for trustworthy data sharing. Recent 
research identified these dimensions as the pillars of trust for the digital economy and grouped them 
under the umbrella term digital trust (Abraham et al., 2019; Boehm et al., 2022; Mubarak and Petraite, 
2020; Sahut et al., 2022; Wang et al., 2020). 

2.2 Digital Trust and Trust-Enhancing Technologies 
In establishing digital trust, emerging digital technologies such as secure multiparty computation or 
blockchain-powered smart contracts are valuable instruments for strengthening data protection, data 
security and data sovereignty (Agahari et al., 2022; Lumineau et al., 2023). We use the term trust-
enhancing technologies to denote digital technologies that address the digital trust dimensions for data 
sharing. To take these technologies and their trust-enhancing potential into account, in our study we 
applied the theory of system trust. This theory enables a better understanding of how trust is built in the 
digital economy, as it not only accounts for the data provider and the data consumer, but also for the 
regulations, standards and norms that span the system boundaries and digital technologies that can play 
a major role in building trust (Agahari et al., 2022; Lumineau et al., 2023; Sumpf, 2019). 
While the most widely adapted inter-personal (or inter-organizational trust) theory developed by Mayer 
et al. (1995) requires a direct bond between two interacting parties, system trust describes a form of trust 
placed in the functioning and reliability of a socio-technical system (Bachmann, 2003; Giddens, 1990; 
Luhmann, 1979; Lumineau et al., 2023). In such socio-technical systems, a mix of different non-digital 
and digital instruments engenders trust amoung system actors (Aguiar et al., 2021). As shown in 
Figure 1, digital technologies that fall under the second category of instruments can enhance trust by 
mediating data sharing processes between data providers and data consumers (Lumineau et al., 2023). 
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Figure 1. Data sharing and trust-enhancing technologies in data ecosystems. 

There are several streams of literature that investigate these trust-enhancing technologies; one major 
stream is the research on privacy-enhancing technologies (PETs). Many of these technologies go beyond 
tackling pure privacy issues and contribute to enhancing data security and sovereignty. Studies on PET 
in data sharing either give a broad overview of the PET landscape (Garrido et al., 2022; Goldberg et al., 
1997; Van Blarkom et al., 2003) or focus on adoption barriers (Zöll et al., 2021). Other studies analyze 
the use of a specific technology or a combination of these. For instance, Agahari et al. (2022) explored 
the use of secure multiparty computation in the automotive industry and Mo et al. (2021) combined 
privacy-preserving federated learning with trusted execution environments. 
In the context of cybersecurity, some studies deal with implementing data sharing security mechanisms 
(e.g., attribute-based encryption, proxy reencryption) (Koo et al., 2013, Ali et al., 2015; Liu et al., 2014), 
other studies evaluate the potential of emerging technologies (e.g., blockchain and smart contracts) for 
secure data storage and sharing (Huang et al., 2018; Kang et al., 2018). 
With regard to data sovereignty, research is ongoing particularly in the context of data spaces; this 
research is accompanied by the European Commission and its legislative initiatives (e.g., Data Act). 
Theoretical and legislative efforts have been translated into practical initiatives such as International 
Data Spaces and Gaia-X. In this context, publications focus on the creation of entire trust infrastructures 
combining digital technologies that ensure data sovereignty (Braud et al., 2021; Dalmolen et al., 2019; 
Otto, 2022; Otto and Jarke, 2019). Another literature strand focuses on the governance of such 
infrastructure (cental vs. decentral). For instance, Lumineau et al. (2021) and Ballatore et al. (2022) 
focused on blockchain technologies for decentralized data sharing governance systems. In conclusion, 
we see trust-enhancing technologies have been studied across different facets of data sharing, however, 
an elaboration of the most promising technologies from a data provider perspective and their application 
within a data sharing process has yet to be conducted. This article attempts to close this research gap. 

3 Methodology  
To address this research gap and to ensure the practical relevance of our study, we conducted design 
science research (DSR) (Hevner et al., 2004), following the DSR approach layed out by Peffers et al. 
(2007). Responding to the existing trust challenge for data providers in data ecosystems, we opted for 
an objective-centered solution entry (Peffers et al., 2007), seeking to design an artifact that addressed 
industry needs by fulfilling requirements for building system trust (Hevner et al., 2004). Thus, we 
designed an artifact that combines a set of trust-enhancing technologies in the context of a data 
ecosystem (Benbasat and Zmud, 2003; Hevner et al., 2004). In order to make these digital technologies 
work together, we integrated them in a data sharing process (Orlikowski and Iacono, 2001). 
Our DSR process (cf. Figure 2) starts with upstream problem identification, which is followed by two 
design cycles encompassing objective definition and two iterations of design and development as well 
as demonstration and evaluation, and ends with post-analysis communication. It combines several data 
collection methods including 16 interviews and nine workshops with 21 experts (P1–P21; cf. Figure 2) 
resulting in about 24 hours of conversation time. We applied purposive sampling to gain access to 
experts from a broad range of industries (automotive, financial services, information and communication 
technology, manufacturing) (Saunders and Townsend, 2018). Only interviewees with three or more 
years of theoretical or practical experience in various data sharing constellations in data ecosystems 
were considered as experts. We selected experts from Europe due to its current data space and legislative 
initiatives that are highly relevant for establishing digital trust (European Commission, 2020). 
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Figure 2. Design science research process and overview of experts. 

In the problem identification phase we built on the existing knowledge base as provided by the literature 
on data sharing challenges (see Section 2.1). In doing so, to pre-structure the challenges, we allocated 
them to data sharing process phases (see Section 2.1) where a data provider and a data consumer interact 
and thereby need to trust each other to successfully share data. 
In the first design cycle, in the definition of objectives phase, the data sharing process phases and the 
assigned trust challenges were discussed in five interviews with experts to ensure their consistency with 
practice. In the second step of the first phase, we analyzed the challenges with these experts in more 
detail and elicited design requirements for system trust. 
In the design & development phase of the first design cycle, we aimed at identifying technologies that 
enhance trust in data sharing scenarios. Building on the literature regarding trust-enhancing technologies 
(see Section 2.2), we conducted explorative interviews with six experts in PET, distributed ledger 
technologies, and cryptography and created an initial set of 48 technologies. 
In the demonstration and evaluation phase, following five expert interviews and three workshops with 
technology experts, the capabilities of the initial set of technologies were demonstrated in illustrative 
data sharing use cases. The experts evaluated the technologies based on their potential to fulfill the 
defined requirements, as well as on their limitations. Furthermore, they were asked to elaborate on the 
current maturity of the technologies. The maturity levels were specified according to the methodology 
for PETs maturity assessment developed from the European Union Agency for Network and Information 
Security (ENISA) which define PETs in a broad sense considering “all kinds of technologies […] that 
[protect data] privacy” (Hansen et al., 2015, p. 11). Accordingly, we differentiated between four maturity 
levels (from low to high): technology at research level; technology at proof-of-concept level; technology 
at pilot level; technology at product level (Hansen et al., 2015). As suggested by Hansen et al. (2015), 
to make the expert assessment more robust, a measurable indicator for the assessment was defined; this 
was the average readiness level of a technology for different use cases within the context of data sharing. 
This indicator was deemed suitable as our study focused on a broad application of trust-enhancing 
technologies in a data ecosystem. 
In the second design & development phase, we created a set of technologies considered most promising, 
with the goal of allowing for deeper analysis in order to integrate them into the data sharing process. To 
be able to select the most promising technologies, we first assessed each technology’s potential to meet 
one or more requirements, as well as its limitations and its current maturity level. Then, starting with 
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the most promising one, we successively added technologies to create the set; each time we added a 
technology, we assessed whether the set of selected technologies collectively fulfilled the set of 
requirements for building system trust. When this was achieved, we stopped adding further technologies, 
so as to limit the number of selected technologies. The selection was based on insights from the 
evaluation phase of the first design cycle and supplemented by three design workshops with experts.  
In the second demonstration & evaluation phase, the specifications of this technology selection and its 
potentials and limitations for enhancing system trust were finally demonstrated and evaluated. As 
suggested by Peffers et al. (2012), we used two illustrative data sharing scenarios (direct data sharing 
between suppliers and manufacturers; a central data marketplace) in three expert workshops to illustrate 
the suitability of our artifact. 

4 Result 

4.1 Trust Challenges and Requirements for Data Sharing 
In this section, the relevant data sharing process phases, trust challenges and corresponding requirements 
will be explained. The trust challenges were structured along a four-phase data sharing process derived 
from the data sharing process model literature (see Section 2.1), which the interviewed experts also 
agreed on: assessment, agreement, integration, usage. These four phases comprise all activities of a data 
sharing process where a data provider faces trust challenges in regard to data sharing. In the assessment 
phase, the data provider and the data consumer are matched. The data consumer needs to identify a 
suitable data set for its particular use case. Therefore, an assessment of the quality of data sets offered 
by different data providers is required (Azkan et al., 2020; Krasikov et al., 2022; Oliveira et al., 2019). 
In this phase, data providers are usually not willing to share any data (Song et al., 2021), therefore, it is 
critical that the data consumer can assess the data sets without the data providers having to expose any 
data (R1). Moreover, to enter the agreement phase, the data provider should be able to evaluate if the 
data consumer is trustworthy (R2). 
In the agreement phase, the data sharing agreement is negotiated and signed (Dalmolen et al., 2019; 
Krasikov et al., 2022). In this phase, it is extremely important that the data provider defines the purpose 
for which the data can be used by the data consumer. The contract may also include specific restrictions 
and obligations regarding data use, access, and deletion, as well as payment details (Dalmolen et al., 
2019; Jussen et al., 2023). A key trust issue for the data provider at this point is the possibility of identity 
fraud by the data consumer, with or without fraudulent authentication through an unreliable third-party 
identity management system (Garrido et al., 2022). With growing ecosystems in a networked economy 
where data is increasingly shared with previously unknown parties (Jiang et al., 2021), this type of threat 
is growing. To prevent exposure of data to illegitimate consumers, the data provider and consumer 
require trustworthy identity authentication (R3), which assures that the contract is signed by two 
legitimate entities, also ensuring legal coverage. 
In the integration phase, data usage by the data consumer is facilitated by transferring the data to the 
system in which data processing takes places (Dalmolen et al., 2019; Krasikov et al., 2022). During this 
step, the data provider has to address two challenges. Firstly, the possibility of unauthorized individuals, 
teams or machines associated with the data consumer gaining access to the transferred data. Secondly, 
data consumers may not apply the same privacy standards as the provider with respect to transferred 
personal data (Garrido et al., 2022). Any violation of privacy standards, regulations and norms related 
to personal data on the part of the data consumer may result in the provider being subject to legal 
proceedings and may result in damage to the reputation of the data provider (Culnan, 2019; Weiss, 
2018). To address the former of the two challenges, access control on the data consumer side is necessary 
(R4). To address the latter, should the data provider deem the transfer of personal data too risky or 
illegal, it must be possible to ensure that data subjects are unidentifiable in the transferred data, while 
retaining as much of the value of the data as possible (R5). 
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In the usage phase, the shared data is processed to fulfill the purpose of data processing (Krasikov et al., 
2022). Compared to securing data at rest or in transit, securing data in use, i.e., during computation in a 
privacy-preserving manner is highly complex, but required for a trusted exchange of data (R6) (Jansen, 
2011). Finally, when the data processing purpose defined in the data sharing agreement has been 
fulfilled, data access or processing should be terminated (R7). If personal data has been processed and 
the data is no longer necessary for the original purpose, (in most cases) data deletion is required to 
comply with data protection laws such as the General Data Protection Regulation (GDPR).  
The following sections will focus on the trust-enhancing potential, limitations and current maturity level 
of the five most promising trust-enhancing technologies that are collectively able to address the 
aforementioned requirements: self-sovereign identity (SSI), differential privacy (DP), fully 
homomorphic encryption (FHE), trusted execution environment (TEE) and secure multiparty 
computation (MPC) (cf. Figure 3). The experts mentioned SSI and DP for the fulfillment of specific 
requirements (R1–R5) and discussed them mainly in isolation. In contrast, FHE, TEE and MPC were 
selected for requirements R6 and R7 and were often juxtaposed by the experts. Section 4.4–4.6 will 
reflect this, allowing for an informed choice of these technologies in specific data sharing scenarios. 

 

Figure 3. Requirement fulfillment potential of the technologies along the data sharing process. 

4.2 Self Sovereign Identity (SSI) 
Self sovereign identities (SSIs) enable individuals or organizations to decentrally manage their own 
digital identities. These identities are stored as decentralized identifiers (DIDs) in a decentralized 
registry and are cryptographically verifiable (Mühle et al., 2018). Therefore, SSI users do not have to 
rely on a third-party that centrally hosts and controls identity data. SSIs also offer the capability to issue 
verifiable credentials of users (Wang and De Filippi, 2020). These are verifiable digital proofs linked to 
identity records issued by a trusted source, such as the state or any other trusted institutions. These 
verifiable claims are managed by the user and can be shared for a wide range of application scenarios 
(Mühle et al., 2018). In the context of data sharing, SSIs can be used to enhance trust in three data 
sharing process phases: assessment, agreement and integration. 
In the assessment phase, according to an expert (P17), SSIs can provide a solution for the requirements 
R1 and R2 by establishing a rating system through verifiable credentials for data providers and data 
consumers in a data ecosystem. A trusted rating system based on past data sharing transactions would 
both attest to the quality of data providers and endorse the overall trustworthiness of data consumers. 
The use of verifiable credentials in this context yields the benefit of offering a rating that is instantly 
verifiable, tamper-proof through decentralized architecture and even privacy-preserving through its 
selective disclosure approach (Wang and De Filippi, 2020). “In Amazon reviews, for example, you don't 
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preserving manner, if the transfer of personal data is 
deemed too risky or illegal

R6 Data in use, i.e. during processing, has to be secured in a 
privacy-preserving manner

R7
Data access and processing of data should only be 
possible for the specified purpose and only during the 
contractually defined term
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know if […] it is a fake review used to promote the product. If you were to implement an SSI based 
rating you could cryptographically guarantee that only parties who have purchased the product can 
rate it and the consumer identity would not have to be disclosed” (P17). 
In the agreement phase, the issue of identity authentication (R3) can be solved using DIDs in the SSI 
concept (P07, P13, P14, P17, P18). Compared to centralized authentication points, SSIs, due to their 
distributed nature, have the advantage that they do not have to involve third parties (P13). The 
decentralized structure therefore prevents potential malicious attacks on a centralized critical element of 
the ecosystem, making identity authentication more trustworthy. According to one expert (P14) a data 
ecosystem is only as trustworthy as its least trusted component. Therefore, such centralized 
vulnerabilities should be avoided. 
In the integration phase, SSIs can address the requirement (R4) to have cross-company access control 
mechanism (P07, P14, P17). They can build a granular, access management system on the data consumer 
side for individuals and machines, whose connections can be represented in parent-child relationships 
(P17). Due to the inter-organizational standardization of identities through SSIs, the data provider is 
able to configure the access rights for identities on the data consumer side (e.g., person, teams, machines) 
(P14). SSIs also have the potential to be combined with sticky policies by "sticking" authorized subjects’ 
DIDs to the transferred data in order to carry the access rights to the data consumer (P14). Sticky policies 
are machine-readable usage policies attached to data (Pearson and Cassasa-Mont, 2011). Their 
execution in a trusted execution environment (compare Section 4.5) could potentially shift the 
enforceability of these policies from the legal to the technological realm, resulting in enormous trust-
enhancing potentials. Why SSIs are suitable to implement access rights through sticky policies was 
described as follows: “The usage policy must be carried on into the external systems. To achieve this, I 
anticipate technologies that come from the SSI environment, as this will require a cross-company 
approach, which means that identity silos will no longer make sense” (P14). 
Limitations: According to the experts, the implementation of SSIs remains less advanced for two 
reasons: technological maturity and lack of network effects. First, many of the SSI technologies are not 
technologically mature enough to reach a critical mass of users for productive scaling (P08, P17, P18, 
P19, P20). The introduction of a technologically enforceable access management system in conjunction 
with sticky policies and trusted execution environments considerably increases technological 
complexity (P14). According to an expert, such an implementation is still a long way off: “The 
technological implementation of SSIs in combination with sticky policies, which carries the data usage 
rights through to the target systems, is likely to take several more years.” (P14). Secondly, the lack of 
standardization prevents network effects (P07, P08, P17, P18, P20). Currently, there are different SSI 
networks based on different standards and these are not interoperable with each other, which severely 
limits their useability (P12, P17). SSIs only work through network effects because all relevant actors in 
the data ecosystem must be onboard, otherwise the operational risks outweigh the trust-enhancing 
potential (P17). “The use of SSIs is a strategic decision. Today, the risk that you have a supplier who is 
not connected [...] outweighs the potential for managers” (P17). 
Maturity (Pilot): The experts agreed that the technology is currently at pilot level (P17, P20). One 
example that was specifically mentioned is the Global Legal Entity Identifier Foundation (GLEIF), 
which offers automated authentication and verification of legal entities based on SSI technology. GLEIF 
operates as the root of trust in the issuance of digital trustworthy legal identifier codes (GLEIF, 2022). 

4.3 Differential Privacy (DP) 
To achieve differential privacy, algorithms add random noise to a data analysis such that its results do 
not change significantly when a single data subject is included in or excluded from the input dataset. 
This provides data subjects plausible deniability, thus anonymizing the data set (Schmidt et al., 2022). 
DP provides mathematical guarantees of data privacy and prevents the risk of re-identification of the 
data by reverse-engineering the outputs (Zhao and Chen, 2022). It also allows accurate quantification of 
privacy loss associated with making noise-injected analysis results available, thus allowing informed 
trade-offs between privacy and utility (Dwork et al., 2019). 
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In the integration phase, DP can fulfill requirement R5 (P07, P11, P14, P19). The data is modified by 
DP methods before sharing it with the processing system so that the presence of a specific individual’s 
data in the dataset cannot be inferred (P07, P19). Thus, DP allows anonymized sharing of previously 
personal data. “With data modification, large datasets can be anonymized and it can be ensured that no 
sensitive data can be extracted” (P19). 
Limitations: DP is already in use today, but according to the experts faces three main limitations. Firstly, 
the involved actors themselves must have a deep understanding of the technology and must actively 
participate in its execution (P07, P19). “You have to actively deal with it in practice and can't just say 
‘I have a huge database here, I want to sell it now [...]  and not worry about it anymore. You really have 
to sit down with the other party and see what kind of information they want’” (P19). Secondly, DP's 
mathematical ability to accurately quantify privacy loss results in a governance challenge in data 
sharing. According to a data analytics expert, “Another critical point with DP is that defining your 
epsilon value is a political determination. You have to come to an internal group consensus about the 
privacy risk that you're willing to absorb” (P11). Thirdly, the same expert believes that DP usability is 
limited in data sharing as it is only applicable for statistical aggregation use cases. Hence, if a use case 
requires the linkage of data to other information, for example in predictive maintenance where the input 
data is linked to a specific component, it is not possible via DP. “[It] has limited applications for 
aggregate data analytics. When you need linkable data – many applications require linkable data – DP 
is not gonna do it for you! It's good for statistical aggregations. It's not good outside of that context” 
(P11). 
Maturity (Product): The experts agreed that DP is already mature and mentioned users like Microsoft 
and Apple, ranking it at product level (P07, P11). For example, Microsoft uses DP when collecting 
telemetry data from windows devices (Microsoft, 2017). In B2B data sharing, for example, the US 
Census Bureau uses DP to anonymize their databases to enable external access (Census, 2022). 

4.4 Fully Homomorphic Encryption (FHE) 
Fully Homomorphic Encryption allows operations on encrypted data without ever decrypting the data, 
thus providing a guarantee of privacy (Aslett et al., 2015; Morris, 2013; Will and Ko, 2015). The private 
key to decrypt the output is held only by its defined owner and the results match those that would be 
achieved were the operation performed on decrypted data (Gentry, 2009). 
In the usage phase, according to experts (P07, P11, P14, P19, P21), FHE can meet the requirements for 
privacy-preserving and secure processing of data (R6) as well as purpose limitation (R7). In the context 
of data sharing, FHE can be applied in different ways. For example, it can be used for statistical analyses 
without disclosing any input data (Aslett et al., 2015). Thereby, the data provider would encrypt their 
input data with a public key and the data consumer would homomorphically execute their analysis in a 
cloud. At no point would the cloud provider or data consumer have access to unencrypted input data, 
guaranteeing computational privacy and security and limiting the use of the data to its purpose. One 
expert summarized the theoretical trust-enhancing potential of FHE saying, "FHE would be the holy 
grail” (P19). In practice, according to one workshop participant, FHE is highly promising for some 
specific use cases and thereby may already have advantages over other trust-enhancing technologies: 
“If there are few data sets and the case is very specific, I would go with FHE because I don't need a lot 
of infrastructure. […] If you know that the use case is supported by homomorphic and the libraries are 
there, you don't need much more than that, [making] FHE cheaper to implement than MPC. […] If 
you're going to do it [with MPC] just for that case, you're using a shotgun to kill a fly” (P21). 
Limitations: The use of FHE today has several operational limitations. A scalable, productive use is 
currently impossible due to the computational effort required and complex implementation (P07, P11, 
P19). As the efficiency of FHE continues to increase and computational power becomes cheaper, the 
computational effort required represents a limit to be overcome in the future (P21). Still, the custom-
built FHE implementations are highly complex and usually bound to a single use case to avoid additional 
complexity, hindering its scalability and connectivity to other systems and requiring deep know-how: 
“[To enable multiple use cases] you need to know all the edge cases. [...] Otherwise, you have one use 
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case, one dataset in one specific place, and one person who knows how to run the one operation that 
you support. So, either you're monolithic or [...] it's going to be a mess of governance, coordination, 
pipeline, et cetera” (P21). The practical technological limitation also severely limits the possible 
applications of FHE: “Imagine how many use cases do you have where you only need to multiply two 
numbers. I would say it's 0.01% of the enterprise cases. [...] The usability is still quite poor, compared 
to what you would do with secure multiparty computation or trusted execution environments” (P21). 
Due to the outlined limitations, practical applications for FHE are limited to specific, sensitive use cases 
(e.g., healthcare (Munjal and Bathia, 2022)): “For a while we saw FHE being touted as the solution to 
all privacy challenges in the world. It has some utility but may be limited to a specific context” (P11). 
Maturity (Research): For specific, highly sensitive use cases, FHE is already in use today. For example, 
one expert (P07) mentioned that Microsoft employs homomorphic encryption (HE) in its Edge browser 
to operate its password library (Microsoft, 2021). Microsoft is also offering a cloud-based HE library, 
called SEAL, developed and maintained by cryptography researchers (Wood et al., 2020). First 
applications of SEAL are TenSEAL, applying FHE in private deep learning (Github, 2022) or Intel’s 
HE Transformer for its future neural networks (Wood et al., 2020). However, for widespread application 
FHE is currently at research level to overcome the aforementioned limitations (P07, P11, P19). 

4.5 Trusted Execution Environment (TEE) 
Trusted execution environments (TEEs), also called confidential computing in a cloud context, protect 
data in use (Mulligan et al., 2021). TEEs are secure hardware areas within the processor, physically 
isolated from the applications and device operating system (Sabt et al., 2015). Consequently, even if the 
host system is compromised, the data in a TEE cannot be accessed (P06, P19). TEEs provide 
confidentiality and, in most cases, integrity (Sabt et al., 2015). So-called remote attestations provide 
cryptographic proof that the user interacts with a genuine TEE on a remote system and that the data and 
programs inside the TEE have not been tampered with (Hynes et al., 2018; Ménétrey, 2022; Sabt et al., 
2015). Additionally, a secure communication channel between the input system and the TEE can be 
built by remote attestation, by establishing a secure hardware associated encryption key (Pereira Pires, 
2019). This channel allows the remote unit to provide the TEE with encrypted secrets (e.g., training 
data, private keys) (Wagner et al., 2020; Gueron, 2016). 
In the usage phase, TEEs, similar to FHE, can fulfill the requirement for a secure and privacy-
preserving processing of data (R6) as well as technological enforceability of the purpose limitation (R7) 
(P14, P13, P19, P20). TEEs can technologically ensure that no decrypted data can leak out during 
processing since decryption can only be performed within the secure TEE and hardware-based 
mechanisms prevent an attacker from accessing the TEE (Mulligan et al., 2021). Furthermore, using 
remote attestation, the TEE demonstrates both its own authenticity and that the processing of programs 
within the environment are in line with the agreement (P14, P21). The data usage can therefore be carried 
out in a secure, privacy-preserving environment (Hynes et al., 2018) as the data consumer and TEE 
provider cannot access the unencrypted data at any point (P14). One expert explained: “You can provide 
trust within a function in a program running in that trusted environment and ensure that other programs 
cannot read, access, or modify that function” (P06). Another expert added, “[They] follow the principle 
of creating a non-compromisable area on a machine that may be compromised” (P19). 
In contrast to FHE and MPC, the use of TEEs has the advantage that the computations are performed 
on only one machine, making the use of TEEs more efficient and less costly (P06, P16, P19). “That's 
great, you can [solve] a lot of problems very efficiently, because you still compute efficiently on a single 
machine” (P19). The ease of implementation is also an argument for the use of TEEs as it does not 
require the establishment of an infrastructure, as with MPC, or massive know-how (P06, P13, P19). The 
TEE options offered by cloud providers also serve to simplify their use compared to other technologies, 
as many companies already have their data stored in a cloud (P07). One expert, a privacy tech startup 
founder, commented on this, saying, “Of my technology budget, I would invest 50% in TEE” (P16). 
Limitations: The trust-enhancing potential of TEEs is contrasted with three limitations: an operational, 
a technological, and a trust limitation. The operational limitation is because the data must not leave the 
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TEE. This means that all confidential calculations must be performed using code in the TEE, which in 
turn limits the available use cases as it complicates integration with existing systems (e.g., ERP systems) 
(P14). Enabling existing systems to be TEE-compatible is sometimes difficult or even impossible (P07). 
This limitation also applies in part to FHE, MPC and DP, and according to one expert could cause 
difficulties in the future: “It's going to be a bigger problem as time passes by, because especially now, 
we are moving from […] discrete machine learning to a more streaming-based learning” (P21). 
Secondly, computation in the TEE in one single machine has implications for the scalability and 
performance of calculations due to the limited available memory (P14, P19). When asked if big data 
analyses are possible in TEEs today, one expert answered: “I would bet [the size of datasets in TEEs] 
usually is not larger than a handful of gigabytes. I wouldn't expect a TEE with terabytes of data – 
definitely not” (P21). However, major infrastructure providers are investing a lot in TEEs, making them 
capable of handling larger applications in the near future (P04). This is also underlined by one expert: 
“The wide application of TEEs is definitely closer to practice than homomorphic encryption” (P19). 
The third limitation of the technology is the centralization of trust to the chip manufacturer. For the 
technology to be of value, the data provider and consumer must trust the hardware and the chip 
manufacturer’s remote attestation (P06, P13, P19). Yet, there have been security breaches with these 
chips previously (P14, P19). This residual risk is thus a trade-off for simple and efficient 
implementation. In reality, one expert (P20) argues companies’ trust in TEEs is high enough that they 
enable the vast majority of use cases. Only for ultra-sensitive use cases (e.g., health care) would 
technologies with mathematical privacy guarantees (e.g., MPC or FHE) have to be used. “You need to 
trust the manufacturer. So Intel or AMD or someone who provides this TEE” (P06). 
Maturity (Product): The experts consider TEEs as relatively advanced and therefore at early product 
level (P04, P07, P19, P20). According to P20, they are definitely more mature than MPC and FHE. All 
the large cloud providers, Google, AWS and Microsoft offer confidential computing and invest in it 
(AWS, 2022; Google, 2022; Microsoft, 2022). Other tools aim to enable TEE-compatibility of existing 
systems that are not themselves attached to TEEs (e.g., Anjuna (2022)). Based on these services, the 
first data spaces are currently being developed, seeking to enable secure data exchange (P20). 

4.6 Secure Multiparty Computation (MPC) 
Secure multiparty computation (MPC) is a cryprographic technique that allows ecosystem actors to 
jointly compute functions without disclosing their input data to each other (Choi and Butler, 2019). MPC 
systems are mostly based on secret sharing protocols, through which each data owner splits its input 
data into encrypted parts called secret shares (Agahari et al., 2022). Shares are then sent to the other 
MPC parties to perform arithmetic computations in a distributed manner (Garrido et al., 2022). In the 
end, all parties’ sub-results are combined, and the final output is made available to the parties or only 
one designated data consumer (Damgård et al., 2016). Thus, the input data can be processed privacy-
preservingly (Agahari et al., 2022). 
In the usage phase, MPC can fulfill the requirement for privacy-preserving and secure processing of 
data (R6) as well as for purpose limitation (R7) (P06, P14, P17, P19). The MPC performs only one 
agreed-upon, specific calculation at a time. Depending on the utilized MPC protocol, the data consumer 
is the only one able to retrieve the final result and, hence, exercises sovereignty over its use. The data 
consumer can, however, not only act as consumer but also as data provider (e.g., by inputting its machine 
learning model into the computation). The MPC parties as well as any other party would not have access 
to the input data at any time, therefore, a privacy-preserving, secure processing of the data can be 
guaranteed (P19). “With MPC we can execute arbitrary functions on secret data. So, one learns nothing 
from the secret data except what one would trivially learn from the result” (P19). In contrast to TEEs 
and similarly to FHE, according to an expert, the mathematical privacy guarantee of MPC systems raises 
the trust level of secure and privacy-preserving processing to a level required for sensitive use cases. 
Whereas, in case of TEEs, this would not be possible due to their residual risk: “TEEs only allow a 
limited trust level in the ecosystem in which they exist due to their limitations. The advantage of MPC 
is that we can mathematically assure that the calculations are correct and executed securely” (P19). 



Trust-Enhancing Technologies in Data Ecosystems 

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway                           12 

Limitations: Currently, MPC has limitations in its efficiency, the required infrastructure, and 
governance. Firstly, while being computationally less complex than FHE, MPC still has considerably 
higher communication and processing costs than TEEs (P06, P07, P14, P19). MPC today still struggles 
with performance and scalability issues. Nevertheless, advances in computational power and efficiency 
have brought the technology close to practical application in recent years (P19). A trusted computation 
expert described the performance disadvantage compared to TEEs as follows: “The disadvantage of 
MPCs is, of course, performance. […] we need a cluster of participants. […] And then they don't just 
calculate locally, but a protocol is executed. This means that during the calculation there is interaction 
between the parties executing the calculation and this is significantly slower and more complicated than 
if we would simply send it to a TEE, which then does everything and sends the result back” (P19). 
Secondly, similarly to FHE, MPC also has protocol-dependent limitations in terms of the computations 
that can be performed (P06, P07, P14, P19). On the one hand, as stated by one workshop participant, 
the supported operations are much wider than in current FHE: “I've seen [MPC ] systems that allow you 
to run pretty much everything you want.” (P21). On the other hand, MPC protocols are often designed 
and optimized for specific use cases rather than general purpose calculations. One interviewee compared 
the limitations of MPC and FHE as follows: “The difference is that if you do MPC, you know that at the 
end of that [complex implementation], you may have a bit more freedom to run computation on the data. 
[...] You may end up supporting cases that you didn't think of at the beginning, whereas homomorphic 
encryption [...] restrict you on the operations.” (P21). Thirdly, an ecosystem infrastructure must be 
established for MPC use (P20, P21). One workshop participant stated (P21) that all data providers and 
data consumers involved must be brought onboard with this infrastructure, which requires a 
standardization effort. Furthermore, such construction of MPC infrastructure is associated with high 
adoption costs due to its complexity and the required development of know-how: “It's just not feasible 
for standard enterprise engineers to manage those things” (P21). Another expert summarized the 
current use of the MPC thus: “Theoretically, a lot is possible, but practically, MPC is used today to 
chop up data and create sums from the separate calculations” (P14). 
Maturity (Proof-of-concept): According to the experts, the use cases will be potentially numerous in 
the future, but are relatively few today due to the described limitations (P14, P17). Nevertheless, the 
technology currently has a lot of traction and is making great progress (P17, P19). “In reality, MPC is 
currently making the leap from theory to practice” (P19). Today, MPC is used in specific use cases, but 
not for widespread data sharing applications, ranking at proof-of-concept level (P14, P17, P19). For 
example, Cybernetica is using MPC in its Sharemind MPC application to allow users to securely process 
data (Cybernetica, 2022). Another data exchange initiative that was mentioned by an interviewee is the 
Carbyne Stack. This is an open-source cloud stack for building scalable MPC applications, promising 
to allow secure collaboration on private data with any number of clients (Carbyne Stack, 2022). 

5 Discussion and Conclusion  
Previous studies have indicated that technology has the potential to enhance digital trust and shed light 
on the trust-enhancing technologies landscape. However, there is currently little knowledge about the 
trust-enhancing potential of digital technologies in the data sharing process of ecosystems and no 
systematic design for their integration into these. This paper aims at closing this gap by taking a DSR 
approach. Driven by clearly defined criteria, our technology selection allows us to show how a 
combination of technologies (SSI, DP, FHE, TEE and MPC) can enhance digital trust across the data 
sharing process and that these technologies have wide-ranging capabilities which are partly 
interchangeable (e.g., FHC, TEE, MPC) in specific phases (e.g., usage phase). However, we also identify 
three main limitations that continue to limit the full potential of the technologies today: standardization 
(SSI, MPC), computational performance (FHE, TEE, MPC) and ease of implementation (DP, FHE, 
MPC). Considering the highly dynamic nature of IT artifacts in part due to innovation and changing 
regulations (Orlikowski and Iacono, 2001), we assume that the five technologies identified will mature 
quickly and that the limitations will start to decrease. At the same time however, technologies beyond 
the scope of our study are also expected to gain relevance. Therefore, our collection of identified 
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technologies needs to be adjustable in the future. Hence, based on our approach, we have identified and 
suggest two principles for technology integration that guide the recombination and reintegration of trust-
enhancing technologies: (1) complementarity and (2) customization. 
Complementarity: Within the five most promising trust-enhancing technologies that we identified, none 
had the potential to fulfill all relevant trust requirements (R1–R7) comprehensively (cf. Figure 3). If one 
of the requirements is neglected or insufficiently fulfilled, it becomes the weakest link in the data sharing 
process and decreases the maximum level of trust. Accordingly, a complementary collection of 
technologies is required to mutually fulfill the relevant trust requirements (R1–R7). 
Customization: As our analysis (cf. Figure 3) shows, three technologies were able to satisfy the 
requirements R6 and R7. These technologies are in a ratio of substitution. The final choice of technology 
ultimately depends on the use case. Whether FHE, TEE or MPC are to be selected for a secure 
calculation depends on the required efficiency for the calculation, on the sensitivity of the input data or 
on the multifariousness of the use case. 
With our research results, we make a contribution on both a theoretical and a practical level. On the 
theoretical level, the novel insights from our explorative research approach on the application of trust-
enhancing technologies for data sharing add to the existing literature on the role of digital technologies 
for trust building (Agahari et al., 2022; Lumineau et al., 2023; Mubarak and Petraite, 2020). Up until 
now it has been unclear what trust-enhancing potential digital technologies are capable of yielding in 
the data sharing process and how they can be integrated into this process within data ecosystems. 
Moreover, our study addresses the dimensions of data privacy, cybersecurity and data sovereignty, thus 
contributing to the emerging literature stream on digital trust (Sahut et al., 2022). With our study, we 
shed light on the topic from a technological point of view and identify which technologies require further 
research to reduce their limitations. 
With our findings, we also aim to contribute to the application of trust-enhancing technologies in 
practice; investment in these technologies has doubled within the last three years (Chui et al., 2022). 
Moreover, studies have shown that trust is a strategic factor for the success of companies, especially in 
the context of data ecosystems (Jiang et al., 2021; Boehm et al., 2022; Kluiters et al., 2023). This 
contribution should support executives in their strategic investment decisions. Recent studies indicate 
that companies must be able to evaluate the suitability of such technologies in advance (Mubarak and 
Petraite, 2020; Sahut et al., 2022). As we propose a collection of five technologies based on a profound 
evaluation, executives can steer their investment portfolio accordingly. 
Due to its explorative nature, our study does not come without limitations, which themselves open new 
research avenues. Firstly, as our study is a conceptual study and no larger scale demonstrations or 
evaluations have been conducted as yet, an experimental study could check whether the trust 
enhancement is sufficient for data providers to share their data in data ecosystems. If such a study were 
to disprove this hypothesis, challenges regarding further ecosystem actors (e.g., consumers) may lead to 
additional requirements to be satisfied. Secondly, due to our sampling approach, our results might be 
industry limited and not generalizable to other world regions. Third, the experts provided indications for 
potential operational limitations of trust-enhancing technologies. To address these limitations, our 
systemic perspective (see Figure 1) needs to be broadened by incorporating data providers and 
consumers as sub-systems within data ecosystems. In this vein, follow-up studies may not only 
incorporate trust requirements for integration design, but also technical requirements that may stem, for 
instance, from challenges related to the integration of data from legacy systems (e.g., ERP systems) 
placed within a sub-system (i.e., data provider and consumers). We anticipate future design, 
demonstration and evaluation of our artifact in existing legacy systems to obtain operational context 
specification. Beyond additional technical considerations, future research should also focus on 
governance mechanisms (Oliveira et al., 2019).   
The artifact that we have designed in this article is not meant to offer a unique solution to enhance trust 
for data sharing in data ecosystems. Nevertheless, we believe that the insights from our article regarding 
the integration of trust-enhancing technologies into the data sharing process in data ecosystems are 
helpful for both academics and practitioners to unlock the potential of data ecosystems. 
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