
RESEARCH PAPER

Mastering Agile Practice Adoption through a Model-Driven
Approach for the Combination of Development Methods

Giovanni Giachetti • José Luis de la Vara • Beatriz Marı́n

Received: 14 January 2022 / Accepted: 1 October 2022 / Published online: 24 December 2022

� The Author(s), under exclusive licence to Springer Fachmedien Wiesbaden GmbH 2022

Abstract Many software companies are adapting their

traditional development processes to incorporate agile

practices. In this context, it is necessary to count on expert

knowledge to evaluate different agile practices and con-

figure them according to project needs. However, this

expert knowledge is scarce, difficult to validate, and time-

consuming, since it is applied manually. As a solution, the

paper presents a model-driven approach, called SIAM,

which automatically generates guidelines for the adoption

of agile practices through the combination of different

development methods. SIAM is supported by a meta-model

architecture to implement a knowledge repository that

characterizes method configuration decisions, which can be

reused in different development projects. SIAM has been

implemented in a tool suite that facilitates the specification

of models and the identification of issues during the defi-

nition of the development processes. The approach has

been successfully applied to reconfigure an industrial

development process with agile methods, showing that the

effort required for tailoring agile practices according to

organizational standards is considerably reduced.

Keywords Agile practices � Process configuration �
Automatic verification � Model-driven agile � Knowledge

management

1 Introduction

In recent years, increasing attention has been focused on

agile development method (Cockburn 2006; Fowler 2001),

with a growing number of companies adopting such prac-

tices to evolve their development processes. This progress

is presented in the annual State of Agile report (Digital.ai.

2021), which also indicates that the main motivations for

adopting agile practices are accelerated software delivery,

enhanced ability to manage changing priorities, increasing

productivity, and improved business/IT alignment (Tripp

and Armstrong 2014). Given these benefits, many compa-

nies have started to adapt their traditional development

processes to incorporate agile development practices in

order to meet their project requirements (Mahanti 2006;

Rao et al. 2011).

However, the transition of organizations and their

development practices from a traditional process to an agile

one is challenging, and requires great effort from organi-

zation and teams (Campanelli and Parreiras 2015). The

reconfiguration of traditional development processes

demands specific expert knowledge to adapt existing

methods to agile practices that are aligned with organiza-

tional needs (Lycett et al. 2003). Generally speaking, this

configuration activity is performed manually without sys-

tematic guidelines, and is thus susceptible to present

inconsistencies due to the lack of automatic verification

mechanisms or assisted support for the process configura-

tion (Garcı́a-Borgoñon et al. 2014).

Accepted after 1 revision by Pnina Soffer.

G. Giachetti (&)

Facultad de Ingenieria, Universidad Andres Bello, Antonio

Varas 880, Providencia, Santiago, Chile

e-mail: giovanni.giachetti@unab.cl

G. Giachetti � J. L. de la Vara

Universidad de Castilla-La Mancha, Av. de España, s/n,

02001 Albacete, Spain

B. Marı́n

Universitat Politècnica de València, Camino de Vera s/n,

46022 Valencia, Spain

123

Bus Inf Syst Eng 65(2):103–125 (2023)

https://doi.org/10.1007/s12599-022-00785-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-022-00785-5&domain=pdf
https://doi.org/10.1007/s12599-022-00785-5

This paper presents a model-driven approach that uses

expert knowledge to guide the configuration of develop-

ment processes in organizations that are moving from tra-

ditional to agile development schemas. It reduces the effort

and errors involved in the manual configuration of pro-

cesses while preserving the alignment with organizational

development standards and reference methods. The

approach has been implemented in a suite of model-based

tools called SIAM (Software Improvement Agile Meth-

ods), which facilitates the adoption of agile practices in

software development processes that must combine tradi-

tional and agile methods to ensure alignment with organi-

zational standards. SIAM has been validated by means of

industrial projects, which have obtained ISO 9001 and

CMMi certifications.

The aim of the SIAM approach is to manage experts’

knowledge of agile development processes and to promote

the use of this knowledge among practitioners. To this end,

SIAM formalizes the configuration decisions of develop-

ment processes so that third parties can validate these

decisions, and have access to evidence about the fulfillment

of organizational procedures and protocols that facilitate

the external certification of development projects.

The contribution of this paper is threefold: 1) it intro-

duces the conceptual architecture of SIAM, which aligns

expert knowledge with developing methods for their tai-

loring in concrete projects; 2) it presents the implementa-

tion of SIAM in a suite of model-driven tools for the

adoption of agile practices in the reconfiguration of tradi-

tional software development processes; and 3) its demon-

strates how SIAM is used to reduce the effort and errors

involved in the reconfiguration of an industrial develop-

ment process with agile practices from different methods.

The rest of the paper is organized as follows. Section 2

presents the related work; Sect. 3 presents the novelty and

main contributions of SIAM beyond the state of the art;

Sect. 4 presents the conceptual foundation of the SIAM

architecture; Sect. 5 presents the implementation of SIAM

in a Suite of model-driven tools to guide the configuration

of development processes with agile practices; Sect. 6

presents the analysis of the approach by considering the

results obtained from its industrial application; and Sect. 7

presents conclusions and future works.

2 Related Work

The main elements involved in understanding the definition

and implementation of SIAM are the model-driven prin-

ciples applied to method engineering and the application of

knowledge management to adopt agile practices. The

background to these two aspects is detailed below.

Subsequently, the main novelties and contributions of the

SIAM approach beyond the state of the art are presented.

2.1 Development Method Specification

and Application

Several authors, such as Gonzalez-Perez and Henderson-

Sellers (2007), state that a development method must

specify the parts of a process and products to be generated

during the software development. This approach indicates

that it is possible to represent these elements in a meta-

model that uses certain exotic conceptual constructs to

obtain multi-abstraction-level representations. Most of

these concepts are involved in the definition of the ISO/IEC

24744:2014 standard, which presents a multi-level mod-

eling approach for situational method engineering (Hen-

derson-Sellers et al. 2014). Multi-level modeling for

process development is also explained by Atkinson and

Kühne (2001) and Henderson-Sellers (2006). The latter

differentiates between the method/process definition level

and the process enactment level, where the process ele-

ments are configured according to specific project

requirements. Furthermore, as indicated in Frank (2019),

traditional method engineering approaches, such as that

indicated above, are limited with respect to reuse, i.e., new

methods would need to be created from scratch using the

rather generic concepts defined in the metamodel. This

particular issue is important for agile methods that are

constantly evolving, motivating the definition of novel

method engineering approaches to improve agile practice

adoption according to specific organizational needs and

changing development environments (Heimicke et al.

2021).

Drawing on the referenced works about method engi-

neering, it can be seen that the standards and concepts

involved are supported by different meta-specification.

Thus, the use of Domain-Specific Modeling Languages

(DSMLs) (Frank 2011) seems to be the most suitable al-

ternative for the definition of specific methods and their

application to concrete domains. A DSML allows specific

development needs to be captured by means of conceptual

constructs, which are specified in metamodels that describe

the abstract syntax of the related modeling language. For

the definition of a DSML, there are two well-known

alternatives: defining a metamodel of from scratch or

extending/customizing a reference modeling language,

such as UML for general-purpose modeling or BPMN for

process modeling. However, there are still gaps in the use

of DSML implementations to adopt multi-level modeling

in practice, such as appropriate tool support for imple-

menting model editors and bridging semantic gaps (Fon-

seca et al. 2021).

123

104 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

The work presented in Sandkuhl and Seigerroth (2019)

states that a method model provides structured guidance for

performing complex modeling tasks including the expert

knowledge involved in modeling decisions, tools, and

cooperation principles. The management of expert knowl-

edge for method definition seems to be particularly relevant

for agile methods that need to be adapted to project

requirements and, at the same time, comply with the

quality criteria of projects and organizations involved

(Kurapati et al. 2012; Qumer and Henderson-Sellers 2008).

However, as stated in Dybå and Dingsøyr (2008), little is

known about how agile methods are carried out in practice,

while, due to the massive adoption of agile methods

(Digital.ai. 2021), different approaches have emerged to

formalize and support the particularities of the agile

development paradigm (Al-Zewairi et al. 2017).

2.2 Knowledge Management and Configuration

of Agile Processes

A number of studies have shown that knowledge man-

agement is key in developing more efficient business pro-

cesses and quality improvement for software development

(Maciel et al. 2018). Moreover, modeling approaches focus

special attention on representation and transference of

knowledge in smart and digital environments (Manesh

et al. 2020). Recent studies underline the need for knowl-

edge management in technology development companies

that adopt agile practices (Khalil and Khalil 2020).

In general terms, agile development processes comprise

a set of practices that have been created from practitioner’s

knowledge (Ågerfalk and Fitzgerald 2006). Thus, agile

methods are not used straightforwardly by practitioners;

they select the practices that better fit project requirements,

organizational standards, and the characteristics of the

development team to configure specific development pro-

cesses (Campanelli and Parreiras 2015; Tripp and Arm-

strong 2014). An example would be to define a

development process that combines agile practices from

Scrum and XP methods. The study presented by Kurapati

et al. (2012) shows that the rules that govern design deci-

sions of development processes are poorly, or not at all,

documented, thus making it difficult to validate and repli-

cate the decisions made for quality verification tasks and

future development processes. The verification of devel-

opment processes obtained from the tailoring of agile

practices is an important aspect to ensure consistency with

the principles of the methods involved.

The approach presented by Liu (2010) shows the

application of a formal specification to facilitate the veri-

fication and validation of agile processes. In Qumer and

Henderson-Sellers (2008),the authors present a framework

that evaluates the degree of agility for development

processes based on agile methods. This approach places

special emphasis on the use of expert knowledge for the

composition of agile processes, arguing that most software

development knowledge is tacit and resides in people’s

heads. The importance of expert knowledge in agile

adoption is also discussed in Singh et al. (2012).

In addition, existing agile tools are mostly oriented

towards the management of project teams, and the results

obtained during the execution of the development process

focus on specific agile methods. However, the survey

presented in Azizyan et al. (2011) shows that existing agile

tools are insufficiently flexible to accommodate process

changes, to introduce new practices, or to combine differ-

ent methods. This limits creativity and the reuse of expert

knowledge in the context of adapting agile practices to

project needs.

Other approaches (Fontana et al. 2015; Gren et al. 2015)

are oriented towards evaluating the maturity of agile

development processes. The systematic reviews presented

by Fontana et al. (2018) and by Henriques and Tanner

(2017) show that maturity evaluation can be performed by

customization of traditional maturity models, such as the

Common Maturity Model (CMM) (Łukasiewicz and Miler

2012), by defining new maturity evaluation approaches for

agile methods (Elnagar et al. 2018; Yin et al. 2011), or by

means of combination of agile and traditional approaches

(Sreenivasan and Kothandaraman 2019). These maturity

evaluation approaches require an appropriate specification

of the processes to be evaluated, clearly identifying the

activities and outcomes obtained.

There exist different alternatives for the representation

of development processes, including general modeling

language, such as UML (OMG 2017), notations for busi-

ness process modeling, such as BPMN (OMG 2011), and

languages specific to development methods and processes,

such as ISO 24744 (Sousa et al. 2012) or SPEM (OMG

2008). Domain-specific languages have also been devel-

oped, e.g., for safety-critical systems (de la Vara et al.

2020; Ratiu et al. 2021). Garcı́a-Borgoñon et al. (2014)

conducted a systematic literature review on different

approaches for process modeling. They reported that the

need for tools to guide appropriate software process defi-

nition is an open challenge. This is precisely one of the

challenges for agile development processes that SIAM

aims to tackle.

3 Novelty and Contributions of SIAM beyond the State

of the Art

SIAM follow the principles of situational method engi-

neering, where a development process can be tailored or

enacted from method components that are selected

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 105

according to specific project needs (Henderson-Sellers

et al. 2014). Additionally, methods can evolve according to

organizational contexts (Franch et al. 2018). Broadly

speaking, the analyzed approaches and standards for

method engineering are based on the configuration of

development processes from a unique method reference,

which limits the use of different methods for development

process configuration (Frank 2019). Thus, SIAM differs

from the referenced method engineering approaches, since

it supports the configuration of development processes by

means of the combination of practices from different

methods, which is common practice in the agile develop-

ment domain (Campanelli and Parreiras 2015; Tripp and

Armstrong 2014; Kiv et al. 2018). This is also a require-

ment from the companies involved in the project, to pro-

vide tools that allow practitioners to choose the adequate

reference method (or methods) according to the project

domain and specific development needs.

Moreover, traditional multi-level approaches for method

engineering involve meta-concepts that can be multi-in-

stantiated (Atkinson and Kühne 2001) and (Henderson-

Sellers 2006). Currently, appropriate tools for implement-

ing model editors under this paradigm cannot be found

(Fonseca et al. 2021). Thus, SIAM also contributes by

providing a modeling architecture for method and process

configuration that is supported by existing modeling stan-

dards and tools, and which has been applied in an industrial

context.

Another important requirement from the industrial

partners involved in SIAM is how they can adopt agile

practices to improve their development methods and

maintain compliance with standards for which they are

already certified, such as ISO 9001 or CMMi. This presents

two challenges for SIAM:

(1) to provide process configuration guidelines that

allow practices from different agile methods to be

used to replace practices from the original methods

used in the development companies, while main-

taining the same developing standards and quality

criteria already defined in the organizations.

(2) to maintain a task-centered (or process-centered)

approach for representing the development pro-

cesses, since the certification and quality evaluation

activities involved in the organizations are based on

the analysis of tasks and artifacts involved. This is

clearly observable in CMMi, where quality of

software depends on the quality of the process

(Gonzalez-Perez and Henderson-Sellers 2008).

Thus, it would be difficult to obtain development processes

that only involve agile practices to solve these challenges.

This is a well-known issue in companies certified under

standards that are not specific to agile, and, hence, a

combination of agile and traditional practices (Sreenivasan

and Kothandaraman 2019) to meet the different quality

criteria is implemented.

Another contribution of SIAM is thus to provide a

process-centered approach to support agile practice adop-

tion when organizations are moving from traditional

developments and to maintain consistency with existing

quality assurance and certification processes. This is a

particularly complex task, which, before SIAM, the com-

panies involved only resolved manually, appealing to the

knowledge of their most experienced practitioners.

Furthermore, it is worth noting that the process-centered

approach has certain limitations in relation to alternatives

such as those related to product-centered specifications

(Gonzalez-Perez and Henderson-Sellers 2008). A product-

centered approach provides greater flexibility in task defi-

nitions for agile processes configuration, i.e., tasks are not

mandatory elements in the method and can be adapted

according to the products to be obtained. This can be

partially solved by SIAM’s capability to move across dif-

ferent methods and combinations of methods, according to

project needs.

It is also important to mention that SIAM is not intended

to be a complete method engineering approach. It is

focused on the process side of method specification,

adopting some of the existing definitions and providing the

necessary adaptations or extensions at conceptual and

implementation levels to fulfill the requirements previously

indicated. Moreover, since the SIAM approach centers

mainly on task configuration for adapting existing devel-

opment processes, some concepts have a simpler semantics

than that proposed in traditional method engineering

approaches. For instance, the artifact concept in SIAM

provides a minimum core to validate the approach in the

application context involved. However, there are specifi-

cations, such as that presented in ISO ISO/IEC 24744 for

the WorkProduct concept, that provide more fine-grained

semantics for this conceptual construct, which has also

been ontologically analyzed in Ruy et al. (2014) and

Gonzalez-Perez et al. (2016).

From the knowledge management perspective, the

review presented in Manesh et al. (2020) suggests that

knowledge application has been the subject of the least

research. Knowledge application is the process by which

knowledge, either tacit or explicit, is reused within an

organization. In this context, SIAM provides the following

two contributions:

(1) it characterizes development methods and tacit, or

poorly documented, method configuration knowl-

edge in a model-driven method repository

(2) it provides model-driven tools that take advantage of

the knowledge repository to facilitate the

123

106 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

specification and verification of agile processes

defined for specific projects.

In summary, SIAM provides a conceptual architecture and

implementation based on open-source technologies that

can be used as a reference to put existing method engi-

neering concepts and knowledge management about

adopting agile methods into practice.

4 SIAM Conceptual Architecture

As mentioned, SIAM differs from other method engineer-

ing approaches that propose the use of multi-level meta-

modeling (Fonseca et al. 2021), where a unique metamodel

is instantiated twice: it is initially instantiated to obtain a

specific method definition that is later instantiated to obtain

a process model aligned to the method defined (Atkinson

and Kühne 2001; Henderson-Sellers 2006).

The SIAM conceptual architecture considers the use of

one instantiation level metamodels; i.e., a method meta-

model is instantiated into method models, and a process

metamodel is instantiated into process models (see Fig. 1).

Thus, the SIAM conceptual architecture has been defined

as a multi-model approach with different instances of

method and process models that are interrelated by means

of reference models or model weavings (Jossic et al. 2007).

With the definition of these model weavings, it is possible

to configure development processes from practices from

different methods, which is a challenge in the adoption of

agile practices. Moreover, SIAM conceptual architecture

permits traceability of equivalencies among different

method models to be define, which is then used to inter-

change method practices when configuring a process

model. Furthermore, when implementing SIAM, existing

model-driven technologies for the generation of modeling

tools and graphical editors (such as Eclipse Modeling

Tools – EclipseFoundation 2021) do not provide proper

support for multilevel metamodels.

For the definition of the models involved, SIAM has the

following two specification levels:

• 1. The Knowledge Repository Level, which has the

conceptual information related to method activities and

artifacts; dependencies among activities; and equiva-

lencies among methods.

• 2. The Process Definition Level, to represent the

development activities that must be performed for

specific projects. This is the end-user level of the SIAM

approach, which uses the knowledge repository to drive

the process configuration.

As its name suggests, the elements at Knowledge Reposi-

tory Level are defined by considering expert knowledge for

the specification of development methods.

Figure 2 shows a general vision of the relationships

between the conceptual elements of the two specification

levels. In this figure, the activities of process X are refer-

encing specific activities of the methods in the Knowledge

Repository Level. These references are represented by

black arrows. The main concepts of the SIAM architecture

for method definition are explained below.

Method Activities. Method Activities. A method

activity indicates a concrete action that is performed in the

context of a method. These activities are related by using

dependency links, which means that certain activities are

required to perform the action involved in another activity.

Figure 2 shows the activities AC2 and AC3 related to

activity AC1 by green arrows. This indicates that AC2 and

Fig. 1 Multi-level approach vs SIAM Multi-model approach

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 107

AC3 require AC1 to be previously performed in a devel-

opment process.

Activity Dependencies. SIAM considers three types of

dependency links between method activities:

• Backward Dependency: From an activity A to an

activity B, indicating that activity B must be performed

before activity A. For instance, the pre-game phase of

the Scrum agile method requires the Scrum team be

defined before the sprint planning in a development

process.

• Forward Dependency: From an activity A to an

activity B, indicating that activity B must be executed

after activity A. Following the example of the Scrum

pre-game phase, the product backlog is specified once

the product objectives are defined.

• Parallel Dependency: From an activity A to an

activity B, indicating that activity B must be executed

at the same time as A. For instance, the Scrum Master

must be defined together with the Product Owner in the

configuration of the Scrum team.

The dependencies do not indicate in which specific

moment of the process the activities must be performed.

For instance, in the example, AC2 and AC3 can be per-

formed at different moments in a development process, but

must be performed at some instant before activity AC1.

Thus, activity dependencies are important to guide and

validate the configuration of processes, especially when

defined as a composition of practices from different

methods.

Activity Artifacts. Activity Artifacts. The artifacts

represent input resources of an activity, or outputs obtained

from an activity execution. For instance, the blue arrows in

Fig. 1 show, at Knowledge Repository Level, that activity

ACN1 uses input Artifact A2 and generates Artifact AN1 as

output. In this case, activity ACN1 is using artifacts that are

related to two different methods. As an example, the

Backlog definition related to the Scrum method can use, as

input, the product requirements or objectives that are

defined by different requirement elicitation methods, even

traditional ones. The Backlog definition activity generates

the Backlog specification as output.

4.1 Weaving Metamodels

The SIAM conceptual architecture enables a flexible

method configuration, which in turn facilitates the reuse of

concepts. For instance, it would be possible for the same

artifact to be used by different method configurations, i.e.,

it is unnecessary to duplicate the artifacts for each method

that use the same concept. Furthermore, it would be pos-

sible to configure new methods as a composition of dif-

ferent method activities, an example being to combine

activities from Scrum and XP to configure a new agile

method.

A general overview of the links between the different

metamodels of the SIAM Knowledge Repository Level are

presented in Fig. 3. The most important metamodels of the

SIAM Knowledge Repository used to perform the analysis

and configuration of processes are the weaving metamodels

Fig. 2 Overview of SIAM conceptual architecture relationships

123

108 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

for activity equivalencies and method configuration (rep-

resented as blue boxes in Fig. 3).

Activity Equivalencies Weaving Metamodel. The

activity equivalencies indicate replacing alternatives

among the different methods defined, i.e., activities from

method A that can be replaced by activities from method

B in a process definition. These equivalences are also used

to validate the processes configured as a composition of

methods to ensure their consistency. For example, in Fig. 2,

the process activity Activity3 is referencing the method

activity ACN3 that has dependencies on the activities

ACN1 and ACN2. These dependencies indicate that activ-

ities equivalent to ACN1 and ACN2 must be performed

before ‘‘Activity3’’ in the process. Note that for ‘‘ACN2’’,

the dependency condition is met, since it is referenced by

‘‘Activity2’’. Nevertheless, ‘‘ACN1’’ is not referenced by

any activities in the process defined. Nonetheless, the

dependency condition is still met because ‘‘ACN1’’ is

equivalent to ‘‘AC1’’ from the ‘‘Method Activities Set 1’’ of

the Knowledge Repository Level, and ‘‘AC1’’ is referenced

by ‘‘Activity1’’ in the Process Definition Level. It can also

be observed that Activity1 and Activity2 are performed at

different moments in the processes; Activity1 is performed

first, despite the dependency from ACN3 pointing to

activities ACN1 and ACN2 at the same time. In this case

the, dependency condition is met, since the only require-

ment is that the corresponding process activities, Activity1

and Activity2, be performed before Activity3.

The method activity equivalencies are also used to

indicate missing activities to obtain a sound process con-

figuration or to recommend alternatives in the reconfigu-

ration of an existing development process. The Activity

Equivalency Weaving Metamodel is presented in Fig. 4,

which shows the two types of equivalencies that can be

defined between method activities: alternative activities

and mirror activities, which are represented by the Activ-

ityAlternative and MirrorActivity metaclasses, respectively.

• Alternative Activities: When A source activity A from

a Method X can be replaced by one or more activities B

to Bn from a method Y. these kinds of equivalencies are

unidirectional, i.e., activities B to Bn can replace

activity A but not vice-versa. All activities indicated by

the equivalency must be included, otherwise, the

process will be incomplete in relation to the referenced

methods. For instance, Project Planning from a tradi-

tional (waterfall-like) method can be replaced by the

Release Plan Definition and the Configuration of

Ceremonies from the Scrum method. This equivalency

can be represented by means of weaving links from the

traditional activities model to the Scrum activities

model. Thus, the two Scrum activities must be used to

replace the project planning activity; if only one Scrum

activity is included in the process instead of the original

(traditional) activity, the process configuration will be

incomplete and will not be consistent with the original

specification. However, this equivalency is not bidirec-

tional, and, in a Scrum-based process, it would thus not

be possible to replace the activities Release Plan

Definition and Configuration of Ceremonies by a

traditional Requirement Elicitation, as there could be

other aspects of these Scrum activities that are not

covered by the traditional activity. In the case of the

bidirectional equivalency of activities being possible, a

new equivalency weaving must be defined from the

Scrum activities model to the traditional (or waterfall)

activities model to represent the opposite equivalency.

• Mirror Activities: In this case, a source activity

A from a Method X can be replaced by only one activity

B from a Method Y that represents the same concept.

These kinds of equivalencies are bidirectional because

they refer to the same activity that is specified in

different methods, although the name can differ from

one method to another. This type of equivalency

reduces the computational analysis effort when config-

uring a process, since it is unnecessary to review the

dependencies of the related methods for the equivalent

activity. An example of mirror activities can be a

requirement elicitation task defined in different

methods.

In the Activity Equivalency Metamodel, it can also be

observed that the equivalency models are defined in two

methods: one source Method (Metaclass Source-

MethodModelRef) and one target method (Metaclass Tar-

getMethodModelRef). Each equivalency model must be

validated by experts to ensure that the definitions are cor-

rect in terms of the methods involved. The property

isValidated iis included in the metaclass Model to indicate

the models that have been validated.

Fig. 3 Relationships between

the metamodels of SIAM

knowledge repository level

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 109

Method Configuration Weaving Metamodel. The

method practices are configured in terms of activities and

the different related input/output artifacts. A method

activity can have different combinations of related arti-

facts, and, hence, the process designer’s experience is

fundamental to determine the valid combinations of

activities and artifacts involved to ensure consistency with

the reference method. This development process configu-

ration is error-prone and highly time-consuming when

performed manually. The weaving metamodel for method

configuration is presented in Fig. 5.

The metamodel presented in Fig. 5 shows that a method

activity and the artifacts related are configured the with

metaclass ArtifactLink. Moreover, the artifacts related to a

method activity can be input artifacts, output artifacts, or

both (input/output). This artifact directionality is indicated

in the enumeration ArtifactOrientation, which evaluates the

attribute orientation of the metaclass ArtifactLinkEnd. As

in the Method Equivalences Weaving Metamodel, this

metamodel must be validated by using expert knowledge;

the attribute isValidated in the metaclass Model indicates

this situation.

The next section exemplifies how the models and

weavings from the Knowledge Repository Level are used

to generate guidelines for the configuration of development

processes and automate their verification.

5 Using the Knowledge Repository for Process

Configuration

The metamodels of the SIAM conceptual architecture are

instantiated in different models according to the methods

configured at the Knowledge Repository Level. The

information on these models is used to generate guidelines

for practitioners to configure development process models

at the Process Definition Level, and to verify the consis-

tency of the resultant processes in relation to the reference

methods.

The core idea behind the use of expert knowledge is

quite simple. A process designer defines an initial process,

which is automatically analyzed with the information from

the knowledge repository by using references from the

process activities to the method activities. This analysis

indicates the missing elements or dependency conflicts,

accompanied by the alternatives to solve them. The

designer chooses one of the alternatives indicated to refine

the process. Thus, SIAM reduces the definition effort for

the process designer through the automatic generation of

guidelines that indicate the appropriate combination of

tasks and related artifacts that must be defined according to

the methods involved.

Each time the process is modified, the verification is

automatically performed by the SIAM process editor to

identify any pending issue with regard to the methods

Fig. 4 Activity equivalency weaving metamodel

123

110 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

involved. This verification considers the soundness and

consistency of the process with regards to method activi-

ties, artifacts, and dependencies defined by experts at the

Knowledge Repository Level.

The refinement process ends once no conflicts or miss-

ing elements remain. Finally, a report is generated to

indicate the ratio of agile activities defined, the methods

referenced, dependencies, method activities referenced

with their alternative activities, and method artifacts

involved from the process defined.

Fig. 6 shows the steps for process configuration within

the SIAM approach.

The SIAM process editor was implemented by using a

subset of the BPMN abstract syntax (OMG 2011) to reduce

the modeling complexity and learning curve by means of a

well-known modeling approach at academic and industrial

levels. The main BPMN conceptual constructs considered

in the SIAM editor are Activities, Artifacts, Transitions,

and Subprocesses.

Activities. The activities are the basic concept in a

process definition and represent a specific task to be exe-

cuted. The process activities can refer to activities from the

different methods defined in the knowledge repository. In

this way, a process can be defined as a composition of

different methods.

Transitions. The transitions describe different paths the

activities of a process can follow. These are intermediate

elements connected to the activities by means of links.

Fig. 5 Method configuration weaving metamodel

Fig. 6 SIAM Process configuration

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 111

Input links go from one or more activities to the transition,

whereas output links from the transition to other activities

might be executed depending on the type of transition

represented.

• AND transition, which indicates that the next step of

the process involves the execution in parallel of two or

more paths of activities.

• OR transition, which indicates that, in the next step of

the process, one or more paths of activities are executed

depending on a specific condition.

• XOR transition, which refines the OR transitions by

allowing the execution of only one path of activities

after evaluating the condition.

Subprocesses. A subprocess is used to group a set of

activities (small processes) inside the main process. They

typically represent the workflow related to specific devel-

opment stages that comprise the main development

process.

Artifacts. The artifacts describe the input or output

resources of the activities defined. Although, at the

Knowledge Repository Level, a method activity can have

different configurations of input/output artifacts, an activity

can only have one configuration of input/output artifacts in

a process definition; i.e., a process activity references one

configuration of artifacts from the Knowledge Repository

Level according to the requirements of the development

project.

5.1 Waterfall and Scrum Methods Configuration

The core of method definition considers a set of method

activities and dependencies between them. When certain

method practices are used in a concrete process, the

dependencies indicate there are activities that must be

executed in a previous stage of the process (backward

dependency), in a later stage of the process (forward

dependency), or activities that must be executed together

(parallel dependency).

The example presented in Fig. 7 shows an initial

development process that has been defined with the SIAM

method editor tool, following a traditional (waterfall-like)

development method. This initial process will be analyzed

to automatically identify agile practices that can be used to

reconfigure the original process. Thus, an equivalent agile

(or more-agile) process will be obtained as result.

Following the example, an agile method is defined to

provide a set of agile practices that can be used to re-

configure the initial development process. For this purpose,

a reduced Scrum method was defined, which considers

elements related to project planning and project configu-

ration from the pre-game phase (Schwaber and Beedle

2002).

Real development methods are typically defined as a

composition of agile and non-agile activities. In the method

model, the agile activities can be indicated by means of a

specific property. This information is particularly valuable

to identify the agile practices involved in the configuration

of a development process. Figure 8 shows the Scrum

method defined and the properties related to the activity

DefineBacklog, where it is possible to observe the isAgile

boolean property set as YES.

To simplify the example and facilitate its explanation,

all the method activities from the waterfall method are

defined as non-agile, and all the method activities for the

Scrum method are defined as agile. The mapping of

equivalencies is always defined between the activities of

two methods, a source method, and a target method. The

methods referenced are instances of the method configu-

ration weaving metamodel with their corresponding activ-

ities and artifacts. Thus, in the repository there are as many

equivalency models as pairs of methods to be analyzed.

Moreover, the equivalencies are analyzed in a unidirec-

tional manner, from the source method to the target

method. For a bidirectional equivalency analysis, two pairs

of equivalency models are required. In the example, the

waterfall method is used as source and the Scrum method

as target. Figure 9 shows the equivalency model defined.

With the equivalency models information, it is possible

to provide configuration alternatives for the specification of

a development process. For instance, Fig. 10 shows the

equivalencies information for the activity

Fig. 7 Example of method definition for the Waterfall method

123

112 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

Fig. 8 Example model related to the pre-game phase of the Scrum method

Fig. 9 Activities equivalency model defined between the Waterfall and Scrum methods

Fig. 10 Equivalency identification for the example process

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 113

RequierementSpecification of the process model (see

Fig. 10 – number 1). The activity RequierementSpecifica-

tion is referencing the waterfall activity Requiere-

mentElicitation (see Fig. 10 – number 2). In this case, and

according to the equivalency model defined, Requiere-

mentElicitation can be replaced by DefineProductObjec-

tives and DefineBacklog from the Scrum Method.

In Fig. 10, it can also be observed that the equivalency

model Waterfall Scrum Equivalencies has been referenced

by the process model (represented as a yellow box) to

indicate that this model will be used to analyze the con-

figuration alternatives. With the SIAM approach, it is

possible to reference as many equivalency models as

methods wanted to be analyzed to configure the develop-

ment process.

Furthermore, the SIAM tool calculates the ratio of agile

activities from the total activities defined in the process by

analyzing the agile and non-agile (considered traditional)

activities defined. The example process is initially refer-

encing activities of the waterfall method, which are all

defined as non-agile (or traditional) activities. For this

reason, the process has an agility ratio of 0% and 100% of

traditional activities defined.

Considering the equivalencies between the different

activities defined in the Knowledge Repository, Scrum

practices can be used to guide the reconfiguration of the

process and increase the percentage of agility. This

reconfiguration involves replacing some original (tradi-

tional) activities with agile ones, and defining new activi-

ties to be consistent with the different methods referenced.

At this point, the analysis of dependency models and

method configuration models is particularly key to verify

the completeness and correctness of the process defined.

Figure 10 shows the equivalencies for the process

activity RequirementSpecification (see Fig. 10 – number 1),

which indicates that the referenced waterfall activity

RequierementsElicitation can be replaced by the Scrum

activities DefineProductObjectives and DefineBacklog. To

perform the process reconfiguration, the original reference

to the waterfall activity RequirementsElicitation is replaced

by the Scrum activity DefineProductObjectives. This

change indicates the process activity will now be per-

formed as indicated in the Scrum method, thus becoming

an agile activity. Moreover, since DefineBacklog is also

necessary according to the equivalency information (see

Fig. 10 – number 1), a new activity named DefineBacklog

will be defined in the process, which references to the

Scrum activity with the same name. Similar action is per-

formed for the activity GanttChartDefinition (see Fig. 10 –

number 3), which references the waterfall task Pro-

jectPlanification. According to the equivalency model

defined (see Fig. 9), ProjectPlanning can be replaced by

DefineReleasePlanning and CeremoniesConfiguration. The

rest of the activities have no Scrum equivalencies, and so

the tool is unable to provide more replacement alternatives.

Figure 11 shows the result of modifying the process

model with the suggested alternatives. Based on these

changes, the SIAM tool indicates other Scrum activities

that are required according to the method dependencies. In

this case, five dependency issues were derived from the

Scrum method:

• One (1) equivalency issue was found for the process

activity RequirementSpecification, which references the

Scrum method activity DefineProductObjectives. The

activity DefineProductVision must be defined earlier in

the process.

• Four (4) equivalency issues were found for the process

activity CeremoniesConfiguration, which references

the Scrum activity with the same name (Cere-

moniesConfiguration). In this case, the activities

SprintPlanning (issue 1), DailyMeetingPlanning (issue

2), and RetrospectiveMeetingPlanning (issue 3) must

be defined after the activity CeremoniesConfiguration

in the process, and the activity DefineScrumTeam (issue

4) must be defined earlier in the process.

It is interesting to observe that the dependencies for the

waterfall method are still met with the changes performed

in the process. For instance, the activity SoftwareDesign

references the waterfall activity SystemDesign, which has a

backward dependency on the waterfall activity Require-

mentsElicitation. This last activity (RequirementsElicita-

tion) is not referenced in the process model due to the

changes in the process activity RequirementSpecification.

Despite this missing reference, the process model is still

correct, since the dependency is met because Require-

mentElicitation is equivalent to DefineProductObjectives

and DefineBacklog, which are defined before Soft-

wareDesign in the process model. The equivalencies

between the methods involved are also considered by

SIAM to verify the process model defined. In this simple

case, manual analysis of all the dependencies and equiva-

lencies involved can clearly be a complex and error-prone

task, with these problems being considerably increased in

larger process models that involve multiple development

methods. Another aspect to consider is that each time a

new method activity is referenced in the process model,

new dependency issues may appear. Thus, the process

configuration requires all the dependency issues be solved

to obtain the final process (see Fig. 12).

The SIAM tool also analyzes the soundness of the

process model in relation to the method configuration

models to determine missing activities or artifacts. If an

issue is identified, specific guidelines are presented to solve

that issue. The method configuration models are repre-

sented by yellow boxes in the process model. In this case,

123

114 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

Fig. 11 Dependencies evaluation for the example process

Fig. 12 Development process obtained after solving dependency issues

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 115

the Scrum Method Configuration model has been included,

the specification of which is presented in Fig. 13.

The method configuration indicates the set of artifacts

that can be involved when a method activity is executed in

a concrete process. Each set of artifacts for a certain

activity is specified with the construct ArtifactLink (see the

metamodel in Fig. 5). The configuration model defined for

the example Scrum method (Fig. 13, shows the construct

ArtifactLinkrepresented by means of a light blue box that

contains the set of artifacts used as input, output, or input/

output by an activity. For instance, the artifact link

Blacklog indicates the activity DefineBacklog of the Scrum

method uses ProductRequirements as input artifact and

generates ProductBacklog as output artifact.

The results obtained from the process analysis per-

formed by considering the method configuration models is

presented in an automatically generated report. This report

provides relevant information on the process to facilitate its

validation from third parties, and to determine the design

decisions made, as well as other configuration alternatives

that can be considered for future refinements. The report

generated includes a table with the analysis obtained for

each activity of the process defined. Figure 14 shows the

analysis automatically obtained from the example process

model with the following structure:

• Referenced Activity indicates the activity name in the

process and the method activity referenced with the

following format: ProcessActivityName –

MethodActivityName (MethodName).

• Process Artifacts indicate the artifacts used by the

process activity and its input/output properties with the

following format: ArtifactsName (input/output

property)

• Method Artifacts indicates the Artifacts recommended

by the method for the referenced activity with their

input/output property. It also indicates the different set

of artifacts for the activity involved in case that be more

than one. Finally, Method Artifacts indicates whether

an artifact recommended by the method is related (or

not) to the process activity analyzed with the following

format: MethodArtifactName (SetMethodArti-

factName) (Input/Output property/Included or Not

Included).

Finally, the process presented in Fig. 15 is obtained. The

analysis report is especially important in generating a

correct process model. Otherwise, it would be difficult to

find the appropriate configuration for the different activities

in the process from the knowledge repository information,

which may contain many different sets of artifacts and

configuration alternatives for each method activity.

It is worth noting that the process obtained fulfills the

different validation criteria in terms of dependencies,

equivalencies and artifacts defined in the knowledge

repository to combine Scrum and Waterfall methods. This

brief example is useful to understand how the SIAM

approach works. To validate the applicability of the

approach in larger development processes, the next section

shows the results obtained from using SIAM in an indus-

trial context.

Fig. 13 Scrum method configuration model

123

116 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

Fig. 14 Analysis report generated for the example process

Fig. 15 Process obtained after the Analysis of method configurations

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 117

6 Analysis of SIAM Applied to an Industrial

Development Process

The SIAM approach and its implementation were sup-

ported by industrial partners. This section summarizes the

results obtained from the reconfiguration of an industrial

development process to analyze the contributions and open

issues of SIAM. The process involved is called Ki Process,

which was mainly defined by using traditional develop-

ment practices. We applied SIAM to obtain a new version

of Ki Process that integrates more agile practices while

continuing to be consistent with the original definitions and

quality criteria of the company. To do this, we followed

well-known guidelines for case studies, such as those

proposed by Runeson et al. (2012) and Wohlin et al.

(2012).

The original Ki Process is based on the Tutelkan Ref-

erence Process (TRP) (Valdés et al. 2011), which complies

with two widely-know quality standards: CMMi-DEV

(v1.2) (SEI 2006) and ISO 9001 (International Organiza-

tion for Standardization (ISO) 2000) (Mutafelija and

Stromberg 2003).

The Ki Process was certified against CMMi-DEV and

ISO 9001 in 2015. Its specification corresponds to a large

document (169 pages) that describes the activities, arti-

facts, and practices that must be configured according to

different development needs. Figure 16 shows the four

stages of the application of SIAM to the Ki Process to

obtain a new Agile Ki Process.

6.1 Stage 1: Capturing Existing Data

from Organizational Knowledge

As its starting point, the SIAM approach requires the

Knowledge Repository being filled with the information of

the three methods involved in the process definition and

process reconfiguration.

The first method corresponds to the Ki Method, which

has all the activities, artifacts, and configurations related to

the original specification off Ki Process. The other two

methods are those used to incorporate agile practices into

the Ki process: Ki SCRUM, and Ki XP. These methods are

interpretations of the agile methods SCRUM (Cervone

2011) and Extreme Programming (XP) (Paulk 2001),

respectively. The interpretations were defined in line with

the knowledge of a group of nine industry experts with

more than 5 years of experience in project management and

application of development methods to industry projects.

Moreover, they also have experience in consultancy related

to guiding companies in the adoption of agile practices.

The industry domains in which they have worked include

banking, retail, telco, and civil aviation. Table 1 indicates

the specific knowledge related to development method

application and quality certification that each expert pro-

vides. For confidentiality, we call the experts Expert1,

Expert2, etc.

Table 1 shows there are at least two experts for each

method or quality model. The Ki Method has the highest

number of experts, which is logical considering that most

Fig. 16 Stages of the SIAM application for the reconfiguration of Ki process

123

118 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

of the experts come from the enterprise that defined Ki

Process.

The definition of the different SIAM models for the 3

methods took 6 months, involving defining activity models,

artifact models, method configuration models, and activity

equivalency models. This definition was based on an iter-

ative and incremental process. Weekly one-hour meetings

were held to analyze the method elements and achieve

consensus with the different experts, and a method engi-

neer then used the meeting information to define the dif-

ferent models. The models defined were refined with the

information from the following weekly meetings until the

group of experts agreed with the results obtained. Table 2

summarizes the number of elements that comprise the

different methods defined.

Contribution 1: At this point, it is important to under-

line the first contribution of SIAM: the provision of a

reference model-based support for the different method

definitions and agile practices. Previously, they were in

plain text only for the Ki Method or in the heads of experts

for the Agile Methods.

Open Issue 1: An open issue related to the definition of

the different models of the knowledge repository is that the

experts reported they understood the models defined, but

were insufficiently confident to use the modeling tools

alone. A process analyst supported the experts in using the

SIAM modeling tools. Additional effort to provide more

usable and intuitive modeling tools for the knowledge

repository specification might be necessary.

Table 3 shows the number of equivalencies defined.

This table indicates the source and target methods for each

equivalency model specified. The equivalencies also con-

sidered the quality criteria necessary to maintain the cer-

tifications already held by Ki Process already has. At this

point, the knowledge provided by the ISO and CMMi

experts was of paramount importance.

Contribution 2: The activity equivalency models pro-

vide common reference artifacts to configure development

processes from the combination of the methods defined.

Before SIAM, it had not been possible to define these

common reference artifacts with the expert knowledge that

can be automatically analyzed to configure appropriate

development processes. In this way, any change in the

process can be automatically analyzed to determine its

alignment with the organizational standards and develop-

ment practices, providing the necessary information to fix

the possible gaps identified.

Open Issue 2: Further support for the identification of

equivalencies could be provided. The definition of equiv-

alencies is a complex task that demands great effort from

experts. We observed that it is possible to infer equivalency

candidates from the equivalency models defined, thus

reducing the effort required in defining activity equiva-

lency models at the Knowledge Repository Level.

6.2 Stage 2: Specification of Ki Process Model

The second stage is aimed at obtaining a model represen-

tation of Ki Process that is complete in relation to the

original textual definition. This task was performed by a

process analyst that did not participate in the Knowledge

Repository Definition. This decision was intended to

determine whether the information provided in the

Knowledge repository was sufficiently complete to guide

the proper definition of a development process based on the

Ki Method.

Since the Ki Process is a large process, only a subset of

its activities is normally used in a development project. The

time required to manually configure the subset of activities

involved into a specific development project by using the

textual definition is typically around 2-3 weeks. This

Table 1 Knowledge of the group of experts

Expert Ki method SCRUM XP ISO 9001 CMMi-Dev

Expert 1 x

Expert 2 x

Expert 3 x

Expert 4 x

Expert 5 x x x

Expert 6 x x x

Expert 7 x x

Expert 8 x x

Expert 9 x x

Table 2 Number of elements defined for the different methods

involved

Method model Activities Dependencies Artifacts

Ki Method 168 333 116

Ki SCRUM 24 58 21

Ki XP 30 57 26

Table 3 Equivalencies between methods

Target#/source! Ki Method Ki SCRUM Ki XP

Ki method 18 3

Ki SCRUM 51 15

Ki XP 47 12

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 119

configuration requires the validation of an expert, in

addition to the person responsible for the corresponding

process configuration solving any issues in the configura-

tion. With the application of the SIAM approach, the

complete Ki Process (not a subset) was configured by the

process analyst in five days only. Thus, obtaining a process

that was fully aligned with the Ki Method specification,

without the need for an expert to solve configuration issues.

This was possible because all the configuration issues are

identified by the SIAM tools, using the activity dependency

models and method configuration models from the

Knowledge Repository. A summary of the process

obtained1 is presented in Table 4, which is automatically

generated by the SIAM tools. The initial Ki Process model

has an agility ratio of 19%, which comes from 33 of the

167 activities defined, which the experts consider to be

agile practices.

Contribution 3: Reduced effort in the Process Config-

uration. The initial evidence shows that using SIAM

requires much less time than the traditional process con-

figuration, reducing this from 2-3 weeks for configuring a

subset of the process to only five days for the complete

process configuration. This is a promising preliminary

result that requires further evaluation to exactly estimate

the effort necessary to configure a development process

using the SIAM approach.

Analyzing the information in Table 4, it can be seen that

the row N � Activities shows that 167 of 168 the process

activities are referencing the Ki Method. Hence, there is an

activity used in development projects that had not been

specified in the reference Ki Process document, which is an

issue in the original process specification. Something

similar happened for a set of artifacts that are necessary to

obtain a sound process definition, but these artifacts are not

part of the original specification. These issues were not

identified during the 7 years of application of the Ki Pro-

cess and its different updates during this time; arguably,

because it is unusual to find these methodological bugs in a

large textual specification. Despite these issues, the original

Ki Process obtained the CCMi-DEV (Level 2) and ISO

9001 certification, which means that external auditors also

found no inconsistencies in the textual specification.

Contribution 4: Automatic Verification of the Process

Definition and its Consistency with the Reference Methods.

The results obtained from the Ki Process specification

demonstrate the value of SIAM tools to automate the

verification of process definition and to check their con-

sistency with the reference methods. In this case, the SIAM

tools identified issues that were even imperceptible for

method and quality model experts, as well as for process

auditors.

6.3 Stage 3: Specification of Agile Ki Process

from Knowledge Repository Guidelines

The automatic analysis of the Ki Process model also pro-

vides a set of guidelines to increase the ratio of agile

practices defined in the process. In the application of the

SIAM approach, 56 reconfiguration guidelines were auto-

matically generated for the original Ki Process, i.e., 56

non-agile practices can be replaced by one or more agile

practices from the Ki SCRUM Method or the Ki XP

Method.

Each time an activity is replaced following the recon-

figuration guidelines, the SIAM process modeler tool

automatically performs the verification of the dependencies

according to the methods involved. This validation implies

that it might be necessary to include additional activities to

those suggested by the reconfiguration guidelines. Finally,

the Agile Ki Process is obtained once all the reconfigura-

tions are performed and there are no pending verification

issues. The complete reconfiguration of the original Ki

process to obtain the Agile Ki Process took three weeks.

Contribution 5: Knowledge Repository continuous

improvement. It should be noted that the issues identified

in the original Ki Process will not be present for future

process configurations, since the solutions to these issues

update the Knowledge Repository. In other words, the

Knowledge Repository is continuously improved based on

the experience obtained from the configuration of

processes.

Open Issue 3: The selection of the reconfiguration

alternatives is dependent on the process analyst’s experi-

ence. For the reconfiguration guidelines that provide two or

more alternatives, it is the process analyst who decides

which alternative to choose according to the project needs.

Although the possibilities of process reconfiguration are

considerably reduced with the information provided by the

guidelines generated, it would be helpful to have additional

recommendation mechanisms to evaluate the project

requirements and indicate the most suitable alternative

among the different possibilities.

1 [Blind Review Warning. It contains information about authors] The

complete report generated by the SIAM Tool can be downloaded

from https://doi.org/10.5281/zenodo.5718107. The original report is

in Spanish.

123

120 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

https://doi.org/10.5281/zenodo.5718107

6.4 Stage 4: Generation of Analysis Report and Expert

Verification

The final stage consisted of automatically generating a

complete analysis report (comprising 48 pages) of the KI

process2. The process summary provided in the report is

presented in Table 5. This report is valuable for validating

the quality of the process, since it provides information

about the methods and design decisions involved, the agile

practices used, and the inputs and outcomes of the process

activities. The Agile Ki Process configured by using the

SIAM approach obtained the ISO 9001 certification in

20203. Thus, The SIAM approach and tools developed are

currently at technology readiness level 7 (TRL-7).

Finally, Table 5 shows the ratio of agile activities for the

Agile Ki Process was doubled, from 19 to 39%, by using

the Ki XP and Ki SCRUM methods. The agility ratio can

increase further if new agile methods are referenced in the

process reconfiguration or by improving the already

defined methods with new agile practices.

Contribution 6: Automatic Analysis of Development

Processes. This contribution is related to the enormous

Table 4 Summary of Ki process model

Name Number

N� Activities 168 Activities (167 Activities referenced to ‘‘Ki method’’)

N� Artifacts 369 Artifacts (356 Artifacts referenced to ‘‘Ki Method Artifacts’’)

N� Subprocesses 62 Subprocesses

N� Transitions 62 Transitions (21 AND, 41 OR, and 0 XOR)

N� Method Models 1 method model (1 Referenced method model) (Ki method)

N� Artifact Models 1 Artifact model (Ki method artifacts)

N� Method Configuration Models 1 Method configuration model (Ki method configuration)

N� Equivalency Models 2 Equivalency models (KiMethod to KiScrum equivalency, Ki method to KiXP equivalency)

% Agility 19% of Agility (33 of 167 Referenced Activities are agile)

Table 5 Summary of agile Ki

process model
Name Number

N�Activities 171 Activities (171 Activities referenced)

(135 Referenced to ‘‘Ki Method’’) (14 Referenced to

‘‘Ki XP Method’’) (22 Referenced to ‘‘Ki Scrum Method’’)

N� Artifacts 357 Artifacts (336 referenced)

(277 Referenced to ‘‘Ki Method Artifacts’’) (24 Referenced

to ‘‘Ki XP Artifacts’’) (38 Referenced to ‘‘Ki Scrum Artifacts’’)

N� Subprocesses 62 Subprocesses

N� Transitions 57 Transitions (18 AND, 39 OR and 0 XOR)

N� Method models 3 Method Models Referenced

(Ki Method, Ki XP Method, Ki Scrum Method)

N� Artifact models 3 Artifact Models Referenced

(Ki Method Artifacts, Ki XP Artifacts, Ki Scrum Artifacts)

N� Method configuration models 3 Method Configuration Models (Ki Method Configuraiton,

Ki XP Configuration, Ki Scrum Configuration)

N� Equivalency models 6 Equivalency Models Referenced (Ki Process to Ki Scrum

Equivalency, Ki Method to Ki XP Equivalency, Ki XP to Ki

Method Equivalency, Ki XP to Ki Scrum Equivalency, Ki Scrum

to Ki Method Equivalency, Ki Scrum to Ki XP Equivalency)

% Agility 39% of Agility (68 of 171 Referenced Activities are agile)

2 [Blind Review Warning. It contains information about authors] The

complete report generated by the SIAM report tool can be

downloaded from https://doi.org/10.5281/zenodo.5718107. The orig-

inal report is in Spanish.

3 [Blind Review Warning. It contains information about authors] The

complete model for the Agile Ki Process can be downloaded from

https://doi.org/10.5281/zenodo.5267178. The original model is in

Spanish.

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 121

https://doi.org/10.5281/zenodo.5718107
https://doi.org/10.5281/zenodo.5267178

amount of information that can be automatically analyzed

by the SIAM approach. In the case of the Agile Ki Process,

the verification was performed automatically, and the val-

idation by the group of experts took three weeks using the

process model and the generated analysis report as inputs.

Considering that the initial definition of the original Ki

Process took two years and that seven years later it still

presented a number issues (not identified before SIAM),

the effort required is considerably reduced. Even more

importantly, the completeness and alignment of the resul-

tant process in relation to the referenced methods and

quality criteria of the organization are guaranteed.

6.5 Quality Insights

From the industrial application presented, interesting

quality indicators were obtained:

(1) Reduction of effort in configuring development

processes for specific projects. The average time

for the manual process configuration was 96 man-

hours per project. This involves the project manager

responsible for process configuration and two

experts that validate the development method appli-

cation and compliance with standards and quality

criteria. Using the SIAM configuration, tool this time

has been reduced to less than 24 man-hours per

project. Together with the reduction in the time

required for the configuring development process,

the time required by experts is also greatly reduced.

The average time required by experts involved in

manually defining and verifying the processes was

40 hours. Using SIAM, this time was reduced to only

8 hours. Since SIAM already validates the consis-

tency with reference methods and development

practices, the effort made by the experts is mainly

centered on validating the alignment of the process

with the project’s requirements and expected results.

(2) Improvement of the quality assurance of the devel-

opment process configuration. SIAM is able to

automatically identify process issues and indicate

fixing guidelines according to the development

practices configured in the knowledge repository.

The issues identified and fixing guidelines proposed

were validated by the 9 industry experts involved in

the industrial evaluation of SIAM. Moreover, the

tools was able to identify issues that were detected

neither by the different experts nor by external

process consultants in the previous certification

process. Not only does this indicate that the expert

knowledge is properly represented in the SIAM

repository and guidelines provided, but also that

automating the knowledge application to prevent

human-errors, especially in the evaluation of large

specifications, is of considerable importance.

(3) Facilitating the reconfiguration of traditional devel-

opment process for the adoption of agile practices.

The application to a large industrial development

standard shows that the ratio of agile practices

involved in the process was doubled, while main-

taining compliance with organizational development

standards. The Agile Ki Process obtained using the

SIAM tools was internally validated by 9 industry

experts and externally validated to obtain the ISO re-

certification in 2020, thus demonstrating the appli-

cability of the SIAM approach in an industrial

context.

(4) The configuration guidelines provided by SIAM

facilitates the selection and configuration of agile

practices for a specific project, which, considering

the amount of possible method configurations, can

be difficult to remember and evaluate by the project

manager manually. Moreover, practitioners declare

that guidelines provided are valuable to identify new

agile practices and learn and how they must be

tailored in a process configuration. Thus, SIAM

contributes to the transference and application of

expert knowledge for mastering agile practices,

specially for novel practitioners.

(5) In terms of usability, the project managers reported

that, being based on the BPMN standard, the process

definition tool is extremely simple to use. Moreover,

this facilitated the communication with methodolog-

ical experts and quality assurance teams in verifying

not only the process definition, but also in validating

the achievement of the different project results with

the development team. However, there are certain

usability issues to be considered, for example, the

mapping from the development process to the

practices defined in the repository is a functionality

that could be improved. Recommendations proposed

include suggesting mapping alternatives for the

process tasks defined or being able to use a pre-

defined process as a starting point. Improvements in

the usability of SIAM’s tools are part of the future

work discussed in the next section.

(6) Additional studies are necessary to properly measure

the improvement in the degree of agility. Despite

SIAM not being focused on improving the degree of

agility of the process, practitioners perceived that the

development process obtained from the SIAM

configuration guidelines is more agile. There was

consensus on the notion that increasing the ratio of

agile practices in a development process involves a

higher level of agility, which corresponds to the ratio

of agile practices provided by SIAM. However, it

123

122 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

was also indicated that this ratio is not sufficiently

precise to properly evaluate and compare the agility

gained from the process reconfiguration. Thus,

further research is necessary to obtain adequate

measures for evaluating the degree of agility.

7 Conclusions

As we have seen throughout this paper, the amount of work

involved in the tailoring of development processes to

properly apply agile practices is significant, and more so if

we consider the organizations must comply with specific

methods and quality standards. Using the SIAM approach,

it is possible to overcome the complexity involved, thus

reducing the effort and time involved in the configuration

of development processes for introducing agile practices.

In summary, the main contributions obtained from SIAM

are:

• Model-driven support to properly characterize devel-

opment methods and the tacit or poorly documented

knowledge related to the application of these methods

to specific projects with a special focus on the

application of agile practices.

• The implementation of a knowledge repository to store

and reuse the agile expert knowledge in different

projects, thus helping novel practitioners master agile

practices.

• A modeling approach that supports the tailoring of the

development process by combining different methods

at the same time as their agility level is improved.

• A set of modeling tools to guide the specification of the

development process and automate their verification to

ensure the alignment with method definitions and

organizational quality criteria.

The SIAM approach aims to preserve the expert knowledge

related to agile practice application by means of model-

driven support. This permits the implementation of specific

tools oriented towards practitioners being able to tap this

expert knowledge. Thus, the examples presented and the

results obtained from the industrial application of SIAM

provide initial evidence of the main goal behind this

approach being achieved, namely, to facilitate the adoption

of agile practices in organizations. Furthermore, although

the SIAM approach has an agile vocation, the main con-

cepts involved can be generalized to both the adoption of

traditional and agile development methods.

The industrial application of SIAM also suggests dif-

ferent contributions and potential improvements; of these,

facilitating the definition of equivalencies between method

activities at the Knowledge Repository Level is particularly

important. We are working on adding more intelligence to

this task, taking advantage of the models already defined to

specify new interrelated methods, and thus improving the

scalability of the Knowledge Repository. Additionally, we

are working on intelligent wizards that suggest relevant

practices according to specific project requirements, as well

as having pre-defined processes according to specific

application domains. Thus, the usability of the tools for

configuring suitable development processes will be

improved.

Moreover, we are working on specific agility measures

with the companies involved to determine the degree of

agility achieved when transitioning from traditional pro-

cesses. These measures can also be used to generate better

recommendations for the set of guidelines that improve the

overall agility of the processes tailored.

The end-user modeling tool for SIAM is based on the

BPMN standard. However, further research is necessary to

improve the notation related to the knowledge repository

models. In this context, extensions to existing notations for

method engineering process are considered as future work

for supporting the SIAM modeling needs, such as the

notation proposed for the ISO/IEC 24744:2014 standard.

We are preparing different case studies to provide more

details of the features of SIAM, the lessons learned, and

limitations that may appear in the industrial application of

the approach. As a future contribution, we plan to present

the application of SIAM to the alignment of agile methods

with quality models such as ISO 9001 or CMMi. In par-

ticular, our intention is to provide automated evaluation of

processes and the generation of recommendations to solve

the gaps for the achievement of specific quality standards.

Moreover, since SIAM allows for the alignment of

development processes to specific models that represent

methods and agile practices, we are working on new

application domains for this model-driven approach. In this

regard, we are currently working on adapting the SIAM

concepts and tools to the configuration of processes aligned

with models of standards for the safety certification of

critical systems.

Acknowledgements The work leading to this paper has received

funding from the VALU3S (H2020-ECSEL ref. 876852; MCIN/AEI/

10.13039/501100011033 ref. PCI2020-112001; European Union

NextGenerationEU/PRTR), iRel40 (H2020-ECSEL ref. 876659;

MCIN/AEI/ 10.13039/501100011033 ref. PCI2020-112240; Euro-

pean Union NextGenerationEU/PRTR), and Treasure (JCCM ref.

SBPLY/19/180501/000270; ERDF A way of making Europe) pro-

jects, and from the Ramon y Cajal Program (MCIN/AEI/ 10.13039/

501100011033 ref. RYC-2017-22836; ESF Investing in your future);

and SIAM (Chile’s CORFO-INNOVA ref. 16COTE-60218), and

from NISUM Technologies Chile.

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 123

References

Ågerfalk P, Fitzgerald B (2006) Old petunias in new bowls? Commun

ACM 49(10):27

Al-Zewairi M, Biltawi M, Etaiwi W, Shaout A et al (2017) Agile

software development methodologies: survey of surveys. J Com-

put Commun 5(05):74

Atkinson C, Kühne T (2001) Processes and products in a multi-level

metamodeling architecture. Int J Softw Eng Knowl Eng

11(06):761–783

Azizyan G, Magarian MK, Kajko-Matsson M (2011) Survey of agile

tool usage and needs. In: 2011 Agile conference, IEEE, pp 29–38

Campanelli AS, Parreiras FS (2015) Agile methods tailoring - a

systematic literature review. J Syst Softw 110:85–100

Cervone HF (2011) Understanding agile project management meth-

ods using scrum. OCLC systems and services: international

digital library perspectives. Emerald Group Publishing Limited,

Bingley

Cockburn A (2006) Agile software development: the cooperative

game. Pearson Education, London

Digitalai (2021) 15th Annual state of agile report. https://stateofagile.

com/, Accessed 23 Dec 2021

Dybå T, Dingsøyr T (2008) Empirical studies of agile software

development: a systematic review. Inf Softw Technol

50(9–10):833–859

EclipseFoundation (2021) Eclipse modeling tools. https://www.

eclipse.org/downloads/packages/release/2021-06/r/eclipse-mod

eling-toolsl, online. Accessed 23 Dec 2021

Elnagar S, Weistroffer H, Thomas M (2018) Agile requirement

engineering maturity framework for industry 4.0. European,

mediterranean, and middle eastern conference on information

systems. Springer, Heidelberg, pp 405–418

Fonseca CM, Almeida JPA, Guizzardi G, Carvalho VA (2021) Multi-

level conceptual modeling: theory, language and application.

Data Knowl Eng 134(101):894

Fontana RM, Meyer V Jr, Reinehr S, Malucelli A (2015) Progressive

outcomes: a framework for maturing in agile software develop-

ment. J Syst Softw 102:88–108

Fontana RM, Albuquerque R, Luz R, Moises AC, Malucelli A,

Reinehr S (2018) Maturity models for agile software develop-

ment: what are they? European conference on software process

improvement. Springer, Heidelberg, pp 3–14

Fowler M (2001) The new methodology. Wuhan Univ J Nat Sci

6(1):12–24

Franch X, Ralyté J, Perini A, Abelló A, Ameller D, Gorroñogoitia J,

Nadal S, Oriol M, Seyff N, Siena A et al (2018) A situational

approach for the definition and tailoring of a data-driven

software evolution method. In: International conference on

advanced information systems engineering. Springer, Heidel-

berg, pp 603–618

Frank U (2011) Some guidelines for the conception of domain-

specific modelling languages. In: Nuttgens M, Thomas O, Weber

B (eds) Enterprise modelling and information systems architec-

tures (EMISA 2011). Gesellschaft fur Informatik e.V., Bonn,

pp 93–106

Frank U (2019) Specification and management of methods-a case for

multi-level modelling. Enterprise, business-process and infor-

mation systems modeling. Springer, Heidelberg, pp 311–325

Garcı́a-Borgoñon L, Barcelona MA, Garcı́a-Garcı́a JA, Alba M,

Escalona MJ (2014) Software process modeling languages: a

systematic literature review. Inf Softw Technol 56(2):103–116

Gonzalez-Perez C, Henderson-Sellers B (2007) Modelling software

development methodologies: a conceptual foundation. J Syst

Softw 80(11):1778–1796

Gonzalez-Perez C, Henderson-Sellers B (2008) A work product pool

approach to methodology specification and enactment. J Syst

Softw 81(8):1288–1305. https://doi.org/10.1016/j.jss.2007.10.

001

Gonzalez-Perez C, Henderson-Sellers B, McBride T, Low GC,

Larrucea X (2016) An ontology for ISO software engineering

standards: 2 proof of concept and application. Comput Stand

Interface 48:112–123

Gren L, Torkar R, Feldt R (2015) The prospects of a quantitative

measurement of agility: a validation study on an agile maturity

model. J Syst Softw 107:38–49

Heimicke J, Dühr K, Krüger M, Ng GL, Albers A (2021) A

framework for generating agile methods for product develop-

ment. Procedia CIRP 100:786–791

Henderson-Sellers B (2006) Method engineering: theory and practice.

In: Information systems technology and its applications, 5th

international conference ISTA 2006, Gesellschaft für Informatik

eV

Henderson-Sellers B, Ralyté J, Ågerfalk PJ, Rossi M (2014)

Situational method engineering. Springer, Heidelberg

Henriques V, Tanner M (2017) A systematic literature review of agile

and maturity model research. Interdiscipl J Inf Knowl Manag

12:53–73

International Organization for Standardization (ISO) (2000) ISO

9001:2000 quality management systems-requirements

Jossic A, Del Fabro MD, Lerat JP, Bézivin J, Jouault F (2007) Model

integration with model weaving: a case study in system

architecture. In: 2007 International conference on systems

engineering and modeling, IEEE, pp 79–84

Khalil C, Khalil S (2020) Exploring knowledge management in agile

software development organizations. Int Entrep Manag J

16(2):555–569

Kiv S, Heng S, Kolp M, Wautelet Y (2018) Agile manifesto and

practices selection for tailoring software development: a sys-

tematic literature review. International conference on product-

focused software process improvement. Springer, Heidelberg,

pp 12–30

Kurapati N, Manyam VSC, Petersen K (2012) Agile software

development practice adoption survey. In: International confer-

ence on agile software development. Springer, Heidelberg,

pp 16–30

Liu S (2010) An approach to applying sofl for agile process and its

application in developing a test support tool. Innov Syst Softw

Eng 6(1):137–143

Łukasiewicz K, Miler J (2012) Improving agility and discipline of

software development with the scrum and CMMI. IET Softw

6(5):416–422

Lycett M, Macredie RD, Patel C, Paul RJ (2003) Migrating agile

methods to standardized development practice. Comput

36(6):79–85

Maciel CP, de Souza ÉF, de Almeia Falbo R, Felizardo KR,

Vijaykumar NL (2018) Knowledge management diagnostics in

software development organizations: a systematic literature

review. In: Proceedings of the 17th Brazilian symposium on

software quality, pp 141–150

Mahanti A (2006) Challenges in enterprise adoption of agile methods-

a survey. J Comput Inf Technol 14(3):197–206

Manesh MF, Pellegrini MM, Marzi G, Dabic M (2020) Knowledge

management in the fourth industrial revolution: mapping the

literature and scoping future avenues. IEEE Trans Eng Manag

68(1):289–300

Mutafelija B, Stromberg H (2003) Systematic process improvement

using ISO 9001: 2000 and CMMI. Artech House, London

OMG (2008) Software and systems process engineering meta-model

(SPEM) specification. Version 2

123

124 G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023)

https://stateofagile.com/
https://stateofagile.com/
https://www.eclipse.org/downloads/packages/release/2021-06/r/eclipse-modeling-toolsl
https://www.eclipse.org/downloads/packages/release/2021-06/r/eclipse-modeling-toolsl
https://www.eclipse.org/downloads/packages/release/2021-06/r/eclipse-modeling-toolsl
https://doi.org/10.1016/j.jss.2007.10.001
https://doi.org/10.1016/j.jss.2007.10.001

OMG (2011) Business process model and notation (BPMN) speci-

fication. Version 2.0

OMG (2017) Unified modeling language (UML) specification.

Version 2(5):1

Paulk MC (2001) Extreme programming from a CMM perspective.

IEEE Softw 18(6):19–26

Qumer A, Henderson-Sellers B (2008) A framework to support the

evaluation, adoption and improvement of agile methods in

practice. J Syst Softw 81(11):1899–1919

Rao KN, Naidu GK, Chakka P (2011) A study of the agile software

development methods, applicability and implications in industry.

Int J Softw Eng Appl 5(2):35–45

Ratiu D, Nordmann A, Munk P, Carlan C, Voelter M (2021) Fasten:

an extensible platform to experiment with rigorous modeling of

safety-critical systems. Domain-specific languages in practice.

Springer, Heidelberg, pp 131–164

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research

in software engineering: guidelines and examples. Wiley,

Hoboken

Ruy FB, de Almeida Falbo R, Barcellos MP, Guizzardi G (2014) An

ontological analysis of the iso/iec 24744 metamodel. In: Fois,

pp 330–343

Sandkuhl K, Seigerroth U (2019) Method engineering in information

systems analysis and design: a balanced scorecard approach for

method improvement. Softw Syst Model 18(3):1833–1857

Schwaber K, Beedle M (2002) Agile software development with

scrum, vol 1. Prentice Hall, Upper Saddle River

SEI (2006) CMMI for development (cmmi-dev). Version 1:2

Singh A, Singh K, Sharma N (2012) Managing knowledge in agile

software development. Int J Adv Comput Sci Appl. https://doi.

org/10.14569/IJACSA.2011.020411

Sousa K, Vanderdonckt J, Henderson-Sellers B, Gonzalez-Perez C

(2012) Evaluating a graphical notation for modelling software

development methodologies. J Vis Lang Comput 23(4):195–212

Sreenivasan S, Kothandaraman K (2019) Improving processes by

aligning capability maturity model integration and the scaled

agile framework�. Glob Bus Organ Excell 38(6):42–51

Tripp JF, Armstrong DJ (2014) Exploring the relationship between

organizational adoption motives and the tailoring of agile

methods. In: 47th Hawaii international conference on system

sciences, IEEE, pp 4799–4806

Valdés G, Visconti M, Astudillo H (2011) The tutelkan reference

process: a reusable process model for enabling spi in small

settings. In: European conference on software process improve-

ment, Springer, pp 179–190

de la Vara JL, Marı́n B, Ayora C, Giachetti G (2020) An empirical

evaluation of the use of models to improve the understanding of

safety compliance needs. Inf Softw Technol 126(106):351

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A

(2012) Experimentation in software engineering. Springer,

Heidelberg

Yin A, Figueiredo S, da Silva MM (2011) Scrum maturity model. In:

Proceedings of the ICSEA, pp 20–29

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

123

G. Giachetti et al.: Mastering Agile Practice Adoption through a Model-Driven..., Bus Inf Syst Eng 65(2):103–125 (2023) 125

https://doi.org/10.14569/IJACSA.2011.020411
https://doi.org/10.14569/IJACSA.2011.020411

	Mastering Agile Practice Adoption through a Model-Driven Approach for the Combination of Development Methods
	Abstract
	Introduction
	Related Work
	Development Method Specification and Application
	Knowledge Management and Configuration of Agile Processes

	Novelty and Contributions of SIAM beyond the State of the Art
	SIAM Conceptual Architecture
	Weaving Metamodels

	Using the Knowledge Repository for Process Configuration
	Waterfall and Scrum Methods Configuration

	Analysis of SIAM Applied to an Industrial Development Process
	Stage 1: Capturing Existing Data from Organizational Knowledge
	Stage 2: Specification of Ki Process Model
	Stage 3: Specification of Agile Ki Process from Knowledge Repository Guidelines
	Stage 4: Generation of Analysis Report and Expert Verification
	Quality Insights

	Conclusions
	Acknowledgements
	References

