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Abstract
While the proliferation of data-driven machine learning approaches has resulted in new opportunities
for precision healthcare, there are a number of challenges associated with fully utilizing medical data,
for example partly due to the heterogeneity of data modalities in electronic health records. Moreover,
medical data often sits in data silos due to various regulatory, privacy, ethical, and legal considerations,
which complicates efforts to fully utilize machine learning. Motivated by these challenges, we focus on
clinical care—length of stay prediction and propose a Multimodal Federated Learning approach. The
latter is designed to leverage both privacy-preserving federated learning and multimodal data to facilitate
length of stay prediction. By applying this approach to a real-world medical dataset, we demonstrate the
predictive power of our approach as well as how it can address the earlier discussed challenges. The
findings also suggest the potential of the proposed multimodal federated learning approach for other
similar healthcare settings.

Keywords: Length of Stay Prediction, Privacy, Federated Learning, Multimodality.

1 Introduction

Ongoing digitization efforts within the healthcare sector, along with the proliferation of artificial in-
telligence (AI) technologies, have the potential to transform clinical practice and improve quality of
healthcare and medical services, ranging from diagnosis (Gunčar et al., 2018; Myszczynska et al., 2020) to
outcome prediction (Awad et al., 2017; Davoodi and Moradi, 2018), and so on. Typical clinical practices
often rely on a variety of information formats contained within the electronic health records (EHRs);
therefore, utilizing knowledge from various input modalities or data sources in AI-based medical systems
to support more accurate and effective healthcare systems (Soenksen et al., 2022). More specifically, it
has been shown that leveraging multiple modalities from EHRs such as tabular data (e.g., demographics,
admission/discharge details), time-series data (e.g., blood chemistry, respiratory), unstructured sequence
data (e.g., notes, written reports), and image data (e.g., x-rays, CT scans), can potentially improve the
performance of AI systems in healthcare settings, compared to single-modality for the same task (S.-C.
Huang et al., 2020; Soenksen et al., 2022). Consequently, developing multimodal AI-based approaches for
medical care is a topic of ongoing interest, despite new and existing challenges (e.g., how to effectively
choose the appropriate data modalities, or collect large volumes of patient health data from multiple
modalities).

There are additional challenges, for example in terms of achieving an optimal or desired trade-
off between improved quality of care and minimizing unintended consequences (e.g., loss of privacy)
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(Anderson and Agarwal, 2011). More specifically, data-driven machine learning (ML) approaches are
highly reliant on real-world data of different modalities and from different sources. The healthcare
sector, however, has exacting restrictions on protecting the privacy of personal health information (PHI)
including in precision health applications (Anderson and Agarwal, 2011; B. Liu, Pavlou, and Cheng, 2022;
Xu et al., 2021). Such restrictions have been encoded in privacy regulations such as the General Data
Protection Regulation (GDPR) (Voigt and Von dem Bussche, 2017) and the Health Insurance Portability
and Accountability Act (HIPAA) (Department of Health and Human Services, 2013), which can limit
the sharing of data between organizations. In addition, there are other operational and organizational
considerations. For example, collecting, curating, and maintaining a high-quality medical dataset take
considerable time, effort, and costs (Rieke et al., 2020). Consequently, to achieve clinical-grade precision
for ML-based clinical applications, it can be operationally challenging to compile large-scale curated
datasets without requiring the data collector to hand over fine-grained control over such datasets (De Fauw
et al., 2018; Rieke et al., 2020; F. Wang, Casalino, and Khullar, 2019).

One viable solution is the local-only approach, where each hospital or a group of several hospitals in a
small region only trains a ML-based health system solely on their purposefully curated dataset(s) (Panch,
Mattie, and Atun, 2019; Rieke et al., 2020). One disadvantage of such an approach is that healthcare
organizations or other stakeholder groups cannot extract and leverage knowledge and intelligence beyond
their organization (Y.-K. Lin, M. Lin, and H. Chen, 2019). This can introduce biases to ML-based
algorithms, and utilizing such algorithms can exacerbate existing health disparities (Panch, Mattie, and
Atun, 2019; Panch, Mattie, and Celi, 2019). In other words, a poorly designed AI-based health system
may result in discrimination among various socio-demographic groups, leading to unequal outcomes
(Ghassemi et al., 2020; Leslie et al., 2021; Obermeyer et al., 2019). These challenges reinforce the
importance of designing large-scale AI-assisted healthcare systems while adhering to privacy regulations.

Recent efforts have been made to develop federated learning (FL)-based methods to address the above-
discussed challenges. More specifically, FL enables the ML process to occur locally at each participating
institution without moving patient data beyond the firewalls of the institutions in which they reside.
Instead, only model characteristics such as parameters are exchanged to achieve the learning objective.
Participants collaboratively train models under the coordination of a central server, and eventually, an
optimized consensus model can be obtained. FL implicitly offers a certain degree of privacy in all cases
because participants never directly access data from others and only receive model parameters that are
aggregated over multiple participants (McMahan et al., 2017). Although FL was originally designed for
privacy protection, it also empowers data controllers to establish their data governance processes, control
data access, and revoke it, which has striking implications for healthcare (Rieke et al., 2020). Accordingly,
establishing FL on a global scale could ensure high-quality clinical support regardless of the treatment
location, and such large-scale collaborative learning can reduce the sampling biases in less representative
datasets (Rieke et al., 2020).

In this study, we focus on an important problem in clinical care, which is the remaining length of stay
(LOS) prediction in intensive care units (ICU). The accurate prediction of LOS in ICUs can facilitate bed
management and cost control, and improve patient outcomes. Not surprisingly, LOS is a key parameter
for patients, clinicians, and hospital administrators (Bacchi et al., 2022; Bartel, Chan, and Kim, 2020).
For example, Rotter et al. (2010) have shown that the longer a patient stays in the hospital, the less likely
(s)he would have a positive outcome. When a patient is kept in a bed longer than necessary, the bed is
not available for other patients (Bacchi et al., 2022; Daghistani et al., 2019). However, predicting LOS
can be influenced by many factors, particularly for patients with complex medical conditions / history
(Bacchi et al., 2022). We also observe that existing LOS prediction approaches have varying limitations.
For example, many of these approaches were designed to support one prediction throughout the entire
ICU stay, and did not make full use of the heterogeneous data modalities in EHRs. Moreover, there is a
lack of fine-grained approaches to address privacy and data governance problems in real-world scenarios.
These observations lead us to explore the following research question (RQ):
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RQ: How can we enhance LOS prediction for ICU using multimodal data from different data sources
(e.g., different hospitals) while also safeguarding patient information privacy?

Our work contributes to the body of knowledge in two ways. First, motivated by properly addressing
the problems associated with the implementation of centralized ML in real-world applications, we use the
design science research (DSR) paradigm (Hevner et al., 2004; Peffers et al., 2007) to guide the design,
development, and evaluation of our proposed multimodal federated-learning-based method (i.e., the
artifact), with the objective of supporting large-scale clinical prediction training and, instantiates in LOS
prediction while considering data governance and privacy issues. Second, by implementing and evaluating
our method on a real-world dataset, we provide insights into the feasibility and practicability of the
proposed artifact. Researchers and practitioners can use our proposed approach in real-world applications
and generalize it to other clinical tasks as well.

Our paper is structured as follows. In the second section, we briefly review the extant literature on LOS
prediction and approaches that also support data governance and privacy. In the third section, we describe
our research methodology, which follows the design science paradigm. The workflow and components
of our system and the data preparation process are presented in the fourth section. We evaluate our
final artifact on a real-world dataset in the fifth section, prior to discussing the theoretical and practical
implications, as well as limitations and future research possibilities, in the sixth section. We summarize
this work in the final section.

2 Related Work

2.1 Length of Stay Prediction

Patients’ LOS in ICUs is generally considered a key metric for ICU resource utilization and patient
outcome evaluation (Bacchi et al., 2022; Bartel, Chan, and Kim, 2020). However, LOS may be influenced
by many factors, particularly in complex medical patients, and may be difficult to predict (Bacchi et al.,
2022). In most existing studies, patients were usually divided into two or multiple groups based on their
LOS, aiming at identifying the risk for long stays (Alsinglawi et al., 2022; Daghistani et al., 2019; Hachesu
et al., 2013). This kind of binary or multi-class classification problems ignored that LOS is naturally
formulated as a regression task. Some existing literature studied the more challenging regression task but
their methods only conducted one prediction throughout a patient’s entire ICU stay, which did not make
full use of the time-series data (Baek et al., 2018; Sotoodeh and Ho, 2019; Tsai et al., 2016). Therefore,
considering the remaining LOS as a regression at each time step would be more important for efficient
scheduling and ICU resource management (Harutyunyan et al., 2019).

Besides, most previous literature has leveraged traditional ML-based models to perform LOS pre-
diction, such as logistic regression (Alsinglawi et al., 2022; Tsai et al., 2016), support vector machine
(Daghistani et al., 2019; Hachesu et al., 2013), random forest (Alsinglawi et al., 2022; Baek et al., 2018;
Morton et al., 2014), or simple deep neural networks (DNNs) such as multi-layer perceptrons (Daghistani
et al., 2019; Hachesu et al., 2013; Tsai et al., 2016). However, the performance of such approaches
varied a lot, and these papers did not consider time-series features, which are almost the most relevant
features for tasks like LOS prediction (Soenksen et al., 2022). Later, DNNs such as LSTM-based models
(Harutyunyan et al., 2019; Rajkomar et al., 2018), attention-based models (Song et al., 2018), and even
temporal convolution-based models (Rocheteau, Liò, and Hyland, 2021), which are capable of handling
dependence across the time domain are proven to perform better on LOS prediction than other models.
However, these studies focused more on how to design models that can leverage time-series features for
LOS prediction, while the more important problem is how to leverage time-series data and tabular data for
multimodal LOS prediction, because features like gender, age, ethnicity, etc., contain deep-seated patterns
of health discrimination, which play an important role in identifying health inequities caused by biased AI
systems.
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2.2 Privacy and Clinical Prediction

Existing research on AI and health information privacy has indeed emphasized that the complexity of the
medical context in terms of the plurality of stakeholders (Beckerman et al., 2008), coupled with the highly
personal and sensitive nature of personal health information (Trumbo, McComas, and Kannaovakun, 2007)
suggest that investigations of privacy must pay attention to a broad range of risk elements. To address these
challenges, several privacy mechanisms have been proposed to manage privacy issues in AI. Specifically,
de-identification (or anonymization) (Sedayao, Bhardwaj, and Gorade, 2014; Sweeney, 2000) has been
widely used, as it can help to mitigate privacy issues by removing explicit identifiers such as name and
address, or by replacing them with pseudonyms or codes that cannot be traced back to an individual.
However, it is important to note that achieving complete de-identification can be challenging, and even if a
dataset is "anonymized", patient privacy may still be put at risk as even seemingly insignificant information
could potentially be used for the re-identification of patients (Abouelmehdi, Beni-Hessane, and Khaloufi,
2018; McMahan et al., 2017; Sweeney, 2000). In addition, differential privacy (Dwork et al., 2006), is
another privacy-preserving technique to safeguard sensitive information by introducing random noise to
the data to avoid the identification of individuals. Nevertheless, this technique may lower the accuracy of
ML models and may not be effective against all types of attacks. For example, if an attacker has access
to additional external information about an individual in the dataset, they may still be able to identify
that individual despite the random noise added by differential privacy. Cryptographic approaches (Clifton
et al., 2002; Laur, Lipmaa, and Mielikäinen, 2006) often bring in huge extra computation overheads and
costs with just a certain level of provable privacy (Abouelmehdi, Beni-Hessane, and Khaloufi, 2018; Duan,
Canny, and Zhan, 2010).

On the other hand, federated learning (FL) (McMahan et al., 2017), a learning paradigm where
multiple entities collaborate in solving a ML problem without exchanging their original data, would be a
potential solution to the privacy problem in the healthcare domain. The majority of existing FL research
focuses on FL optimization and addressing challenges associated with FL itself, while in medical, there
still lacks evidence about their business value in real-world applications. For example, J. Lee et al. (2018)
proposed a federated patient hashing framework which can compute the similarities between patients
across institutions, and demonstrated the accuracy and usability of the proposed framework. However, the
proposed system can not be generalized to other problems, and lacked analysis about the social impacts.
Some prior studies also applied FL-based methods to other medical problems, for example, mortality
prediction (G. Lee and Shin, 2020; Vaid et al., 2021), and hospitalizations prediction (Brisimi et al.,
2018), but with the purposes of preserving privacy and improving accuracy or efficiency. These studies
either evaluated their methods on only a few hospitals, or included very limited input features, which
might not be able to handle the complexity of the medical context, as we argued before. In the context of
LOS prediction, L. Huang et al. (2019) presented a federated machine learning model for mortality and
prolonged LOS classification only based on drug features, and Pfohl, Dai, and Heller (2019) studied the
efficacy of FL setting on a simple prolonged LOS prediction task based on simple ML models that cannot
handle time-series data properly. In this case, there is still lack of studies which leveraged multimodal
data by taking time-series data into account, as they are important for LOS prediction, or even other
clinical prediction tasks. To conclude the status of LOS prediction research, there is a gap in effective
and generalized approaches for accurate LOS prediction systems that can overcome privacy and data
governance challenges (privacy-preserving) while simultaneously utilizing multimodal data to improve
prediction accuracy (multimodal). Therefore, a multimodal federated-learning-based approach would be a
promising approach for LOS prediction.

3 Methodology

We followed the Design Science Research (DSR) approach which is a fundamental paradigm in IS research
concerned with the construction of socio-technical artifacts to solve organizational and societal problems
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and derive prescriptive design knowledge (Gregor and Hevner, 2013; Hevner et al., 2004; Peffers et al.,
2007). In line with DSR, we followed the seven DSR guidelines by Hevner et al. (2004) as well as the
DSR methodology proposed by Peffers et al. (2007) for developing our IT artifact.

As no research has suggested a multimodal federated-learning-based method for real-time remaining
LOS prediction so far, our goal is to develop a method that enables the use of multimodal EHR data to
perform privacy-preserving prediction on real-time LOS in the ICUs. According to Gregor and Hevner
(2013), the developed artifact within DSR can be considered as knowledge contribution if the artifact
either provides a new solution for a known problem, a new solution for new problems, or extent known
solutions to new problems. In our case, our proposed multimodal federated LOS prediction method can be
considered as a new solution for a known problem of LOS prediction. After the problem identification, we
examined the existing approaches for LOS prediction. Subsequently, we began the design and development
process in which we developed our method for LOS prediction based on federated learning in a way
that allows for leveraging multimodal EHR data for more convincing prediction. Then the artifact was
demonstrated and evaluated (Hevner et al., 2004; Peffers et al., 2007). We evaluated our method by
applying it to a real-world medical dataset and investigated the efficacy of our method. Finally, for
communication, our work offers prescriptive knowledge on how multimodal privacy-preserving learning
methods for LOS prediction ought to be designed, and it also has a variety of practical implications for
different stakeholders (Hevner et al., 2004; Peffers et al., 2007).

4 Multimodal Federated Length of Stay Prediction

We now discuss in detail our framework, which supports the privacy-preserving prediction of patient
accurate remaining LOS in the ICUs using multimodal data. In a nutshell, the system involves a central
server, which mainly takes care of parameter aggregation, as well as a number of hospitals, each training
a neural network model with the same model architecture. Figure 1 outlines the overall workflow of
the system as per the following steps, and this iterative learning process will continue until the model
convergence:

1. At each communication round, the server randomly selects a fraction of the participating hospitals for
federated training of the prediction model.

2. The server sends the parameters of the Temporal Pointwise Convolution (TPC) prediction model,
aggregated at the server, to the hospitals (parameters are initialized at random in the first round).

3. Selected hospitals conduct local update on the TPC model using stochastic gradient descent and the
local available data based on the received model parameters.

4. The hospitals send back the updated TPC model parameters to the central server.

5. The server aggregates the local model parameters sent by the selected hospitals using a specific FL
algorithm to produce the new global model parameters, and the aggregated new global model will be
serving as the initial model for the next communication round.

Formally, our task is to predict the remaining LOS at regular timepoints (every hour) throughout a pa-
tient’s entire stay in the ICU, up to the discharge time T , using features from two data modalities—tabular
data and time-series data. After feature extraction, time-series features will be fed into the TPC model, and
the output of the TPC model will be combined with features from tabular data as the inputs to a two-layer
pointwise convolution model. By doing this, multiple modalities can be used together to facilitate the
model performance. The time-series features of a single ICU stay contain various timepoints (t), and there
are two channels initially: feature values (ht,1), and their corresponding decay indicators (ht,2). The decay
indicators can tell how recently the observation ht,1 was recorded. We will discuss about the model in
detail in 4.1.3. In the rest of this section, we describe the system’s various entities and components.

Thirty-first European Conference on Information Systems (ECIS 2023), Kristiansand, Norway 5



Wang et al. / Multimodal Federated Length of Stay Prediction

Figure 1. Workflow of the Proposed Federated Multimodal LOS Prediction Framework.

4.1 Components

4.1.1 Hospitals

We operate in a collaborative setting with a number of hospitals engaging to train a federated multimodal
TPC model geared to predict remaining LOS in ICUs. Each hospital conducts local training on its locally
available data in each communication round, and only model parameters will be sent to the central server.

4.1.2 Server

The central server is responsible for collecting trained local models, aggregating them, and sending the
updated global model back to hospitals. The participating hospitals should trust the server for the exchange
of model parameters. And in our framework, the aggregation is performed using FedAvg algorithms
(McMahan et al., 2017), one of the standard FL algorithms. The FedAvg procedure consists of several
steps: the server initializes the model and randomly chooses a subset of hospitals to participate in training.
During each communication round, the server sends the model parameters to the selected hospitals. The
hospitals perform local updates based on the received model parameters and then send back the updated
model parameters to the central server. The server aggregates the local model parameters using weighted
averaging to generate the new global model, which serves as the initial model for the next communication
round. The above process is repeated for multiple communication rounds until convergence.

4.1.3 Model

As for the model used by each hospital in the local training, we adopted the TPC model proposed by
Rocheteau, Liò, and Hyland (2021), which is state-of-the-art ML model for LOS prediction. The overall
workflow of the model is shown in Figure 2. The original design of this TPC model focused on how it
can handle time-series features in medical data, while we focus on how it can leverage multiple input
modalities and deliver more accurate results compared to other ML models.

In general, there are three main fusion strategies to join data from multiple modalities, namely early,
joint, and late fusion (S.-C. Huang et al., 2020). Early fusion refers to join multiple input modalities into a
single feature vector and feed into a ML model for training, and late fusion is the process of leveraging
outputs from multiple trained models to make a final prediction (S.-C. Huang et al., 2020). In our case,
joint fusion would be a more suitable approach, because features from tabular data do not really need
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Figure 2. The TPC Model with Multimodal Inputs. Adapted from original paper Rocheteau, Liò, and
Hyland (2021). The time-series features ht,1 (purple) and corresponding decay indicators ht,2
(grey) will be processed by N TPC layers, and then joint fusion is applied to combine them
with features from tabular data among the feature domain. Finally a two-layer pointwise
convolution model is applied and obtain the final output ŷ (green).

any feature extraction models. In other words, feature representations are learned for time-series data
first through N TPC layers, and then combined with features from tabular data for final prediction. More
specifically, the extracted time-series features ht,1 and corresponding decay indicators ht,2 are the initial
inputs to the first TPC layer, and will be processed by N TPC layers, where the temporal convolution
networks (TCN) (Kalchbrenner et al., 2016; Oord et al., 2016) will examine through regular timepoint
t and map the X input channels into Y output channels, and the pointwise convolution will be applied
separately to each timepoint t with information from static features. Besides, after obtaining the static and
diagnosis features from tabular data, they will be combined with time-series representations among the
feature domain using joint fusion. Finally, a two-layer pointwise convolution model is implemented, so
that final prediction ŷ can be obtained.

More specifically, in order to handle time-series features, the TPC model combines temporal convo-
lutional layers (Kalchbrenner et al., 2016), which can capture the causal dependencies across the time
domain, as well as pointwise convolutional layers (M. Lin, Q. Chen, and Yan, 2013), which can compute
higher-level features from interactions in the feature domain. The temporal convolution operation is
defined as

( f n,i ∗hn,i)(t) =
k

∑
j=1

f n,i[ j]×hn,i
t−d( j−1) (1)

where hn,i
1:t represents the layer n’s temporal inputs, up to timepoint t, and f n,i is the convolutional filter

for each feature. And the pointwise convolution operation is applied separately to each timepoint, where
in the nth layer, it is defined as

(gn ∗ pn)(t) =
Pn

∑
i=1

gn[i]× pn,i
t (2)

where gn represents the pointwise filter, and pn
t is the interaction features concatenated by several

kinds of features across the feature domain. Therefore, this model could extract both temporal trends
and inter-feature relationships so that it is suitable for capturing the patient’s clinical state, and has been
demonstrated to yield state-of-the-art results on LOS prediction (Rocheteau, Liò, and Hyland, 2021).
Since our focus is not on the model, please refer to the original paper Rocheteau, Liò, and Hyland (2021)
for more details about how this model deals with the time-series modality.

In addition, Figure 3 shows that both total LOS and remaining LOS have significant positive skewed
distributions and the remaining LOS has an extreme skew with mean and median values of 3.99 and 1.96
days respectively. In order to train the model for a regression task that has such an extremely right-skewed
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distribution, we use Mean Squared Logarithmic Error (MSLE) loss as the loss function, to handle the
skewness, see below:

L(y, ŷ) :=
1
N

N

∑
i=0

(log(yi +1)− log(ŷi +1))2 (3)

Figure 3. LoS and Remaining LoS Distributions

4.2 Dataset Description and Preprocessing

The eICU Collaborative Research Database (eICU-CRD) (Pollard et al., 2018) is a freely available,
multi-center ICU database. It comprises over 200,000 patient ICU encounters for 139,367 unique patients
admitted between 2014 and 2015. Patients were admitted to one of the 335 units at 208 hospitals located
throughout the United States. It is a collection of a number of tables and the tables are all linked by a set
of identifiers, such as patientunitstayid which uniquely identifies a single ICU stay, and hospitalid which
uniquely identifies a hospital (Pollard et al., 2018).

As patient outcomes are influenced by a broad range of factors ranging from hospital characteristics
(e.g., size and geographical location) to types of medical care each hospital provides, and the way in
which a hospital appropriates its investments in technologies such as EHRs (Agarwal et al., 2010; Y.-K.
Lin, M. Lin, and H. Chen, 2019), we consider two major kinds of modalities as the inputs for LOS
prediction—static tabular data and time-series data. We then introduce all kinds of features we consider in
this study and go through the preprocessing steps for each of them.

Static tabular data: To obtain static features from tabular data, various tables from the original
database are utilized, such as patient and hospital, as well as several tables related to APACHE predictions.
These static features encompass a range of patient and hospital attributes, including gender, age, admission
and discharge dates, and regional information. In total, 17 static features are selected and subject to feature
engineering, such as scaling numerical variables between -1 and 1 and converting categorical variables to
one-hot encoding. Adult patients who have spent at least 5 hours in the ICU and have at least one recorded
observation are included in the analysis. Furthermore, active diseases documented in the pasthistory,
admissiondx, and diagnoses tables are extracted and represented through binary encoding. To maintain the
hierarchical structure of diagnosis coding, separate features are assigned to each hierarchical level using
binary encoding, as suggested by Rocheteau, Liò, and Hyland (2021). Only diagnoses that are recorded
before the fifth hour in the ICU are included to prevent future data leakage. Each patient admission is
represented by a single diagnosis encoding.

Time-series data: For each admission (ICU stay), 87 time-series features from the following tables:
lab, nursecharting, respiratorycharting, vitalperiodic, and vitalaperiodic, are extracted for every hour of
the ICU stay, from 24 hours before the ICU visit and up to the discharge time. A LOS target (subtracting
time elapsed from the total LOS) is assigned to each timepoint in a sliding window fashion (i.e., 24
hours), starting at 5 hours after admission and ending at discharge time. In this case, the target label
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Figure 4. ICU Stays Distributions in eICU-CRD

would indicate the remaining LOS in terms of days. Moreover, time-series features are then re-sampled
according to one-hour intervals and then forward-filled over the gaps to cope with missing data, because
lab variables are sparsely sampled features. Any data recorded before the ICU admission will be removed
after forward-filling is complete. Then, corresponding decay indicators of time-series features are added
to specify how recently the observation was recorded, similar to the masking used by Che et al. (2018).
Unlike static features and diagnosis coding, a sequence of time-series features is associated with each
ICU admission, whose length depends on the total LOS.

To simulate a federated setting, we partition the whole database into different hospitals according to
the hospital IDs to simulate a real-world FL environment in our experiments. Since the smallest unit of
information is a single ICU stay, we plot the distributions of the number of ICU stays among all hospitals,
as shown in Figure 4. We restrict our dataset to correspond only to hospitals whose number of ICU stays
is larger than 1,000, and form a subset dataset consisting of data from 47 hospitals. The summaries of our
dataset are shown in Table 1. Patient data from each hospital are randomly split into 70% for training,
15% for validation, and 15% for testing.

Description Value
Number of patients 76,632
Number of unit stays 94,126
Number of hospitals 47
LoS (mean) 3.17
LoS (median) 1.90
Remaining LoS (mean) 3.99
Remaining LoS (median) 1.96
Number of input features 104
Time series features 87
Static features 17

Table 1. Subset Dataset Summaries

5 Evaluation

We evaluate our method based on the real-world eICU dataset and compared our multimodal federated
method with the baselines briefly described below:

• Centralized learning, where a large amount of data are collected in a centralized cloud server to train
a satisfactory model.

• Local training, where each client conducts local training using its own data without communicating
with the central server using FL.
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Six metrics are used to evaluate the performance: Mean Squared Logarithmic Error (MSLE), Mean
Squared Error (MSE), Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE),
Coefficient of Determination (R2), and Cohen Kappa Score. For MSLE, MSE, MAD, and MAPE, lower
is better, and for the other two metrics, higher is better. Note that Cohen’s Kappa Score (Cohen, 1960) is
intended for ordered classification tasks, but it can effectively mitigate the skew if the LOS bins are chosen
well. We used the same bins as (Harutyunyan et al., 2019). It is important to use multiple evaluation
metrics because different metrics can give us different insights into our model’s errors and fitness.

In the first part of the evaluation, we demonstrate the necessity of involving different modalities by
comparing the performance of the optimized model trained with all modalities and only time-series data
under the centralized setting. Based on the results presented in Table 2, it is evident that incorporating
multiple modalities can enhance model performance to some degree, although this may vary depending
on the tasks and the selection of modalities. For the prediction of LOS, time-series data are the most
crucial modality as they align more closely with the realities of LOS prediction in clinical practice. Solely
relying on tabular data will not lead to accurate predictions. However, this does not imply that tabular
data, including attributes like gender, age, and ethnicity, are no longer relevant. Such modalities capture
certain health discrimination patterns, which are instrumental in identifying health inequities arising from
biased AI systems.

The objective of the second part is to demonstrate the effectiveness of the FL-based privacy-preserving
approach. We train the TPC model using three methods: federated, centralized, and local training, on our
subset dataset. In this part, we utilize all modalities and concentrate solely on comparing the differences
between the three methods based on the previous results indicating that incorporating all modalities yields
the best performance (see last three rows of Table 2). We evaluate the performance by employing the
best models obtained during the training phase for each method and testing them on the testing data. For
the federated learning approach, we need to specify two significant hyperparameters - the number of
communication rounds and the number of local epochs, in addition to the common hyperparameters in
conventional ML settings, to acquire the optimized trained model. Since we use FedAvg, we are required
to choose a proportion of hospitals for each round of the FL training. Given that the number of hospitals in
our subset dataset is not substantial, we do not perform sampling for each training round, and all hospitals
conduct local training in every communication round. The local epochs and total communication rounds,
on the other hand, usually need to be fine-tuned in conjunction with varying combinations, such as 1
& 100, 5 & 20, etc. It is worth noting that for large numbers of local epochs, FedAvg may not perform
optimally (McMahan et al., 2017). Given the limited number of patient data, we set the local epochs
to 1 and the communication rounds to 100, which proved to be sufficient for our dataset. Subsequently,
we perform a search for the learning rate and batch size with a fixed number of local epochs. When it
comes to centralized learning and local training, we utilize the same hyperparameter tuning process as we
typically do when training ML models.

After obtaining the trained model under each setting, we evaluate the models using the testing data
from all hospitals. The results for the federated and local settings are obtained by averaging the testing
results from each hospital. The evaluation results are shown in Table 2. The results suggest that local
training yielded the poorest performance out of the three methods. This can be attributed to the insufficient
and restricted data available in each hospital, making it highly challenging to achieve optimal model
training through local efforts alone without cooperation. Regarding federated and centralized learning,
the findings indicate that centralized learning tends to outperform federated learning. This is because,
in centralized learning, all data are aggregated and trained on a substantial amount of data. However,
federated learning exhibits strong performance, with a 20% difference in MSLE compared to centralized
learning — a marked improvement over local training, which is twice worse than centralized learning.

Moreover, we evaluate the performance of the models trained under the three settings in a more
realistic scenario by reporting the test results of each hospital when using its own data as the test set.
Interestingly, we find that the centralized trained model does not consistently outperform the federated
trained model. Table 3 shows the results of the centralized trained model and its corresponding federated
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Setting MSLE MSE MAD MAPE R2 Kappa

Centralized (only tabular) 1.99±0.00 35.79±0.12 3.05±0.00 172.95±1.18 −0.07±0.01 0.10±0.00
Centralized (only time-series) 0.59±0.03 24.31±4.45 2.07±0.17 64.54±5.75 0.28±0.13 0.66±0.00
Centralized (all modalities) 0.59±0.01∗∗ 20.81±0.27∗ 1.93±0.02 62.43±1.71∗ 0.38±0.01 0.66±0.01∗

Local 1.90±0.02 32.16±3.86 2.96±0.04 176.39±46.17 −0.04±0.09 0.16±0.13
Federated 0.71±0.01 22.37±0.20 1.93±0.01 72.53±2.13 0.41±0.00 0.61±0.00

Table 2. Average prediction performance of Centralized, Local, and Federated training on testing data.
For each metric, the margin of error is 95% confidence intervals calculated over 3 runs. The
best results are bold. Note: * p<0.05, ** p<0.01; MSLE: Mean Squared Logarithmic Error;
MSE: Mean Squared Error; MAD: Mean Absolute Deviation; MAPE: Mean Absolute
Percentage Error; R2: Coefficient of Determination; Kappa: Cohen Kappa Score.

and locally trained models from two hospitals, namely the worst-performing and best-performing hospitals.
It is evident that hospitals can gain advantages from collaboration in the federated setting in contrast to
local training. We observe that centralized learning outperforms federated learning in the best-performing
hospital. However, centralized learning exhibits poor performance in the worst-performing hospitals,
demonstrating a 40% higher MSLE than federated learning. The aforementioned observations suggest
that centralized learning may exacerbate existing health disparities easily due to issues like sampling
biases and the absence of representative datasets, resulting from privacy and data governance concerns.
In contrast, the federated setting holds the potential to incorporate more diverse data than centralized
learning in real-world scenarios, even when privacy and data governance issues persist.

Hospital Setting MSLE MSE MAD MAPE R2 Kappa

Worst
Centralized 1.06±0.11 216.81±8.93 4.40±0.11 97.56±10.62 0.19±0.03 0.60±0.05
Local 2.16±0.27 82.97±7.36 5.94±0.25 119.80±7.31 −0.11±0.10 0.34±0.08
Federated 0.76±0.02∗∗∗ 64.24±1.11∗∗∗ 2.56±0.04∗ 69.76±1.74∗ 0.17±0.01 0.61±0.01

Best
Centralized 0.62±0.10∗∗∗ 1.54±0.34∗∗∗ 0.70±0.06∗ 54.72±4.25 0.42±0.13 0.53±0.10
Local 1.81±0.06 264.44±4.74 4.95±0.03 135.16±12.24 0.01±0.02 0.40±0.01
Federated 0.68±0.04 30.79±3.87 2.20±0.09 66.33±2.35 0.37±0.08 0.63±0.02

Table 3. Comparison of prediction performance for worst-performing and best-performing hospitals.
For each metric, the margin of error is 95% confidence intervals calculated over 3 runs. The
best results of each hospital are bold. Note: * p<0.05, ** p<0.01, *** p<0.001.

6 Discussion

6.1 Practical and theoretical implications

This work looks into a new opportunity arising from AI-based health systems and shows that leveraging
multimodal federated learning can lead to effective and accurate LOS prediction where a patient’s
multimodal health information does not need to be exchanged or shared between hospitals.

Our study offers important theoretical and practical implications for different stakeholders. With
large-scale multimodal federated healthcare systems, patients can receive clinical support irrespective
of their treatment location, place of residence, or any other social determinants of health. This means
that even patients residing in deprived areas or coming from disadvantaged communities can avail
themselves of the same high-quality ML-aided clinical support that is accessible to other communities.
For clinicians, their judgments might also be biased as they are usually exposed to subpopulations based
on their location and demographic environment. By training multimodal predictive systems in a federated
fashion, clinicians from different healthcare organizations can leverage the collective knowledge and
expertise of different institutions, resulting in less biased decision-making. For hospitals and healthcare
providers, by establishing multimodal federated-based systems, hospitals with different population groups
can collaborate without worrying about becoming a data donor, and they can maintain full control and
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possession of their patient data, with complete traceability of data access and limited risk of misuse by
third parties. This can help address privacy concerns that may arise from sharing sensitive patient data.
Moreover, by using FL, healthcare organizations can potentially reduce the costs associated with data
storage and processing, as they don’t need to centralize all the data from different institutions. Hence,
establishing multimodal federated-based systems can lead to better patient outcomes, reduced healthcare
costs, and improved resource allocation. Although our overall system is designed for real-time LOS
prediction, it can easily be generalized to other clinical tasks since the general structure of the systems
should be similar.

Besides, the accuracy of LOS predictions is crucial for effective patient care and resource management
in healthcare organizations. However, the existing literature on LOS research has several limitations that
hinder the usefulness of these predictions. There is a significant gap in the development of effective
and generalized approaches for real-world LOS prediction systems that can address privacy and data
governance challenges while utilizing data from multiple sources. To address these limitations, we
have developed a data-driven LOS prediction system that incorporates time-series data and leverages
multiple data modalities to enhance prediction accuracy. We have evaluated its effectiveness and yielded
promising results that indicate the potential of our approach to enhance patient outcomes and healthcare
delivery. Our approach represents a significant improvement over existing methods and can be classified
as an innovative contribution to the knowledge base according to Gregor and Hevner (2013). FL offers
several benefits, such as enabling the training of ML models on large datasets while keeping data
distributed, without requiring centralized data storage or processing power. This can enhance privacy and
security by minimizing the risk of sensitive data leakage during data sharing, thereby addressing growing
concerns around data privacy and security in the IS field. Additionally, FL-based systems can reduce the
computational load on centralized servers, allowing for the training of complex models on large datasets
without requiring excessive resources, which can tackle the challenges of scaling up ML models to handle
massive datasets. Moreover, FL can facilitate decision-making in scenarios where quick decisions are
necessary and centralized decision-making is not practical, which can help overcome the obstacles of
efficient decision-making in the IS field. In addition, FL can also enable personalized healthcare solutions,
which can improve the accuracy of clinical prediction models and enable healthcare providers to make
more informed decisions about patient care. This is related to personalized healthcare in IS research.
Therefore, relevance and rigor of our proposed design ensure a grounded contribution to the knowledge
base that fits inside the privacy IS, AI-related research, and healthcare domain.

6.2 Limitations and Future Research

Despite the above implications for different stakeholders, we are aware of some potential limitations
of our work. Also, our findings have implications for future research. Therefore, we now outline these
limitations and opportunities for future research. First, we only apply a standard FL algorithm in our
proposed method, which can only learn a global model which will be used by all organizations. However,
in many cases, integrating two dissimilar datasets may result in worse performance of the model trained
on each local dataset. This is especially true in the medical domain, where patient data from different
hospitals may exhibit variations from the general population’s distribution. As a result, there is a need for
additional design for FL algorithms. One avenue for future research is to incorporate personalization into
the learning process rather than attempting to arrive at a single consensus model. This approach involves
training multiple models for different hospitals, each tailored to the unique characteristics of that hospital.
By doing so, we can better address the challenges that arise from non-IID data distributions. Furthermore,
a promising direction for future research is the integration of fairness-aware algorithms. This is because
there are still concerns regarding the potential for bias in the FL process, which can lead to disparities in
model performance and even discrimination. Although improving prediction accuracy across hospitals is
essential, it does not necessarily guarantee fairness across different demographic groups. The reason for
this is that healthcare data is often highly sensitive and can exhibit variations across different demographic
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groups. Without accounting for these disparities, models trained on such data may not be accurate or
equitable. In addition, FL-based approaches can offer a certain degree of privacy because the data from
each institution will never be directly accessed by others, and only model parameters will be shared and
aggregated on the server. However, models themselves can memorize some information under certain
conditions (Sablayrolles et al., 2019), which would still cause information leakage sometimes. Therefore,
further analysis on privacy leakage will be beneficial, and privacy mechanisms such as differential privacy
(Abadi et al., 2016), or cryptographic methods can be added to the FL setting to further enhance privacy.
Moreover, in this study, we have only used a limited number of modalities. However, there is potential for
future research to explore the use of additional modalities, such as unstructured clinical notes, written
reports, and even image data, to further enhance the prediction capabilities. Finally, further research
can engage practice partners to implement a field test to validate the effectiveness of our multimodal
federated LOS prediction system. We also plan to carry out a user test to obtain valuable insights into the
perspectives of practitioners and incorporate multiple design cycles to further enhance our approach.

7 Concluding Remarks

In this study, a multimodal federated-learning-based framework is presented to predict real-time LOS in
the ICUs. In the context of a real-world medical dataset, we explore the potential of multimodal federated
learning in addressing the privacy and data governance issues related to healthcare and enabling the use of
multimodal data in medical applications. We implemented and evaluated a multimodal federated-learning-
based approach for ICU remaining LOS prediction, which is capable of predicting patient remaining
LOS every hour throughout a patient’s entire stay in the ICU by leveraging multimodal data and privacy-
preserving federated learning. Our design has a series of practical implications for different stakeholders
and shows the potential of applying large-scale multimodal federated healthcare systems to mitigate the
disparities caused by privacy concerns and limited-available data in centralized ML systems. As for the
theoretical implications, we addressed a relevant real-world problem with a set of design decisions and it
contributes to the emerging literature on privacy IS, especially privacy research in health informatics, and
sheds light on the importance and necessity of using multimodal inputs in the healthcare domain. In the
future, we plan to further improve our work by involving personalized and fairness-aware FL algorithms,
additional privacy mechanisms, as well as more modalities.
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