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Abstract  

Organizations are progressively adopting hybrid human-artificial intelligence (AI) systems in decision-

making processes, with human decisions being augmented by AI insights. Among the promising AI 

applications in supply chain monitoring (SCMo) are predictive maintenance systems that predict 

potential device failures and augment maintenance decisions, allowing for timely and efficient 

interventions. Despite the growing proliferation of such systems, prescriptive knowledge encompassing 

technical, business, and organizational aspects on how to design, develop, and deploy them in actual 

operational environments remains limited. To address this shortcoming of evidence-based design 

principles in practice, our action design research developed a predictive maintenance system that 

predicts SCMo device failures and augments the maintenance decisions about those devices. By doing 

so, we outline generalizable design principles to guide prospective predictive maintenance systems in 

SCMo. 

 

Keywords: AI-augmented decision making, Supply chain monitoring, Design principles, Action design 

research. 

1 Introduction 

AI-augmented decision making (AIADM) is an umbrella term that encompasses diverse contexts where 

AI and humans are technically and behaviorally integrated to extend, enhance, and complement each 

other in decision-making processes (Keding and Meissner, 2021; Murray et al., 2020; Raisch and 

Krakowski, 2021). Hybrid human-AI systems have garnered significant interest in the information 

systems (IS) community, as well as in other disciplines and practices, over the last decade. A new stream 

of literature has emerged conceptualizing new forms of organizing human-AI systems from different 

vantage points. For example, Murray et al. (2020) emphasized the conjoined agency of humans and 

technologies. Lyytinen et al. (2020) proposed the concept of “metahuman systems” as a hybrid of 

humans and machines learning jointly while mutually reinforcing each other. They argued that such 

hybrid systems are better at learning than humans and machines individually. Recently, Baird and 

Maruping (2021) advanced this line of inquiry by discussing the paradigm shift of IS artifacts from 

passive tools to agentic artifacts that can assume responsibility for ambiguous tasks and produce 

preferred outcomes under uncertainty. These scholars emphasized the inadequacy of recognizing the 

primacy of human agency to study these new forms of relationships between humans and agentic IS 
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artifacts, as the agentic primacy is ambiguous or fluid. Against this background, human-AI collaborative 

decision making poses many interesting puzzles for scholars in diverse disciplines (Bailey et al., 2022; 

Fuegener et al., 2022; Puranam, 2021; Von Krogh, 2018).  

Although there have been various subfields of AI, machine learning (ML) systems have gained much 

prominence as AI’s most ubiquitous branch in recent years (Shrestha et al., 2021). Organizations are 

increasingly adopting data-driven approaches informed by AI or ML algorithms to automate and/or 

augment their operational and strategic decisions (Shrestha et al., 2019; Stobierski, 2021). The 

McKinsey Global Survey on AI attests to the rapid adoption of AI by industries across different business 

functions and its significant and improving impact on the bottom line (Chui et al., 2021). Among these 

business functions, AI holds great potential for supply chain management (SCMa), due to its ability to 

process big data sets, detect complex relationships, and provide visualizations (Alicke et al., 2021). 

Supply chain monitoring (SCMo) refers to the process of continuously surveilling goods in transit and 

related activities to detect disruptions in the regulated control environments under which the goods are 

transported. This is crucial in cold chain management (CCM), as a change in the regulated environment 

can result in inferior quality, damage, or obsolescence. Such surveillance is carried out in real time via 

data streams from Internet of Things (IoT)-enabled devices attached to transport containers (Fink, 2020; 

Tsang et al., 2018). Data gathered through these devices coupled with data analytics has successfully 

mitigated supply chain disruptions and yielded significant quality improvements (Koot et al., 2021). 

However, failure of these condition-monitoring devices has severe financial and non-financial 

consequences for logistics companies and SCMo service providers by disrupting key services. Due to 

this mission-critical nature, the high cost of failures, and increased reliance on sensing devices, it is 

crucial to identify solutions for predicting the failure of the devices to take maintenance actions. AI 

offers enormous potential in building predictive maintenance systems to predict device failures and 

augment corrective/maintenance decisions (Fink, 2020). Accurate predictions and insights rendered 

through AI systems facilitate apt decisions and actions (Koot et al., 2021).  

Despite the growing need for prescriptive design knowledge on developing maintenance systems that 

leverage AI to predict device failure, the research in this area remains either conceptual (Fink, 2020) or 

highly technical (Sun et al., 2019; Teo et al., 2019) and fails to recognize the business and organizational 

aspects within the design, development, and deployment phases. This limitation is of concern to IS 

scholars as well as practitioners. On the one hand, IS scholars need to understand the interactions 

between technology (predictive maintenance systems in our case) and its organizational contexts, since 

IS is a techno-organizational discipline (Padmanabhan et al., 2022). Failing to capture important 

organizational factors in the design and deployment of predictive maintenance systems leaves a lacuna 

in the IS field. Moreover, how to design, develop, and deploy predictive maintenance systems in the 

context of SCMo remains poorly understood. On the other hand, the same lack of knowledge prevents 

organizations from designing and deploying AI-powered predictive maintenance systems, limiting the 

potential benefits that AI can bring to their operations. Therefore, our research answers the following 

research question: What are the design principles for an AI-based predictive maintenance system that 

predicts device failures and augments maintenance decisions in SCMo?  

In the following, we present our findings from an action design research (ADR) study conducted with a 

company that offers real-time SCMo solutions as a service. We design and deploy an AI system for the 

company that predicts the failure of devices that supervise supply chain networks and augments the 

maintenance decisions of those devices. We draw on a rich set of primary data for the design and 

development of the IS artifact, including interviews with the firm’s executive members, analysis of their 

archival data, website, intranet, and field notes from weekly meetings. Additionally, we 

comprehensively evaluate our artifact through the corresponding proof of concept (POC), proof of value 

(POV), and proof of use (POU) by conducting field experiments and interviews with users and 

executives (Nunamaker et al., 2015; Venable et al., 2012).  

We describe the artifact, its expected utility, and its design process within the organizational context. 

Our main contribution is the synthesis of a set of six design principles. These design principles 

encompass technical and organizational and business aspects relevant for designing and deploying AI-

based predictive maintenance systems in SCMo. These principles contribute to IS scholarship studying 
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the design and the intended and unintended organizational consequences of adopting such systems. The 

principles may also help guide practitioners in developing customized AI-based predictive maintenance 

systems for their SCMo contexts taking our case as an example. Overall, our ADR study not only fosters 

richer insights into the interactions of technology and organization (Altendeitering and Guggenberger, 

2021), but also performs a dual mission of contributing to theory and providing practical insights. 

The remainder of the paper is structured as follows. In Section 2, we review the literature on SCMo and 

predictive maintenance, AIADM, and artifactual contributions in IS. In Section 3, we describe our ADR 

method. In Section 4, we elaborate on our problem formulation. In Section 5, we detail the five building, 

intervention, and evaluation (BIE) cycles we conduct to design, develop, and evaluate the artifact. In 

Section 6, we formalize our design principles as our contribution to the literature. In Section 7, we 

conclude by detailing our contributions to theory and practice and avenues for future work. 

2 Theoretical Background 

2.1 Supply chain monitoring and predictive maintenance 

SCMa builds on the foundational framework of logistics management with the key objective of planning 

and coordinating the flow of material and information in an integrated and effective manner from the 

producer to the end user (Seuring and Müller, 2008). Managing supply chains is becoming substantially 

more challenging due to interlinked physical flows resulting from complex product portfolios, market 

volatility, and rising sustainability concerns about supply chains that demand optimization and 

localization (Alicke et al., 2021). CCM in particular demands special attention to goods in transit that 

are perishable, sensitive, and of high-quality standard, such as pharmaceuticals and food products 

(Bishara, 2006; Han et al., 2021; Shih and Wang, 2016). Product quality, goodwill, safety, and brand 

image are key concerns for managers in these industries, and monitoring these important and sensitive 

products is essential (Tsang et al., 2018). SCMo is central to CCM to sustain the required quality 

standards by ensuring that goods are consistently maintained in prescribed optimal conditions using 

refrigeration and dehumidification systems (Bishara, 2006; Tsang et al., 2018). Monitoring helps 

logistics companies to evaluate supplier risks, increase product visibility and traceability with the related 

parties, detect disruptions promptly, and act swiftly to avoid subsequent damages (Koot et al., 2021).  

Emerging technologies such as AI, IoT, cloud technologies, and (big) data analytics are increasingly 

adopted across industries (Bailey et al., 2022), including SCMo (Swanson et al., 2018). SCMo employs 

a suite of technologies, including radio frequency identification (RFID) and IoT to continuously track 

parameters such as location, temperature, lighting intensity, and humidity in real time (Abad et al., 

2009). IoT refers to a structured network of smart, everyday objects equipped with intelligence, 

identification, and sensing technologies that can exchange data (Yang, 2014). Tsang et al. (2018) 

proposed an IoT-based risk monitoring system that applies IoT and AI techniques to prevent product 

loss and industrial accidents. Safety improvements and quality control have also been achieved through 

SCMo using both RFID and IoT technologies (Abad et al., 2009; Jia et al., 2012). The availability of 

vast amounts of data collected through IoT/RFID devices has coalesced with AI’s ability to distill 

insights and predictions from these data to foster predictive maintenance and fault prediction systems 

(Fink, 2020; Kanawaday and Sane, 2018; Sogi and Mittal, 2020). Predictive maintenance helps 

determine the condition of a device to estimate when maintenance should be performed or when the 

device should be replaced (Fink, 2020; Kanawaday and Sane, 2018). Fault prediction is a closely related 

topic that focuses on when a device will fail (Catal and Diri, 2009). Leukel et al. (2021) reviewed the 

adoption of ML for failure prediction and found that a broad range of systems and domains have 

successfully adopted ML-based failure prediction solutions; nonetheless, this was without any specific 

relation to SCMa/SCMo. 

2.2 AI-augmented decision making 

AI is being deployed across a variety of organizational contexts at a remarkable rate to improve decision-

making processes (Balakrishnan et al., 2020; Berente et al., 2021; Shrestha et al., 2019). The McKinsey 
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Global Survey on AI 2021 revealed that more than 57% of companies had adopted AI technologies in 

at least one business function to address complex decision-making problems (Berente et al., 2021; Chui 

et al., 2021). As organizations digitalize their operations, they invest in AI with the intention of 

improving decision making by leveraging AI-driven insights (Balakrishnan et al., 2020). 

Recently, significant attention has been paid to structuring decision making in organizations while 

recognizing the agency of AI artifacts (i.e., when, where, and how to make and integrate decisions 

involving humans and AI, as well as who should do so) (Baird and Maruping, 2021; Murray et al., 2020; 

Shrestha et al., 2019). Scholarly attempts to address this issue can be broadly categorized into two 

streams, decision automation and augmentation (Raisch and Krakowski, 2021). Raisch and Krakowski 

(2021) defined automation as machines taking over human tasks completely, whereas augmentation 

refers to humans collaborating with machines (or AI) to perform tasks. The tension between these two 

concepts is termed the “automation-augmentation paradox.” The literature concurring with the decision 

augmentation thesis is rife. Grønsund and Aanestad (2020) studied the use of AI to either automate or 

augment human work and concluded that augmentation (human-in-the-loop) could emerge as a strategic 

capability of firms. Shrestha et al. (2019) proposed a framework outlining how human and AI decision 

making may be combined to improve organizational decision making based on five contingency factors. 

Moreover, human-AI symbiosis was profoundly acknowledged by Murray et al.’s (2020) work on the 

conjoined agency of humans and technologies, Lyytinen et al.’s (2020) “metahuman systems” concept, 

and Baird and Maruping’s (2021) new perspective recognizing the agentic nature of IS artifacts.  

One approach to augment decision making using AI in condition monitoring systems is through 

predictive maintenance and failure prediction (Fink, 2020). Accurate predictions and insights, such as 

pattern recognition, classification, approximation, optimization, clustering, and process control 

(Toorajipour et al., 2021), allow for timely maintenance decisions and interventions (Koot et al., 2021). 

A couple of anecdotes illustrate such use. Amazon deploys fleets of AI-enabled warehouse robots to 

improve productivity and minimize errors. Goodyear uses AI sensors with IoT in its smart tires to 

monitor and control tire changes (Fosso Wamba et al., 2021). In the presence of such distributed device 

networks, leveraging condition monitoring systems may offer substantial benefits by improving uptime 

and performance, reducing maintenance costs, and signaling the optimal point and type of maintenance 

intervention to the decision maker (Fink, 2020).  

2.3 Artifactual contributions in IS research 

Ågerfalk and Karlsson (2020) viewed a research contribution as something that advances the 

understanding of the studied practice by virtue of its novelty and originality. They outlined three types 

of research contributions: theoretical, empirical, and artifactual. In our literature review, we focus on 

artifactual contributions of intervention-oriented IS research, such as design science research (DSR) 

(Hevner et al., 2004), action research (AR) (Baskerville and Wood-Harper, 1998), their combination – 

ADR (Sein et al., 2011), and collaborative practice research (Mathiassen, 2002). In ADR in particular, 

the artifacts are not merely IT systems but ensembles (including constructs, design principles, software 

tools and their features, process models, frameworks, and IS instantiations) shaped by the organizational 

context throughout their development and use (Sein et al., 2011). Hence, artifactual contributions serve 

the dual mission of IS research (i.e., advancing theory while responding to practitioner problems) well 

(Ågerfalk and Karlsson, 2020; Sein et al., 2011). Therefore, artifactual contributions are valued strongly 

by methodology- and design-oriented IS researchers and often feature in European IS research 

(Altendeitering and Guggenberger, 2021; Chen et al., 2022; Wache and Dinter, 2021).  

Recently, editorials from premier IS journals have shown significant interest in AI-based artifacts 

(Abbasi et al., 2016; Ågerfalk et al., 2021; Padmanabhan et al., 2022; Rai, 2017). AI has caused a 

paradigm shift in IS research (Abbasi et al., 2016; Baird and Maruping, 2021), leading to the 

fundamental question of whether the theories and knowledge created about non-AI artifacts hold for AI-

based artifacts (Herath Pathirannehelage et al., 2022). This has opened up research avenues for design 

science scholars to design and develop novel AI artifacts for prediction or description, decision support, 

and business process improvements and automation (Abbasi et al., 2016), leading to new constructs, 
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design principles, process models, methods, and IS instantiations. For example, the cross-industry 

standard process for data mining (CRISP-DM) (Chapman et al., 2000) emerged as the most widespread 

process model for data analytics and is regarded as the system development lifecycle (SDLC) equivalent 

to developing traditional information systems (Abbasi et al., 2016). Abbasi et al. (2010) developed a 

predictive IT artifact following a design science approach. Herath Pathirannehelage et al. (2022) adopted 

an ADR paradigm to develop a techno-organizational process model for AI-based IS artifact design and 

deployment while identifying the challenges therein and proposing design principles to overcome them.  

Nevertheless, scholarly attention to AI artifacts has predominantly remained conceptual (Fink, 2020) 

and technical (Bhavana et al., 2019; Sun et al., 2019; Teo et al., 2019) in predictive maintenance 

literature. Furthermore, AI artifact design and development for predictive maintenance in SCMa/SCMo 

has so far received scant attention (Mullarkey and Hevner, 2019). This research gap motivates our study 

to examine the interplay between AI-based predictive maintenance technology and its business and 

organizational use. We outline design principles that espouse crucial business and organizational aspects 

such as reconfigurability (Miah et al., 2019), domain knowledge integration, accountability, 

explainability, algorithm appreciation (Feuerriegel et al., 2022), cost efficiency, and system evaluation 

(Venable et al., 2012) when operationalizing AI-based predictive maintenance. 

3 Action Design Research 

The purpose of this paper is to develop design principles for an AI-based predictive maintenance system 

that predicts device failures and augments corrective/maintenance decisions in SCMo. To do so, we 

carefully followed the stages and principles of ADR conducted at a company offering SCMo as a service 

(Sein et al., 2011). ADR is a research method for generating prescriptive knowledge by building and 

evaluating IT artifacts in an organizational setting (Sein et al., 2011). It is a combination of DSR and 

AR; however, its striking advantage is that the artifact is not solely based on technical design but is also 

shaped by the organizational context throughout its design, development, and use (Orlikowski and 

Iacono, 2001). ADR’s use in the IS community has increased in recent years (Chen et al., 2022; 

Golovianko et al., 2021; Mandviwalla and Flanagan, 2021), leading to a growing number of application 

settings in which it has been applied effectively and consistently (Mullarkey and Hevner, 2019).  

ADR speaks to the core purpose of our research, namely developing an IS artifact (an AI-based 

predictive maintenance system in our case) while allowing for its emergence in the organizational 

context and evaluating its usefulness. Our ensemble artifact embodies design principles for predictive 

maintenance systems that can be “fundamental propositions that aid designers in achieving a successful 

transfer of requirements to design” (Möller et al., 2020, p. 3). We rigorously evaluated our ensemble 

artifact following the DSR evaluation approach suggested by Venable et al. (2012) and Nunamaker et 

al. (2015) by assessing its POC, POV, and POU. Therefore, our design principles, the process, and the 

instantiation should be sufficiently transparent for other SCMo firms to draw on this template to design 

and develop predictive maintenance systems to suit their contexts.  

Following Sein et al. (2011), we proceeded along four stages: (1) problem formulation; (2) BIE; (3) 

reflection and learning, and (4) formalization of learning. Problem formulation identifies and 

conceptualizes a research opportunity based on existing theories and technologies. It is often triggered 

by a problem perceived in practice, but it is important to abstract and understand the practitioner problem 

as an instance of a class of problems to generalize the findings later (see ADR stage 4). The BIE phase 

is carried out as an iterative process in a target environment, and it interweaves the building of the 

artifact, intervention in the organization, and evaluation. The outcome of this phase is an IT artifact. The 

problem and the artifact are continually evaluated, and the design principles are articulated for the 

chosen class of systems. The reflection and learning stage emphasizes moving conceptually from 

building a solution instance to applying the learnings from the building phase to a broader class of 

problems. Formalization of learning means that the learnings from the specific situation of the ADR 

project should be generalized into general solution concepts. Figure 1 illustrates the research design 

while the ADR stages, ADR principles and justifications, and data collection in each stage are provided 

in Table 1. 
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Figure 1: Research design. 
Stage Principle Justification Data collection Artifact 
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and automation  
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head of device 
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3) Literature review, 

see Section 2 
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prescriptive 
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and deploy AIADM 

in SCMo  
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ingrained 

artifact  

The solution was based on 

CRISP-DM (Chapman et al., 

2000) and pattern detection 

(Choudhury et al., 2021). 
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technological and organizational 

contexts.  
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2) Weekly meetings: 

head of device 

monitoring 

3) Company website 

4) Company intranet 

5) Artifact evaluation: 

field experiments and 
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Alpha version: ML 

models achieving 

superior predictive 

performance (AUC 

scores > 0.85). See 

Table 2.  

Beta version: Neural 

network model with 

interactive user 

interfaces (UIs) with 
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classifier threshold 

sensitivity analysis, 

See Figure 4. 
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(Nunamaker et al., 2015).  

R
ef

le
ct

io
n

 a
n

d
 

le
a

rn
in

g
 

P6: Guided 

emergence  

 

The artifact was continuously 

reviewed and improved over 

five BIE cycles (see Figure 1).  
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data and automation  

2) Literature review 

Ensemble version: 

An ensemble 
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principles for 

predictive 

maintenance in 

SCMo. 
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Table 1. ADR stages, principles, justifications, and data collection in each stage. 

4 Problem Formulation 

We utilized a unique opportunity to conduct our research in cooperation with a company offering real-

time supply chain visibility solutions as a service. This company is fast growing and employs over 300 

people. Its offering is the uninterrupted monitoring of goods in transit using IoT devices and providing 

clients with mission-critical insights, analytics, and operational service. The service seeks to facilitate 

customers with a better overview of their supply chain and in turn improve quality, reduce waste, and 

increase efficiency across it. Our case selection was motivated by three key factors. First, in terms of 

the technical foundation and data availability, the company has a robust IT infrastructure with the 

potential of collecting and storing massive amounts of data and producing analytics. Second, until the 

inception of our ADR study, the company had never developed an AI solution internally, making this 

project an inaugural one. Third, the company was willing to collaborate closely with us and shared our 

commitment, which is crucial for the success of an ADR project. Thus, the project scope from problem 

identification to deployment was cooperatively created from a management and operational perspective. 

The practical problem that motivated our research was that the monitoring devices could stop collecting 

data unexpectedly. This might significantly decrease the value of the goods in transit and bring 

detrimental consequences to the client and the company. The project aimed to significantly reduce the 

number of devices that malfunctioned in operation by predicting device failure before it went into 

operation, better understanding the reason for the failure, and augmenting corrective/maintenance 

decisions at crucial points (predictive maintenance). Maintenance actions can significantly reduce 

device malfunctioning, saving the company and its clients significant financial and non-financial costs. 

Since effective decision augmentation relies on the interplay between humans, algorithms, and 

organizational protocols (Murray et al., 2020), the artifact design should embody acceptance, 

reconfigurability, accuracy, and interpretability of the algorithm output. In this context, we 

conceptualize our problem solution class as “AI-based predictive maintenance systems that predict 

device failures in SCMo.”  

5 Building, Intervention, and Evaluation (BIE) 

We applied the most prevalent process for guiding analytics projects, the CRISP-DM framework 

(Abbasi et al., 2016; Chapman et al., 2000), in the BIE phase of the ADR process to develop a modeling 

pipeline in which the models were evaluated and refined to create superior performance. CRISP-DM 

provided a solid framework for planning and executing our AI-based artifact development. It involves 

several iterative phases: (1) business understanding, (2) data understanding, (3) data preparation, (4) 

modeling, (5) evaluation, and (6) deployment (Chapman et al., 2000). We followed these iterative phases 

over five BIE cycles, as detailed in the following subsections.  

5.1 BIE cycle 1: Business understanding to data preparation 

The business objective of mitigating the adverse consequences of monitoring failures is outlined in 

Section 4. The technical goal was to predict the failure of monitoring devices using the proprietary 

datasets of the company using AI/ML algorithms. We defined the problem as a supervised ML binary 

classification problem (failing or functioning within a given time). We used the company’s relational 

database, which is a collection of tables with a wide range of variables, ranging from device events and 

status checks to client information, shipment information, and device measurements. The tables 

comprise 1.8 million to 33 billion data points per table. We developed an understanding of the variables 

present in these datasets, and then we used frequency plots for categorical variables and boxplots for 

continuous variables to explore the distributions of these features. Subsequently, we used the data quality 

verification metrics proposed by Chen et al. (2014), namely completeness, accuracy, timeliness, 

consistency, objectivity, security, relevance, clarity, format, convenience, and cost effectiveness, to 

ensure the quality of the data.  
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We created a timeline for data selection based on the fundamental idea of predicting future outcomes 

using past behavior while assuming the constancy of the data-generating process. We defined two 

periods, with an example of these illustrated in Figure 2. Period 1, the feature window, was the period 

used to create features that would then be used to predict future outcomes (i.e., failing or not). Period 2, 

the target window or ground truth, was the period we predicted. The periods spanned 20 days (Period 

1) and 10 days (Period 2) to ensure that Period 1 would capture the recent data needed to make a 

comprehensive prediction and that Period 2 would then include sufficient devices (especially failed 

devices, as that was a minority class) to build a model. We created a master data table, which included 

features from Period 1 (feature engineering is described below) and the target variable from Period 2. 

Each row in the master table represents a device and includes an array of features that could predict the 

target variable. The master table was then split into a 70% training set and a 30% test set to train the 

models and test them with unseen data (Choudhury et al., 2021). The data selection described above was 

refined iteratively through evaluations with the domain experts.  

 

Figure 2. An example timeline for data selection. 

Feature engineering refers to constructing, deriving, and transforming data into variables that can be 

used as input features in the model (Chapman et al., 2000). The domain experts and the researchers 

began by scoping the potential predictors and how they could affect the target variable. Following these 

discussions, the research team engineered multiple features and used them in modeling (see Section 5.2). 

We iteratively evaluated the predictive performance of the models based on the engineered features 

while removing redundant and highly correlated variables (Choudhury et al., 2021).  

5.2 BIE cycle 2: Modeling the alpha version 

The sole objective of the alpha version was to conduct model selection; that is, to develop multiple 

models using general-purpose ML algorithms, compare their predictive performance, and pick the best 

ones. We explored general-purpose ML algorithms (Choudhury et al., 2021), logistics regression 

(Berkson, 1944), decision trees (Quinlan, 1986), random forest (Breiman, 2001), gradient boosting 

(Friedman, 2001), and neural networks (Rosenblatt, 1958).  

Tuning models involves finding the optimal hyperparameters for each model for a given problem and 

dataset by trying different hyperparameter value combinations and choosing the one that performs best 

on validation data. We chose the hyperparameters that would maximize the area under the curve (AUC) 

of the receiver operating characteristic (ROC)—our performance metric to evaluate different models—

as the optimal hyperparameters with 10-fold cross-validation.  

When comparing models, it is crucial to choose a model performance metric that is appropriate for the 

problem and objective. Different metrics can work better in different settings (Choudhury et al., 2021). 

Popular metrics for classification problems include log-loss score, accuracy (percentage of correct 

predictions for the test data), precision (proportion of positive examples that are truly positive), 

recall/sensitivity (number of true positives over the total number of positives), F1 score (combining 

precision and recall using the harmonic mean), and AUC (Choudhury et al., 2021; Lantz, 2013). Even 

though accuracy is effective for many classification problems (Lantz, 2013), it was futile in our setting 

due to the class imbalance (failing devices were a minority class) and false negatives (FNs; i.e., not 

predicting a device that would fail) being more costly. This cost could also vary depending on the type 

of goods in transit and the customer. Therefore, we adopted the AUC score, since the ROC curve plots 

the true positive rate (TPR) against the false positive rate (FPR) at different classification thresholds, 

providing an aggregate measure of performance across those thresholds (Bradley, 1997). 

Finally, we compared the models among the different ML algorithms we implemented. The AUC scores 

of these models are tabulated in Table 2. An AUC score of 1 symbolizes a perfect model, while one of 
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0.5 represents a random guess. The reported AUC scores illustrate the superiority of the predictive 

performance of our models against a random guess. 

Model AUC score Model AUC score Model AUC score 

Logistic regression 0.809 Gradient boosting 0.865 Neural network 0.850 

Decision tree 0.615 Random forest 0.897   

Table 2. AUC scores of the models. 

The random forest model provided the best AUC score, with 0.897, while the neural network model also 

performed relatively well, with an AUC score of 0.850. However, neural networks have the capacity to 

achieve high predictive performance when they are trained with big data (Choudhury et al., 2021). 

Therefore, we picked the random forest and neural network model to continue into the beta version. 

5.3 BIE cycle 3: Improvements to the alpha version 

In consultation with domain experts, we identified two preliminary improvement actions to adapt our 

models better to the real organizational context: (1) addressing the class imbalance and (2) scaling up 

the alpha version. Class imbalance happens in a dataset when a target class has a very small number of 

instances relative to other classes. In the presence of this problem, a trivial classifier might fail to detect 

a minority class due to its low incidence rate in the data (Chawla et al., 2002). However, the minority 

class was the class that was important in our problem. We tried three methods to balance the datasets, 

namely oversampling, under-sampling, and the synthetic minority over-sampling technique (SMOTE) 

(Chawla et al., 2002). However, neither model improved by following class balancing measures when 

compared with the AUC scores of the alpha version. Class balancing measures can improve 

performance, but they are not guaranteed to do so (Chawla et al., 2002). We therefore abandoned the 

class balancing, but we scaled up the chosen models (neural networks and random forest) by training 

them with five times more data points than in BIE cycle 2 to better reflect the actual operational scenario. 

This led to the development of the beta version. 

5.4 BIE cycle 4: Development of the beta version 

To develop the beta version, the alpha version was refined with the intention of extending the best-

performing neural network model to better meet the existing functional scenarios (see Section 5.3) and 

the needs of the users of the system. The domain experts and the device monitoring team (users) 

suggested integrating the costs associated with the prediction errors (cost analysis) and customer 

criticality (classifier threshold sensitivity). Both FNs and false positives (FPs) carry costs, but the cost 

of an FN could range from $10K to $3.5M in the case of a discarded shipment (but not always), whereas 

an FP would involve only the labor cost to quality check (~$50). Table 3 shows the assumed error costs 

for the beta version.  

Error Cost driver Cost ($) 

FN Average costs incurred from a failed device 1000 

FP Labor cost to quality check 50 

Table 3. Baseline cost assumptions for errors (FNs and FPs). 

The number of FNs and FPs was based on the output of the classification model. The output of a 

classification problem is the predicted probability values between 0 and 1. This value is compared with 

the threshold value to map the predictions to one class or the other depending on whether the prediction 

is higher or lower than the threshold (Lantz, 2013). Therefore, this threshold value is instrumental in 

deciding the number of FNs and FPs. However, decision makers can alter the threshold value depending 

on the desired outcome for the problem at hand. For example, for a highly important customer with 

critical materials in the logistics chain, it would be sensible to have a lower threshold value to reduce 

the FNs, as a failed monitoring device would have severe consequences.  

To accommodate the dynamism in this decision-making environment, we set up an interactive UI with 

a confusion matrix and classifier threshold sensitivity analysis, in which the decision maker could use 

their cost analysis as input and alter the threshold according to the customer, type of good, and situation 
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to see what effect the decision had on the output (see Figure 3). The decision maker could alter the 

threshold bar to observe how it would affect the prediction, cost, and the different metrics. The output 

was a confusion matrix with the number of observations in each category, the total cost and associated 

cost for each category, along with an arsenal of model performance metrics.  

The beta version of the artifact comprised the neural network classifier model as the back-end predictor, 

while the interactive front end provided an adjustable cost analysis for prediction errors and the classifier 

threshold sensitivity analysis to augment the corrective/maintenance decisions in SCMo. 

 

Figure 3. Interactive UI with a confusion matrix, cost details, and model performance metrics. 

 

Figure 4. Components of the beta version. 

5.5 BIE cycle 5: Evaluating the artifact  

We comprehensively evaluated the artifact by conducting the DSR evaluation approach suggested by 

Venable et al. (2012) and Nunamaker et al. (2015). To do so, we evaluated the following: (1) the 

effectiveness of the artifact (POC), (2) its efficiency in achieving its stated purpose (POV), and (3) its 

usefulness in the actual operational context (POU).  

The significantly high AUC scores listed in Table 2, especially for the random forest and neural network 

models, demonstrated the superiority of predictive performance compared to a random guess. This high 

predictive performance signified the effectiveness of the artifact in assisting decision-makers to identify 

failing devices. Hence, it presented POC.  

When evaluating its efficiency in achieving its stated purpose, we examined the extent to which the 

artifact satisfied the needs and objectives of the business (see Section 5.1). The efficiency was measured 

by calculating the potential cost savings of implementing the artifact. Accurate prediction of the failing 

devices that would trigger corrective/maintenance actions yielded cost savings. In Section 5.4, we 
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present the interactive UI on which the decision maker could alter the classifier threshold (T) and input 

the relevant costs of a particular scenario. Depending on the cost for each company (e.g., the value of 

the goods) and the classifier threshold choice, the cost savings change. Adopting the same baseline error 

cost assumptions (Table 3), we plotted the cost against the classifier threshold (see Figure 5). Then, by 

setting T = 0.05 (dark dotted line), the total cost would be $24,500. Compared with the total inactivity 

(i.e., no corrective action on any device; T = 1) cost of $39,000, this saved $14,500 for the 10 days (our 

window size; see Figure 2), which would accumulate to ~$530,000 on an annual basis, manifesting a 

~37.2% cost saving. These significant cost savings provided POV of the artifact.  

 

Figure 5. Cost against classifier threshold plot. 

We investigated the usefulness of the artifact in the actual operational context by conducting field 

experiments and interviews with users and executives. First, we designed an experiment to measure the 

overfitting of our prediction model. We compared the AUC scores between the model trained on prior 

data and that on new unseen data and found similar AUC scores for our model, confirming low 

overfitting. Second, we conducted interviews with the company’s device monitoring manager and VP 

of data and automation to explore whether the company would use and deploy the artifact in their 

operations. The VP of data and automation stated that “the artifact is impressive, and we will try to 

deploy it to make use of it in our operations.” This was due to the high performance and flexibility it 

offered when applied to different customers and dynamics. Furthermore, he said that the model would 

be good for handling the company’s expected scaling. Both interviewees agreed that the project had 

helped confirm the powerful data that the company had and said that the POC, POV, and feasibility of 

the project would inspire the company to accelerate its AI journey. Together, the experiment and 

interviews presented POU. 

6 Reflection, Learning, and Formalization 

Through multiple BIE cycles, we successfully developed an AI-based predictive maintenance system 

that predicts device failures and augments corrective and maintenance decisions in SCMo. The artifact 

was continuously reviewed and improved by maintaining a strong knowledge exchange between the 

domain experts and researchers who played mutually influential roles over five BIE cycles. 

Additionally, the reflection and learning were guided by our robust, concurrent, and authentic artifact 

evaluation methodologies (see Section 5.5), which enabled us to identify the design principles 

organically emerging from our design process while simultaneously demonstrating the user utility in 

addressing the practitioner problem. The designed artifact is not merely useful to our case company, but 

makes a contribution to the development of AI-based predictive maintenance systems that predict device 

failures in broader SCMo use cases (our problem-solution class). To synthesize this contribution, we 

reflected on our learnings during the ADR project and abstracted the technical solution as well as the 

related intended and unintended consequences of designing and deploying the artifact in real operational 

settings to a broader class. Table 4, which is placed at the end of this paper, presents an overview of the 

design principles (DPs), their rationalization, and their influence on the artifact.  
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7 Discussion  

The purpose of this paper was to synthesize the design principles for an AI-based predictive maintenance 

system that predicts device failures and augments corrective/maintenance decisions in SCMo. Our study 

contributes to both the academic literature and managerial practice. First, we contribute to the IS artifact 

design literature with a set of six design principles for AI-based predictive maintenance system 

development for SCMo applications (Table 4). Despite the proliferation of IT and AI technologies in 

the SCMa and SCMo domains, there is a dearth of knowledge on how to design AI-based predictive 

maintenance systems in such contexts. We address this research gap by providing both a technical 

solution that is effective, efficient, and useful in practice and the six design principles that we identified 

through contemporaneous interaction between (1) design, development, and use and (2) the 

organizational and technological context (Orlikowski and Iacono, 2001). In this process of guided 

emergence, we reflected on the challenges we faced and, in our workarounds, derived generalizable 

findings. The design principles thus developed address key concerns of human-AI organizing, such as 

reconfigurability (Miah et al., 2019), tacit knowledge integration, accountability, algorithm appreciation 

(Feuerriegel et al., 2022), explainability (Bauer et al., 2023), cost efficiency, and system evaluation 

(Venable et al., 2012) within our problem class. Our evidence-based design principles exhibit how these 

crucial conceptualizations of human-AI symbiosis can be integrated into predictive maintenance 

systems in practice positioning our case as an instance. Thereby, our work finds practice-based empirical 

evidence for emerging conceptualizations in contemporary human-AI literature. Furthermore, our 

design principles were distilled from rich data sources, grounded in existing theories, and inspired by a 

class of problems in practice. Thus, we generalize our findings to the broader domain of AI-based 

predictive maintenance systems that predict device failures in SCMo.  

Second, our work has several managerial implications. Most importantly, practitioners can develop 

customized instantiations for their own problem contexts in SCMo using our design principles to guide 

their design and decision making in the process (Möller et al., 2020). Our ADR process allows 

practitioners to effectively combine tacit domain knowledge and data science expertise when developing 

an AI artifact in SCMo. Furthermore, our evaluation metrics for POC, POV, and POU offer practitioners 

direction on what metrics they can use to prove their artifact’s effectiveness, efficiency, and usefulness 

in countering the business problem. A positive result of such rigorous evaluation processes would give 

AI change agents a strong foundation to drive their cultural change and knowledge management journey 

toward embracing AI augmentation in organizations.  

8 Conclusion and Future Work 

Our study is not without limitations, the most prominent of which is that it is a single-company study. 

Such studies are influenced by organizational biases, as all the practitioners and their design, 

development, and evaluation of the artifact are guided by the same organizational context (culture, 

technologies, routines, and procedures). Moreover, we cannot guarantee that the proposed design 

principles are comprehensive and conclusive; as they were developed for dynamic AI technologies in a 

fast-growing scale-up, the proposed list of design principles may need to be changed.  

Our findings and limitations leave us with several promising opportunities for future research. First, 

deriving design principles by developing similar artifacts for SCMo in other organizations could 

supplement, complement, or challenge the design principles already proposed. This would overcome 

the limitation of organizational bias. Second, even though our artifact exhibits superior performance, 

exploring different technical framings of the problem (e.g., ML-based regression models) might allow 

the artifact to achieve higher performance. Besides, advanced AI algorithms (e.g., deep learning and 

reinforcement learning) could yield higher performance and interesting implementation challenges that 

would be different from what we encountered. Third, not all decisions are the same, and there can be 

different topologies of SCMo decisions (e.g., descriptive, diagnostic, predictive, and prescriptive). Since 

we focused on the prediction (of device failure) typology, extending our investigation to other decision 

typologies could open up interesting puzzles for IS and DSR scholars. 
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DP Rationalization Influence on artifact 

DP1. Pick 

the right 

performance 

metric to 

optimize 

Accuracy (the number of correct classifications) is a logical metric for most classification problems (Lantz, 2013). However, 

when data are imbalanced, a model can simply predict all data points to be a part of the majority class, thus showing higher 

accuracy. The ROC curve plots the TPR against the FPR at different classification thresholds, while the AUC provides an 

aggregate measure of performance across those different thresholds (Bradley, 1997). It prioritizes the improvement of the TPR 

and FPR (independently) and provides us with a performance indicator indifferent to the classification threshold (Bradley, 1997). 

We optimized and 

compared models 

based on the AUC 

score primarily due to 

the class imbalance. 

DP2. Treat 

errors 

differentially 

Classification errors can be either FNs or FPs (Lantz, 2013). In our case, FNs have detrimental consequences for SCMo 

operations and the business in general. This demonstrates that the FPs and FNs cannot be treated identically. Depending on the 

problem context and problem at hand, the trade-off between the two errors needs to be managed. This can be in the form of 

performing the test multiple times and prioritizing minimizing one error over the other or incorporating the cost differences 

between FN and FP, as we did in our project (Choudhury et al., 2021). 

We prioritized FNs due 

to their severity while 

maintaining the upper 

limit on FPs (within the 

feasible region). 

DP3. 

Incorporate 

customizable 

parameters 

Associated with DP2, the costs associated with prediction errors can be attributed to diverse sources, such as shipment, client, 

and external environment characteristics, which are better evaluated by the domain experts. There should be customizable 

parameters to incorporate the domain expertise of the decision makers into the AI artifact to achieve meaningful and robust 

decision augmentation. This is also closely connected to DP4.  

We allowed decision 

makers to customize 

the classifier threshold 

and error costs.  

DP4. Ensure 

human-in-

the-loop 

There are three key reasons for human-in-the-loop. First, due to its probabilistic and stochastic nature, AI is unpredictable and 

might yield unintended results (Shrestha et al., 2021). Therefore, it is important to obtain human judgment and evaluation of the 

problem to identify the instances in which systems might fail, assess the associated risks, and develop contingency plans. 

Second, it is essential that AI systems are integrated with human domain expertise (Ju, 2007; Murphy et al., 2017). The human 

provides domain expertise and can easily understand intangible information that the AI will not capture. Auditing an AI system 

can help the AI to make better decisions and prevent it from taking wrong and extreme measures (Grønsund and Aanestad, 

2020). Third, over-reliance on AI could make decision makers lose their domain knowledge and accountability (Keding and 

Meissner, 2021). Therefore, it is wise to keep humans involved so that an organization does not completely lose its 

monitoring/risk-sensing skills (Alexander et al., 1997).  

We integrated the 

domain expertise at 

every crucial point 

(interactive UIs, 

customizable 

parameters, auditing). 

DP5. 

Employ 

interactive 

user 

interfaces 

To implement DP3 and DP4, the results of AI systems should be interpretable and explainable for humans to understand the 

mechanisms in play. However, most AI/ML algorithms are not easily explainable (Choudhury et al., 2021), making it difficult 

for decision makers to comprehend how the parameters they control affect the final outcomes. One potential way to mitigate this 

problem is through interactive UIs coupled with visualizations (Bauer et al., 2023). Such mechanisms are useful in overcoming 

algorithmic aversion (Dietvorst et al., 2018), leading to algorithmic appreciation (Keding and Meissner, 2021) and trust (Burkart 

and Huber, 2021). While introducing interpretability, the designer should also keep in mind the potential drop in accuracy and 

carefully manage the interpretability–accuracy trade-off (Baryannis et al., 2019). 

We developed an 

interactive UI to 

visualize important 

outputs of the system. 

DP6. 

Scrutinize 

performance, 

value, and 

use 

AI efforts are costly endeavors, demanding capital, a specialized workforce, and time, which are constrained organizational 

resources (Davenport and Zhang, 2021). Therefore, it is important to ensure that AI systems are effective, efficient, and usable to 

solve the chosen business problem. Choosing measurable use cases is the prerequisite of rigorous evaluations of the system 

(Tarafdar et al., 2019). A comprehensive evaluation scrutinizes the concept (POC), the value created (POV), and the usability in 

practice (POU) (Nunamaker et al., 2015; Venable et al., 2012). The measurement and demonstration of these parameters help 

garner stakeholder confidence and trust (Davenport and Zhang, 2021; Herath Pathirannehelage et al., 2022). 

We obtained POC, 

POV, and POU of the 

system. 

Table 4. Overview of the design principles, their rationalization, and influence on the artifact. 
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