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Introduction and Overview

Why are there market makers, where a bargainer has limited information about the reser-
vation prices of other buyers and sellers? What are the conditions such that a bargainer
prefers the market maker over direct bilateral or multilateral trade, even if full information
about his peer’s reservation prices may be available in direct negotiations?

Within this work, four papers address these questions. Each paper analyses how bargainers
determine prices on different platforms, where buyers and sellers reveal their respective offers
for a good or a service to each other. A special focus lies upon the distribution of informa-
tion between the bargaining parties and their inability of precise valuation. Each platform’s
efficiency is analysed in detail. Additionally, each paper introduces a market maker’s market,
where bid and ask prices for a good or service are quoted. Despite a bid or an ask price, no
more information is revealed to a seller or a buyer. Each paper compares the efficiency of the
market maker and the platform market and develops conditions when the market maker is
preferred by the bargainers. When these conditions are satisfied, then a market with limited
information is Pareto efficient over a market design where full information may be available.

A bargainer’s inability of precise valuation is an important ingredient to this work. While
a buyer (or a seller) can arrive at an individual reservation price, that buyer can not determine
whether that price is high or low compared to some unknown average valuation and how his
reservation price compares to the other bargainers’ reservation prices. This statement is valid
until the bargainers reveal their reservation prices or full information is available. Assuming
a buyer with a certain valuation of a good, that buyer can only determine or estimate his
valuation imprecision with some effort.

Following, each paper’s individual focus on this topic will be summarised.

Paper 1

In order to trade a good or service, one needs at least two traders; one buyer and one
seller. They engage in bilateral negotiations, which can be modelled as a double auction. In
this paper, the buyer and the seller simultaneously reveal their respective offers. If the buyer
is willing to pay a higher price than the seller requires, the trade is successful at a price that
is between the seller’s requirement and the buyer’s offer.

The first paper analyses this bilateral bargaining procedure!. It shows that a double

'We work with a bilateral bargaining model that was introduced by Flood and Dresher (1952) and refined
by Myerson and Satterthwaite (1983) as well as Chatterjee and Samuelson (1983). In their work, the authors
assume reservation prices to be distributed on an interval [v, 7], with 0 < v <7 < oo (and often v = 0). This
distribution is common knowledge in the sense of Aumann (1976). In the present work, this assumption is
relaxed by allowing reservation prices to be imprecisely distributed around some unknown average valuation.



auction? is most efficient, when a buyer and a seller are aware of their respective reservation
prices. In this case, they make offers that are equal to their reservation prices. As a result, a
double auction generates most profit for the bargainers when full information is available.

In contrast, a market maker quotes bid and ask prices in the Dealer’s Market. He reveals
nothing else to the traders. Thus information is limited regarding a buyer’s and a seller’s reser-
vation prices. However, the paper proves that the market maker is more efficient than direct
bilateral trade when he sets his fee scheme accordingly. This fee scheme is non-restrictive and
generates a positive gain for the market maker on each round-trip transaction.

Two examples illustrate the first paper’s theory. First, the Headhunter Game provides a
numerical example that explains why an employer and a job candidate may be in favour of
engaging a recruitment firm rather than taking part in bilateral salary negotiations.

The second example considers a corporation that wants to sell a fixed share of its owner
rights. This corporation’s management may either try to sell the share privately by negoti-
ating and placing it with an individual or an institution, such as a venture capitalist. The
corporation’s management may, on the other hand, hire an investment banker to place the
corporation’s shares in an IPO. The example provides conditions that allow the IPO to be the
first preference of all parties. It is proven that the average share price is below the bargainers’
average valuation when they negotiate bilaterally. An investment banker can exploit this fact

by underpricing the IPO.

Paper 2

The second paper expands the first paper’s theory. Here, not only one seller, but a group
of sellers bargains over the price of a good or service with one buyer. The paper models
these negotiations as a reverse auction. It shows that the sellers loose profit when they place
their bids without coordinating them. When all sellers commit to a shared bid strategy, their
individual as well as their shared profit is maximised. Without coordinating their bids, each
seller’s profit converges to zero with an increasing group size of bidding sellers.

Furthermore, the second paper introduces a market maker under information asymmetry.
This market maker can be the most efficient trading partner for all parties under the condition
that his fee scheme is set appropriately. At the same time, his inventory level can be kept at
a decent size.

The paper provides an example, where the parties’ preference for a market maker over
a reverse auction is illustrated. It shows how a firm chooses to place a bond on the capital

market rather than meeting a financing agreement directly with an investor.

2The term double auction is commonly used in more present literature, such as by Gibbons (1992). A
double auction and bilateral bargaining often are used as synonyms.



Our model has testable implications. Consider the Industrial Revolution in the 18th and
early 19th century. Then, workers were not organised and the competition for jobs in the
labour force was high. As a result, each worker had to sell his time and labour for a lower
salary that his competitors. This process necessarily lead to extremely low wages. The rise
of labour unions and upcoming political support helped the labour force to ensure a better
coordination of their negotiations with an employer. Our model explains that an employer
was able to exploit the unorganised labour force. Further, our model implies that coordinated
negotiations with an employer are beneficial for workers. In addition, the paper’s model may

be used to calculate a union’s optimal salary negotiation strategy.

Paper 3

A market with a group of buyers bargaining with a group of sellers is a further generalisa-
tion of the trading model introduced in paper 1 and 2. In this model, all sellers simultaneously
reveal their offers on a platform. Buyers arrive one after another and buy at the lowest offer
available at that moment, if that offer does not exceed that buyer’s reservation price. Thus,
there is full price information available on the analysed platform. Real world phenomena,
such as the Amazon online market platform serve as examples for this market design.

In this paper, the focus lies upon the efficiency of the bargaining procedure and analyses
its properties in detail. Furthermore, it proves that there is a significant proportion of buyers
and sellers that are not matched by this procedure.

Alternatively, a buyer (seller) may consult a dealer. The parties are given the option
to buy from (sell to) that dealer. He quotes each party an individual price and hides this
information from that party’s peers. The paper shows that when the dealer’s prices are set
accurately, all parties prefer the dealer over the direct trading platform.

In particular, the paper shows that the market design is a major determinant to allocate

resources optimally and thus is in accordance with Roth (2008).

Paper 4

The last paper also deals with two different market designs. Namely, direct negotiations of
the bargaining parties in contrast to a concept where a market maker intermediates between
the negotiators. The paper focuses on a practical financing decision and compares two different
forms of debt financing: bank loans and the public placement of bonds by an investment
banker.

First of all, the bilateral negotiation process until achieving a satisfactory loan agreement

is modelled and analysed in detail. During this process a firm opens its books to potential



creditors and provides full information. Nevertheless, the negotiating parties can not value the
firm precisely. A firm’s management updates its estimation of valuation imprecision during
the negotiation process in a Bayesian way. However, the paper proves that an investment
banker who operates under information asymmetry may Pareto dominate financing with bank
loans.

The paper’s theory is accompanied by two numerical examples of negotiation processes.
Using these examples, we show how an investment banker under information asymmetry can

be Pareto efficient over direct loan negotiations.
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Information Asymmetry Allows Investment Bankers to Underprice IPOs
Achieving a more Efficient Allocation than Raising Venture Capital
under Full Information

Johannes Seemiller

Abstract

This paper models investment banking under information asymmetry, when the investors
are unable to precisely value the newly issued shares. It provides a solution for the ITPO
underpricing puzzle. Under reasonably general conditions, we show that using investment
banking under information asymmetry Pareto dominates raising venture capital under full
information. In our model social welfare increases when investors are less precise in valuing
the newly issued shares. Investors may use a portfolio of seasoned shares, with precise market
prices, to span the risk and the return of the IPO shares. In order to compete with precisely
valued investment opportunities, an investment banker underprices imprecisely valued newly
issued shares. Thereby, an IPO generates additional wealth over raising venture capital that
compensates the issuing firm for the IPO underpricing.

We calculate a unique Nash equilibrium for a version of the bargaining model of Chatterjee
and Samuelson (1983), with less restrictive assumptions and under a variety of information
sets. In our model, the valuation of the bargainers is imprecise. We show that both the
regulators and the intermediaries may optimally restrict access to full information in order to
achieve a better allocation and to generate social wealth. In summary, asymmetric informa-

tion and valuation imprecision may create wealth.

Key words: Investment Banking, IPO Underpricing, IPO Long-term Under-Performance, Venture Capital, Information
Asymmetry, Imprecise Valuation, Bilateral Monopoly Bargaining Model, Double Auction, Pareto Efficient Market, Naive
Agents, JEL Classifications: G10, G14, G38, D44
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1 Introduction

An immediate concern with information asymmetry is that it harms the market. For
example, the seminal work of Akerlof (1970) shows that the market under information asym-
metry can break down. Additionally, Stiglitz and Weiss (1981) show that intermediaries in
the credit market will optimally ration credit under information asymmetry. A regularity im-
plication might be that full information markets should be promoted to increase social wealth
compared to markets with asymmetric information. This paper shows that traders who value
an asset imprecisely may profit from information asymmetry.

In our analysis, we consider a two-player double auction with valuation imprecision. Our
model is an extension of the work of Chatterjee and Samuelson (1983) on bilateral monopolies.
In addition, we consider different settings of information and rationality. As opposed to
Akerlof (1970) and Stiglitz and Weiss (1981), this paper introduces conditions under which
information asymmetry is preferred over full information. To do so, we install a market maker
under information asymmetry. When that market maker sets his prices reasonably, then the
traders prefer his market over a double auction under full information.

We apply our findings to a firm wanting to sell a share of its owner rights. The paper
provides conditions for an IPO under information asymmetry being optimal. Thereby our

model provides an explanation for the IPO underpricing puzzle.

From 1980 to 2001, an investor buying shares at an IPO just prior to the first day of
trading and holding them until the market closes that day, would have been able to sell
those shares at an average of 18.8% above the price at which the issuing firm sold them
(see Welch and Ritter (2002)). If the same investor held these shares for a period of three
years, his investment would have underperformed the CRSP value-weighted market index by
23.4%. In addition, these three-year IPO investments would have underperformed investments
in seasoned companies with the same market capitalization and book-to-market ratio by
5.1%. However, this long-term IPO underperformance does not explain the one-day IPO
underpricing, as an investor may solely choose a short investment horizon. For a detailed
literature survey of IPO underpricing see Ljungqvist (2004).

Some of the more successful theories of IPO underpricing rely on asymmetric information.
In particular, the following four asymmetric information explanations for IPO underpricing
are noteworthy. Baron (1982) presents an IPO model where underpricing is used to induce
optimal selling effort by an investment banker who is better informed about demand conditions
than the issuing firm. Welch (1989) introduces a model with an equilibrium in which higher-
valued firms use underpricing to signal their quality. Rock (1986) models a winner’s curse

which may be remedied by underpricing. Benveniste and Spindt (1989) propose a model in



which underpricing is used to encourage investors to reveal their private information.

None of the above models stablishes that information asymmetry leads to a more efficient
allocation than that under full information. In contrast, Diamond and Verrecchia (1991) show
that a reduction of information asymmetry by revealing information to the public can reduce
a firm’s cost of capital. Thereby large firms disclose more information because their profit
from that effect is higher than that of small firms. Diamond and Verrecchia (1991) note that
the lowest cost of capital occurs with a certain level of information asymmetry.

Where Diamond and Verrecchia (1991) analyse securities that are already publicly traded,
we analyse the process that leads to the decision to conduct an IPO, rather than placing a
firm’s shares privately. In this process, it is easier for an investment banker to pursue a firm
to conduct an IPO when there is no full information between firm and investors. When firms
and investors are in favour of an IPO, then disclosing information to the public may have a
positive effect on a firm’s profit. However, we concentrate on a firm’s decision between placing
its shares privately or publicly. Thereby we explore market conditions in which a regulator
or market participants may prefer to promote information asymmetry over full information.
To do so, let us start with the introduction of a simple bargaining procedure.

Kilgur et al. (2011) define a bargaining procedure as a set of rules for two bargainers
making offers in order to reach a mutually satisfactory agreement. Myerson and Satterthwaite
(1983) introduce a bilateral bargaining procedure where a buyer’s and a seller’s valuation is
random and independent. They show that there is no ex post efficient bargaining strategy
for both players in that bilateral monopoly. Myerson and Satterthwaite (1983) also prove
that when two bargainers haggle, they inevitably miss some feasible trades, because they
exaggerate their offers (in opposite directions) in order to maximize their expected returns.
Saran (2011) further analyses this issue and shows that naive traders may increase efficiency
over strategic players. Kilgur et. al (2011) analyse three procedures that induce honest
offers and thereby increase efficiency in bargaining. However, their procedures do not achieve
maximum efficiency.

In the above literature each trader has a reservation price, V' > 0, which is distributed
on the known interval [0,v] (see Chatterjee (1983) for an example). Often that interval is
restricted to [0, 1], as for instance in the double auction considered by Gibbons'. In this
paper, these constraints are relaxed as we allow more general intervals for reservation prices.
In addition, these intervals are unknown to the traders.

Reservation prices depend on an individual’s taste and preferences which can be expressed
by a utility function. Even though the reservation prices of two individuals are not neces-
sarily equal, both individuals are assumed to precisely value the assets in the economy. In

valuing financial assets, that generate positive future cash flows, individual taste and prefer-

1See Gibbons (1992), pages 158ff.



ences regarding cash receipts is not relied on in finance literature. In our model, individuals
disagree over the value of a (financial) asset due to their valuation imprecision. We consider
symmetrically distributed imprecision in valuation.

In addition, pricing functions in the bargaining literature usually allow linear offer strate-
gies, which is only a subset of all feasible strategies. Our study considers all feasible strategies.
Furthermore, bilateral trading literature commonly assumes that each player knows her own
valuation and the distribution of valuations for both players. Thus, in order to formulate a
detailed offer strategy, each player may compare her valuation with its distribution. However,
valuation imprecision implies that individuals do not have a valuation benchmark?. Assum-
ing a buyer with a certain valuation of a good, that buyer might determine or estimate his
valuation imprecision with some effort. However, he is not able to determine whether his valu-
ation is high or low compared to the average valuation because ex-ante he has no benchmark.
In this paper we model valuation imprecision by assuming that the bargainers are aware of
the common distribution of their valuation imprecision. They however have no indication,
whether their reservation price is above or below average.

More generally, our bargaining model can be considered as a Bayesian game with (un)known
common prior®. These games have thoroughly been studied. Conditions for the existence of
equilibrium strategies have been established by Nikaido and Isoda (1955) for instance. Studies
of Bayesian games are usually conducted in abstract terms. Our modelled bargaining game
is more practical, as it provides concrete formulas and advice on how bargainers should best
set their prices. At the same time, our model is more abstract and thus realistic than those
in the bargaining literature discussed above.

We show that in our double auction bargaining model under imprecise valuation, rational
and non-cooperative bargainers inevitably miss feasible trades. We prove that ex-ante, a naive
offer strategy (which is also the only available strategy under full information), is the most ef-
ficient one. However, efficiency may be further increased under asymmetric information. That
is, an intermediary (such as an investment banker) may introduce a market mechanism un-

der information asymmetry that is more efficient than a double auction under full information.

In section 2, we provide a detailed analysis of the two-player double auction under dif-

ferent sets of information and rationality. Section 3 studies a market with a dealer who

2Assume for instance that a player’s valuation is uniformly distributed on the interval [0,100]. Then, in
the mentioned bargaining literature an individual with the reservation price of 50 knows that her valuation
is exactly average. Therefore that player can implement a linear bidding strategy of a50 + b. In our model,
a player with a reservation price of 50 does not have a benchmark to determine whether that valuation is
high or low. Therefore, she optimally implements bidding strategy 50s. This factor s represents all feasible
strategies, whereas a linear response contains only a subset of all possible strategies when the distribution of
the valuations is known.

3See Harsanyi (1967) for reference.



intermediates between a buyer and a seller. Pareto efficiency of intermediation in markets
with asymmetric information versus the double auction under full information is considered
in section 4. That section also presents a numerical example of our theory that shows how
information asymmetry Pareto dominates full information. Section 5 applies our model to

capital markets and presents a solution for the IPO underpricing puzzle. Section 6 concludes.

2 A Two-Player Double Auction

We consider a seller S, who owns an indivisible good or a financial security, such as a share
of stock, and a buyer B. These players individually value this asset as Vg and Vg, respectively.
A seller S will sell the asset if and only if the deal price is not below her valuation Vs, whereas
a buyer B buys the asset if and only if the deal price is not above his valuation Vp.

We model the sale as a two-person single-stage non-cooperative game of trading a single
indivisible asset, as Chatterjee and Samuelson (1983). The buyer and the seller each make a
sealed offer. If the buyer’s offer Op exceeds the seller’s offer Og then the good is traded at a
price P from the interval [Og, Og].

Let us introduce valuation imprecision to this two-player double auction. Assume that the
two parties that value a good independently may over- or underestimate its value by an iid
random imprecision factor that is uniformly distributed on the interval [1 — «, 1 + «], with
valuation imprecision o € [0,1)%. Due to the lack of a valuation benchmark, neither party
knows whether it underestimates or overestimates the value of the asset. The bargainers just
know that their valuation is on the interval [(1 — a)V, (1 + «)V], with some unknown average
valuation V' > 0.

At the beginning of our double auction game, the buyer and the seller reveal their offer
to each other simultaneously. If the buyer’s offer Opg is at least as high as the seller’s Og,
then the deal is successful. We model relative negotiation skills of the parties by the factor
k € ]0,1]. The successful bargaining price is P = ko]’ﬂ%)os € [Og, Op].

In the above equation, when the seller possesses supreme negotiation skills £ = 1. In
contrast k = 0 defines the buyer to be the most skilful negotiant. Thus k = 1/2 represents
equal negotiation skills.

When market participants behave naively in our model, then they make offers at their

4A more abstract framework for the party’s imprecision may be considered. In such a framework, valuation
imprecision would not necessarily be identically and uniformly distributed. For instance, a buyer’s imprecision
may be uniformly distributed on the interval [b1, bs] and a seller’s imprecision uniformly distributed on [s1, s3].
We discuss this point in more detail in several proofs. Some propositions are proven for this more general
framework and are then applied to the double auction as defined here. That approach is taken in proposition
1, for instance. Furthermore, uniform distributions of imprecision may be exchanged for other distributions,
e.g. a (log-)normal distribution. Our research suggests that symmetric distributions of valuation imprecision
are sufficient in order to obtain similar results as proven in this paper. In summary, we focus on providing a
realistic bargaining model, while maintaining a sufficient degree of abstraction.

10



actual reservation prices. In that case, Og = Vp and Og = V. Rationally behaving market
participants strategically determine their respective offers Og and Op depending on their
reservation prices. That is, a rational seller’s offer is given by Og = sV and a rational buyer’s
offer is Op = bV, with the scalars s and b. The buyer and the seller may determine their
offer strategies b and s such that their individual expected profits are maximised. A buyer’s
profit is the difference between his reservation price and the deal price P. Thus, a buyer’s
profit is represented by the formula Pg = Vg — P. Likewise, a seller’s profit is Pg = P — V5.

To analyse this game let us first calculate the probability of a successful deal in the

following proposition.
Proposition 1. The deal probability pg is given by

1.

Slfb; ’ . ’ ’ ’ ’ / ’ ’
Pa = 7o (by(min(b), s)) — s1) — by (maa (b, s1) — s))
]_ ) , , ’ ’
~3 (mm(bz, $5)? — max(by, 51>2>> )
where by = bby, by = bby, s = ss1 and sy = ssy. When the conditions by = s1, by = s,

b e [b1/b, 1], s € [1,by/b1] and by/by > s/b hold, then deal probability simplifies to

(bby — sby)?

A TN:)

Proof: See the Appendix. O

The above formula shows that for the offer strategies b = s = 1, the deal probability is
0.5. The proposition also shows that reducing b, or increasing s, reduces the deal probability.
That is, when the buyer decreases his offer price (reducing b), then the probability of the deal
being successful decreases. Similarly, an increase in the seller’s price (increasing s) decreases
the deal probability.

In our model, the buyer’s (seller’s) valuation imprecision is uniformly distributed on the
interval [by,bs] = [1 —a, 14+« ([s1,82] = [l — @, 1+ a]). As a result, the formula for the deal
probability simplifies significantly when the conditions as stated in the above proposition are
satisfied. Following proposition 2, we will show that these conditions arise naturally.

Let us now analyse expected profit of the two players.

Proposition 2. Let offer strategies be bounded by b € [by/ba, 1], s € [1,ba/b1] and by /by > s/b.
Then, in a two-person double auction a buyer’s expected profit as a function of his offer strategy

b is

]_ 52 b2 S2 bo
E(Pg) (b) = 1—kb//1w dd—l—k//lea dady | .
00 = o (00 [ [ o 2 oty = (1005 [ [ty oty
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A seller’s expected profit as a function of the offer strategy s is

1 So by 52 b2
E(PS) (S) = AbAs (kb/s b 1Deal Y d[L‘dy + ((1 - ]{?)S - 1)/8 /b 1Deal Yy dl‘d’y) :

The integrals are

sz b2 bb23 b22 b1282
1peq x dxdy = —b | —— ——

/81 Al Deal ¥ G0Y 3s ! ( 2 6b2
s2 b2 b2b23 b by s
1pear y dzdy = —b? ==

/31 /b Deal § GHHY = "2 — 1 (2 30

Proof: See the Appendix. n

The above formulas show that the two players’ profits are dependent on their relative
negotiation skills and their respective offers. Therefore both, the buyer’s and seller’s offer
strategy b and s affect their expected profits. Expected profit of both players must be greater
than or equal to zero, otherwise the player with a loss would refuse to trade. We assume that
when the gain is zero, the players are willing to trade.

An upper bound for the buyer’s offer strategy b is 1. That is, when b > 1, then the
buyer’s offer exceeds his reservation price and his expected profit is negative. The same line
of reasoning shows that the seller’s offer strategy s has the lower bound of 1.

If the seller’s offer strategy s is greater than by/by, then the seller’s minimum offer price
exceeds by. As the buyer’s offer strategy b is bounded by one, his maximum offer price is bs.
In this case the seller’s price exceeds the buyer’s offer with probability 1 and the deal fails
deterministically. Therefore an upper bound for the seller’s offer strategy is s < by/by. Similar
arguments leads to by /by being a lower bound for the buyer’s offer strategy. Therefore the
feasible offer strategies are b € [by /b, 1] and s € [1,by/b;]. While the traders apply feasible
offer strategies, the deal probability simplifies to

(bbg — 8b1)2

TN

according to proposition 1.

Let us now focus on the welfare effect of double auctions.

Proposition 3. The sum of the buyer’s and the seller’s expected profit is

6 b? 20 VP 2s

12



If there is a positive deal probability in a double auction, then the sum of the two players’
profits is increasing when the buyer increases his offer strategy b. The sum of the players’

profits is decreasing when the seller increases her offer strategy s.

Proof: See the Appendix. O

Proposition 3 shows that the sum of the players’ expected profits decreases when they
selfishly pursue individually optimal offer strategies. That is, when the buyer lowers the price
that he is willing to pay for the good or the seller raises the price that she expects from trade,
then the sum of their profits diminishes.

The two players’ strategies must not be too extreme, i.e. s/b < by/s;. Otherwise accord-
ing to proposition 1, the deal probability is zero. Thus reasonable response strategies are
always within the above bounds. The total wealth in a double auction shrinks when players
optimise their individual profits. Consequently, an increase in the expected profit of one party
lowers the combined wealth of the two parties and thus diminishes the other party’s profit
significantly.

A rational buyer maximizes his expected profit. That is, the buyer maximizes E (Pg) by
optimizing his offer strategy b,,:(s) as a best response to the seller’s strategy s. Similarly, a
rational seller optimises her offer strategy s,,:(b) as a function of the buyer’s strategy b.

Solving the first order condition, an optimum strategy for each player, based on the other
player’s strategy can be calculated. An equilibrium is a set of offer strategies (b, s) such that
no player profits from changing her strategy. From here onwards we assume that the buyer
and the seller have equally strong negotiation skills (that is, & = 1/2). Then the optimal

response strategies for the two players are characterised in the following proposition.

Proposition 4. Optimal strategies for the buyer by,(s) and the seller s, (b) are given by

3b;s—4by)(15b;s+40b

bopt(5) = 13 0y <B(s,b1,b2) — (B bs B(Qs) 591 b;) 2) — 3b;s —|—4b2>
1 3bob—4b;)(15bsb+4b

son(b) = 19 » <B(b, ba, by) — (3s B(Zb) 22 bj 1) —3bgb+4b1>,

where A and B are

A(s, by, by) = \/189 bytst +432b;°53by + 3168 by %52by% 4 1280 by sbs” + 256 by*

B(s, by, by) = /216 b,%s3 + 1404 b, 252by + 288 b,%b; s + 64 by + 27 by sA(s, by, by).

Proof: See the Appendix. O

The formulas above hold while b € [by/be,1] and s € [1,bo/by]. This condition implies

two properties. First, the seller’s lowest offer is at least as high as the buyer’s minimal offer.
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Furthermore, deal probability is greater than zero. As a result, each party has non-negative

expected profit from participating in the double auction.
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Let us analyse optimal offer strategies. Figures 1 and 2 show the expected profit of the two
players as a function of their strategies b and s. In these figures, we have numerically illustrated
the formulas with an imprecision rate of 10 %. On the z-axis, the buyer’s offer strategy b
is drawn, the seller’s offer strategy s is displayed by the y coordinate. The coloured area in
figure 1 (figure 2) shows the buyer’s (the seller’s) expected profit for each set of strategies
(b, s). The lines in each figure represent the two players’ optimal response strategies. The
optimal buyer’s response strategy is represented by a red line in figure 1, while the optimal
seller’s strategy is shown by a black line in figure 2.

When the seller makes an offer close to her reservation price, then the buyer gains from
this lower offer. This may be observed towards the bottom of figure 1, where the maximum
buyer’s expected profit is shown in red. In contrast, the buyer’s profit decreases as the seller
increases her offer. This may be seen towards the top of figure 1 (shown in dark blue), where
the buyer’s profit is almost zero.

Figure 2 shows that the seller’s profit increases when the buyer is willing to pay a higher
price. This can be observed on the right of that figure, where the seller’s expected profit is
maximal (indicated in red). In contrast, when the buyer reduces his offer, then the seller’s
benefit in the double auction is reduced. This can be seen on the left of figure 2 (which is
coloured in dark blue).

In the above extreme scenarios, one party’s expected profit is close to zero. To ensure a
well functioning market, both players need to choose their offer strategies b and s such that
they generate sufficiently high, non-zero profit for the other party.

The optimal buyer’s response strategy is an increasing function in seller’s strategy s. Sim-

ilarly, the same holds for the seller’s optimal response as a function of the buyer’s strategy.
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Therefore the two party’s optimal response strategies are strategic complements. The remain-
der of this section presents a more detailed analysis of the players’ optimal response strategies

and their effect on the double auction’s efficiency.

2.1 Full Information

In this section we analyse bargaining behaviour of the players under mutual full informa-
tion in the sense of Aumann (1976). This means that each player knows the reservation price
of her counter party, knows that the counter party knows, and so forth. Given full informa-
tion, the parties do not need to submit sealed bids, as each party knows the reservation price
of his counter party. As a consequence, offers are equal to the parties’ reservation prices.

In fact, full information and naive behaviour of the parties imply the same bargaining
strategy. To illustrate this fact, suppose that each side’s offer strategy is naive. Then each
trader makes an offer at his reservation price. That is, a player’s offer is not the best reaction
on the latter side’s anticipated behaviour. This is the same situation as that under full
information. Therefore full information and naive behaviour induce equivalent offer strategies.

Let us calculate the deal probability under full information.

Proposition 5. In a double auction, when there is full information and there are two players
with uniform iid valuation imprecision on the interval [1 — o, 1 4 «, then the deal probability

s 0.5 for any imprecision parameter 0 < a < 1.
Proof: See the Appendix. O

When there is full information in a double auction, on average half of the deals fail. In our
model, trade occurs if and only if both parties benefit from it. This occurs, when the seller’s
offer does not exceed the buyer’s offer. Thus naive offer strategies allow for all feasible trades
that are of mutual benefit for both parties.

The next proposition derives the two players’ expected profits as a linear function of their

valuation imprecision.

Proposition 6. In a double auction, when there is full information and there are two players
with uniform iid valuation imprecision on the interval [1 —a, 14 «, then the players’ expected
profits are equal. This expected profit is a linear function of the two parties’ imprecision and

is given by the following formula: E(Pgs) = a/6.
Proof: See the Appendix. m
Proposition 6 shows that each player may expect a profit equal to 1/6 of the valuation

imprecision «. This immediately implies that valuation imprecision is wealth increasing.
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Intuitively, two individuals who are endowed with supreme valuation abilities, will arrive at
the same value for an asset and find trade unsatisfactory. Mathematically speaking, players
expect to profit from a double auction if and only if there is imprecision in valuation, that
is a > 0. Furthermore, imprecision and expected profit are positively correlated. Therefore,
a higher imprecision in valuation causes an increased benefit for both players. Without
valuation imprecision, the expected profit in a double auction is zero. Let us formally state

this intuition in the following lemma.

Lemma 1. In a double auction, when there is full information and there are two players with
uniform iid valuation imprecision on the interval [1 — o, 1+ «, then both market participants
profit from a higher valuation imprecision. Higher imprecision generates a higher expected
profit and is socially wealth increasing. When there is no imprecision, the expected profit is

zero for both players.

Proof: See the Appendix. m

So far, we have analysed double auctions under full information. As explained above,
naive players who do not hide their valuation strategically, also play under full information.
In sections 2.2 and 2.3, we analyse double auctions where a strategic player trades with a

naive party.

2.2 A Rational Buyer and a Naive Seller

This section considers double auctions with a rational buyer who determines his offer
strategy in order to maximize his expected profit. In contrast, there is a revealed naive seller
who makes an offer equal to her reservation price. Let us analyse the buyer’s optimal offer

strategy within this double auction setting in the following proposition.

Proposition 7. In a two-player double auction with a rational buyer and a naive seller, the

buyer’s optimal offer strategy is

1 (3b; —4bs)(15b; +4bg)
bopt (1) = —— | B(1,b1,b2) — —3by +4by | .
Opt( ) 18 bQ ( ( s VUl 2) B(l,bl,bz) 3 1 + 2
Proof: See the Appendix. O

From the buyer’s optimal strategy we derive the probability of bargaining success.

Proposition 8. In a two-player double auction with a rational buyer and a naive seller, the

deal probability is

(bopt (1)by — b1)?
Dby (1) A2

Pad =
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Proof: See the Appendix. n
Les us now analyse the players’ expected profit.

Proposition 9. In a two-player double auction with a rational buyer and a naive seller, the

buyer’s expected profit is

(Bopt™ = 1/2) (3 b2”bopi” (b2 bopt — br) = b’ bope® + b;°)
6 (bs — b1)” bopt
—3 b bopt (b2”bopt® = bs”) +2bo*bops”® — 2b,°
12 (by = 1) bops

E(Pp) =

+

and the seller’s expected profit is

B b3b2 . — by (b3 — 3babopt (b2bopt — b1))

opt
B ) = i (bs — by)?
opt ( 2 V1 )
Proof: See the Appendix. m
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Fig. 3 — A two-player double auction with a rational buyer and a naive seller

Propositions 7 - 9 are illustrated in figure 3. Figure 3 (a) shows the buyer’s offer strategy
as a function of imprecision. The seller’s naive behaviour is represented by her offer strategy
s = 1. This means that her offer, independent of imprecision, is given by her reservation price.
The buyer’s offer strategy is a strictly decreasing function of imprecision. Therefore, higher
imprecision causes the buyer to make an offer that is a smaller fraction of his reservation price.
One might expect that the buyer’s optimal offer strategy causes a decrease in the probability
of bargaining success. This however is not the case, as can be seen from figure 3 (b).

Figure 3 (b) shows that the deal probability decreases until valuation imprecision ap-
proaches approximately 20%. For imprecision values higher than 20%, the deal probability is
strictly increasing. The deal probability in the above example is between 31.9% and 32.1%

for an imprecision parameter below 50%. When the different double auction settings are
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compared in section 2.5, we will show that a deal probability within the above range is not
significantly affected by the level of valuation imprecision.

Figure 3 (c) shows the players’ expected profits. Due to strategic behaviour, the buyer has
a higher expected profit than the seller in this figure. Moreover, the expected profits of the two
players (E (Pg) and E (Ps)) are both strictly increasing functions of the valuation imprecision
«. This means that a higher valuation imprecision increases each parties’ expected profit. The
seller’s expected profit is positive; its maximum is 4% of the average good’s valuation and it is
always lower than the buyer’s expected profit. The buyer’s expected profit exceeds the seller’s,
with a maximum of approximately 11% of the average good’s valuation. The buyer profits
more than the seller, because the strategic behaviour of the buyer gives him an advantage
over the naive seller. However, both parties have a positive profit from the double auction.

This section provided an analysis of double auctions with a strategic buyer and a naively
behaving seller. Contrary, double auctions with a strategic seller and a naive buyer are

analysed in the following section.

2.3 A Rational Seller and a Naive Buyer

In this section, there is a revealed naive buyer, who makes an offer equal to his reservation
price. In contrast, the seller determines her offer strategically. Within this double auction

setting we analyse the seller’s optimal offer strategy as follows.

Proposition 10. In two-player double auctions with a rational seller and naive buyer, the

seller’s optimal offer strategy is

1 (3by —4b;)(15by +40y)
opt(1) = —— | B(1,b9,b1) — — 3by +4by | .
son(1) = 73 b1< (1,62,01) B(1,by, by) A
Proof: See the Appendix. O

Given the above optimal strategy, let us derive the probability of bargaining success.

Proposition 11. In two-player double auctions with a rational seller and naive buyer, the

deal probability is

(b2 — Sopt(1)b1)?
25 (AR

Pad =

Proof: See the Appendix. O

The players’ expected profits may be calculated as follows.
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Proposition 12. In two-player double auctions with a rational seller and a naive buyer, the

seller’s expected profit is

(05 — Soptil) (3 bg <b22 — b1280pt2) -2 b23 + 2 b1380pt3)
6 (bg — b1 )2 Sopt
3 ng (bg — b1 Sopt> — b23 + b1380pt3
12 (bs — b1)? Sopt

E(Ps) =

and the buyer’s expected profit is

—b‘%S?’ - b2 (bg - 3b150pt(b2 - blsopt))

E ( P ) _ opt
b 1250t (bs — b )2
Sopt\ 02 1
Proof: See the Appendix. O
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Fig. 4 — A two-player double auction with a rational seller and a naive buyer

The results of propositions 10 - 12 are illustrated in figure 4. Figure 4 (a) shows the
players’ offer strategies as a function of their valuation imprecision. Obviously b =1 holds,
as the buyer is a naive player in this double auction setting. That is, the naive buyer makes
an offer at his reservation price. In contrast, the seller makes a strategic offer that maximizes
her expected profit. Consequently, the seller makes an offer s,, (1), which is an increasing
function of the valuation imprecision. That is, a higher imprecision in valuation causes the
seller to make a higher offer compared to her valuation.

Figure 4 (b) shows the deal probability as a function of the valuation imprecision. In
a double auction with a rational seller and a naive buyer, the deal probability is strictly
increasing in imprecision. It rises from 32% to 33.25% for 0 < o < 0.5. As in the case of
double auctions with a rational buyer and a naive seller from section 2.2, in the present
double auction setting, the deal probability changes slightly as a function of imprecision.
However, in this case, it increases monotonically as valuation imprecision rises.

Figure 4 (c) shows the two parties’ expected profits in a double auction with a rational

seller and a naive buyer. Both parties’ expected profits (E (Pg) and E (Ps)) are strictly
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positive and increasing functions of valuation imprecision «. That is, on average the trade
is profitable for both players. Furthermore, each party has a higher profit from the double
auction as the imprecision increases.

In this example, the buyer’s maximum expected profit is 5% of the good’s average value.
The seller’s expected profit exceeds the buyer’s profit and is at the most 10% of the average
good’s value. That is, the seller’s profit is roughly twice as high as the naive buyer’s profit.

Let us now analyse a double auction where both, the buyer and the seller, behave strate-

gically.

2.4 A Rational Buyer and a Rational Seller

In this section we analyse a two-player double auction with two strategically playing
individuals. That is, both, the buyer and the seller optimize their offer strategies such that
their individual expected profit is maximized. We explain this concept with some examples
in the first place. Later in this section, the findings from the examples will be generalised.

In proposition 4, we calculated the optimal buyer’s and seller’s offer strategy as a function
of the other party’s offer strategy. Figure 5 graphs these combined strategies. In figure 5 (a)
we use a valuation imprecision of a = 10%, while in figure 5 (b) the valuation imprecision
is @ =25%. In both cases there is exactly one set of equilibrium offer strategies. In the
equilibrium neither the buyer nor the seller profits from a change in his offer strategy bop(s)
or Sept(b). It is a Nash equilibrium in pure strategies under rational expectations.
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Fig. 5 — Optimal response offer strategies and their equilibrium

Let us replicate the equilibria from figure 5 for different imprecision levels a = 5%, 10%,
20%, 25% and 50%. The results are summarized in table 1. In this example, there is always
exactly one set of equilibrium offer strategies (bopt, Sopt). The buyer’s offer strategy b is

a decreasing function of the imprecision level, while the seller’s offer strategy increases as
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valuation imprecision « rises. As the valuation imprecision increases, the buyer asks for more
of a discount and the seller increases her price. This results in a higher expected profit for

both parties.

Table 1 — Properties of a double auction with a rational buyer and a rational seller

bt | S | E(Ps) | B(Ps) | pa
a = 5% 0.9834 1.0168 0.63% 0.61% 22.22%
a=10% 0.9670 1.0337 1.27% 1.20% 22.23%
a=20% 0.9345 1.0684 2.60% 2.33% 22.25%
a = 25% 0.9184 1.0862 3.29% 2.87% 22.27%
a = 50% 0.8376 1.1795 7.01% 5.28% 22.49%

A surprising property of the equilibrium offer strategies is that they are not symmetrically
distributed. That is, in equilibrium the buyer has a higher profit than the seller. Note
that this analysis covers profit in absolute terms. When profit is calculated relative to each
player’s valuation, then the results are reversed (the seller has a higher profit than the buyer
in equilibrium).

So far, we have analysed double auctions using fixed values for the valuation imprecision.
In all our examples there is exactly one equilibrium set of strategies (bopt, Sopt). Let us gen-
eralize these examples in the following proposition in order to rigorously show that there is

exactly one equilibrium for any feasible imprecision parameter «.

Proposition 13. For each imprecision parameter 0 < o < 1, there is exactly one set of equi-

librium offer strategies (bopt, Sopt)-

Proof: See the Appendix. n
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Fig. 6 — Two-player double auction with a rational buyer and a rational seller
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Figure 6 (a) shows the players’ offer strategies in equilibrium. As the imprecision increases,
the buyer decreases his offer (compared to his valuation) and the seller increases her offer
(compared to her valuation).

Figure 6 (b) shows that the deal probability increases as imprecision increases. However,
because the deal probability varies only in the small range between 22.2% and 22.5%, its
fluctuation with the imprecision level is almost imperceivable.

It can be observed in figure 6 (c) that a higher imprecision level leads to higher expected
profits. The buyer’s expected profit is higher than the seller’s. However, both parties profit
from participation in this double auction. Their profit increases as the valuation imprecision
« increases.

The next section analyses relative efficiency of the double auction settings, which were

introduced in sections 2.1 - 2.4.

2.5 The Downside of Rationality

In the last four sections we discussed four different settings of double auctions. In section
2.1 we analysed double auctions under full information. We showed that this setting cor-
responds to the setting of naive players. Thereby their offers reflect exactly their valuation.
Sections 2.2 and 2.3 discussed the double auction settings with exactly one market participant
(in section 2.2 the buyer and in section 2.3 the seller) being fully rational whereas the other
participant behaves naively. The rational acting market participant’s strategy is to adjust the
reservation price in order to maximize the expected profit. The naively acting market partici-
pant’s reservation price equals exactly that party’s valuation. The market setting where buyer
and seller behave fully rational was discussed in section 2.4. For each valuation imprecision
there is a unique equilibrium in bidding strategies.

This section closes the analysis of double auctions by comparing the different market
settings. We focus on the question, which setting is most preferable for the players.

A buyer’s and a seller’s expected profit in each double auction setting has been calculated
in propositions 6, 9 and 12. Applying equilibrium strategies to the formulas from proposition
2 returns the players’ expected profit in the market setting where they both place their bids
strategically.

Figure 7 draws a buyer’s expected profit in the different double auction market settings.
It shows that there is a clear ranking order for the market settings that is independent of
valuation imprecision. The most preferable market setting for a buyer is being the only
rational trader. His second best alternative is a double auction under full information. The
setting where the players both act rational is the buyer’s third best alternative, followed by

the setting where just the seller behaves rational.
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The seller’s profit in the double auction market settings are drawn in figure 8. There
is also a clear ranking order regarding the seller’s preferences. The highest expected profit
is obtained if only the seller behaves rationally. Just like the buyer, the seller expects the
second highest profit in a double auction under full information. The third and fourth best

alternatives are the fully rational and buyer rational settings, respectively.
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Both parties have the full information market setting as their second priority. Thus full
information dominates the setting where both parties place their bids strategically, which is
priority three for both players. The naive setting is therefore more preferable for both parties
than placing strategic bids. Consequently, both parties would profit from committing to the
naive setting. However, given the counter party’s naive strategy, one party then could adjust
its offer strategy such that its expected profit is maximized (and thereby the other party’s
profit is minimized). Each party anticipating rational behaviour from the counterpart needs
to behave rationally as well, in order to at least get priority three. Thus the parties break
their commitment for the naive strategy, if they do not trust each other.

The different double auction settings therefore are a typical example of a prisoner’s

dilemma’®

. Compared to bidding strategically, the buyer as well as the seller would profit
if they would commit to placing their bids naively. However, anticipating rational behaviour
of their counterpart leads to a market setting where both parties are profiting less from trade
than they could. In other words they share a smaller profit-pie in equilibrium as they could
by placing naive bids.

In contrast to zero sum games, that are Pareto efficient according to von Neumann (1928),
a double auction is a non-zero sum game. Furthermore, the sum greater zero that may be
distributed between a buyer and a seller is dependent on their offer strategies. In fact, the sum

is decreasing when the parties’ offers diverge from their reservation prices. Thus individual

°See e.g. Flood and Dresher (1952) for reference
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best responses are not Pareto efficient. Opposed to Cournot competition (2001 (org. 1838)),
naive strategies (which are equivalent to honest behaviour) develop more efficient allocations
in a double auction.

There may be procedures to implement honesty, as for instance shown by Kilgur et. al
(2011). Further, Schelling (1960) proposes to include criteria such as cultural background
into the strategy decision. While the trading mechanism of a double auction is not altered
and players behave rationally in terms of individual profit maximisation, we conclude that
in equilibrium otherwise feasible trades are missed. In conclusion, the equilibrium bidding

strategy turns out to be not Pareto efficient.
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Fig. 9 — Properties of different market settings

Figure 9 compares further properties of the different market settings. The functions are
calculated from proposition 2 and optimal offer strategies as discussed in this section. Figures
9 (a) and (b) show the offer strategies the buyer and the seller choose in each market setting.
Both parties choose the most extreme strategies when they are the rational individual and
their counterpart behaves naively. Deal probabilities in each market setting are summarized
in figure 9 (c). The highest deal probability of 50% is given under full information. A deal
probability of approximately 22.5% is achieved in the rational setting. This is the lowest
possible deal probability. When one of the players behaves rationally and the counterpart
naively, a deal probability of approximately 32% is achieved in both cases.

Figure 10 shows the buyer’s expected profit in the different market settings, with a val-
uation imprecision of 10%. That profit is indicated by the colour scale. The ranking order
of the buyer’s preferred double auction settings can be observed from that figure. The buyer
prefers the setting, where he behaves strategically and his counterpart naively. Followed by
the setting, where both players place their bids naively. The third (fourth) best alternative is
the setting, where both parties place their bids strategically (the buyer plays naively and the
seller places her bid strategically). Likewise, the seller’s preferences can be observed in figure
11.
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If there were costs associated with the participation in a double auction, which are higher
than either player’s expected profit, then neither the buyer nor the seller would use this
platform. For instance, if the valuation imprecision « is 10 %, then a seller’s expected profit
is 1.20% if both players place their bids strategically. As a result the double auction is not

attractive for a seller when her costs for market participation exceed her expected profit of
1.20%.
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After a detailed analysis of double auctions, the next section is concerned with a market
maker’s market. We will show that even without costs for bilateral trade in a double auction

and under non-restrictive conditions, this dealer is preferable for both market participants.

3 The Dealer’'s Market

In the Dealer’s Market, there is a dealer present. The dealer has experience regarding
the good and knows its average value. Thus he can value the good precisely. He acts as a
market maker and charges a bid-ask spread. The dealer offers to buy the good for its average
value multiplied by 1 — f and offers to sell the good for its average value multiplied by 1+ f,
with fee f > 0. The bid-ask spread guarantees the dealer a positive profit on each round-trip
transaction, given by 2f > 0. Hence, he deterministically profits from his strategy.

Buyers and sellers do not know the average valuation. Therefore they are unaware whether
the dealer truly shows them prices (1 — f)V and (1 + f)V, respectively. This means that the
parties need to trust the intermediary to charge truthful prices. Consequently, the intermedi-
ary needs to be endowed with exogenous reputation capital such that the bargainers consider
him trustworthy.

The dealer pursues the strategy to install an environment under information asymmetry.

In the Dealer’s Market buyers and sellers do not interact. They solely communicate with
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the dealer and choose whether to accept his offer, or not. In this sense there is information
asymmetry in the Dealer’s Market. Asymmetric information is important to the success of
the dealer’s strategy. This means that a buyer and a seller should either consult the dealer
or choose to trade in a double auction. Additionally, a buyer and a seller can first bargain
in a double auction and, in case they are unsuccessful, they may consult the dealer in the
next step. While this sequential strategy is beneficial for a buyer and a seller, the dealer
is left with a Lemons problem: buyers with a low reservation price and sellers with a high
reservation price. Thus the dealer suffers from adverse selection. Installing a beneficial fee
strategy consequently becomes more complicated for the dealer under full information because
then the players may engage in bilateral negotiations prior to consulting the dealer. Then the
dealer’s strategy may even collapse.

We start to formally analyse properties of the Dealer’s Market by calculating the deal
probability.

Proposition 14. When f < «, then the probability that the buyer makes a gain from the
dealer’s offer is given by p = (o — f)/(2a). The same is true for the seller.

Proof: See the Appendix. ]

Obviously, the deal probability in the Dealer’s Market is a strictly decreasing linear func-
tion of the dealer’s fee f. For f = 0 deal probability is exactly 50 %. It decreases linearly
for an increasing dealer fee f. For f = «, the deal probability is zero. We find that there
will be no successful deals in the Dealer’s Market if the fee f exceeds the maximum players’
valuation imprecision a.

The next proposition calculates a buyer’s and a seller’s profit in the Dealer’s Market.

Proposition 15. When f < «, then the buyer has a positive expected profit from consulting
the dealer. It is given by E(Pp(B)) = (o — f)* /(2Ab). The same is true for the seller’s
expected profit, that is given by E(Pp(S)) = (o — f)* /(2AD).

Proof: See the Appendix. n

We find that both the buyer and the seller have positive expected profit from participating
in the Dealer’s Market if the condition f < « is satisfied. The higher the market participants’
valuation imprecision «, the more likely is it that they participate in the Dealer’s Market.
Furthermore, the attractiveness of the Dealer’s Market increases when the dealer lowers his
fee f.

The next section compares the double auction and the Dealer’s Market. It provides non-

restrictive criteria, when the players prefer the Dealer’s Market.
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4 The Downside of Full Information

This section analyses the relative attractiveness of double auctions and the Dealer’s Mar-
ket. Section 4.1 introduces an optimal dealer strategy to Pareto dominate double auctions.
The introduction of less restrictive assumptions in section 4.2 allows us to show that Pareto
efficiency of the Dealer’s Market can be achieved even in more general frameworks. Section

4.3 presents a numerical example on how a dealer Pareto dominates bilateral negotiations.

4.1 Pareto Efficiency of Information Asymmetry

In this section we establish upper bounds for the dealer’s fee such that the Dealer’s Market
is Pareto efficient over the different double auction settings that were introduced in section 2.
First, the next proposition analyses in which cases the deal probability in the Dealer’s

Market is higher than that of a double auction.

Proposition 16. Let pg be the deal probability in a double auction. Then the deal probability
in the Dealer’s Market exceeds that of a double auction if f < a(l — 2py).

Proof: See the Appendix. O

The attractiveness of the Dealer’s Market increases when the dealer reduces his fee. Fur-
thermore, the probability for deal success increases when the fee is reduced. Proposition 16
establishes an upper bound for the dealer’s fee such that the Dealer’s Market offers a higher
probability of deal success than a double auction. That upper bound is f < a(l — 2py).
While f is below this bound, success probability in the Dealer’s Market is higher than that
in a double auction.

The next 5 propositions establish upper bounds for the dealer’s fee, such that the Dealer’s
Market is Pareto efficient over the different double auction settings. The following proposition
develops a general formula for a higher expected profit in the Dealer’s Market compared to a

double auction.

Proposition 17. Let E(P(.)) be a player’s expected profit in a double auction. Then that
player’s expected profit in the Dealer’s Market exceeds that profit if f < a — 2¢/aFE (P(.)).

Proof: See the Appendix. O

Proposition 17 provides a general formula for an appropriate dealer’s fee strategy. Given
a player’s expected profit in a double auction, the dealer may determine his fee according to
proposition 17 in order to Pareto dominate that double auction.

Let us concentrate on the different double auction settings as introduced in section 2. First,

we will develop a dealer’s strategy to Pareto dominate double auctions under full information.
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Proposition 18. Compared to a two-player double auction under full information, the players
prefer the Dealer’s Market if f < « (1 — \/g) )

Proof: See the Appendix. ]

Proposition 19. Let E(Pg) be the buyer’s expected profit in a double auction with a rational

buyer and a naive seller. Then both players prefer the Dealer’s Market over the double auction
if f<a — 2,/aE(Pp).

Proof: See the Appendix. O

Proposition 20. Let E(Ps) be the seller’s expected profit in a double auction with a rational
seller and a naive buyer. Then both players prefer the Dealer’s Market over the double auction
if f<a — 2 /aE(Ps).

Proof: See the Appendix. n

Proposition 21. Let E(Pg) be the buyer’s expected profit in a double auction with rational
players. Then both players prefer the Dealer’s Market over that double auction if f < a —
2 aF (PB)

Proof: See the Appendix. n

Propositions 18 - 21 determine upper bounds for the dealer’s fee such that the Dealer’s
Market is preferred over different double auction settings by both the buyer and the seller. If
the dealer’s fee f reaches the upper bound, then one of the market participants is indifferent
between the Dealer’s Market and a double auction, and the other party prefers the Dealer’s
Market. Therefore this upper bound f,,., is the highest fee the dealer can charge for the
Dealer’s Market to be preferred over a double auction by the buyer and the seller. Secondly,
this fee maximizes the dealer’s profit.

Figure 12 shows this maximum fee that the dealer can charge each market participant,
such that this player prefers the Dealer’s Market over a double auction. The maximum fee
fmaz(B) for the buyer to be indifferent is shown in figure 12 (a). Accordingly, figure 12
(b) shows the maximum dealer’s fee f,,.(S) such that the seller is indifferent between the
Dealer’s Market and a double auction.

Figure 13 shows the fee f,... as a function of valuation imprecision. This is the upper
bound for a dealer’s fee such that a buyer and a seller are indifferent between a double auction
and the Dealer’s Market.

It can be seen that a higher valuation imprecision leads to a higher fee f,,4.. This is true
for each double auction setting. As a result, the dealer profits from an increase in the players’

valuation imprecision.
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Fig. 12 — Maximum fee such that the buyer or the seller is indifferent between the Dealer’s
Market and different double auction settings

In section 2.5 it was shown that a double auction with rational players is the unique
Nash equilibrium of the four double auction settings. When a buyer and a seller place their
bids rationally in a double auction, then there is exactly one such optimal strategy for either
player. In particular, figure 13 shows the dealer’s fee that makes the Dealer’s Market exactly
as favourable as double auctions in the bidding strategy equilibrium. That is, when both
parties place their bids strategically. The buyer and the seller prefer the Dealer’s Market over

a double auction if the dealer’s fee is below or equal to the fee f,,q..
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Fig. 13 — fiae such that both market participants are indifferent between the Dealer’s Market
and different double auction settings

We have analysed optimal dealer’s fee schemes that allow the Dealer’s Market to be Pareto
efficient over the four double auction settings. The next theorem summarises this analysis and
shows when the Dealer’s Market is Pareto efficient over double auctions in bidding equilibrium.

That is, when both players place their bids strategically.
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Theorem 1. Let the buyer and the seller be rational bidders in a two-player double auction.
Let E(Pg) be the buyer’s expected profit in that double auction. Then the Dealer’s Market is

Pareto efficient over the double auction if and only if

0<f<a — 2 /aE(Pp).

In this case the market under information asymmetry Pareto dominates the market under full

information.
Proof: See the Appendix. O

The above theorem presents an equivalent condition for the Dealer’s Market to be Pareto
efficient over a double auction in bidding equilibrium. The theorem states that when the
condition 0 < f < o — 2 ,/aE (Pp) is satisfied, then all parties favour the Dealer’s Market
over a double auction in bidding equilibrium.

The condition is closely linked to the dealer’s fee strategy. By applying a reasonable fee
strategy, the dealer can therefore influence the players’ market preferences. When he sets
his fee accordingly, the buyer and the seller will prefer the Dealer’s Market over bilateral
negotiations.

Propositions 18 - 21 and theorem 1 are true for the players’ ex-ante decisions. In fact,
parties have to decide on their market preference first and choose either market according
to their ex-ante preference. It is of importance for our model that players face an "either
or' decision between a double auction and the Dealer’s Market. Otherwise a buyer and a
seller might bargain in a double auction in the first place. If their bilateral bargaining at-
tempt is unsuccessful, they might consult the dealer in their attempt of successful bargaining.
This strategy encourages adverse selection and thus disfavours the dealer. Consequently, the
dealer should create an environment of information asymmetry, where he hides the respective
reservation price of a buyer and a seller from each other.

Table 2 presents a numerical example to illustrate this section’s analysis. It shows a
buyer’s and a seller’s strategic options as a normal-form game. For this example, we set
valuation imprecision to a maximum of o = 10% and the dealer charges a fee of f = 1.5%S.
When bilateral trade in a double auction is the only option to the bargainers, then the naive
strategy’s profit is highest with «/6 ~ 1.67%. Playing naively is however not dominant. The
equilibrium strategy in a double auction is that both players place their bids strategically.
Their profit then is 1.20% (seller) and 1.27% (buyer). The dealer offers each party an expected

profit of 1.81%. He dominates double auctions with rational players and further dominates

6The maximal dealer’s fee for Pareto dominance of the Dealer’s Market is f = 10% - (1 — 1/2/3) ~ 1.84%,
according to proposition 18.
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bilateral trading with naively behaving players. Therefore both players prefer the Dealer’s

Market over a double auction. Thus, the Dealer’s Market is Pareto efficient.

Table 2 — Illustration of the players’ strategic options and their expected outcome. Valuation
imprecision is & = 10% and the dealer’s fee is f = 1.5%

Buyer’s strategy

Rational Naive Dealer
Rational 1.20% / 1.27%  2.12% / 0.87%
Seller’s strategy ~ Naive 0.83% / 2.15%  1.67% / 1.67%
Dealer 1.81% / 1.81%

Table 3 calculates the maximum dealer’s fee f,,., that the dealer may charge the buyer
and the seller. It shows that, independent of the valuation imprecision «, the dealer can
charge the seller a higher fee than the buyer and still the Dealer’s Market Pareto dominates
double auctions. The optimal price the dealer offers the seller is thus V(1 — f,,4.(S)). The
optimal price he charges the buyer is V(1 + f,..(B)). When a dealer applies this fee scheme,
then his earnings per round trip transaction are fru.(B) + fmaz(S). That asymmetric fee

strategy can further increase the dealer’s earnings.

Table 3 — Preference of Dealer’s Market over a double auction

Buyer fi0.(B) Seller f.4:(S) | Pareto Dominance f,q,
a=5% 1.46% 1.51% 1.46%
a=10% 2.28% 3.07% 2.28%
a = 20% 5.58% 6.33% 5.58%
a=25% 6.86% 8.05% 6.86%
a = 50% 12.56% 17.51% 12.56%

Figure 14 analyses the relative attractiveness of the Dealer’s Market and the double auc-
tion. Assume a player, say the buyer, has some reservation price. Then the buyer’s imprecision
z € [—a, a] is below (or above) the average valuation. On the basis of z, the expected buyer’s
profit may be calculated.

In figures 14 (a) and (b), the players’ actual valuation imprecision z is drawn on the z-axis.
Expected profit, given z is drawn on the y-axis. Thus the area between each function and
the z-axis represents a player’s expected profit (not conditioned on z). Both players’ profits
are drawn for naive players and in bidding equilibrium, where both players place their bids

strategically. This is compared to expected profit in the Dealer’s Market.
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Fig. 14 — Expected players’ profits as a function of their actual imprecision

When the buyer has a relatively high reservation price, then the Dealer’s Market is most
preferable for him. For an actual valuation imprecision below f, a buyer’s expected profit in
the Dealer’s Market is zero. This can be seen by the red line in figure 14 (a), where a buyer’s
profit is zero for an actual imprecision below f. In this case a double auction generates a
higher expected profit. This can be seen in figure 14 (a), when the black line (double auction
with naive players) and the blue line (double auction with rational players) are above the red
line (profit in the Dealer’s Market).

In figure 14 (b) the opposite is true. The seller profits most from the Dealer’s Market, if
her reservation price is minimal. In fact, an actual valuation imprecision above — f causes zero
profit in the Dealer’s Market, whereas the expected profit in a double auction still exceeds
ZEro.

As shown in section 2, double auctions under full information always dominate those with
rational individuals, because in a double auction the expected profit is always higher under
full information. If the profit in the Dealer’s Market on average is higher than the average
profit in a double auction, then the Dealer’s Market is Pareto efficient. In figure 14 the
dealer’s fee is f* = a(1 — \/%) As shown in proposition 18, this fee allows for the players’
indifference between double auctions under full information and the Dealer’'s Market. As a
result, the areas under the red and black graphs in figure 14 are identical. For fees lower than
f*, the Dealer’s Market is more efficient than double auctions under full information and we
have Pareto efficiency of information asymmetry over full information. In this case, the area
under the red line is bigger than the area under the black line, in figures 14 (a) and (b).

We have shown that the Dealer’s Market under information asymmetry can be Pareto
efficient over double auctions, even those under full information. By relaxing our assumptions,

the next section generalizes this result in a variety of aspects.
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4.2 Pareto Efficiency in more General Frameworks

This section analyses a more general framework of double auctions than presented in
section 2. It proves that the dealer can determine a suitable fee strategy such that his fee
scheme is Pareto efficient over the more general double auction framework.

In the prior sections, a buyer and a seller are assumed to have "true" identical distribu-
tions of valuation imprecision. Further, the players are aware of these "true" distributions of
imprecision. However, in a more general framework, both players anticipate their own distri-
bution of valuation imprecision and their negotiant’s imprecision distribution. In addition,
true imprecision distributions and anticipated distributions are not identical in general. This
matter will be discussed in the remaining part of this section.

Let us model the conditions given above. Assume the buyer anticipates his valuation
imprecision to be represented by a random variable Xz and the seller’s valuation as anticipated
by the buyer is given by the random variable Y. Now the buyer may determine his optimal
offer strategy b < 1, as shown in proposition 4. Analogously, the seller anticipates her and
the buyer’s valuation imprecision to be represented by the random variables Xg and Y,
respectively. Like the buyer, the seller may determine her optimal offer strategy s > 1 from
her anticipations.

As in double auctions from section 2, rational behaviour disfavours both parties.

Theorem 2. Assume the true buyer’s valuation imprecision is represented by the random
variable X. Likewise, the seller’s true valuation imprecision is represented by the random
variable Y. Assume that P(X >Y) > 0 (otherwise the deal probability is zero deterministi-
cally). Let the buyer’s anticipated optimal offer strategy be b < 1 and the seller’s anticipated
optimal offer strategy be s > 1.

Then the buyer’s and seller’s expected profit is highest when they apply offer strategies
b=s=1.

Proof: See the Appendix. m

The above theorem implies that a buyer and a seller are better off if they place their
offers naively. Rational behaviour therefore harms the buyer and the seller in general terms.
According to theorem 2, the more general double auction in bidding equilibrium is at most as
efficient as a double auction with naive individuals. Thus the profit-pie (sum of the profits of
the players) in equilibrium is smaller than the profit-pie naively behaving players share. The

inefficiency of the bidding equilibrium can be exploited by the dealer.

Theorem 3. If a buyer and a seller behave rationally in a double auction, the dealer may
find a suitable fee strategqy such that his earnings are positive and the players prefer engaging

the dealer. Thus the Dealer’s Market Pareto dominates that double auction.
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Proof: See the Appendix. n

From theorems 2 and 3 general results about double auctions and the Pareto dominance
of the Dealer’s Market can be derived. In double auctions rational behaviour of the players
harms both parties. Thus, generalising double auctions, the players would profit more if
their offer price is equal to their reservation price. This naive strategy however, is not an
equilibrium. When a seller’s strategy is fixed, then a buyer’s attempt to increase his share of
the profit-pie shrinks the overall profit-pie at the same time. The buyer’s strategy therefore
ensures him maximal profit and the seller is left with a smaller share of a smaller profit-pie.
The same effect is true for a strategic seller. In equilibrium, a buyer and a seller then share
a smaller profit-pie than that, which would have resulted from the naive strategy.

In the Dealer’s Market, the profit-pie has maximum size. The overall profit may even be
bigger than in a double auction with naive individuals”. The dealer’s optimal strategy is to
offer the bargainers more profit in absolute terms than they would expect from the smaller
profit-pie in a double auction. This way, there is some proportion of the bigger profit-pie left
that he can have for himself.

As an example, this is illustrated in figure 15. It provides the profits from a double auction
with valuation imprecision of @ = 10% and an average valuation that is given by 10.000. In
this example, the dealer’s fee is f = 0.25%.

Figure 15 (a) shows the expected profit of a rational buyer and a rational seller in the
double auction: the buyer’s expected profit is 127 and that of the seller is 120. Thus they
share a profit-pie of size 247. When the parties behave naively, as shown in figure 15 (b),
each player gets half of the profit-pie. The naive strategy generates a profit of 167 per player.
That is, the profit-pie has a size of 334. In comparison to placing their bids strategically, the
naive strategy thus results in a bigger profit-pie.

Proposition 18 additionally states that the Dealer’s Market can in fact Pareto dominate
double auctions under full information. This means that the dealer may install a fee structure
such that the profit-pie in the Dealer’s Market is bigger than the biggest pie available in a
double auction; even bigger than the pie that full information offers. As a consequence, a
buyer and a seller always prefer the Dealer’s Market ex-ante, even if full information was
available in a double auction. This fact can be observed by comparing figures 15 (b) and (c).
The Dealer’s Market offers a buyer and a seller each a profit of 238. At the same time, the
dealer’s gain is 50 per round-trip transaction. Thus, the Dealer’s Market offers a profit-pie
of size 526. Therefore, the profit in the Dealer’s Market exceeds that from a double auction

with naive or strategic players.

"When the dealer’s fee is below a(1 —+/2/3), then the profit-pie in the Dealer’s Market is bigger than that
of a double auction with naive individuals, according to proposition 18.
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tional players with a total players with a total profit of 334 profit of 526
profit of 247

Fig. 15 — Size of the profit-pie in double auctions and the Dealer’s Market. Average valuation
is 10.000, valuation imprecision is e = 10% and the dealer’s fee is 0.25%

So far, we have presented a theory that explains when information asymmetry can be

Pareto efficient over full information. Let us illustrate the theory by a practical example.

4.3 Example: The Headhunter Game

In this game the job candidate is asked to propose the salary S she expects to earn. The
candidate gets hired with salary S if the employer is willing to pay at least the proposed
salary S. Otherwise the candidate is not hired.

In our model, the candidate can be considered the seller who offers her time and skills
to the buyer (the employer). Both players have a certain reservation price. The employer
does not need to adjust his reservation price as the level of salary exclusively depends on
the candidate’s proposed salary S. The candidate can ask the employer for a higher salary
S as she truly requires. This strategy is risky because the probability of not getting hired
increases. However, the strategy’s possible benefit is a higher compensation. In fact, a
reasonable increase of the job candidate’s minimum salary requirement is optimal. For a
job candidate, this reasonable increase can be modelled within the framework of a double
auction with rational seller, as in section 2.3. Furthermore, the negotiation skill parameter
satisfies k£ = 0, because the salary only depends on her proposed salary. Negotiation skills are
irrelevant.

In our example, we set the average salary to 50, 000€ and the maximum valuation impre-
cision to o = 20%. Then reservation prices are uniformly distributed on [40, 000; 60, 000]€.
Assume the candidate to have a salary requirement of 49, 000€ and the employer to have
a reservation price of 54,000€. If the candidate pursues an optimal offer strategy accord-

ing to proposition 4%, then her optimal strategy is to increase her salary requirement by

8Here k = 0, whereas in the proposition k = 1/2.
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Sopt(1) = 14.57%. In fact, her optimal proposed salary then is S = 56,139.30€. When
the candidate acts upon the optimal strategy, her proposed salary exceeds the employer’s
reservation price and the candidate is not hired. In a double auction, negotiations therefore
fail.

Now consider a recruitment firm (the dealer) that has experience and sufficient market
expertise to know that the average salary for the job is 50,000€. Moreover, the recruiter’s
fee strategy is asymmetric and the recruitment fee is fully charged to the employer. Let that
fee be 4% of the average salary®.

The recruiter offers the job to the job seeker with a salary of 50,000€. The job seeker
accepts as the offer is above her salary requirement. The employer pays 50, 000€ for salary
and 2,000€ recruitment fee. The employer’s total expenses are below his reservation price
of 54,000€. When she places the candidate successfully, then the recruiter earns 2, 000€ in
fees.

It is worth mentioning that the employer and the employee profit from this even more,
when the employment relationship holds longer, as the recruiter’s fee needs to be paid only
once. With the argument of longer relationships, the recruiter may even charge a higher fee.

In this numerical example, direct negotiations are unsuccessful but the recruitment firm
is able to place the candidate successfully. Therefore all players prefer hiring the recruitment
firm. Even if direct negotiations lead to success it is ex-ante optimal for all players to hire
the recruitment firm.

However, it is necessary that the recruiter limits information between both parties. Oth-
erwise players call upon the recruiter’s services only when direct negotiations were unsuc-
cessful. Then the recruiter is consulted by lemons to a greater extent: employers who pay
small salaries and job-seekers with high salary requirements. Due to adverse selection, the
recruiter’s expected earnings would be smaller. Therefore the recruiter benefits from infor-
mation asymmetry between employer and employee.

The Headhunter game has presented an example for the theory of this article. It showed
how a Dealer’s Market (i.e. the headhunter) is preferred by all parties compared to direct
loan negotiations. The next section presents an application on initial public offerings (IPOs).

We will show that our theory can be applied to solve the IPO underpricing puzzle.

5 A Solution for the IPO Underpricing Puzzle

In this section we apply our theory to capital markets and present a solution for the IPO

underpricing puzzle. Let us introduce our capital market model and adopt it to our theory.

9The employer’s expected profit from that double auction is 2.07%, according to proposition 2. Then
proposition 17 calculates a maximum fee of 7.13% that the recruiter may charge the employer. When the
recruiter does not exceed that fee, then ex-ante his services are preferable over bilateral salary negotiations.
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First, we focus on a firm that has the alternative of raising private or public equity capital.
In our model, the firm may be viewed as the seller of its equity securities. In section 5.1 we
concentrate on the firm’s alternatives. Section 5.2 provides an analysis of an investor’s options
on how to buy equity capital of a firm. Conditions for an ITPO to be preferred by all parties
are established in section 5.3. This section further shows that an TPO is underpriced on at
least average. Moreover it provides conditions, when an IPO is underpriced deterministically.
Finally, section 5.4 discusses a numerical example for the Pareto dominance of an ITPO and

its underpricing.

5.1 Alternatives for raising Capital: IPO and Venture Capital

Assume a corporation wants to sell a fixed share S of its owner rights. This corporation’s
management then may try to sell the share S privately by negotiating and placing it with
an individual or an institution, such as a venture capitalist. The corporation’s management
further may hire an investment banker to place the corporation’s share in an IPO. According
to our model, the firm and the venture capitalist are unable to precisely value the firm’s
share. Each party makes an estimation error that is uniformly distributed around an average
valuation V' for the share.

Let us first model negotiations for private placement, for example with a venture capitalist:
the firm’s management’s valuation is Vj; and a venture capitalist’s valuation is V. The
management wants to raise at least the amount V), for the corporation’s share S. The venture
capitalist is willing to pay at the most Vi for it. Then V), and Vi are the players’ reservation
prices. During price negotiations, the parties simultaneously reveal their offers Oy, and Oy to
their counter party. The deal price for the corporation’s share then is P = kO, + (1 — k)Oy
(for some k on the interval [0, 1]), if the venture capitalist’s offer is higher than or equal to
the management’s offer. Otherwise the deal is unsuccessful. As described in the introduction
to section 2, the parameter k represents the players’ negotiation skills. The offers O,; and Oy
are derived by the offer strategies and the reservation prices of the negotiators. Negotiations
between a corporation and a venture capitalists are consequently an example of bilateral
negotiations as discussed in section 2.4, where both parties behave strategically.

We showed in section 4, that a dealer (an investment banker), may determine his fee
strategy such that the seller (a firm), prefers the Dealer’s Market over bilateral negotiations
with the buyer (a venture capitalist). In this case, the investment banker would sell the share
S to the public. When the investment banker’s fee strategy is chosen adequately, the firm
chooses employing the investment banker to issue an IPO over bilateral negotiations with a

venture capitalist.
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5.2 The Investor’s Alternatives

Assume an investor is interested in a certain share of a firm that is considering an IPO.
Then the investor faces three options: the investor may (a) engage in bilateral negotiations
with the firm. Alternatively it can (b) wait for the IPO to be issued and buy the newly issued
shares. Finally, the investor may (c) invest in a portfolio that spans the issuing firm’s shares,
that is, the investor buys a duplicating portfolio that generates returns and bares risk exactly
as the firm’s newly issued shares.

As in the previous section 5.1, case (a) can be modelled as a double auction, where an
investor and the firm strategically place their bids. We have already shown in section 4 that
an investment banker with reasonable fee strategy dominates that double auction by issuing
an [PO. Thus case (a) is dominated by case (b).

Since the stock market provides an exact stock price for each asset in the spanning portfo-
lio, the value of the spanning portfolio V' is known with certainty in case (c¢). In other words,
there is perfect valuation for the spanning portfolio and thus also perfect valuation for the
firms share.

The following section proves that, in order to dominate option (c), the investment banker
(option (b)) needs to underprice the IPO. Otherwise the investor prefers the spanning port-

folio.

5.3 An IPO under Asymmetric Information dominates raising Capital from a Venture
Capitalist with Full Information

This section formalises the prior argumentations and proves under which conditions an
IPO is the dominant alternative for an investor and the firm. We furthermore present condi-
tions that cause underpricing of an IPO. First, an analysis of the average prices in bilateral
negotiations between a firm and a venture capitalist is conducted. It will be shown that this
price is below the average valuation V. This means that even in bilateral negotiations we find
underpricing. To understand this, we first calculate the average price resulting from bilateral

negotiations.

Proposition 22. When bilateral negotiations between a firm and a venture capitalist are

successful, the average deal price is

1 bby? be?  by?s?
E(P|S =~ (kb — by [ = —
(P|Success) (bby — s51)2 ( [ 3s ! ( 2 6 b2
b% by? , (by bys
=k l 6 " \2 30
Proof: See the Appendix. O

38



Proposition 22 gives a formula for the average deal price in case of a bargaining success.
In section 2 we established optimal offer strategies (b, s) for both players in different bilateral
negotiation settings. Using these strategies makes it possible to calculate the average deal

price in the different bilateral negotiation settings discussed in section 2.
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Fig. 16 — Average deal prices in bilateral negotiations

Figure 16 shows these prices as a function of valuation imprecision. When both players
place their offers naively, the average deal price is V', according to proposition 22. Figure 16
(a) analyses the remaining bilateral negotiation alternatives'®. When the firm is behaving
strategically and the investor naively, there is some overpricing that increases with valuation
imprecision. It reaches approximately 5% of V' at the most. When the investor behaves
strategically and the firm naively, then the investor reduces his offer, whereas the firm’s offer
and reservation price are identical. This has the effect, that the average price is below V'
and decreasing in valuation imprecision. That price reaches down to approximately 86% of
V', which is equivalent to 14% underpricing. When one player behaves strategically and the
other naively, then the strategic player can shift the average price to his advantage. When
both players behave strategically (this is indicated by the blue graph) the average deal price
is decreasing in valuation imprecision and always below the average valuation V. In this case,
there is significant underpricing of up to approximately 7% of V. This property of bilateral
negotiations is unexpected, as one might reason that the price behaves symmetrically when
both parties place their bids strategically. This effect has been explained in section 2, where
it was shown that a buyer has the upper hand in bilateral negotiations. That section showed
that a buyer’s profit is higher than that of a seller when they both bid strategically.

Figure 16 (b) analyses the influence of negotiation skills on the average deal price in

bilateral negotiations with strategic individuals. The parameter k represents the relative

10Without loss of generality we set V = 1 in this figure
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negotiation skills of the parties. When k = 0, the deal price is given by the firm’s offer. This
means that the firm has superior negotiation skills compared to the investor. When k = 1 the
opposite is true. Then the deal price is given by the investor’s offer and his negotiation skills
exceed the firm’s. If k = 1/2, both parties share the same negotiation skills. The graph shows
that when the investor’s negotiation skills are better than the firm’s, the deal price decreases,
and vice versa. If the firm gains the upper hand in bilateral negotiations (for k& = 0.25),
the deal price is approximately constant at V. The average deal price even diminishes for a
valuation imprecision above 20%. We conclude that in bilateral negotiations with strategic
individuals, there is underpricing, even when the firm’s negotiation skills exceed that of the
investor.

The next proposition shows that an IPO with asymmetric information dominates bilateral
negotiations of a firm and a venture capitalist under full information. However, the investment
banker needs to underprice an IPO in order to compete with the capital market which provides

a spanning portfolio.

Proposition 23. Let E (Ps) be the firm’s expected profit in bilateral negotiations with strategic
players. Define

fmaz = a — 2 y/aE(Ps).

When the investment banker offers to buy a firm’s shares for By > V(1 — fiae) and offers
to sell the shares at the price Sq within the bounds By < Sg <V, then an IPO is Pareto
efficient.

Proof: See the Appendix. ]

Proposition 23 develops a pricing strategy such that the IPO is Pareto efficient. The
intuition behind the proposition is that, while the investment banker does not exaggerate
his fee, the IPO is Pareto efficient over bilateral negotiations between a firm and a venture
capitalist. We can infer from proposition 23 that the investment banker offers the IPO shares
to investors below their average valuation V.

The next lemma shows an interesting property of an IPO which can be derived from

proposition 23.

Lemma 2. When the investment banker applies a fee strategy as in proposition 23, IPOs are

underpriced.
Proof: See the Appendix. n

Lemma 2 states that IPOs are underpriced. In order to attract investors for the IPO,

the investment banker needs to compete with an efficient market, according to proposition
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23. Prices in the efficient market are exact and therefore the spanning portfolio for the IPO
shares has the exact price V. To attract investors, the investment banker needs to price the
IPO shares below that value V. In other words, the investment banker underprices the IPO
shares. Otherwise investors will reject the investment banker’s offer.

Note that when a spanning portfolio for the firm’s shares does not exist, the investor looses
option (c), the exactly priced duplicating portfolio. Then the investment banker’s strategy

to attract an investor and a firm to the IPO is simpler.

Proposition 24. Assume there is no spanning portfolio for the firm’s shares. Let E(Pg) and
E(Ps) be an investor’s and a firm’s expected profits in bilateral negotiations with strategic

players, respectively. Define

for=a — 2 \/JaE(Pg)
fs:=a — 2\/aE(Ps).

When the investment banker offers to buy a firm’s shares for By > V(1 — f5) and offers to
sell the shares at price Sq, with By < Sq < V(1 + fy), then an IPO is Pareto efficient.

Proof: See the Appendix. O]

When there is no spanning portfolio for the firm’s shares, it is simpler for the investment
banker to install a fee structure such that an investor and a firm are in preference of an IPO.
Dropping the spanning portfolio assumption, IPOs are still underpriced on average, but to a

smaller extent.

Lemma 3. Assume there is no spanning portfolio for the firm’s shares. When the investment

banker applies a fee scheme as in proposition 24, IPOs are underpriced on average.
Proof: See the Appendix. m

In general it is possible that IPOs may be overpriced if the assumption of the existence of
a spanning portfolio is dropped. Lemma 3 however states, that on average they are under-
priced. Furthermore, section 2 proved that a firm’s profit is lower than that of an investor in
bilateral negotiations. Section 4 discussed that the investment banker may therefore install
an asymmetric fee structure to make his market Pareto efficient over bilateral negotiations.
In fact, to successfully compete with bilateral negotiations, the investment banker may offer
the firm a lower profit than an investor, because a firm’s gain in bilateral negotiations is
lower than an investor’s. This asymmetric offer strategy is responsible for the IPO to be
underpriced on average. We conclude that IPO underpricing is a robust property. However,

an [PO is deterministically underpriced when a spanning portfolio exists.
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The underpricing of IPOs is illustrated in figure 17. Using propositions 23 and 24 we

computed feasible IPO prices for different valuation imprecision.
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Fig. 17 — Feasible price strategies of the dealer

Figure 17 (a) shows feasible IPO prices with the spanning portfolio hypothesis, that is an
investor’s option (c¢). The blue area in this figure represents feasible investment banker’s price
strategies. It can be seen that IPOs are always underpriced. The intensity of the underpricing
is the dealer’s choice and depends on several factors. For example, when a firm is more inclined
to sell its shares, it is easier for the investment banker to satisfy the firm with a lower price.
As a result, the IPO can be underpriced to a greater extent, if the investment banker does not
change his fee. When a firm needs more encouragement for an IPO, the investment banker
may offer a higher price. While the investment banker’s earnings are constant, the initial
shares become more costly. They are, however, still underpriced in order to dominate the
investor’s spanning portfolio alternative.

Figure 17 (b) shows price bounds without the option of a spanning portfolio. The minimum
price the firm demands is illustrated by the red line. It is equal to the lower price bound in
figure 17 (a). The investment banker needs to offer the firm a higher price than this lower
bound. When there is no spanning portfolio, the investment banker may charge the investor a
price higher than V. The maximum price he may charge the investor is illustrated by the black
line in figure 17 (b). The investment banker has more freedom in pricing and thus possibly
more fee earnings when imprecision increases. In this case however, IPOs are not necessarily
underpriced: the investment banker may set an IPO price from the whole spectrum between
1— fs (the red line) and 1+ f;, (the black line). Actual pricing may be dependent on numerous
parameters, such as the necessity for sellers to raise capital and investors to buy those shares.
The size of the IPO market and the supply of investment capital, negotiation skills and the
investment banker’s minimum fee requirement are further factors that determine the actual
IPO price.
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5.4 Numerical Example: IPO Underpricing

For the numerical example we allow a share of a company to have average value V' = 100.
Assume maximum valuation imprecision is 20%. Then the players’ valuations are uniformly
distributed on [80,120]. However, the players do not know the valuation interval. Let the
management’s valuation be V3, = 95 and the venture capitalist’s valuation be V> = 105. Both
players behave strategically. Therefore they adjust their reservation prices by certain factors
s and b, respectively. The firm’s management increases its valuation by a certain percentage
and the venture capitalist reduces his valuation by a certain percentage. Table 1 on page 21
gives these optimal offer strategies s = 1.0684 and b = 0.9345. Thus the management’s offer
price is Oy =~ 101.50 and the venture capitalist’s offer price is Oc =~ 98.12. In this case,
the firm’s management demands more for the corporation’s share than the venture capitalist
is willing to pay. That is, with strategically behaving players the deal is unsuccessful, even
though with naive behaviour it would have taken place.

Let there be an investment banker with market expertise. In this case the investment
banker knows the average valuation V. She strategically conducts an IPO and offers the firm
a price of By for its shares. Further, the investment banker offers to sell the shares to the
investor at price Sy. Proposition 23 introduces the bounds for these prices. Accordingly!?,
the lower bound of the offer to the firm is By > V(1 — fia:) = V(1 —0.0635) = 0.9365V. An
investor needs to be priced within the bounds 0.9365V < B; < Sg < V.

Assume the investment banker’s strategy is By = 0.97V = 97 and S; = 0.99V = 99. In
this case the investment banker sells the share for 99 and the firm raises 97 for the share
after the investment banker’s fee. In fact, 97 exceeds the management’s valuation and the
management agrees to sell. Further, 99 is less than the investor’s valuation and consequently
he agrees to buy the share. The firm thus earns an additional value of 2 compared to its
minimum requirement. The investor accepts the offer that represents a gain of 6 compared
to his imprecise valuation. As the deal is successful, the investment banker earns a fee of 2
for successful placement. The IPO is underpriced, since it is sold for 99 and its precise value
is 100. The investor may therefore generate an additional gain of 1, if the shares are later
priced precisely in the stock market.

The analysis of the example shows that employing an investment banker and conducting
an IPO is preferable over raising funds from a venture capitalist. In addition, in the example
above it is critical to hide information from the firm and the venture capitalist and to create
information asymmetry. In fact, in a world of full information, the valuation of the firm

and the venture capitalist would be common knowledge. Then direct negotiations would

1 According to table 1 on page 21, the firm’s (the seller’s) expected profit in bilateral negotiations is 2.33%.
From that profit, a maximum fee f,,,. ~ 6.35% can be calculated with the formula that proposition 23
provides.
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be successful and the dealer would not conduct the ITPO. As a result, both, a firm and
investors would only go to the investment banker when direct negotiations fail. Thus, when
all valuations are known, the IPO is not the preferable solution. An IPO is Pareto dominant
only when investor and firm are unaware of their counterpart’s valuation under information
asymmetry. The investment banker thus faces a Lemons problem under full information.
To avoid this adverse selection, the investment banker systematically hides information from
the firm and the investors. This strategy ensures ex-ante Pareto efficiency of the IPO over
bilateral negotiations. In other words, the TPO is the first priority of investors and a firm in

this case.

6 Conclusion

In contrast to common bilateral trading literature the model that has been developed in
this paper also considers imprecise valuation. This means that each player has a reservation
price for a good, a service or a share of a firm. Although each player knows that his valuation is
imprecise, a player can not determine whether his reservation price is high or low compared to
the other player’s reservation price, as he has no benchmark. Considering bilateral trade with
imprecise valuation, the players’ optimal offer strategies were calculated and implications
for the market’s efficiency were analysed. Furthermore, the advantage of a market maker
over bilateral trade was discussed. Finally, it was shown that an PO under information
asymmetry may be Pareto efficient over direct negotiations under full information. This
application further presented an explanation for IPO underpricing.

We have shown that in a two-player double auction, the bargainers have the highest
expected profit when they behave naively. Naive behaviour leads the parties to make offers at
their reservation price. In fact, we proved that naive behaviour and full information lead to
equivalent strategies in a double auction. Even though naive behaviour is optimal, it is not an
equilibrium strategy. The equilibrium, under which both players strategically determine their
offer strategies, generates less expected profit than that which is generated under the naive
strategy. Strategic behaviour maximises individual profit, however it leads to the reduction of
the set of feasible trades. A party’s rational behaviour thus harms the other party significantly.
Section 2 calculated the optimal bidding strategies within double auctions and the players’
resulting profits explicitly.

Section 3 introduced a dealer who quotes bid and ask prices. This is the only information
that is revealed to a buyer or a seller. As the parties’ reservation prices remain sealed, there
is information asymmetry in the Dealer’s Market. A buyer’s and a seller’s profit as well as
the dealer’s gain in the Dealer’s Market were analysed in detail in that section.

Double auctions and the Dealer’s Market were compared in section 4. That section intro-
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duced conditions on the parties’ market preferences. When a dealer sets his prices reasonably,
then all parties are in favour for the Dealer’s Market. This significant section helped to un-
derstand why traders may prefer the Dealer’s Market under information asymmetry over a
double auction under full information.

We showed in section 4 that a dealer’s strategy can Pareto dominate a double auction with
a rational buyer and a rational seller under non-restrictive conditions. Even when a double
auction is most efficient (when full information is available), the dealer may set his fee low
enough such that the Dealer’s Market under information asymmetry is Pareto efficient over
the double auction.

In summary, double auctions with two rational players are suboptimal. When a dealer
is not involved, a double auction with naive players is the most efficient option. However,
employing a dealer generates the highest gain for buyer and seller as long as the dealer’s fee
is set reasonably. When the surplus of wealth that a dealer generates is shared among all
parties, the Dealer’'s Market is efficient and information asymmetry Pareto dominates full
information. At last, section 4 showed that this major result is true, even when our model is
further generalised.

In our model, the difference between a player’s reservation price and the deal price is
that player’s profit. Imprecise valuation causes reservation prices to diverge from deal prices
and thereby leads to an increased gain from trade. Furthermore, the dealer may receive
more fees when deal and reservation prices diverge. Therefore all parties gain from increasing
imprecision in valuation.

Our theory may be applied to salary negotiations. We modelled a two-player headhunter
game as a two-player double auction. We showed that the employer and the employee profit
from hiring a recruitment firm, despite paying fees for that service.

Comparing double auctions and a Dealer’s Market naturally leads us to the capital market
in section 5, where we tied our theory to a firm that is raising equity capital and an investor
that faces several options of investing in the firm’s shares. With the developed strategy we
proved that a dealer (i.e. an investment banker) can use information asymmetry and an ad-
equate fee structure such that firm and investor prefer an IPO over their other alternatives.
When there is a portfolio that spans the firm’s share, the IPO is significantly underpriced.
However, when we drop this condition, then IPOs may be overpriced. However, in this case,
they are still underpriced on average. IPO underpricing thus is robust with respect to the

existence of a spanning portfolio. A numerical example was presented to support this theory.

Our underpricing model has testable implications that are distinct from other information
asymmetry IPO models. In particular, Baron (1982) is consistent with the one-day abnormal

returns in IPOs. In that IPO model, underpricing is used to induce an optimal selling effort
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by an investment banker who is better informed about demand conditions than the issuing
firm. However, Baron (1982) is not consistent with the long-term IPO underperformance,
as both, the firm and the investment banker have compatible incentives to attract long-term
investors. In Welch (1989) higher valued firms use underpricing to signal their quality. Long-
term underperformance of the supposedly higher valued firms is therefore inconsistent with
that model. Rock (1986) is not necessarily inconsistent with long-term underperformance.
However, in that model, the investment banker has an incentive to reduce information asym-
metry. A testable implication of our model is, that empirical investigation of investment
banking should show that an investment banker does not assert effort to mitigate information
asymmetry and to remove valuation uncertainty ex-ante. That is, the valuation uncertainty
of an investor and the issuing firm is the key to generate wealth from an IPO.

Our paper relates to two philosophical ideas. First, we predict that the economies which
use the TPO process as a significant method for financing their corporate output generate
more wealth than those that use more private financing. Not only public corporations have
easier access to raising capital due to limited liability, but also the IPO process is subject to
less failure than privately raising equity capital. Secondly, there is an alternative behavioural
finance philosophy behind our arguments. We showed that equity investors gain when their
reservation price is higher than the TPO price. This gain may exist due to valuation im-
precision or explained psychologically. In either case, an investment banker operating under
information asymmetry, is able to finance more projects than privately raising equity in bi-
lateral negotiations. IPO investors immediately gain from IPO underpricing. Our model is
also consistent with investors’ reservation prices adjusting to post-IPO information, revealed
in market places. Therefore the IPO process may optimistically finance net present value
positive projects that perform relatively worse than privately financed ones. That is, there is
long-term PO underperformance. We believe that as long as these projects are net present
value positive, an economy that uses the IPO process prominently generates more wealth
than economies that do not.

Our analysis applies to any market, where players can not value an asset precisely. For
example it can be used to analyse auctions or "buy it now'-offers on eBay or optimal pricing
strategies for sellers on Amazon. When more players are present on both sides, a group of
buyers may bargain with a group of sellers on a platform with a certain design. As we did
with the two-player double auction, that platform’s efficiency can be analysed and compared
to an intermediary’s market design. Interesting capital market applications, as for instance

the analysis of treasury bond auctions, develop naturally.
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7 Appendix

Proof of Proposition 1: Let a buyer’s and a seller’s valuation be ip L i f[b1,bs] and

ig 4 unifs1, so] with by < by and s; < sy. Then the deal probability is

0 by < by <51 <59
1 51 <89 < by < by
pa = Plip > ig) — s (b2 = 51)° bi <51 < by <59
ﬁ ((b2 — 59)As + %Asz) by <51 <5< by
sabas (2AbAs — (55— b1)?) 51 < by < sy < by
satas (2Ab(b1 — s1) + AV 51 < by < by < s

Merging the cases above, we obtain

181 2 . 1 ‘
ba= szs <b2(mm(b2, 52) = s1) = bi(maz (b, s1) = 51) — 2 (mm(b% s9)* — max(by, 81)2)> .

From that formula we derive the special case that is considered in the proposition. O

Proof of Proposition 2: We calculate expected profit of the buyer. The seller’s expected

profit is obtained analogously.

E (PB) =E (1Deal (VB — P)) =E (]—Deal (VB — k’bVB — (1 — k’)SVS))

1 S92 bo
= AbAs /51 s 1pea (x — kbx — (1 — k)sy) dxdy

1 ED) b 82 bo
- 1—kb//1w dd—l—k//lea dzd
AbAS <( ) S1 b1 Deal T GTCY ( )8 s1 b1 Deal § CHCY

We calculate the two integrals separately in order to keep the terms more clear:

s2 b sa b
/ 1pea dl’dy = / 1{b$>5y} x dl’dy
s1 /b b1 -

S1

(b/s)ba b2 bby? bo?  bi?s?
= / z dedy = —— — by <2—18>

1 (s/b)y 3s

S2 b2 (b/s)b2 b2 b2 b23 b2 bl S
1pes dd:/ / dody = =22 _p2 (2228
/;l /bl Deal y v y b1 (S/b)y y v y 6 82 ! 2 3 b

47



Proof of Proposition 3: Adding up buyer’s and seller’s expected profits that were calcu-
lated in proposition 2 yields

6 (b2, (2b B\, ;
Sum(b,s) = B (Ps) () + B (Pp) (0) = 1 | 50+ (T — 5 ) ¥ —?b — 3b1byAb

We take the first derivative, as a function of b, of the sum of profits

dSum(b, s) o (2 26) 53 (25 252> _ 6328 —2b N b‘z’QSb — 252

s s2

ob b2 b b3

2
:b§SQ(S—b)—I—b (b—s)

1 b3
In order to be strictly increasing in offer strategy b, the term needs to be greater zero. This
is true if and only if

oS b 2 b b
W>O = bgs—Q(s—b)>b1b3( 5—0b) <= b3/b >1 —= 2>

When b—Q < 7 holds, deal probability is zero according to proposition 1. Then expected profit
of both partles is zero. Consequently ; ba > ¢ guarantees deal probability to be greater zero.

Analogous arguments apply for the sum of profits to be decreasing in the seller’s offer strategy
S. [

Proof of Proposition 4: Due to the length of the formulas we used a computer algebra
system to optimize the expected profits. We programmed it to take the first derivatives
of respective expected profits to find respective maximal points. The mathematics thus is

straightforward. m

Proof of Proposition 5: The imprecision of both players has the same distribution. There-
fore we have b; = s; and by = s9. There is full information in the two-player double auction.
Thus the players’ offers are given by their valuations, i.e. their offer strategies are b =1
and s = 1. We refer to proposition 1, where we established a general formula for the deal

probability. Under the imposed restrictions, the formula reduces to'?

181 2 . 1 ]
Pa = Abzbs <bQ(mm(bQ, $9) — s1) — bi(max(by, s1) — s1) — 3 (mm(bg, 59)? — maz(by, 51)2)>

1 Ly o 1 /1, 1,\  3A¥ 1
AbQ(bg(b b)—2<b2—bl>> Ab2(b b1b2+2b1>—Ab2_2.

]

12Tt is not necessary for valuation imprecision to be symmetrically distributed. Therefore the proposition
holds in particular for more general frameworks than considered here.
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Proof of Proposition 6: The buyer’s expected profit is

1 1 1 1 S5
E(Pg) = —(l-—= /
(Ps) AbAs bs ((b 2> st Ju

1 1

L poh dbds — / / 1pouts dbds) .

The players’ naive offer strategy is given by b = s = 1. Inserting this into the formula above

yields
E (P - Lpeah dbds — ~ [ [ 1pous dbd
(Fp) = AbAs ( ) / Deal? 05 =5 / p o Deel” 0
= ZAbAS ( 1Deal b — S) dbd8>
- 2AbAs (/ / b dbds)
52 1 1
= 2AbA5 ( bQS — 58 dS)
1 .
= 4AbA5 <52b2 b282 + Slbg Slbg + 5(5:1)) — Sg))
s1 =by by =1—a«
s9 = by 1 3 2 9 1 1 by =1+« 1
The proof for the seller’s expected profit can be conducted analogously. O]

Proof of Lemma 1. A player’s expected profit as introduced in proposition 6 is zero for
a = 0 and increasing in «. Both parties profit from higher imprecision, so it is furthermore

wealth increasing. O

Proof of Proposition 7: Proposition 4 introduced a general formula for b, (s) as a function
of s. The seller’s offer strategy in a double auction with a rational buyer and a naive seller
is given by the offer strategy s = 1. The calculation of b,,; as a function of s = 1 finishes the

proof:

(3b; —4by) (15b; +4by)
B(1,b1,b2)

1
bopt (1) = C(1,b1,b2) := <B<17b17 bs) —

- 1
S0 30, + b2>

]

Proof of Proposition 8: Proposition 1 established a general formula for the deal probabil-

ity. In a double auction with a rational buyer and a naive seller the players’ offer strategies
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are by,(1) and s = 1. Adding up these facts we find

1.

31<b

! ; — ! / roo ’ 1 . ro ro
pa = AbAs <b2(mm(627 S9) — 81) — by(max(by, sy) — 1) — 3 (mm(bQ, 55)? — max(by, 51)2)>

1 1
- &7 (bopba (b — 1) = 0 = = (1,83~ 7))

1 2 2 192 1 9 1 9
- boptAb2 <b0ptb - boPtble bOPtb + 261) = m (boptbQ - bl) .

[]

Proof of Proposition 9: A general formula for both players’ expected profit was established
in proposition 2. Adding the assumptions of a naive seller (s = 1) and a rational buyer

(b = bopt(1)) to the formula creates the terms as stated in the proposition. O

Proof of Proposition 10: Proposition 4 states the formula for s,,(b). Within the frame-
work of double auctions with a rational seller and a naive buyer, the buyer’s offer strategy is

given by b = 1. This leads to

(3by —4b;)(15by +4 b))
B(1,b9,b1) — —3by +4by | .
].8 bl ( ( ) 27 1) B(]_,b27b1) 2+ 1

]

Sopt<1) = C(l,bg,bl) =

Proof of Proposition 11: In proposition 1 the general formula for the deal probability was
established. In the rational seller and naive buyer double auction setting the buyer does not
adjust his offer, i.e. b = 1. In proposition 10 the form for s, (1) was analysed. Adding up
these findings finishes the proof:

1.

sl<b

’ . ’ ’ ’ ’ / 1 . , , , ,
PE= "AbAs (bg(mzn(b% 59) = 51) — (b, 51) = 1) — 5 (mln(bg, $9)* — maz(by, 51)2)>
1

by (ma
— 1 2 2 2
= A (Balbe = sobs) = 0= 5 (8 = 52,8%)

1 1
<b2 - Soptbl)2

_ B2 — 5,41 b2) -
Sopt AD? ( PoptU102 s 2 Son 250pt AD?

]

Proof of Proposition 12: A general formula for both players’ expected profit was estab-
lished in proposition 2. Adding the assumptions of a naive buyer (b = 1) and a rational seller

(s = sopt(1)) to the formula creates the terms as stated in the proposition. O

Proof of Proposition 13: Outlining a buyer’s optimal strategy on the z-axis and a seller’s

optimum strategy on the y-axis (see figure 5 for reference), optimal strategies are given by
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bopt (8) and s, (), respectively. From prior analysis we know by (s) € [ba/ba, 1] and sy, (b) €
[1,b2/b1]. Due to Nash (1951), there is at least one equilibrium in mixed strategies. The set of
strategies is bounded, closed and convex. As players measure their profit in monetary units,
players have linear utility. Therefore, there is at least one equilibrium strategy according to
Nikaido-Isoda'®. Therefore it remains to be proven that this equilibrium is unique.

Optimal strategies are characterized by the coordinates (byp(s),s) and (b, Sept(b)). An
equilibrium thus is given if the two equations b, (s) = b and s,,1(b) = s hold. With Proposi-

tion 4 this is equivalent to

1 3b, —4by)(15b, +4b

bopt (s) = C(, b1, by) = T <3(1,b1,b2) _Bb B(21) él b;) 2) _ 30, +4b2> =,
1 3by —4b;)(15b, +4b

Sopt(0) = C(b, b2, b1) = 80, (B(]-aanbl) L B(Jl) 22 612) 1) _ 3b; +4b1> = .

Therefore we have an equilibrium if and only if the set of the following equations holds:

b= C (C(b,bs,by), by, bs) (1.1)
s=C (C(S, bl, bg), bg, bl) . (12)

Equation (1.1) is independent of s and equation (1.2) is independent of b. Thus each equation
is dependent only on a buyer’s or a seller’s strategy, respectively. The solution of the set
of equations (1.1) and (1.2) is complex and an extensive analytical representation. As an
alternative, fixed point iteration is applied in this proof. The iteration finds exactly one
equilibrium for any imprecision parameter 0 < o < 1 and starting points b and s within the
bordersi—z<b<1<s<if—z.

An equilibrium must be within the borders % <b<landl<s< }f—g Otherwise the
expected profit of either party becomes negative with probability one or the deal probability
is zero. Offer strategies that are not within these bounds are therefore infeasible. Let D be
the domain of b and s, i.e. D:={(bs): 52 <b<1<s< ¥} We will prove that fixed
point iteration converges for any starting value within D. In order to prove the convergence
of the iteration, we make use of a tool from analytic mathematics, the Banach fixed-point
theorem.

We need to show that the Banach fixed-point theorem can be applied to this situation.

For that purpose the two functions

f . b —> bopt (Sopt<b>>

g: s > Sopt (bopt(5))

13See Nikaido and Isoda (1955) for reference
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have to be contractions. This holds if and only if (f, ¢)(D) C D. If (f, g) is a contraction, the
Banach fixed-point theorem states that both functions have exactly one fixed point within D.
This means that there is exactly one buyer’s offer strategy b* such that f(0*) = bopt (Sope(b*)) =
b* and exactly one seller’s offer strategy s* such that g(s*) = sopt (bopt(s*)) = s*. The set of
unique fixed points (b*, s*) solves the set of equations (1.1) and (1.2). This observation then
finishes the proof.

Thus it remains to show that f and g are contractions: This is true if (1) f([{=2,1]) €
[52,1]; (2) g([1,122]) € [1,1%2]; and (3) %{(dl) %‘Sl(dg)‘ < 1 for all (dy,d2) € D. An
analysis of (1) shows that f (er_g’ 1)) = bopt(sopt([}jr—g, 1])). This is the optimal response strat-
egy of the buyer, if he anticipates that the seller places her bid as the best response of a

)

feasible buyer’s strategy. An optimal seller’s strategy as a response to a feasible buyer’s

strategy is always feasible. Therefore it follows that sopt([ijr—z, 1]) € [1,1*2]. That is,

f ([;—3, 1]) C by (1, }J_“—g]) The optimal buyer’s strategy as a response to a feasible seller’s

strategy is always a feasible strategy and therefore on the interval [
have f([+=2,1]) C [:2,1].

T+a T+a
Likewise, case (2) is necessarily a feasible strategy and therefore a subset of the demanded

-«

o 1. In summary we

interval.

Considering (3), figures 18 and 19 show the first derivatives of f and g, respectively. It
can be seen that both derivatives are smaller than 1 in absolute terms.

Therefore according to the Banach fixed-point theorem there is exactly one fixed point

(b*,s*) in D. This is the unique Nash equilibrium. ]
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Fig. 18 — First derivative of f Fig. 19 — First derivative of g

Proof of Proposition 14: The buyer suffers from valuation imprecision that is uniformly
distributed on [1 — a, 1 + «|. He generates a gain if his valuation exceeds 1 + f. The proba-

bility of this event is p = C“Q—Zf The argument for the seller works analogously. O]
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Proof of Proposition 15: As f < «, the buyer’s expected profit is

E(Pp(B)) Ab/+fb—1—fdb—A1b<1 (402 = (14 £7) = (14 f)a— 1))

S

The product is zero if and only if at least one of the factors is zero. As f and « are both

non-negative, the only possibility for expected profit to be zero is f = «a. Furthermore
E(Pp(B))>0<«=0< f <.

The upper bound for the buyer’s expected profit is a/4. The proof for the seller’s expected
profit is performed along the lines of the proof for the buyer. n

Proof of Proposition 16: In order to prove the proposition, the inequation

pa < (= [)/(20)

must hold. A rearrangement of that equation shows that is equivalent to f < a(1 — 2p4). O

Proof of Proposition 17: The expected profit in the Dealer’s Market needs to be greater

than in a double auction. That is true if and only if

B(Pp(B)) > B(Ry) = g0~ ) > B(R)
<~ 22[)(@ — f)2 —E (P(.)) >0

= = 20f + 0’ —4aE (P,) > 0.

The term f2 — 2af + o? — 4aE (P(.)> equals zero for

200 + \/4a2 —4(a? — 4aE (P(.)))
fi2= 5
\/4a4 — 402+ 160E ()
=ax 5

=a + 2/aE(P,).

Section 4 analysed the players’ expected profits in double auctions. This analysis showed that
fia—2,/aE (P(.)) > (0. When we set f = 0 in the term above, then it is positive if and only
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if
o —4E (P,) > 0.

This inequation holds as shown in section 4. A polynomial of second order has at most 2 roots.
In the above case, these are given by fi5. The term f? — 2af + o® — 4aE (P(,)> exceeds zero
for f = 0 and its roots are 0 < f; < f5. Therefore we conclude that

f?—2af +a* —4aE (P(.)) >0

for all f < f;. Thus the Dealer’s Market is Pareto dominant. ]

Proof of Proposition 18: Proposition 6 states that in a double auction under full infor-
mation both players’ expected profit is %oz. In proposition 17 a sufficient condition for the
Dealer’s Market to dominate a double auction was established. Merging these propositions

finishes the proof:

f<a — QUQE(P(.)):a — 2\/?:a(1— g)

]

Proof of Proposition 19: Proposition 9 introduced the players’ expected profit in a double
auction with a rational buyer and a naive seller. It was shown that the buyer has higher
expected profit than the seller in this market setting. Thus if the buyer prefers the Dealer’s
Market over a double auction, then the seller shares this preference. A sufficient and necessary
condition for the Dealer’s Market to be preferred was established in proposition 17. Combining
these arguments leads to the inequation f < a — 2 \/aE (Pg) as a sufficient condition for
a double auction with a rational buyer and a naive seller to be dominated by the Dealer’s
Market. O

Proof of Proposition 20: The statement of this proposition can be proven analogously to

proposition 19. O]

Proof of Proposition 21: It was shown that within this double auction setting the buyer’s
profit is higher than the seller’s. Thus the proof of this proposition can be conduced analo-

gously to that of proposition 19. O]

Proof of Theorem 1: In order to show that the Dealer’s Market Pareto dominates a double
auction that is in bidding equilibrium, we have to prove that the dealer, the seller and the

buyer prefer the Dealer’s Market over a double auction:
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In a double auction the dealer generates no gain. He profits from the Dealer’s Market if
and only if his fee is greater zero. Therefore the dealer prefers the Dealer’'s Market a double
auction if his fee is greater zero.

A buyer’s expected profit in a double auction in bidding equilibrium is greater than the
seller’s. As a result, the seller is in preference of the Dealer’s Market when the buyer has
this preference too. Thus it is sufficient that a buyer prefers the Dealer’s Market over the
double auction. Proposition 20 states that the buyer prefers the Dealer’s Market over double
auctions in bidding equilibrium if and only if f < a — 2 /aE (Pg). In summary, when
0 < f<a — 2,/aE(Pg), then all players prefer the Dealer’s Market over a double
auction in bidding equilibrium. That is, the Dealer’s Market Pareto dominates that double

auction. ]

Proof of Theorem 2: Let f and g be the densities of a buyer’s and a seller’s valuation
imprecision, respectively. Let b; < by be the buyer’s lowest and highest possible imprecision.
Likewise s; < so are the seller’s lowest and highest imprecision. The deal price is denoted by
P. A buyer’s and a seller’s offer strategies are represented by b < 1 and s > 1, respectively.

Then the buyer’s expected profit is

B(rs) = [ [ 1000 b (o~ P) i
= bfz /: f(@)9(y) Logssy (x — (sy + k(bx — sy))) dyde.

Likewise, the seller’s expected profit is

BPs) = [ [ 5@t (P ) dyis
= [ @00 a5y -+ 0 = ) )y

These profits accumulate to

E(Py) + E(Py) = | b / F@)9(y) Ly (2 — y) dyda.

The function 1,4, is obviously decreasing for decreasing b and increasing s. Thus the sum
of a buyer’s and a seller’s profit is decreasing for decreasing b and increasing s. Individual
profit optimisation, represented by b < 1 and s > 1, therefore negatively affects the sum of
profits. The accumulated profit is highest when the buyer and the seller apply a naive offer

strategy and make offers at their reservation prices. That is, b = s = 1. O]
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Proof of Theorem 3: We calculate the difference between the rational and naive strategies:

ba  rs2
AEG%+HQ=A Llﬂ@ﬂwumw—hpwﬂx_w(wm
by fsa
- by /51 F(@)9(y)Lyeaipss) (v — y) dyda.

This is the positive profit the dealer may distribute among a buyer and a seller, after he
deducts his fee. N

Proof of Proposition 22: The average price is

E(P) =E(1peaP) = E <1DealkPB G k)PS>

1 k 1—k

= iE (1peatkPp + (1 — k)Ps) = §E (1peaPB) + TE (1pearPs)
kb 1—-£&)s
= ?E (1peaVB) + QE (1peaVs)
kb e (1—k)s st b2
= 1peai dzd ————f/ 1peary dady.
2Ab? /bl b0 i dwdy + N Waray

Both integrals were computed in proposition 2. Let pg be the probability of bargain success
as in proposition 1. In case of feasible offer strategies (which necessarily is the case when the

bargain is successful), the deal probability simplifies to

(bbg — 881)2

Pd = "5 Ap2

The expected deal price conditioned on the event of bargaining success therefore is

E(P)

DPd

1 ib /(b/s)b2 /52 dedy + (1 k) /(b/S)b2 /b2 ded )
(bby — s51)? by (s/b)b1 Y b o ? Y

_ 1 M)bbf__bl by®  by’s’
(bby — s51)? 3s 2 6 b2

E(P|Success) =

]

Proof of Proposition 23: A lower bound for the dealer’s offer to the firm By is established
in proposition 20 and given by By > V(1 — fu.:). The investor has the alternative of an
exactly priced spanning portfolio with value V. To attract the investor for the IPO, the
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investment banker needs to offer the shares for a value S; < V to an investor. Now, the
investment banker’s gain is positive, when the price an investor pays exceeds the amount the
firm receives, that is By < Sy. In summary, we have V(1 — f4:) < Bg < S < V. Following
that pricing strategy, the IPO is Pareto efficient compared to bilateral negotiations, as all

players prefer the TPO. O

Proof of Lemma 2: Proposition 23 showed that the shares are offered to the investor for
a price Sy < V, that is below the value of the spanning portfolio. Therefore the IPO is
underpriced. O]

Proof of Proposition 24: Proposition 23 introduces the lower bound for the investment
banker’s offer to the firm. Dropping the spanning portfolio hypothesis, the only remaining
investor’s alternative is to negotiate bilaterally. According to proposition 17, the expected
profit of this option is dominated by the intermediary’s offer when S; < V(1 + f,). As a
result, the investment banker’s strategy is Pareto efficient because all parties prefer an IPO

over bilateral negotiations. O

Proof of Lemma 3: In section 4 we showed that the intermediary can exaggerate his offer
to the firm to a greater extent than his offer to the investor. Figure 17 (b) on page 42
further illustrates this fact. Thus the average IPO share price is below V' and thus and PO

is underpriced on average. O]
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On the Pareto Efficiency of a Market Maker
over Reverse Auctions in Equilibrium

Johannes Seemitiller

Abstract

This paper studies a reverse auction market under the "independent private value model”
assumption, where auction participants value the auctioned good imprecisely. In our model,
there is a unique multilateral bidding strategy that maximises each seller’s profit. At the same
time, that strategy generates the highest possible profit for the seller-group. When there is
no mechanism that commits sellers to that strategy, a seller may increase her individual
profit by pursuing a unilateral bidding strategy. When sellers follow that unilateral strategy,
then the reverse auction generates less profit for each seller than that under the multilateral
strategy. We calculate these strategies and expected profits explicitly. A dealer can exploit
this inefficiency of a reverse auction by providing market maker services. His strategy under
information asymmetry is Pareto efficient over the auction market under non-restrictive con-

ditions. The dealer can maintain a reasonable inventory size, even when there are many sellers.
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1 Introduction

Typically, an auction is originated by a seller. This paper considers the reverse case, when
auctions serve to find a suitable price for an initiating buyer. Such an auction that is set up
by a buyer is refereed to as a reverse auction. Then the buyer specifies the auction type and
notifies suppliers to submit their bids.

A popular example for an Internet auction platform is eBay, where dealers and private
individuals offer their goods. In the form of Buy it now-offers, eBay has implemented reverse
auctions into its trading platform as a buyer can choose among several sellers’ offers. Amazon
also allows private sellers and businesses to offer their goods on its trading platform. Both,
eBay and Amazon address the end-user of the buy side. Additionally to serving the end-user,
(reverse) auctions are increasingly used in the procurement side of supply chains, as Huhy
and Roundy (2004) note. They refer to Covisint and Fast Buyer as examples of business-
to-business solutions and product providers for the automobile industry. Both platforms are
founded by OEMs and provide online auction services. Furthermore, governments are required
to initiate reverse auctions to award contracts among competing bidders. Another example
are publicly offered corporate bonds or treasury bills. Their prices are often determined by
reverse auctions as well.

A seller who wants to sell a specific good on eBay or Amazon can observe other sellers’
offers and thereby gains information on his expected sale success. On the contrary, in a
procurement auction, a seller who places a bid can not compare it to those of the other
sellers. In this paper we study such reverse auctions, where each seller’s bid is hidden from
further bidding sellers.

A lot of research has already been done in auction theory, so this introduction serves to
embed our research into works which have previously been published within this field.

"Many of the world’s most important markets are auction markets”, as Milgrom and Weber
(1982) note in their contribution to auction theory. Since then the popularity of auctions to
determine the prices for goods or services has further increased. This development has been
enforced by the rise of the Internet where platforms for electronic commerce and trade allow
an efficient determination of prices and thus simplify the exchange of goods and services.
These virtual platforms allow the allocation process to be less cost intensive than conventional
trading.

Milgrom and Weber (1982) prove the existence of a unique equilibrium in bidding strategies
in English, first- and second-price auctions. They also analyse the effect of entry fees and
allow the seller to set a reserve price. Maskin and Riley (1984) analyse the effect of risk
averse buyers on the auction type a seller prefers. Lebrun (1999) analyses first-price auctions

in the asymmetric n bidder case. He considers bidders with valuations that are not identically
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distributed and he allows bidders to have different offer strategies. He develops restrictions
that allow an equilibrium in bidding strategies. Further asymmetric bidding strategies are
discussed by Lebrun (1998) and (1999) and Maskin and Riley (2000b). Bidding in combination
with signalling is studied by Maskin and Riley (2000a) and Rodriguez (2000). Bikchandani
and Riley (1991) as well as Milgrom and Weber (1982) study the influence of common values
on bidding strategies.

In particular, procurement auctions have been the subject of recent studies. Holt (1990)
analyses bidding strategies for contracts in different auction procedures. Dasgupta and Spul-
ber (1990) as well as Chen (2001) particularly address procurement auctions. The impact of
the announcement of the buyer’s reservation price is studied by Carey (1993). Gallien and
Wein (2001) consider procurement auctions with capacity constraints. Teich et al. (2001)
study the design of electronic auctions, where they mix elements of auctions and negotiations
to a new market procedure. Jin and Wu (2002) further address the supply chain coordination
of electronic markets, whereas Seshadri and Zemel (2001) focus on supply chains in general.
Compte and Jehiel (2002) analyse the impact of competition in procurement auctions. The
procurement of options is studied by Schummer and Vohra (2003). Reifl and Schéndube
(2003) and Brosig and Reifl (2007) study sequential procurement auctions, where similar auc-
tions are conducted in time overlapping intervals. They analyse the bidders’ participation
and their strategies theoretically and empirically. Reiff and Schéndube (2010) further analyse
equilibria and revenue equivalence in their sequential procurement auction model.

The above examples of reverse auction literature mainly focus on supply chain applica-
tions. Huhy and Roundy (2004) note that the first-price reverse auction bidding strategy,
corresponding to the lowest payment by the buyer, has the same expected payment as the
(unique) bidding strategy of the second-price reverse auction. In the second-price reverse
auction, by comparison, an extension of Vickrey (1961) shows an analogous result in the
first-price auction that bidding one’s own cost is a dominant strategy of every seller. Huhy
and Roundy (2004) further study the impact of the buyer’s reserve price. They show that
this reserve price is eliminating the multiplicity of bidding strategies and also the associated
risk of very high costs, as well as maximizing the buyer’s cost. Such benefits are consistent
with a recent trend in the automobile industry. More buyers are setting reserve prices when
they originate auctions, following a recommendation of the trading platform Covisint.

Suppose that a government sets up an auction to procure a certain service or that an
automobile plant wants to buy a new press. It is plausible to assume that the costs of potential
service providers are independent and identically distributed. In this paper, we study single-
unit single-period sealed-bid first-price reverse auctions in which bidders are symmetric and
have independent and identically distributed private costs. The buyer has a random reserve

price that is independent of the bidders’ private costs. Our model thus is similar to Huhy
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and Roundy (2004). In addition, in our model the buyer does not reveal his reserve price to
bidding sellers.

In auction literature each trader often has a reservation price, V' > 0, which is distributed
on the interval [0,v]. See Chatterjee (1983) for an example. Often that interval is restricted
to [0, 1], as for instance in the double auction considered by Gibbons (1992)!. In this paper,
these constraints are relaxed.

The above literature often assumes that each player knows the distribution of the other
players’ valuations. Thus each player may compare her valuation to these distributions,
in order to formulate detailed offer strategies. However, valuation imprecision implies that
individuals do not have a valuation benchmark.

In this paper we model valuation imprecision by assuming that the buyer and the bidding
sellers are aware only of their own reservation price and the common distribution of valuation
imprecision. They however have no indication, whether their reservation price is above or
below average and how it compares to the other players’ valuations?.

Our model can be considered as a Bayesian game with common, but unknown prior?.
Studies of Bayesian games are usually conducted abstractly, as for instance by Nikaido and
[soda (1955). Our reverse auction model is more practical, as it provides concrete formulas
and advice on how sellers should best set their prices. Regarding valuation imprecision, our
model is more abstract and realistic than those of the double auction literature discussed
above.

A detailed analysis of the reverse auction is undertaken in section 2. Different levels
or rational bidding strategies are discussed and their effect on the platform’s efficiency is
analysed in detail. We show that in the reverse first-price auction with reserve price, there is
a symmetric Nash equilibrium in pure bidding strategies. Each of these strategies corresponds
to a distinct expected payment of the buyer. When all sellers commit to a multilateral bidding
strategy, their individual expected profit is higher than that in bidding equilibrium. Under
that strategy, the profit of all sellers is increasing if the number of sellers increases. When
all sellers commit to this multilateral bidding strategy then it is preferable over individual
profit maximisation. Section 3 introduces and analyses a market maker’s strategy of quoting
bid-ask prices. The market maker’s strategy and the reverse auction are compared in section
4. That section further provides conditions for the Pareto efficiency of the market maker’s

strategy compared to the double auction. A market maker exploits inefficiencies in the auction

1See Gibbons (1992), pages 158ff.

2Assume for instance that a player’s valuation is uniformly distributed on the interval [50,150]. When
that distribution is known to the players, then an individual with the reservation price of 101 knows that her
valuation is almost average. In our model, a player with a reservation price of 101 does not have a benchmark
to determine whether that valuation is high or low. That player only knows that his valuation is imprecise
and distributed around some unknown average valuation.

3See Harsanyi (1967) for reference.
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market and successfully competes with that market. When the market maker applies a
reasonable price scheme, then his offers are more attractive to a buyer and the sellers than
the participation in an auction. Thereby this paper shows that the market maker’s price

strategy is Pareto efficient over that auction. Section 5 concludes the findings of this paper.

2 The Reverse Auction

We consider a platform market where sellers offer an indivisible and indistinguishable
good. Each seller independently quotes a price that she sells the good for. A buyer observes
the sellers’ offers and buys at the lowest price if his reservation price exceeds the lowest price.
The platform thus is similar to Buy it now-offers on eBay. Another example is the Amazon
market platform, where the same good can be bought from different sellers with different
prices. Further, an automobile manufacturer that plans to procure a new machine may set
up a reverse auction to find a suitable supplier. Then suppliers may bid to win the contract.

Let us rigorously model this reverse auction market. Several owners (sellers) of the good
disclose their offers on a platform. A buyer observes the sellers’ offers and decides whether
to buy at the lowest offer or not. When the best offer, i.e. the minimum of the sellers’ offers
is below the buyer’s reservation price, then the good is traded for the price P of that lowest
offer. In case of a successful trade, either party’s profit is given by the difference between
their reserve price and the deal price P.

We assume that the parties suffer from valuation imprecision regarding their reservation
prices*. We model these imprecise valuations as independent and uniformly distributed ran-
dom variables with unknown mean valuation V' > 0. When there are n sellers, then the i — th
seller’s reservation price is Vg, < uni fls1,s2]V, with 0 < s; < 1 < sg. The buyer’s reserva-
tion price is denoted by Vz L uni flb1,b2]V, with 0 < by < 1 < by. In our model valuation
imprecision is symmetrically distributed around 1. Furthermore, the buyer’s and the sellers’
valuation imprecision is identically distributed. As a result, a valuation imprecision parame-
ter 0 < a < 1 is sufficient to model imprecision in our market. That is, s; = by = 1 — « and
So=by =1+ cu.

We distinguish two stages of the market: Stage 1 can be regarded as the initializing of
the trading platform. FEach player knows that he suffers from valuation imprecision and
knows that the other players know, knows that they do and so forth. Thus there is mutual
full information in the sense of Aumann (1976). The players furthermore know the impreci-
sion’s distribution, know that the others know, etcetera. The players, however, are not aware

whether their reservation price is below or above average, because they do not have a bench-

4When the good is a machine or a similar product, then the term valuation imprecision may be misleading:
Different suppliers have different production costs and therefore they have different prices they require. Thus,
in that case, valuation imprecision also may be caused by different costs of production or manufacturing.
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mark to compare their price with. If for instance a seller’s reservation price is 160 and she
knows the distribution of the imprecision, she still can not determine neither over- nor under-
valuation. Stage 1 therefore can be regarded as the initializing of the platform because there
are no reference offers present from which over- or undervaluation could be derived. Thus
although the reservation prices of the sellers are not identical, while they share homogeneous
offer strategy, their expected profit is the same ex ante. Profit is furthermore dependent on
each seller’s offer strategy: Assume there are two sellers. The first seller places an offer twice
her reservation price. The second seller places an offer that exceeds her reservation price by
10%. Then it is likely that the offer of seller two is lower than that of the first seller. Therefore
a seller’s offer strategy influences her profit when her bid is successful, her deal probability
and eventually the expected profit of all sellers.

After the initialisation of the platform, each seller observes the other sellers’ offers. This
is the case on eBay or Amazon, when a good is traded there for some time. Sellers then can
compare their reservation price to the offers of sellers that previously placed offers on the
platform. A seller who enters the platform thereby is enabled to calculate her individual deal
success probability and expected profit, as a function of the offers she observes and her offer
strategy. This post-initialisation phase is characterised as stage 2. That stage is not reached
in a variety of auctions, such as a single procurement auction. In this paper, the initialising
stage 1, where offers are sealed, is analysed.

A sellers profit is the difference between her reservation price Vs and her offer Og, that
is Og — Vg. A positive profit therefore requires that her offer exceeds a seller’s reservation
price. Her offer strategy further is a function of her reservation price. We model a seller’s
offer strategy as a scalar s > 1, that is Og = sVs. The scalar s necessarily is greater than or
equal to 1 because a seller’s profit would be negative otherwise. That strategy furthermore
is the only feasible strategy. A seller does not know the distribution of the reservation price.
She only is aware of the distribution of valuation imprecision. Therefore a reasonable offer
strategy must only be dependent on a seller’s valuation. Rational behaving sellers determine
their offer strategies s in order to maximize expected profit.

When a seller’s offer strategy exceeds the bound s, /s1, then that seller overbids the buyer’s
reservation price with probability 1. Thus, that seller’s probability to win the auction is 0.
Furthermore, a seller’s offer strategy should exceed 1, as otherwise her offer is below her
reservation price. In this case, a seller’s profit would be negative. In summary, feasible offer
strategies are within the interval s € [1, so/s1]. If not stated otherwise, sellers are assumed to
bid feasibly.

Let us analyse different possibilities of profit maximisation. We start with level 1 optimi-

sation, where all sellers agree on the same offer strategy s.
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2.1 Level 1 Rationality

In this section, we analyse optimal sellers’ bidding strategies when they agree on a multi-
lateral offer strategy s. This means that all sellers pursue the same offer strategy and commit
to it. Then the sellers can multilaterally optimise their profit as a function of their offer
strategy s.

Note that, while no mechanism is established to commit each seller to this strategy, a seller
can optimise her offer strategy, as a function of the other sellers’ multilateral offer strategy.
This section, however, studies multilateral optimisation, where all sellers commit to the same
offer strategy. We refer to this strategy as level 1 rationality.

We start with a lemma that will be of great benefit in the remainder of this paper.

Lemma 1. Let Xy, X, ..., X,, be itd random variables, with X, 4 unif|xy, z3]. Then the cdf
of min(Xy, Xo, ..., X)) is given by M(x)=1— (MYL The pdf of min(Xy, Xo, ..., X,,) is

T2—T1
(ngx)"_l

given by m(z) =n CrEr

Proof: See the Appendix. O

If needed, the notation of the functions M and m will be expanded in an intuitive way.
Then we may for instance write M (x,x1, x5, n) instead of M (x).

This section calculates and analyses important properties of the sellers’ unilateral offer
strategy. The next proposition introduces each seller’s probability to win the auction. It
further calculates the probability that there is an offer below the buyer’s reservation price.

That probability can be characterized as the buyer’s success probability.

Proposition 1. When n sellers pursue a multilateral offer strateqy s > 1, then each seller’s

probability to win the auction is

F(sy) — F(ss1)
sPAsntl

P(Ds)(s) =

The buyer’s success probability is

P(Da)(s) - ;8881 . i : ((8221; 1)>n+1 _ 1) .

Each seller’s probability to win the auction converges to zero for n — oo. The buyer’s deal

probability converges to 232t for n — oo. To simplify the above notation, the function F' is

defined as

(ssg — x)" (—nss — 85 + 885 + nT)
n(n+1) '

F(z) =
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Proof: See the Appendix. n

The proposition calculates a formula for a seller’s and the buyer’s success probability in
the auction. The buyer’s success probability exceeds a seller’s probability to place the lowest
bid. In fact, the buyer is successful in the auction if and only if exactly one seller is successful.
Therefore the probability that the buyer is successful and the probability that exactly one
seller is successful are equal. Due to the same offer strategy of all sellers, each seller has the
same probability of winning the auction ex ante. When there is an infinitely high number of
sellers, then the success probability of a single seller converges to zero. The buyer profits from
an increasing number of sellers because the probability that his reservation prices exceeds the
lowest offer increases. The success probability of each seller and the buyer is a decreasing
function in the sellers’ multilateral offer strategy s. The intuition behind this observation is
that, when sellers increase their offers, then the probability that the buyer’s reservation prices
exceeds the offer of at least one seller decreases

The next proposition calculates the expected profit in the auction. These formulas are

the key for the sellers’ multilateral profit optimisation offer strategy.

Proposition 2. When there are n sellers with multilateral offer strategy s, then the ex ante

expected profit of each seller is

(s =1) (A(s2) — A(ss1) ).

E(Ps)(s) =

The function A is
A(x) = (sp s —x)" (—a:sg n2 4 22n? — 2xson + 280 S+ 220 — s52sm — 2 8525
+2 52252) /(n(n+1)(n+2)).
The expected profit of all sellers is

s—1) ( A(s2) — A(ssy) )

Sn+1 Asn—i-l

E(S)(s) = ™

This can be interpreted as expected gain of the seller-group.
Proof: See the Appendix. O

We have shown in proposition 1 that individual deal probability decreases with increasing
size of the seller-group. Combined with proposition 2 we further find that each seller’s ex-
pected profit decreases when the size of the seller-group increases. That is reasonable because
when there are more sellers, then the number of competitors increases. Thus each seller’s ex-

pected profit decreases. In contrast, valuation imprecision has positive effect on each seller’s
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expected profit. The sellers thus profit from a higher imprecision in their valuations. Figure
1 illustrates these properties later in this section.

The profit of the seller-group increases with increasing size of the group. When the
seller-group is large, then the probability that one seller underbids the buyer’s reserve price
increases. This has the effect that the profit of the seller-group is affected positively by its
size. However, the expected profit of the seller-group is bounded, as the next proposition

shows.

Proposition 3. The expected profit of the seller-group is convergent in group size. This
means that the profit an additional seller adds to the group’s profit converges to zero with

increasing group size. The mazximum expected group profit is

E(S)(s) =% ZLS(S —1)(ss — $51).

For infinitely large seller-group, the optimal multilateral offer strategy is stl)pt =1/(1-a).
Proof: See the Appendix. n

The proposition states that there is an upper bound for the profit of the seller-group. That

bound is (s —1)(s2 — ss1). For a sufficiently large seller-group, the optimal multilateral
1

offer strategy s,, thus can be determined with moderate effort by finding the maximum
of that upper bound as a function of s. According to proposition 3, this optimal level 1
multilateral offer strategy is s}, = 1/(1 — «). This means that it is optimal for a seller to
bid her reservation price multiplied by s}, = 1/(1 — a) (as long as all sellers commit to this
strategy).

We summarize the major properties of each seller’s profit in the next proposition.

Proposition 4. Let all sellers pursue a multilateral offer strateqy s. Then the expected profit
of each seller is strictly increasing in valuation imprecision and strictly decreasing in the

number of sellers in the market.
Proof: See the Appendix. O

Proposition 4 proves that the expected profit of a seller is increasing in valuation im-
precision. That is, when the players suffer from a higher valuation imprecision, then their
expected profit exceeds that, which results from an enhanced valuation ability. When more
sellers place bids on the good, then the probability that a specific seller places the lowest bid
decreases. As a result, each seller’s expected profit decreases.

When the number of sellers is finite, then finding the optimal multilateral offer strategy is

more difficult than in the above case that was analysed in proposition 3. Further, there may
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be more than one offer strategy that generates maximum expected profit. The next theorem
proves however that, independent of the number of sellers and the valuation imprecision, there
is exactly one optimal multilateral offer strategy.

Theorem 1. Let there be n € IN sellers with an identical offer strateqy. When they place

1
opt*

their bids level 1 rationally, then there is exactly one optimal strateqy s. .. An upper bound

for the optimal offer strategy is sépt <1/sy.
Proof: See the Appendix. n

When all sellers pursue the same multilateral offer strategy, then there is exactly one

1

opts according to theorem 1. That optimal strategy maximizes each

optimal offer strategy s
seller’s individual profit, given that all sellers follow that same strategy.

This section so far analysed the optimal sellers’” multilateral offer strategy and proved
major properties of that strategy and its implications on the sellers’ profit. Next, we focus on

that strategy’s effects on the buyer. We start with the buyer’s expected profit in the auction.

Proposition 5. The buyer’s expected profit as a function of the sellers’ multilateral offer

strateqy s s

n

E(Pg)(s) = 2gn Agntl (B(s2) — B(ss1)),
where the function B is defined as

L 2sp(sso— )" (s—1)  (ssy—a)"" 8% (ssp—a)" (s — 1)

B(x) = — —
n+1 n+ 2 n
2 — -1 —2)? 2(s—1)*
(550 —2)" ( s2(ss0— ) (s—1) (ssa—2)" s°(s—1) > ‘
n+1 n+2 n
Proof: See the Appendix. n

The proposition above allows us to analyse the influence that sellers have on the buyer’s
profit. The buyer profits when more sellers participate in the auction. In fact, more partici-
pating sellers have two positive effect for the buyer. First of all, the probability that one seller
underbids the buyer’s reserve price increases. This affects the probability that the auction
is successful positively. Secondly, the value of the expected lowest offer of the seller-group
decreases when more sellers bid in the auction. The buyer’s profit, which is the difference
between his reserve price and the lowest bid, thereby increases on average. However, if the
seller-group raises their offer strategy s, then in particular the lowest offer of the seller-group
increases as well. This has negative effect on the buyer’s profit.

As shown in proposition 5, the buyer’s expected profit increases if the number of bidding

sellers increases. However, that profit is bounded, according to the next proposition.
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Proposition 6. When there are infinitely many sellers, then the buyer’s expected profit as a

function of the sellers’ multilateral offer strategy s is

(89 — s51)2

E(B)(s) =~ A,

Proof: See the Appendix. n

When there are infinitely many sellers, then the above proposition proves that the buyer’s
profit is dependent on 2 variables: the sellers” multilateral offer strategy s and the players’
valuation imprecision a. The buyer’s profit is decreasing in the sellers’ offer strategy, as in
the case of finitely many sellers. The buyer’s profit increases with increasing valuation impre-
cision, when the sellers’ offer strategy is constant. However, sellers select their optimal offer
strategy as a function of imprecision. That strategy s increases with valuation imprecision.
As discussed above, a higher sellers’ offer strategy affects the buyer’s profit negatively. That
is, the effects of valuation imprecision on the buyer’s expected profit need to be analysed in
more detail.

We summarize the above stated verbal analysis of the buyer’s profit in the next proposition.

Proposition 7. The expected profit of the buyer is increasing in the number of sellers and

decreasing in the sellers’ multilateral offer strategy s.

Proof: See the Appendix. ]

1

opt T0T valuation

Proposition 1 states that there is exactly one optimal level 1 offer strategy s

imprecision 0 < o < 1 and an arbitrary number of sellers. That is, even when the sellers

1

do not agree on an offer strategy, they mutually choose the same optimal offer strategy s,

in level 1 rationality. Proposition 4 argues that if there are more sellers in the market, then
they affect each seller’s expected profit negatively. The intuition behind this fact is, that each
seller’s probability to place the lowest bid decreases when more sellers bid in the auction.
Proposition 4 furthermore shows that valuation imprecision is a valuable property in the
auction market: the higher the sellers” valuation imprecision, the higher their expected profit.

This section proved the intuition, that a buyer profits when more sellers place their bids
in the auction. He further profits when each seller places her offer comparably low. As for a
seller, valuation imprecision is beneficial for a buyer.

Let us illustrate this section’s analysis with some figures. Figure 1 illustrates major prop-
erties of the reverse auction under level 1 rationality. The propositions 2 to 4 established the
basis for these two figures. On the x-axis, the sellers’ multilateral offer strategy s is shown.

The y-axis illustrates the expected profit of a seller as calculated in proposition 2.
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Fig. 1 — A seller’s expected profit

It can be seen that the expected profit increases until s, is reached. Optimal multilateral
offer strategy is marked with a circle. Offer strategies that exceed the optimal strategy
(s > sopt) lead to a lower expected profit and therefore are inefficient strategies. Proposition
1 proves that this optimal level 1 multilateral offer strategy s, is unique. This can be seen in
figure 1 (a) and (b), where markets with different numbers of sellers and different valuation
imprecision always have exactly one optimal multilateral offer strategy.

Figure 1 (a) analyses the influence of the number of sellers on the expected profit of a
single seller. In this figure, valuation imprecision « is fixed at 10%. Proposition 4 states
that an increasing number of sellers leads to a decrease in a seller’s expected profit. This
intuitive finding can be observed in figure 1 (a), where auctions with an increasing number
of sellers between 1 and 50 are illustrated. The figure shows that the expected profit of a
seller is decreasing in the number of sellers for any multilateral offer strategy s. Note that
the decrease is not linear in the number of sellers n. It furthermore can be observed that
the optimal offer strategy s, is increasing in the number of sellers n. That is, under level 1
rationality it is optimal for each seller to increase her offer as more sellers bid in the auction.

Figure 1 (b) fixes the number of sellers to n = 5 and shows the effect of different valuation
imprecision a on the optimal level 1 multilateral offer strategy s, and a seller’s expected
profit. Higher valuation imprecision is a main driver for profit. In fact, a seller’s expected
profit is approximately linearly increasing in valuation imprecision. Further, the optimal level
1 offer strategy is increasing in the number of sellers. This means that it is level 1 rational
for a seller to increase her offer when the valuation imprecision « increases. The optimal offer
strategy sop: is approximately linearly increasing in the number of sellers, just as a seller’s
expected profit.

Figure 2 shows the expected profit of the group of all sellers and compares that group’s
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Fig. 2 — Expected profits as a function of the sellers’ offer strategy for fixed valuation impre-
cision a = 10%.

profit to that of the buyer. For this illustration valuation imprecision is set to a = 10%.

Figure 2 (a) analyses the effect of the size of the seller-group on its expected profit.
It can be seen that the expected group-profit is increasing in the number of sellers, that
is, each additional seller increases the expected profit of the seller-group. In comparison,
figure 1 (a) showed that each individual seller’s expected profit is decreasing in the seller-
group size. Therefore the group size affects the group profit positively, but individual profit
negatively. The seller-group’s expected profit converges with increasing group size. As a
result, an additional seller influences the expected group profit less, if the seller-group is
bigger. This observed convergence has been shown in proposition 3. The figure shows that a
group of 100 sellers is already close to the convergence state.

Figure 2 (b) shows the buyer’s expected profit as a function of the sellers’ multilateral
offer strategy s. Proposition 7 showed that the buyer’s expected profit is increasing in the
number of sellers and furthermore decreasing in their multilateral offer strategy. This can be
observed in the figure. For each number of sellers (n = 1, 5,10, 100, 00), the buyer’s expected
profit is decreasing in the sellers’ offer strategy s. That is, when they increase their offer price,
then the buyer’s profit decreases. However, the higher the number of sellers n, the higher the
buyer’s expected profit. This fact is independent on the sellers’ offer strategy s.

In figure 2 (b), the green circle on each solid line shows the sellers” optimal multilateral

1

level 1 offer strategy s,

It can be seen that the buyer profits from an increase in the number
of sellers when they place their bids level 1 optimally. Proposition 6 showed that the buyer’s
profit converges with an increasing seller-group size. That proposition can be observed in the
figure, where the expected profit of the buyer for n = 100 sellers is already close to the limit
profit, for n — oo.

It is a necessary condition in proposition 2 that all sellers pursue the same offer strategy
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1

opt- Lhey choose their strategy such that each seller’s profit is maximized. Thereby they

S
also maximise the profit of the seller-group. We call that strategy rationality level 1.
Assume that a single seller knows the multilateral profit optimizing offer strategy s})pt
and anticipates that the other sellers place their bids accordingly. Then she may decide to
optimize her expected profit given this uniform offer strategy of the other sellers. We call

this behaviour rationality level 2. In other words, rationality level 2 means that all sellers

1

opt- Ome seller does not commit to

mutually agree on the profit optimizing offer strategy s
this multilateral strategy and optimizes her profit as a best response to the remaining sellers’
multilateral offer strategy. The next section discusses the reverse auction under this level 2

rationality.

2.2 Level 2 Rationality

In the last section all sellers pursue the same optimal multilateral offer strategy s/,,. When
1

opt» then a single seller can optimize

1
opt*

each seller knows the other sellers’ optimal offer strategy s
her expected profit given the other sellers’ offer strategies s, .. That strategy puts the single
seller in an advantageous position as she knows the other sellers’ multilateral level 1 offer
strategy and optimally reacts upon it. That strategy is called level 2 optimisation. In this
section, this level 2 strategy and its effects on bidding sellers and the buyer are analysed and
interpreted.

We start with the deal probability for the unilateral behaving seller.

Proposition 8. When there are n — 1 sellers with a multilateral offer strategy s € [1, s2/s1],

then for a seller with the unilateral offer strategy s’ the probability of winning the auction is

1 , for s’ < s1/s9
F(s2)—F(ss1 sp 57 (s—8')—1/25,282+1/25'%5,2 /
, S/in21A§n+1) + ( ) /Ast’ / ) fOT 51/52 S s <s
P(DS)(& 5 ) - F(s2)—F(s's1) /
o/gn—1Agn+1 ; fO'f’ S S S S 82/81

0 otherwise.

The function F is defined as in proposition 1.
Proof: See the Appendix. O

When a seller with unilateral offer strategy increases that strategy s’, then this seller’s offer
price increases. As a result, the probability that this seller’s offer exceeds that of the other
sellers increases. In this case, the unilateral bidding seller’s probability to win the auction
decreases. This effect can be observed in the formula above, where the seller’s increase in s

affects her success probability negatively.
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When the multilateral bidding n — 1 sellers increase their offer strategy s, then their offer
prices increase. As a result, the probability that these sellers’ offers exceed the unilateral
bidding seller’s offer increases. In this case, the unilateral bidding seller’s probability to win
the auction increases. This effect can be observed in the formula above, where the unilateral
bidding seller’s probability to win the auction increases when the remaining n — 1 sellers
increase their offer strategy s.

In the next proposition the buyer’s deal probability is calculated.

Proposition 9. When there are n —1 sellers with the multilateral offer strategy s € [1, s2/s1]
and one seller with a unilateral offer strateqy s’ < sy/s1, then the probability that the buyer

receives a suitable offer is

1 , for s’ < s1/s9
AN —s18 s1(s—s")(s'sa—s1(s+5’ G(s2)—G(ss1 ’
P(DB)(S7 S ) - S2Ails - ( )(2A825’ ( )) - AS"“'(IST)’_lsgn(n)—&-l) ’ fOT 81/52 S S S S
$2—81S __ S (ss2—s's1)™ G(s2)—G(s's1) ’
As n + Asnsn—ln Asntlgn=1g/n(n+1) s fors <8< 82/81'

The function G, to simplify the terms above, is defined as
G(z) = (ssa— )" (nx+ 58y — 898 —nsys).

Proof: See the Appendix. n

When the n — 1 sellers’ increase their multilateral offer strategy s or the seller with uni-
lateral offer strategy s’ increases her offer, then offer prices rise. In particular, the price of
the lowest offer rises. As a result, the probability that the buyer’s reservation price exceeds
the sellers’ lowest offer decreases. Accordingly, the probability that the auction is successful
decreases. This can be seen from the above proposition, where an increase in s or s’ affects
the auction success negatively.

When unilateral offer strategy and multilateral offer strategy are identical (that is, s = &),
then the formula of proposition 9 simplifies to that of proposition 1, where all sellers bid
multilaterally.

After formulas for the success probabilities have been introduced, the bidding sellers” and
the buyer’s expected profits in the auction is calculated. We start with the expected profit of
the seller that bids unilaterally.

Proposition 10. When n—1 sellers pursue the offer strategy s € [1, s2/s1], then the expected
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profit of the seller with unilateral offer strateqy s' € [1, sa/s1] is

(' =1) ((A(s2) — A(s's1) )
8’2 Snfl A8n+1

(s —=1) ( A(sz) — A(ss1) ) N 2 53 (57 — %) 4+ 3 s2sy(s? — 52)
52 gn—1 Agntl 652As? ’

Es’Zs (PS') (87 3/) =

Eq s (Ps) (s,s") =

The expected profit of the seller with unilateral offer strateqy s' can be summarized as
E(PS) (57 8,) = ]ls’sts’zs (PS) + ]ls’<sEs’<s (PS) .

The function A is defined as in proposition 2.
Proof: See the Appendix. O

The above proposition calculates the expected profit of the unilateral bidding seller who is
aware of the other sellers’ multilateral offer strategy. In particular, we have E (Ps) (s, s) = E (Ps).
That is intuitive, because when the unilateral bidding seller pursues the offer strategy s’ = s,
then her expected profit is the same as the other sellers’ profit calculated in proposition 2.

Before we determine the optimal seller’s unilateral offer strategy s’, we calculate the buyer’s

expected profit.

Proposition 11. When n — 1 sellers pursue a multilateral offer strategy s € [1,s2/s1] and
one seller a unilateral offer strateqy s € [1,s2/s1]. Then the buyer’s expected profit is

% ((SAS) — (s2(s = 1))~ ) (n— ;Ki(ffin I{(ssl)) , for s’ <s
B(Pp)(s,5') = | gty ((ss2 — /1) = (sa(s — 1)) + =l o)
+(n 1)(522§si1+)g£8—i)71(881)) fors <.

The functions H and I, that simplify the terms above, are

C(y—ss) (ss2— )" s (sse—y)"(s—1)° 28y (y—ss) (ss2—p)" (s— 1)

I(y) := n-+2 n n-+1
(=)’ (s —p)" | st (sse—y)" (s —1)°
Hly) = n+3 + n
3s2 (y — 882)2 (ssa—9)" (s —1) 3592 (y—s8s2) (5850 —¥)" (s — 1)2
+ + .
n-+ 2 n+1
Proof: See the Appendix. O

When the n—1 sellers increase their multilateral offer strategy s or the seller with unilateral
offer strategy s’ increases her offer strategy, then their offer prices rise. That is, then the

probability that these offers exceed the buyer’s reservation price increases. As a result, it is
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less likely that the auction is successful. Furthermore, in case of a successful auction, the
expected difference between the buyer’s reserve price and the winning seller’s bid is lower if
sellers have higher offer strategies. In this case, the buyer’s expected profit in the auction
decreases. This can be seen from the above proposition, where an increase in s and s" affect
the auction success negatively and vice versa.

When unilateral offer strategy and multilateral offer strategy are identical (that is, s = '),
then the formula from proposition 11 simplifies to that of proposition 5, where all sellers bid
multilaterally.

The next theorem shows that there is exactly one optimal level 2 offer strategy. This

optimal strategy is lower than the optimal level 1 strategy.

Theorem 2. When n — 1 sellers choose an optimal multilateral offer strategy sipt and the
n—th seller is aware of their strateqy, then that seller may optimise her offer strategy sgpt
accordingly®. There is exactly one such optimal level 2 strateqy. That strategy has the property

2 1
Sopt S Sopt .

Proof: See the Appendix. O

Theorem 1 proved that there is exactly one optimal level 1 strategy for all sellers. When
all sellers but one commit to that strategy, then that seller can optimise her offer by exploiting
her knowledge of the other sellers’ strategy. Theorem 2 states that this unilateral behaving
seller has exactly one such optimal offer strategy sgpt. The theorem further shows that the
optimal level 2 strategy is lower than the optimal level 1 strategy. Thus in these optima, the
unilateral bidding seller’s offer is lower than the average offer of the other sellers.

When a seller pursues a lower strategy than the other sellers, then this seller’s offer is on

average lower than those of the other sellers. Accordingly, this seller has a higher chance to

2

win the auction by placing the lowest bid. Thus the unilateral seller with offer s;,

S 3<1)pt
has a higher chance to win the auction. Furthermore that seller’s expected profit is higher

than that of the other sellers. If this was not true, then that seller could choose offer strategy

1

opts just as the other sellers. That strategy would give her a profit equal to that of the other

5
sellers.

In summary, the seller that does not commit to the multilateral level 1 strategy is in ad-
vantage over sellers that commit to this strategy. We call this offer strategy level 2 rationality.
It is a reasonable label because a seller pursuing the level 2 strategy takes the optimal level
1 strategy into her consideration and places her bid accordingly. Thereby she optimises her

offer under the constraint that the other sellers commit to the level 1 strategy.

5In this theorem, the unilateral strategy sgpt is a seller’s best response strategy, when the other sellers
pursue offer strategy slljpt. In this paper we may also use the notation szpt as a seller’s optimal response when
the other sellers pursue some feasible offer strategy s. When we do so, the different use will be mentioned.
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Fig. 3 — Optimal level 2 strategy for fixed valuation imprecision o = 10%

The unilateral bidding seller on average uses a lower offer than the multilateral bidding

sellers. That fact affects the buyer’s expected profit positively, as the next proposition shows.
Proposition 12. The buyer profits when a seller places her bid level 2 optimally.
Proof: See the Appendix. O

The buyer profits from the unilateral offer strategy of a single seller, as proven by the
proposition above. When a seller pursues the optimal level 2 strategy, then her offer strategy
). As a result, the

average lowest offer decreases. This lowest offer affects the buyer’s expected profit from the

is lower than that of the other sellers, as shown in theorem 2 (sipt < sipt
auction positively. However, the unilateral bidding seller profits from her strategy. However,
the sellers who commit to the multilateral level 1 offer strategy suffer from a decreasing profit.

This section provided the reader with the major properties of the level 2 bidding strategy.
Next, a detailed numeric and graphic analysis of this section’s result follows.

The main properties of this section’s propositions are illustrated in figure 3 and 4. For a
numerical illustration, the valuation imprecision is fixed at o = 10%. The left graph of both
figures shows the analysis for n = 5 sellers, whereas the right shows the analysis for n = 10
sellers. This enables the reader to clearly see different properties of the expected profit and
its dependence on the size of the seller-group.

The dashed lines in figure 3 (a) and (b) are the same as in figure 1 (a): namely the
expected profit of a single seller when all sellers pursue the multilateral offer strategy s, as
indicated on the z-axis. The properties of this multilateral offer strategy have thoroughly
been discussed in figure 1 (a).

Level 2 strategy and its influence on the seller who pursues this strategy can be observed

in figures 3 (a) and (b). These figures show the expected profit of the single seller who pursues
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the unilateral offer strategy s’ (indicated on the z-axis) assuming the other sellers commit to

1

multilateral optimal level 1 strategy s,

That seller’s expected profit is illustrated as the

solid line in figure 3.

1
opt

offer strategy sgpt = 1.0543, a seller can increase her expected profit from 0.69% to 0.96%, i.e

In figure 3 (a) the optimal level 1 strategy is s, = 1.0900. By applying the unilateral
almost by 50%. Analysing figure 3 (b), it can be seen that a seller can increase her expected
profit by approximately 50%, when this unilateral bidding seller applies the optimal level 2
bidding strategy.

Figure 4 is rather similar to figure 3, but takes a different point of view. Analogous to
figures 3 and 1 (a) it shows the expected level 1 profit for n = 5 and n = 10 sellers. This
profit is illustrated as the dashed lines in the figure. In contrast to previous figures, this figure
additionally shows a seller’s optimal level 2 response, when that seller anticipates the other
sellers to have bidding strategy s, as indicated on the z-axis.

The solid line shows a seller’s expected profit in level 2 optimum, given the other sellers’
level 1 offer strategy as shown on the z—axis. Figure 4 thus shows the increase in expected
profit a single seller can achieve by not committing to the multilateral offer strategy of the
other sellers. Obviously the unilateral level 2 strategy generates at least as much profit as the
multilateral level 1 strategy. This is indicated in the figures, as the solid line (optimal level 2
response strategy) is at least as high as the dashed line (level 1 strategy). It can be seen that
there is exactly one level 1 offer strategy such that level 2 strategy is exactly as good as level
1 strategy. This offer strategy will later be characterizes as the level 3 strategy.

The above properties for the example with valuation imprecision o = 10% are true while
0 < a < 1. Further numerical examples are presented in table 1, where the number of sellers
is fixed at n = 5 and valuation imprecision varies. The case o = 10% was discussed in

detail above, where optimal level 1 strategy is stljpt = 1.0900 and optimal level 2 response
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n=> Level 1 rationality Level 2 rationality

Sopt | E(Ps) (s01) Pa Sopt | E(Ps) (5o, 50p1) Pa
a=5% 1.0434 0.3465% 8.2935% 1.0264 0.4840% 18.9685%
a = 10% 1.0900 0.6896% 8.3001% 1.0543 0.9556% 18.8505%
a = 20% 1.1940 1.3630% 8.3154% 1.1156 1.8577% 18.6028%
a = 25% 1.2523 1.6917% 8.3242% 1.1492 2.2860% 18.4727%
a = 50% 1.6379 3.2060% 8.3788% 1.3596 4.1410% 17.7741%

Table 1 — Properties of level 1 and 2 offer strategies with n = 5 sellers

strategy is sf,pt = 1.0543. It can be seen from the table that optimal level 1 strategy is

increasing in imprecision, as is optimal level 2 response strategy. The optimal response

1

opt)/2, independent of valuation imprecision. By applying level

strategy is approximately (1+s
2 optimization, the seller approximately doubles her chances to win the auction, compared
to level 1 offer strategy. Her expected profit furthermore is increasing in imprecision. Thus
valuation imprecision affects her profit positively.

Our analysis showed that for each seller it is optimal to apply the level 2 offer strategy.
That is, it is optimal for each seller not to commit to a multilateral offer strategy and thereby
to put herself in a better position than sellers who commit to a multilateral offer strategy. If
all sellers are aware of this advantage and want to profit from it, eventually no seller commits
to the multilateral level 1 strategy and all sellers apply the level 2 offer strategy. As the game
is symmetric, the optimal level 2 strategy is the same for each seller. Thus, all sellers apply
the same level 2 offer strategy. It therefore can be interpreted as another multilateral strategy
all sellers commit to. However, that offer strategy must fulfil the axiom that no seller can
put herself in a better position than another seller by applying a different offer strategy. This
is equivalent to the condition that this multilateral strategy and a seller’s optimal response
upon it are identical. Then no seller profits from applying a different offer strategy than the

other sellers. The next section studies this equilibrium strategy.

2.3 Level 3 Rationality

In this section all sellers place their bids fully rationally. That is, each seller anticipates the
other sellers’ bidding strategies and places a best response bid, accordingly. Then a seller’s
profit is dependent on the other sellers’ offer strategies and on her own strategy.

The auction is symmetrical. Therefore no seller will have a different offer strategy than

the other sellers. This implies that the sellers indirectly commit to placing their bids multilat-
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erally, as in section 2.1. In contrast to the optimal level 1 strategy, an individual’s deviation
from the multilateral bidding strategy can not have a positive effect on a seller’s profit, when

all sellers place their bids level 3 optimally.

3

More formally, let Sopt

be a multilateral offer strategy when all sellers place their bids
level 3 optimally. Then each seller can not increase her profit when she applies another offer
strategy s € [1, s2/s1]. This is represented by the formula

E (Ps) (Sopes Sopt) = E(Ps) (5551, 8) Vs € [1,52/51].

This section analyses this level 3 offer strategy. We prove that there is exactly one such
optimal level 3 strategy and calculate it explicitly. The buyer profits when the sellers place
their bids level 3 optimally, whereas the sellers’ expected profit decreases in comparison to
level 1 and level 2 strategies.

The next theorem proves main properties of the level 3 optimum.
3
opt*

s a Nash equilibrium in pure strategies. In equilibrium sgpt < S(Q)pt holds.

Theorem 3. There is exactly one optimum level 3 offer strategy s This level 3 optimum

Proof: See the Appendix. n

The above theorem proves that there is exactly one level 3 strategy. That bidding strategy
therefore is the unique bidding equilibrium. When all sellers apply this offer strategy and all
sellers anticipate that the other sellers apply it, then there is no seller that can increase her
profit by choosing an offer strategy that is different from the equilibrium strategy.

The optimal level 1 strategy exceeds the level 2 optimum, which exceeds the optimal level
3 offer strategy. Therefore the average offers are lowest when the sellers apply the level 3
equilibrium bidding strategy. As a result, the probability that the auction is successful is
highest in that equilibrium. When a seller wins the auction, then this seller’s profit is lowest
when bids are placed level 3 optimally. The buyer profits from the sellers’ equilibrium strategy
in two ways. First of all, the probability that the auction is successful increases and secondly
the winning bid is lower on average.

The next propositions analyse the equilibrium bidding strategy and its implications for a

large number of sellers.

Proposition 13. The optimal level 3 bidding strategy sgpt converges to 1 for seller-group size

n — 00. The expected profit of an individual seller thereby converges to zero.
Proof: See the Appendix. n

When the number of sellers increases, then their offer strategy becomes more aggressive.

Proposition 13 states that in the limit, the sellers’ equilibrium offer strategy sgpt = 1. Then
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each seller’s expected profit is zero because then a seller’s reservation and offer price are
identical. When more sellers bid in the auction, then the negative effects on each bidding
seller increase. That is, the sellers’ offers cannibalize their individual profit, which converges
to zero.

The effects of the number of bidding sellers on the group-profit are analysed in the propo-

sition below.

Proposition 14. In bidding equilibrium the expected profit of the seller-group converges to

zero for seller-group size n — 0.
Proof: See the Appendix. O]

When we combine the statements from propositions 13 and 14, we can conclude that an
increasing number of bidding sellers harms both, each seller’s profit and the profit of the
seller-group at the same time. These profits converge to zero for infinitely many bidding
sellers. The sellers’ competition thus becomes so aggressive that all profit on the sell side
finally diminishes.

On the contrary, the buyer, who initiates the auction, profits from the increasing compe-

tition among a bigger seller-group. This statement is proven in the next proposition.

Proposition 15. The buyer’s expected profit converges to the mazximal valuation imprecision

a for n — oo sellers, when they place their bids optimally level 3.
Proof: See the Appendix. n

Proposition 15 shows that a buyer profits from more bidding sellers in the auction. His
expected profit converges to the maximal valuation imprecision «. The buyer’s expected
profit thus is bounded by valuation imprecision. When the parties’ valuation abilities are less
precise, then a buyer’s expected profit from the auction increases. That is, the buyer profits
from a raise in valuation imprecision.

We close the analysis of the properties of the level 3 equilibrium bidding strategy by
calculating the auction success probability for infinitely many bidding sellers in the proposition

below.

Proposition 16. The probability that the auction is successful converges to 1 for infinitely

many sellers who place their bids optimally level 3.
Proof: See the Appendix. n

The above proposition shows that the buyer who initialises an auction has a probability of

1 that his reservation price exceeds the lowest bid, when infinitely many sellers are bidding.
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n=> Level 1 rationality Level 2 rationality Level 3 rationality
s | B L) | 2 | Bty | s | Bl

a=5% 1.04 0.35% 1.03 0.48% 1.02 0.22%

a = 10% 1.09 0.69% 1.05 0.96% 1.04 0.44%

a = 20% 1.19 1.36% 1.12 1.86% 1.08 0.88%

a = 25% 1.25 1.69% 1.15 2.29% 1.10 1.11%

a = 50% 1.64 3.21% 1.36 4.14% 1.27 2.24%

Table 2 — Properties of level 1 to 3 offer strategies with n = 5 sellers

That is, then the probability that the auction is successful is 1. For the buyer, this property
is desirable because he can be sure to get a suitable offer that generates positive profit.

One of infinitely many sellers places the winning lowest bid. That bid however does not
generate a profit for the winning seller because the winning seller’s reservation and offer prices
are identical. In conclusion, more bidding sellers harm each other, while their cannibalising
offer strategy is highly profitable for the buyer.

We continue with numerical examples and illustrations of the optimal level 3 offer strategy
and its implications for the buyer and the sellers. Table 2 shows the optimal level 1 to 3 offer
strategies as a function of valuation imprecision «. In the numerical example, the number of
bidding sellers is set to n = 5.

Optimal level 1 and level 2 offer strategies were discussed thoroughly in the last section.
It was shown that it is of advantage for each seller to pursue the level 2 strategy, as long as all
other sellers pursue on optimal level 1 strategy. However, when all sellers behave rationally
and optimize their offer optimally level 2, then their combined individual strategies lead to
the level 3 optimum sipt. Table 2 analyses major properties of these level 3 optima. The
level 3 optimum is lower or equal to the level 2 optimum, which does not exceed the level 1
optimum. That is, s, < s2,; < 50,

As a result of the level 3 optimization the sellers’ expected profit decreases, compared to
optimal the level 2 and level 1 bidding strategies. Although optimal level 3 bidding is the
equilibrium bidding strategy, it is not of benefit for each seller or the seller-group, compared
to levels 1 and 2 bidding strategies.

Figure 5 shows the expected profit as a function of the bidding strategy for a fixed valuation
imprecision o = 10% and n = 5 sellers in figure 5 (a) (n = 10 sellers in figure 5 (b)). In each
figure, the dotted line shows the expected profit of a seller, when all sellers pursue multilateral
offer strategy s as indicated on the x-axis. The solid line shows a seller’s profit who applies

unilateral bidding strategy s (as indicated on the z-axis), while the remaining sellers bid
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Fig. 5 — Optimal level 3 equilibrium strategy for fixed valuation imprecision o = 10%

optimally level 3. There is exactly one point of intersection, where both strategies share the
same expected profit. That point of intersection is marked with a red dot. It is the level 3
optimal bidding strategy sgpt. When the sellers apply this offer strategy, then a seller can not
increase her profit by applying a strategy that is different from sgpt. This can be observed
in the figure, as the solid line (that is, the profit of the unilateral bidding seller) reaches its
maximum when her offer strategy is sgpt. Compared to the level 1 optimal strategy, all sellers’
expected profit decreases when they apply the optimal level 3 bidding strategy. However, the

level 3 optimum is the unique equilibrium bidding strategy.
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Fig. 6 — Optimal level 3 equilibrium strategy for fixed valuation imprecision o = 10%

Figure 6 shows a single seller’s profit for the bidding strategies levels 1, 2 and 3. The dashed
line shows a seller’s expected profit, when all sellers apply a bidding strategy according to the
x-coordinate of the figure. The solid line shows the expected profit (level 2) that a seller can

achieve, when she anticipates that the other sellers multilaterally place their bids according
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to the offer strategy as indicated on the z-axis.

When a single seller knows the other sellers’” multilateral offer strategy, then this single
seller can increase her expected profit by optimizing her offer strategy accordingly. The arrow
from level 1 to level 2 optimum shows a seller’s potential profit increase. There is always
exactly one multilateral strategy, where unilateral optimization does not put a single seller in
favour of the other sellers, that is the level 3 optimum. The left downward-arrow indicates
the change of profit from the level 2 to the level 3 optimum. In the level 3 optimum, each
seller’s profit is lower than in the level 1 and 2 optima.

In bigger markets each seller’s expected profit shrinks in all bidding optima. This can be
seen by the comparison of figure 6 (a) and (b). All optima are lower in the right figure, where
the seller-group consists of 10 sellers, compared to 5 sellers on the left. The optimal bidding

strategies in the left figure generate a higher profit than those when more sellers bid in the

auction.
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Fig. 7 — Deal probabilities for n = 10 sellers and o = 10%

Figure 7 illustrates the success probability for a seller in figure 7 (a) and the buyer in
figure 7 (b). The probabilities are based on the formulas developed in propositions 8 and
9. The blue line shows the deal probabilities when all sellers commit to a multilateral offer
strategy. The green line shows the deal probability under the constraint that a seller applies

offer strategy as indicated on the z-axis, whereas the remaining sellers multilaterally pursue

1
opt*

offer strategy s For these examples, n = 10 sellers and valuation imprecision o = 10%
where chosen.

Under multilateral level 1 optimum an individual seller has approximately a probability
of 5% for deal success, as 7 (a) shows. Unilateral optimisation allows a seller to increase her
success probability to almost 20%. In optimal level 3 bidding strategy, the deal probability is

slightly below 10%. In terms of expected profit, the level 3 bidding equilibrium has a lower
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expected profit than the optimal level 1 strategy. In contrast, the deal probability increases
from the optimal level 1 to level 3 bidding strategies. The level 3 optimal strategy is therefore
preferable compared to the level 1 optimum in terms of success probability.

Figure 7 (b) shows the buyer’s deal probability. That is, the probability that one seller
places a successful bid. It can be seen that the level 2 strategy leads to a higher success prob-
ability (approximately 55%) compared to the level 1 strategy (approximately 50%). Further,
the level 3 optimisation includes a higher deal probability of over 80%. The buyer thus profits
from the sellers’ level 3 bidding equilibrium compared to the level 1 and 2 bidding strategies.
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Fig. 8 — Buyer’s expected profit in offer strategies levels 1 to 3

Proposition 11 introduced the buyer’s expected profit under level 2 rationality. This
formula can be adapted to the level 3 rationality by applying s’ = s to the formula. As already
mentioned, that simplified formula is the one introduced in proposition 5. Additionally, we
have proven s3, < s2,
3, the average sellers’ offers decrease. Therefore the buyer’s expected profit is increasing

< s})pt in theorem 2 and 3. That is, applying offer strategies 1 to

in offer strategies 1 to 3. That fact is illustrated in figure 8, where markets with n = 5
and n = 10 sellers are analysed. The buyer’s expected profit in a multilateral strategy is

illustrated in blue. The green line shows the expected profit of the buyer, given the optimal

2

according unilateral response strategy s ;.

Both figures show that the buyer has a positive
profit from the level 1 bidding optimum. When a seller bids level 2 optimally, then the buyer’s
profit increases. The buyer’s profit further increases when all sellers place their bids level 3
optimally. These observation are intuitive because the sellers’ bids are lowest when they bid
optimally level 3.

Figure 9 (a) illustrates the effects of level 3 bidding on the profit of the seller-group. For
this illustration, the valuation imprecision is fixed at o = 10%. The solid lines in the figure
show the expected profit of the seller-group as a function of their multilateral offer strategy

s, as is indicated on the z-axis. Thereby each solid line shows the expected profit of the
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sellers group for a different group size. It can be seen that group profit is increasing in group
size and convergent for n — oo sellers. For each group size, the optimal multilateral level 1
bidding strategy is market with a circle. So far, the figure is identical to figure 2, where the
sellers’ multilateral strategy was analysed in detail. It can be seen that the optimal level 1
offer strategy that maximises each seller’s profit at the same time maximises the profit of the
seller-group.

Additionally, the figure shows the optimal level 3 strategies for different seller-group sizes.
These are marked with a cross. For n = 1 sellers, levels 1 and 3 strategies are identical,
as a single seller can optimise her strategy without taking a second, third, ... seller’s offer
into consideration. For seller-group size n = 5, there is a loss of the expected profit from

offer strategy level 1 to level 3. In this case, the optimal strategy s})pt = 1.09 changes to

3

Sopt

= 1.04. This represents a reduction from approximately 3.45% to 2.20% in the seller-
group’s profit. The highest profit decrease is achieved when infinitely many sellers place their
bids. In the limit the optimal level 1 strategy is s;,, = 1/s1 = 10/9, according to proposition
3. Furthermore, the optimal level 3 strategy is sgpt = 1. In the latter case the expected group

profit diminishes to zero.
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Fig. 9 — Change in profit when sellers bid rationally level 1 and 3. Valuation imprecision
a=10%

Figure 9 (b) shows the effects of optimal level 1 and level 3 strategies on the buyer.
Section 2.1 proved that the expected profit of the buyer decreases when sellers increase their
offers. A buyer’s profit increases when the seller-group size increases. These properties can
be observed in figure 9 (b), where the buyer’s expected profit for n = 1,5, co sellers is shown.
In the optimal level 1 strategy the buyer has positive expected profit, that is increasing in
the number of sellers. The optimal level 3 strategy is lower or equal to the optimal level 1

: 3 1
strategy, i.e. s,,; < Sy

Therefore the buyer profits from the sellers’ level 3 bidding strategy.
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This fact can be observed in the figure. When there is n = 1 seller present, then the level
1 and 3 optimisation strategies are equivalent. In this case the buyer therefore is indifferent
to the seller’s bidding strategies. When more sellers bid in the auction, then level 1 and 3

bidding is different, that is s3> , < s!

opt < Sope- Therefore the buyer’s profit changes, when the sellers

bid differently. In the figure this can be seen at the example of n = 5 sellers, where the buyer’s
profit increases when sellers change their bidding strategy from level 1 to level 3. When the

number of bidding sellers increases, then this effect increases. In the limit of infinitely many

3

ot = 1, the buyer’s profit is maximal. Then it

sellers, where the optimal offer strategy is s
is E(Pp) = a (which is 10% in this example). Valuation imprecision is the upper bound for
the buyer’s expected profit. This shows that valuation imprecision is beneficial for the buyer.
That is, when valuation imprecision increases, then the upper bound for the buyer’s expected
profit increases. In this case, the auction is more attractive for the buyer, when the parties
valuation abilities are limited to an even greater extent.

The next section summarizes the properties of the sellers’ bidding strategies.

2.4 Summary: The Downside of Unilateralism

This section so far introduced the reverse auction, where the initiating buyer hides his
reservation price. Different bidding strategies of the sellers were discussed. While the bidding
strategies level 1 and 2 are no equilibria, we have proven that the optimal level 3 bidding
strategy is an equilibrium bidding strategy. When the sellers bid rationally, they place their
bids level 3 optimal. This optimal bidding strategy is unique. When the sellers place their
bids according to this strategy, then opposed effects on the buyer and the sellers are achieved.

The buyer profits from the sellers’ equilibrium bidding strategy in a variety of aspects.
First of all, when the sellers place their bids according to their equilibrium bidding strategy,
then the probability that the auction is successful increases, compared to optimal level 1
bidding strategy. Thereby the buyer’s expected profit increases. Furthermore, he profits from
an increasing number of bidding sellers and from increasing valuation imprecision. In fact,
when there are infinitely many sellers, then buyer’s expected profit is maximal and given by
the players’ valuation imprecision a. Therefore the buyer has an incentive to increase the
valuing parties’ valuation imprecision and to attract an increasing number of bidding sellers.
In summary, the buyer profits in numerous aspects from the design of this auction market in
equilibrium.

In contrast to the buyer, seller that bid in the auction have the highest expected profit
when all sellers mutually agree to place their bids level 1 optimal. As a result, all sellers
then share the same expected profit. A single seller may increase her expected profit by

applying a unilateral level 2 bidding strategy. By placing her bid unilaterally, each seller
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Fig. 10 — All sellers’ expected profit in level 3 optimum as a function of group size
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Fig. 11 — All sellers’ expected profit in level 1 optimum as a function of group size

has the possibility to increase her profit by not committing to the optimal level 1 bidding
strategy. Therefore that level 1 optimum is not stable. These considerations lead to the level
3 bidding strategy. When all sellers place their bids according to the optimal level 3 strategy,
then no seller can increase her profit by breaking the commitment. The advantage of that
strategy is its stability, as no seller profits from altering her bidding strategy. Moreover,
the probability to place a winning bid increases when the sellers indirectly commit to place
their bids according the level 3 optimum. However, each seller’s expected profit is lower in
equilibrium bidding strategy than if sellers would commit to the level 1 optimum strategy.
The seller-group profits from an increasing group size in level 1 optimum. In contrast,
the expected group profit converges to zero in the level 3 optimum. These properties are
illustrated in figure 10 and 11. Figure 10 shows in particular that there is an optimal number
of bidding sellers to optimise the seller-group profit. This optimum is dependent on the

valuation imprecision.
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Each seller would profit when all sellers place their bids according to the optimal level
1 strategy. Therefore the seller-group could employ a mechanism that commits each seller
to that bidding strategy. When no such mechanism is installed, then level 3 bidding is the
unique equilibrium bidding strategy, which has numerous downsides for the sellers and many
positive effects for the buyer who initiates the auction.

Let us introduce a numerical example.

2.5 Example: Private Bond Placement

Assume that five investors bid on a firm’s bond with volume €1 billion and the maturity
of one year. Each of the five investors offers a coupon that he requires from the issuing firm at
maturity. The investor with the lowest coupon requirement wins the bid. Each investor has a
reserve value for the coupon. In our example, these reserve values are uniformly distributed
on the interval [2%,6%] of the bond volume. Thus the average coupon requirement is 4%
and the minimum (maximum) requirement is 0.5 lower (higher) than the average. In fact,
this represents a valuation imprecision of 50%. The investors only know their own coupon
requirement and that their common valuation imprecision is 50%.

In the example, the investors’ reserve values are
(V1, Va, V3, Vi, V)= (2.5, 3,4,5,5.5)mio.

The reserve value of the firm is 4.5% of the bond volume, that is €4.5mio.
When the investors commit to optimal multilateral offer strategy level 1, then they increase

their reserve values by the factor s})pt = 1.64. Their offers then are
(O1,04,05,04,05)= (4.10,4.92,6.56, 8.20,9.02)mio.

The lowest bid is €4.1mio, which is below the firm’s reserve value of €4.5mio. Thus the firm
accepts that offer. The bidding investor’s profit is €1.6mio and the firm’s profit is €0.4mio.

Now, let us consider the influence of rationality level 2. The second investor knows that
the four other investors commit to the offer strategy sipt = 1.64. Then that investor’s optimal

strategy is to increase her valuation by Sgpt = 1.36. The investors’ offers thus are
(Ol, 02, 03, 04, 05): (410, 408, 656, 820, 902)mzo

The lowest bid is €4.08mio, which is below the firm’s reserve value of €4.5mio. Thus the firm
accepts that offer. The second investor’s profit is €1.08mio and the firm’s profit is €0.42mio.

Level 2 rationality thus puts the second investor in favour over the first investor. Further, the
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issuing firm profits from the second seller’s strategy.
The optimal level 3 strategy avoids the possibility that one investor can create an ad-
vantage for himself over the other sellers. That equilibrium offer strategy is that all sellers

increase their reserve value by sipt = 1.27. The sellers’ equilibrium bids thus are
(O1,04,05,04,05)= (3.18,3.81,5.08, 6.35,6.99)mio.

The lowest bid, offered by investor 1, is €3.18mio, which is below the firm’s reserve value
of €4.5mio. Thus the firm accepts that offer. The winning investor’s profit is €0.68mio
and we calculate that the firm’s profit is €1.32mio. The equilibrium strategy and the level
1 strategy produce the same winner of the auction. That winner is unknown to the sellers
ex ante. However, the winning investor’s profit diminishes in equilibrium. In contrast, the
issuing firm’s profit increases when the sellers apply the equilibrium bidding strategy.

The next section introduces a dealer’s offer strategy.

3 The Dealer’'s Market

The Dealer’s Market in this section is similar to the Dealer’s Market in Seemiiller (2013).
Although there might be some redundancy, its definition will be recapitulated at this point.

In the Dealer’s Market, there is a dealer present. The dealer is experienced in trading
and therefore knows the average value of a good. That is, he values the good precisely. He
acts as market maker and charges a bid-ask spread. The dealer offers the seller a price which
is the good’s average value multiplied by 1 + f; and he offers the buyer a price which is the
average value multiplied by 1+ f,, with fees f, > f;. The bid-ask spread generates a positive
profit on each round-trip transaction for the dealer, while he maintains f, — f; > 0. Hence,
he deterministically profits from his strategy on a round-trip transaction.

Buyers and sellers do not know the average valuation of a good. Therefore a seller and
a buyer are unaware whether the dealer truly shows them the prices (1 + f;)V and (1 +
f»)V, respectively. Thus the parties need to trust the intermediary to charge truthful prices.
Consequently, the intermediary needs to be indulged with exogenous reputation capital such
that the bargainers consider him trustworthy.

The dealer pursues the strategy to install an environment under information asymmetry.
In the Dealer’s Market buyers and sellers do not interact. They solely communicate with
the dealer and choose whether to accept his offer, or not. In this sense there is information
asymmetry in the Dealer’s Market. Asymmetric information is important to the success of the
dealer’s strategy. This means that the buyer and the seller should either consult the dealer
or choose an alternative trading platform (e.g. an auction). Otherwise buyers and sellers

may first bargain on a free trading platform and only consult the dealer if their auction is
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unsuccessful. While this sequential strategy is beneficial for buyers and sellers, the dealer is left
with a lemons problem. Buyers with low reservation prices and sellers with high reservation
prices. Thus the dealer suffers from adverse selection. Installing a beneficial fee strategy
consequently becomes more complicated under full information as the dealer’s strategy may
even collapse otherwise.

We start to formally analyse the properties of the Dealer’s Market by calculating the deal
probability.

Proposition 17. Assume that —a < fy, fs < a. Then the probability that a buyer profits from
and thus accepts the dealer’s offer is p, = (o — f3,)/(2). The probability that a seller profits
and thus accepts the dealer’s offer is ps = (a+ f)/(2a).

Proof: See the Appendix. n

A buyer (seller) accepts the dealer’s offer if his reservation price is higher (lower) than
the dealer’s offer. Therefore the probability for a successful deal increases when the dealer
reduces his offer to a buyer. Further, that probability increases, when the dealer raises his
offer to a seller.

The next proposition calculates a buyer’s and a seller’s expected profit in the Dealer’s
Market.

Proposition 18. When f, < a or —a < fs then a buyer’s or a seller’s expected profit in the

Dealer’s Market is positive. In this case a buyer’s expected profit is
E(Pp(B)) = (a — f,)* /(2As)

and a seller’s expected profit is
E(Pp(S)) = (fs + a)?/(2As).

Proof: See the Appendix. O]

The above proposition shows that the dealer can attract buyers and sellers to his market
when he maintains reasonable fees f, < o and —a < f,. If, in addition, the price he charges
a buyer exceeds his offer to a seller (that is, f, — fs > 0), then the dealer’s profit on each
round-trip transaction is positive.

The next section analyses the relative attractiveness of the reverse auction and the Dealer’s
Market.
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4 The Advantage of Bid-Ask Prices

This section compares the reverse auction and the Dealer’s Market. It will be shown under
which circumstances the Dealer’s Market is preferable for all market participants over their
reverse auction alternative. Afterwards an example is presented to numerically illustrate the

theoretic discussion.

4.1 The Pareto Dominance of a Market Maker under Information Asymmetry

We introduce indifference fees fj, inq and fs;nqg with the following properties: If the dealer
fee is below f inq, then buyer prefers the Dealer’s Market over his reverse auction alternative.
Analogously, sellers prefer the Dealer’s Market over their alternative to bid in the reverse
auction, if the dealer’s fee exceeds the indifference fee f;;,4. The theorem proves a major

property of these indifference fees.

Theorem 4. The buyer and sellers prefer the Dealer’s Market over the reverse auction, when
the condition fsina < fs < fo < fo,ina holds. Then the dealer’s earnings are greater zero. As
a result, the Dealer’s Market Pareto dominates the reverse auction, i.e. the market under

information asymmetry Pareto dominates the reverse auction.
Proof: See the Appendix. n

When the condition fsnq < fs < fi < fo.ina is satisfied, then all players are in preference
of the Dealer’'s Market and the dealer has positive earnings on each round-trip transaction.
Then the Dealer’s Market is Pareto efficient over the reverse auction alternative.

The seller’s indifference fee as a function of valuation imprecision « is shown in figure 12.
For the analysis the number of sellers is fixed to n = 10 and the valuation imprecision « is set
to 10% in figure 12 (a) and 25% in figure 12 (b). The x-axis shows the dealer’s fee. A seller’s
expected profit in the Dealer’s Market and the reverse auction is illustrated on the y-axis. In
both cases a seller’s profit is comparably low when she bids in the reverse auction. In contrast,
her profit is increasing in the dealer’s fee. When the dealer’s fee exceeds the indifference fee,
then the seller prefers the Dealer’s Market over bidding in the auction. In both figures, the
indifference fee is almost at the lower bound for the dealer’s fee: for a = 10% (a = 25%),
the indifference fee is fsina = —7.56% (fsina = —18.82%). When the scaling in the figures
12 (a) and (b) is not regarded, then the indifference fees and the expected profits seem to
be almost the same in both figures. The analysis of the indifference fee as a proportion of
valuation imprecision in fact shows that f,.., = —75.6% (for a = 10%) and f,.,; = —75.3% (for
a = 25%). It can be assumed that the seller’s indifference fee is almost linear in valuation

imprecision.
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Fig. 12 — A seller’s expected profit in the reverse auction and in the Dealer’s Market for
n = 10 sellers

The buyer’s preferences as a function of the valuation imprecision ais shown in figure 13,
where n = 10 sellers is fixed and valuation imprecision is set to @ = 10% and a = 25% in
figures 13 (a) and (b), respectively. As in figure 12, the z-axis shows the dealer’s fee and a
buyer’s expected profit is drawn on the y-axis.

The buyer’s expected profit decreases with increasing dealer’s fee. Intuitively, a higher
fee implies a higher price. That higher price influences the buyer’s profit negatively. When
valuation imprecision is set at a = 10%, then the buyer’s indifference fee is f; ;ng = —5.55%.
That is, all fees below this indifference fee puts the buyer in favour for the Dealer’s Market over
setting up a reverse auction. In the case a = 25%, the indifference fee is f;;nq = —13.08%.
As a result, the dealer needs to offer a buyer a lower price when the valuation imprecision
increases.

As in the above analysis of a seller’s indifference fee (when the scaling of the figure is
disregarded) it can be seen that this fee is almost a linear function in valuation imprecision.
This becomes even clearer when we calculate the indifference fees as a proportion of valuation
imprecision: For the valuation imprecision o = 10%, the relative indifference fee is 55.5%. In
the case of a = 25% that relative figure is 52.3%. The buyer’s indifference fee therefore is
almost a linear function.

The buyer’s and the seller’s indifference fee as a function of seller-group size is analysed
in figure 14. The figure compares the expected profit in the Dealer’s Market and in a reverse
auction. In that figure valuation imprecision is held constant at o = 10%. The dealer’s fee is
shown on the z-axis. The y-axis illustrates the expected profit.

Figure 14 (a) shows a seller’s indifference fee as a function of the number n of the sellers.
Previous analysis proved that a seller’s expected profit in a reverse auction decreases in the

number of bidding sellers. This fact can be observed in the figure. An increasing seller
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Fig. 13 — The buyer’s expected profit in the reverse auction and in the Dealer’s Market for
n = 10 sellers

number therefore affects a seller’s indifference fee negatively. It decreases from -3.42% (for
n = 2 sellers) down to -7.56% (for n = 10 sellers) down to -10% in the limit of infinitely many
sellers. A sellers always accepts a fee above her indifference fee. As a result, the dealer can
generate higher earnings, when more sellers are present.

Figure 14 (b) shows a buyer’s indifference fee as a function of the number nof the sellers.
Previous analysis proved that a buyer’s expected profit in a reverse auction is an increasing
function in the number of bidding sellers. This fact can be observed in the figure. As a
result, an increasing number of sellers affects a buyer’s indifference fee negatively. That fee
decreases from -2.47% (for n = 5 sellers) down to -5.55% (for n = 10 sellers) down to -8.04%
(for n = 25 sellers) down to 9.49% (for n = 100 sellers) down to -10% in the limit of infinitely
many sellers. A buyer always accepts fees below her indifference fee. As a result, the dealer
may charge the buyer a smaller fee and thus a lower price, when more sellers are present.
This affects the dealer’s earnings negatively.

When infinitely many sellers are present, then a buyer’s and a seller’s indifference fee is
-10%. Then there is no pair of fees (fy, fs), such that the dealer can attract both, the buyer
and the seller to the Dealer’s Market while maintaining positive earnings. The dealer then
can not supply an environment that is Pareto efficient over the reverse auction.

Next, we analyse when the dealer can create an environment that Pareto dominates a
reverse auction, while maintaining positive dealer’s earnings. The constraints that influence
the players’ indifference fees are the number of sellers n and the valuation imprecision «.

Figures 15 (a) and (b) show a seller’s and a buyer’s indifference fees, respectively. These
indifference fees are drawn as functions of valuation imprecision. The figures show that the
indifference fee is decreasing in valuation imprecision for both the buyer and the seller. It

is furthermore decreasing in the number of sellers. However, the figures suggest that the
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Fig. 15 — The players’ indifference fees as functions of valuation imprecision

indifference fee of the seller usually is lower than the buyer’s indifference fee. Within these
bounds the dealer can determine his fees such that all parties are in favour of the Dealer’s
Market.

When a = 0 or n = 0o, then the dealer can not offer a fee structure that Pareto dominates
the reverse auction. For o = 0 there is no valuation imprecision and thus all parties value
the good precisely. That is, the buyer’s and the seller’s reservation prices are identical.
This does not allow positive profit from bargaining. As a result, valuation imprecision is
necessary for the Dealer’s Market to be Pareto efficient. When n = oo, then a buyer’s and a
seller’s indifference fee is —«. In other words, their indifference fees are identical. The dealer
therefore can maintain no positive bid-ask spread. He therefore can not install a fee structure
that attracts a buyer and a seller to his market and at the same time allows him positive
earnings.

The influence of the dealer’s fees on the average price is illustrated in figures 16 (a) and
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Fig. 16 — Feasible bid-ask prices for a Pareto efficient Dealer’s Market

n=>9 n =10 n =50 n = oo
Joind Jsind Joind Jsind Jo,ind Jsind Jvind = [s,ind
a=5% -1.29% -2.92% -2.82% -3.78% -4.51% -4.73% -5%
a=10% -2.47% -5.82% -5.55% -7.56% -8.99% -9.45% -10%
a = 20% -4.43% | -11.61% -10.70% | -15.08% -17.87% | -18.90% -20%
a = 25% -5.21% | -14.48% -13.08% | -18.82% -22.26% | -23.62% -25%
a = 50% -6.55% | -28.81% -22.22% | -37.35% -43.28% | -47.21% -50%

Table 3 — Buyer’s and seller’s market indifference

(b) for markets with n = 5 and n = 50 sellers, respectively. The blue area in both figures
represents valid bid-ask prices such that all parties are in preference of the Dealer’s Market.
That area is non-empty, so the dealer can determine a fee structure for the Pareto dominance
of the Dealer’s Market. It can be seen that the area for n = 50 sellers is smaller than that for
markets with n = 5 sellers. In fact, this area converges to zero for n — oo, as discussed in the
previous paragraph. This further can be observed in table 3. That table shows that a seller’s
and a buyer’s indifference fees are the same, when infinitely many sellers are present. Thus,
the dealer can not price the good in a way such that the Dealer’s Market dominates a double
auction. Table 3 illustrates further exact values of the dealer’s price bounds. As can be seen
from figure 16 and the table, for valuation imprecision that exceeds zero, the dealer can buy
the good from the seller and sell it to the buyer for a higher price. The dealer’s earnings are

determined by a positive bid-ask spread. The next Theorem summarises these observations.

Theorem 5. Assume that the valuation imprecision 0 < o < 1 and that the number of sellers
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is 0 <n < oo. Then the dealer can always determine fees f, and fs, such that (a) the dealer
has positive earnings per round-trip transaction and (b) buyer and seller prefer the Dealer’s

Market over a reverse auction. Then the Dealer’s Market Pareto dominates a reverse auction.
Proof: See the Appendix. n

The above theorem proves that the dealer can determine bid-ask prices such that all
players are in preference for his market. Then a buyer and a seller prefer the Dealer’s Market
over trading in a reverse auction. With this strategy, the dealer is able to maintain positive
earnings per round-trip transaction.

Consider now the reverse auction, where one initiating buyer and a certain number n of
bidding sellers are present. The dealer competes with this auction, where there is just one
buyer but a possibly high number of sellers. When the dealer acts as a market maker, then
he buys from every prospective seller and sells to every prospective buyer. When prospective
sellers outnumber prospective buyers, as in the reverse auction, then the dealer puts himself
at risk of building a large inventory. This is however not the case, as we will analyse in the

next proposition.

CV“Ffs

Proposition 19. On average n“32* sellers accept the dealer’s offer.

Proof: See the Appendix. ]

Proposition 19 calculates the expected number of sellers that accept the dealer’s offer.
That number is an important decision parameter for the dealer. There are n prospective
sellers versus 1 prospective buyer. That is, the dealer faces the danger of high inventory levels
if he attracts too many sellers. Considering the inventory level, the dealer should choose his
seller fee f, such that sellers prefer the Dealer’s Market over bidding in the auction. At the
same time the number of sellers that accept the dealer’s offer should be limited. Furthermore
the buyer fee f;, should attract the buyer to the Dealer’s Market and maximise the probability
that he accepts the dealer’s offer. While applying this strategy, the dealer’s inventory is held
to a minimum.

We give a numerical illustration of the above proposition. Figures 17 and 18 analyse the
proposed dealer’s fee strategy in detail. In these figures, the dealer applies the maximum
seller fee such that a seller is marginally in favour of the Dealer’s Market over bidding in the
auction. The buyer is charged the minimum fee, such that the dealer’s profit remains positive.
Then the number of sellers that accept the dealer’s offer is minimised and the probability of
a buyer to accept the dealer’s offer is maximised. At the same time the dealer’s earnings
remain positive and all players are in favour of the Dealer’s Market. This strategy has two
positive effects: the Dealer’s Market is Pareto dominating the double auction and the dealer’s

inventory is minimised.
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Fig. 17 — Average number of players that accept the dealer’s offer

Figure 17 shows the expected number of sellers and buyers that accept the dealer’s offer.
Valuation imprecision is drawn on the z-axis, whereas the average number of accepting buyers
or sellers is shown on the y-axis.

Figure 17 (a) shows the expected number of sellers that accept the dealer’s offer for
n = 5,10,25,50 and 100 sellers. That expected number is almost constant in valuation
imprecision. However, a higher valuation imprecision affects that number slightly positive.
The main determinant is the number of sellers in the market as more potential sellers sell
more often to the dealer than fewer sellers. The expected number of sellers that accept the
dealer’s offer ranges from approximately 1.05 (n = 5 sellers) to approximately 1.40 (n = 100
sellers). Although that value increase with the number of sellers, it is bounded in a range
approximately between 1 and 1.5.

The expected number of buyers that accept the dealer’s offer (which is equivalent to the
probability that the buyer accepts the dealer’s offer) is shown in figure 17 (b). For a fixed
number of sellers, that number is relatively constant in valuation imprecision. The influence
of valuation imprecision is limited to a minimum, such that it almost cannot be observed in
the figure. The expected number of buyer’s that accept the dealer’s offer is increasing in the
number of sellers n. Where the number is approximately 0.8 when there are n = 5 sellers,
it increases up to almost 1 when n = 100 sellers are present. That figure thus ranges from
approximately 0.8 up to 1.

Figure 18 (a) shows the expected number of sellers and buyers that accept the dealer’s
offer when n = 10 sellers are present. It can be seen that both numbers are almost constant
in valuation imprecision «. This proposition is supported by figure 18 (b), where the quotient
of sellers and buyers that accept the dealer’s offer is illustrated. When n = 5, then the ratio

is relatively stable at approximately 1.3 sellers per buyer. For n = 10, 25,50 and 100 sellers,
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Fig. 18 — Properties of buyer and seller acceptance

the ratio is almost independent of imprecision and further stable as a function of n. The ratio
is approximately 1.4 sellers per buyer.

In summary, while the dealer applies an optimal fee structure, he can attract buyers and
sellers to his market. Furthermore, his offer strategy is Pareto efficient over the reverse auction
market. Applying optimal fee structure, the dealer’s profit is positive. At last we find that
his inventory level is bounded at a low level because the ratio of sellers per buyer that accept
his offer is relatively stable at approximately 1.4 sellers per buyer.

From a buyer’s and a sellers’ perspective the Dealer’s Market is the dominant alternative
over the reverse auction, when the dealer is trustworthy and applies a moderate fee scheme.

To illustrate the above findings, the private bond placement example from section 2.5 is
further extended.

4.2 Example: Bond Placement by an Investment Banker

We continue the example from section 2.5 on page 90 and apply it to our theory. The

investors’ reserves prices are
(‘/17 ‘/27 ‘/337 ‘/;17 ‘/5): (25, 3, 4, 57 55)m20

As in section 2.5, the reserve value of the firm is 4.5% of the bond volume, that is €4.5mio.

Investors and the firm may now decide between negotiations within a double auction or
to consult an intermediary. Investors and the firm are aware of their common valuation
imprecision of 50%, as in section 2.5. Ex ante, each investor’s expected profit from the double

auction is 2.24% according to proposition 2 on page 68. That profit was calculated in table
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2 on page 83. According to proposition 5 on page 70, we calculate an expected ex ante profit
of 15.99% for the firm when it initiates a double auction.

In order to compete with the double auction, the intermediary must choose his fees ade-
quately. These fees are calculated in table 3 on page 97. Accordingly, the intermediary needs
to charge fees —28.81% < fs < fp < —6.55% to investors and the firm. While he maintains
fees within these bounds, the firm and investors are ex ante in preference of the dealer.

In our example, the intermediary charges fees f, = —26% and f, = —16%. This means
that he offers investors a coupon of volume €4mio(1 + f;) =€2.96mio. The firm is obliged
to pay €4mio(1 + f,) =€3.36mio at maturity. The first investor accepts the intermediary’s
offer, as it exceeds that investor’s reservation price. The firm accepts his offer as well, because
it is below the firm’s reservation price.

In summary, the first investor gains a coupon of volume €2.96mio, which represents a gain
of €0.46mio compared to her reserve value. The firm agrees to pay €3.36mzo at maturity,
which is €1.14mzo less than its maximum coupon volume. Finally, the intermediary generates
a gain of €0.40mio. Each party gains from the intermediaries strategy.

Compared to the example in section 2.5, the winning investor’s profit is reduced from
€0.68mio in the double auction to €0.46mio from the intermediary’s strategy. However, the
investor is not aware of this fact. Ex ante, it is each investor’s best option to consult the

intermediary.

5 Conclusion

We have added imprecise valuation to a model of reverse auctions. In an auction, bidding
sellers and the initiating buyer are aware of their own valuation imprecision that results from
their inability of precise valuation. In case of a procurement auction, different costs for the
procured good or service lead to different reserve values. Due to valuation imprecision, each
bidding seller can not determine whether her valuation is high or low and how it compares
to the other sellers’ reservation prices. To achieve a positive profit, each seller’s bid exceeds
that seller’s reserve value.

We proved when all sellers apply a multilateral optimal bidding strategy and they commit
to it, then the profit of the seller-group is maximised. At the same time, that strategy
maximises the profit of each seller. An increase in the seller-group’s size also increases the
group’s profit. The optimal multilateral bidding strategy was proven to be unique.

A single seller profits from breaking the commitment of the multilateral offer strategy.
That is, when a seller knows that the other sellers play the optimal multilateral strategy,
then it is individually optimal to break that commitment and to apply an optimal unilateral

response strategy. While this strategy increases a seller’s individual profit, it harms the other
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sellers.

There is a unique equilibrium bidding strategy. Its characterisation is that no seller can
profit from applying a strategy that differs from that equilibrium. Therefore it is a stable
strategy. In equilibrium all sellers pursue the same offer strategy. However, it is not the most
efficient strategy. In equilibrium, each seller’s profit is lower than that under the multilateral
optimal bidding strategy. Furthermore, a greater number of sellers has negative effect on
each seller’s profit and on that of the seller-group. Both converge to zero for infinitely many
sellers. While the equilibrium bidding strategy is stable, its consequences for the profit of
the bidding sellers is negative. The sellers can increase their profit by installing a mechanism
that ensures that all sellers commit to the multilateral optimal bidding strategy.

The sellers’ equilibrium bidding strategy is of benefit for the buyer who initiates the
auction. In equilibrium, the average bid of a seller is lower. The average bid furthermore
decreases when more sellers bid in the auction. Consequently, the buyer’s profit is positively
affected by the sellers’ bidding equilibrium and the number of bidding sellers. When the
seller-group commits to their optimal bidding strategy, then the profit of the buyer is lowest.

The model has testable implications. Consider the Industrial Revolution in the 18th and
early 19th century. Then, workers were not organised and the competition for jobs in the
labour force was high. As a result, each worker had to sell his time and labour for a lower
salary that his competitors. This process necessarily lead to extremely low wages. The rise
of labour unions and upcoming political support helped the labour force to ensure a better
coordination of their negotiations with an employer. Our model explains that an employer
was able to exploit the unorganised labour force. Further, our model implies that coordinated
negotiations with an employer are beneficial for workers. In addition, the paper’s model may
be used to calculate a union’s optimal salary negotiation strategy.

A further application is the situation of crofters or producers of milk. Our model explains
that if they do not coordinate their price strategies, their profit is lower than the profit they
could achieve with coordinated pricing. The optimal price strategy can be calculated with
the formulas that the paper provides.

A market maker quotes bid and ask prices for the good or service. When the bid-ask
spread is positive, then his strategy is profitable for him. We have shown that the market
maker can adjust his quotes such that the buyer and the sellers prefer the market maker’s
bid-ask prices over the reverse auction. Then the market maker is Pareto efficient over the
reverse auction.

When there are n > 1 sellers and one buyer, then the dealer’s inventory needs to be
considered. This paper analysed the ratio of sellers per buyer that accept the dealer’s offer.
When the dealer optimises that ratio, then the inventory level is sufficiently bounded.

We presented an example to illustrate our theory. A firm that wants to issue a bond has
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the option to initiate a reverse auction, where interested investors bid the coupon payment
that they require the firm to pay. We showed that investors earn less when they do not
commit to their optimal bidding strategy. The firm that issues the bond gains more when
investors do not commit to a common bidding strategy. It was shown that an investment
banker that offers intermediation services can successfully places the bond. His services are
beneficial for all parties ex ante.

In our model, n > 1 sellers bid in an auction that a buyer initiated. When the lowest
sellers’ offer is below the buyer’s reservation price, then the auction is successful and the
good is traded at that price. Thus, ex post at the most one seller benefits from that market
design. More generally, n > 1 sellers offer their goods to m > 1 buyers. Consider for
instance the Amazon trading platform, where sellers disclose their offer prices for a good.
Buyers sequentially arrive and buy that good at its lowest price, when a buyer’s reserve value

exceeds that lowest price. This is just one example of an extension of our model.

6 Appendix

Proof of Lemma 1. The cdf of min(X;, Xs, ..., X,,) is given by

M(z) =P (min(Xy, X, ..., X,)) < x) =1—P (min(Xq, X, ..., X)) > )

To — Ty

The pdf is given by the first derivative of M(x). O

Proof of Proposition 1. The proof uses lemma 1, where the pdf of the minimum of the
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seller’s offers min{Si, S, ..., S, } was established. The buyer’s deal success probability is

P(Dg)(s) = /52 AlsP(min{Sl, Soy ey Sn} < ) dx

S1

1 s2 5§59 — x\"
= — 1 —
As /ssl ( sAs ) du

— i _ _ 1 o 1 o n+1 *
= A ((32 $81) YNl 1(332 x) SSI)
1 1
= KS ((82 — 881) + m ((882 — 32)n+1 — (882 — Ssl)n+1>>
_ i o 1 - n+l n+1
= = ((52 550+ X Y ((s2(s = 1)) (sAs)™*)
sy — 881 (sa(s—1))"H! (sAs)"H!

As sPAstt(n+1)  stAs™tl(n+1)
n+1
_s2=ss 8 So(s — 1) 3
- As n+1 sAs

The term (M) is zero for s = 1 and one for s = sy/s;. Further,

sAs
So(s —1)
<|—— <1
0_< sAs >_7

while the sellers’ offer strategy is feasible, i.e. within the interval s € [1,s3/s1]. Thus the
buyer’s deal probability converges either to zero (s € [1,s2/s1), or is constant for s = s5/s1.
The factor s/(n + 1) converges to zero for n — oco. As a result the buyer’s deal probability
converges to #2321 for n — oo. In proposition 8 a more general proof for a seller’s profit will
be shown. In order to avoid redundancy, we refer to that proof here. By allowing s’ = s, a
single seller’s deal probability under multilateral strategy is obtained. Considering n — oo

shows that the seller’s deal probability converges to zero. O]

Proof of Proposition 2. Seemiiller (2013) established the expected profit of a seller in a
bilateral monopoly. In a double auction the buyer’s profit is not affected by his offer. He thus
has no motivation to adjust his offer on the platform. The buyer’s behaviour thus is analogous
to the case of bilateral monopoly with a rational seller in Seemiiller (2013). Further, the deal

price in the double auction is given by the lowest offer of the sellers. A single seller’s expected

104



profit is thus given by

E(Ps) (s) = SAIS / 1pea (x —2/s)) da

s— 1 [ss2 '
T 22As /Ss1 P (z <min (52, Ss,...,5,), * < B) x dx
S 1 /82 (SSQ - J})nl by —x v de —: (S — 1) (A(Sg) — A(881>)
- s?As 851 sAs Ab o gntl A gntl )

where A is the primative of (ssy — )"~ " (by— ) x. The probability that a certain seller’s offer
is the lowest is obtained from lemma 1. Also note that the upper bound of the integral is ss.
That is, when a seller’s offer exceeds s5, then the buyer’s reservation price will be lower than
that offer with probability 1.

All sellers have the same offer strategy. It follows that the distribution of the sellers’
offers is identical. Thus ex ante the probability for a seller to make the lowest offer is 1/n.
The sellers’ expectations on placing the lowest bid are homogeneous ex ante. Therefore the

expected profit of all sellers is the sum of the expected profit of a single seller. n

Proof of Proposition 3. When the number of bidding sellers increases, then the lowest
reservation price in the group converges to the lowest valuation possible, which is s;. Assume
the lowest reservation price is above s;. Then, at some point, a seller with reservation price
below the currently lowest reservation price will join the seller-group. This argument is valid
for all valuations that exceed s;. Thus the sellers’ lowest reservation price converges to s;
for the number of sellers n — co. The buyer buys from the seller with the lowest offer. All
sellers pursue multilateral offer strategy s. Therefore the seller with the lowest reservation
price places the lowest offer ss;. All other sellers do not sell their good. The seller with lowest
reservation price makes the profit ss; — sy, that is the difference between her offer price and
her reservation price. The probability that the buyer’s valuation exceeds the seller’s offer is

227551 As the buyer’s and the sellers’ valuations are independent, the expected profit of the

51
As

strategy s is found by solving the first order condition.

seller-group is E (S) (s) = a5 (s2 — s51)(ss1 — s1) = 25(sp — ss1)(s — 1). The optimal offer

OE (5) (s) _ S
0s As

Sg—8s1—s1(s—1)) =0

if and only if s = 1/s; = 1/(1 — «), which is a maximum of the sellers’ profit. O
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Proof of Theorem 1. We rearrange the formula for a seller’s expected profit.

1 2
E (Ps) (s) = As 1pea (s —z) dx
s1

s—1 fs2/s

= / P (sx < min{sSsy,...,sS.},xs < B) x dx
As Js
s—1 /s , Sy — ST

= As /Sl P (z < min{Ss, ..., S,}) A z dzx
s—1 [s2/s ‘

NS /Sl P (x < min{Ss,...,Sn}) (s2 — sx) x dx.

The probability P (z < min{9S,, ..., S,}) in the term above is independent of s. To simplify
the notation, that probability will be referred to as P(z) within this proof. That is, we have

a formula for a seller’s expected profit. That is,

E (Ps) (s) = SA_; / B2 (5y — s2) 7 d

S1

Feasible offer strategies are defined on the interval s € [1,s5/s1]. A seller’s expected
profit is zero for s € {1, s5/s1} and positive otherwise. Furthermore the term for the seller’s
expected profit is continuous. According to Rolle there is at least one profit maximum on the
interval s € (1, s2/s1). To prove that this maximum is unique, we take the first derivative of
the seller’s profit and show that its root is unique. By the Leibnitz formula, the first derivative

of a seller’s expected profit is

s2/s

OE (Ps)(s) 1 (
0s As?

/32/5 P(z)(sg — sz) x dx + (s — 1)(—/

S1 S1

P(v)z? da:))
1 s2/s
- = (/ P(z)z (1 — 25)z + ) dx) .

The factor in the integrand that is dependent on the sellers’ offer strategy is (1 — 2s)x + so.
It is a polynomial of first order. The second factor is P(z)x. That term is positive and
independent of the offer strategy s.

A necessary condition of the optimum is that %

is zero. As the factor P(x)x is
positive, it is necessary that the factor (1 —2s)x + s, is negative within the integration bounds
[s1, 82/s]. The root of that factor is xy = s3/(2s —1). It is the upper integration bound, when
s =1. For s = 1/sy, its root is given by the lower integration bound. Therefore s = 1/s; is
an upper bound for the seller’s optimal offer strategy.

The first derivative of the sellers’ profit is positive in the integration bounds [sy, x] and

negative on the integration interval [z, so/s]. The first factor of the integrand is independent
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of s. The second factor is decreasing in the sellers’ offer strategy s. Furthermore, the root
xo is decreasing in the sellers’ offer strategy. As a result, the integral decreases in s on the
integration interval [s1,x¢]. On the interval [z¢, so/s] the integral is zero for s € {1,s5/51}
and negative otherwise. Due to its continuity and Rolle, it has one extremal point, where it
reaches its minimum.

The above arguments show that the first derivative of the sellers’ expected profit is de-
creasing in the sellers’ offer strategy s. That is, until the minimum on the first derivative is
achieved. That minimum is lower than zero because the integral starts positive with s = 1
and by Rolle there must be a root because the seller’s expected profit has a maximum. When
the first derivative increases after the minimum, there can not be another root. For s = s9/s1,
the derivative is zero. If there were another root s*, then is could not be zero for s = s5/s1,
because it is increasing on [s*,s9/s1]. As a result, the root of the derivative of a seller’s
profit is unique. Therefore there is exactly one offer strategy that maximises a seller’s profit

unilaterally. O]

Proof of Proposition 4. First it will be shown that E (Ps) is strictly decreasing in the
number of sellers. Proposition 1 established the formula for expected profit under multilateral

Level 1 rationality. We rearrange the formula and obtain

s—1 52 nei ba— T s—1 52 /559 —x\" "1 by —x
E(PS)(S):W/S81 (5 = o) = w e :SgAs/ssl( SAS) Ap T

~1
The only remaining term that is dependent on n is (%)n . Note that ss; < < s9, which

allows to establish the inequality

589 — x\"! 589 —x \"!
O<< 2 ) —(2) < ¢"!, where 0 < ¢ < 1.
sAs 589 — 851

n

q" is strictly decreasing in n while 0 < ¢ < 1. Therefore the only term that is dependent
on n is strictly decreasing in the number of sellers. Additionally, the integral is positive. In
summary, a seller’s expected profit is decreasing in the number of bidding sellers. Analogous

arguments hold for a strictly increasing profit as a function of valuation imprecision. O

Proof of Proposition 5. This setting is a modification of a result from Seemdiller (2013).

By allowing k£ = 0 and introducing n sellers, we calculate the formula for the buyer’s expected
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profit. The pdf of the lowest sellers’ offer thereby is obtained from lemma 1:

E(Ps)(s) = [ m(@)P(x < BE(Pale < B) do
_/S2n 8o — )" Lsy —
sTAS™ As sy —2x

/ y — xdy dx

725nA5n+1 /581 (889 — )" Mz — 32) dx

= Soagmi (Bls2) = Blssy)),

where the function A is the primative of the integral, given by

25y (559 — )" (5 — 1) (58— z)"+? s (ssp— 1) (s - 1)?

Pl = n+1 n+2 n
— (s89 — 2)" <252(Ssz—x) (s—-1) (559 — ) B 322(3_1)2>
’ n+1 n+ 2 n '

]

Proof of Proposition 6. In the limit of infinitely many sellers, there is a seller with the

lowest offer s;s. Then the buyer’s expected profit is

E(B)(s) = 1/As /82(x — s81) dx

881

=1/As (s% — 5252 /2 — 551 (89 — 331)) = (59 — 551)%/2/As.

]

Proof of Proposition 7. First it will be shown that the buyer’s expected profit decreases

for an increasing offer strategy s. Proposition 5 showed that the buyer’s expected profit is

n

E(Pp)(s) = e Agnil

(B(s2) — B(ss1)),

where B(z) is the primary of the integrand (ssy — )" !(sy — x)?. The integrand is positive
and strictly decreasing (as a function of x) within the integration borders ss; < = < so.
Thus B(x) is strictly increasing and positive within these bounds. Therefore the difference
B(sy) — B(ssy) is strictly decreasing in s, while 1 < s < s9/s; holds. Therefore the second
factor of the buyer’s profit, that is B(sy) — B(ss1), is decreasing in the sellers’ offer strategy.
The first factor 555 = sln st obviously is decreasing in s, while s is within the feasible

region. Combining both arguments shows that the buyer’s expected profit is decreasing in

the sellers’ offer strategy.
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It remains to be prove that the buyer’s expected profit is increasing in the number of
sellers n. The proof will be lead verbally. When an additional seller bids in the auction,
then there is a positive probability that this seller places a bid that is lower than all previous
bids. If the previous lowest offer exceeds the buyer’s reservation price, then the lowest bid
that an additional seller places directly increases the buyer’s profit. When the previous lowest
bid exceeds the buyer’s reservation price, then there is a positive probability that the buyer
accepts to buy at the bid price that an additional seller places. Therefore an additional seller
always increases a buyer’s expected profit.

O

Proof of Proposition 8. We calculate the probability that the seller with the offer strategy

s1/s2 < §' < s9/s1 wins the auction.

1 S82
P(Ds)(S,S/) = P(SI S min(Sl, SQ, ceny Snfl),S/ < B) = / 1Deal dx

- S'AS Jss
= s’lAs [:2 P (x <min (S, S, ...,5,-1), * < B) dx
s — n—1 _ ss _
- S’lAs / <SS;Asx> bzAbx Aot sy S’lAs / b2Abx e
- s’s"—llAs”“ /Tj;(ssl,sfsl) (552 =)™ (52— @) do + ]1{8'<S}3’A132 /:: s2 =@ d.

The primative of f(z) = (ssy — )"~ ' (so — z) is given by

(ssg — )" (—nsy — Sg + 882 + nx)

Fla) = n(n+1)

This observation ends the proof for the case s1/sy < s < s3/s;. The remaining cases are

obvious. O

Proof of Proposition 9. Proposition 1 calculated the formula for the buyer’s deal proba-

bility when the sellers’ offer strategy is multilateral. Assume first s’ < s. Then

< s's s's; < x < 883 581 < x < 89

P (z < smin{Sy,Ss, ..., Sn-1}) 1 1 <1

P (z < S, 1 <1 <1

With analogous steps as in the proof of proposition 1 and using lemma 1 and the inde-

109



pendence of the sellers’ offers we obtain the desired result:
P(Dg)(s,s") =P (B > smin{S1,Sq, ..., Sn_1} UB > §'S,)
=1-—P (B < smin{Sy,5s,...,8,_1} N B < §'S,)

1 e
=1- —/ P (z < smin{S1, Sz, ..., Sn_1} Na < §'S,) dx

As Js
1 s
—1_ K/ QP(x < smin{S1, Sy, ..., Sp_1}) P (z < §'S,,) dx
s Js,
_ Slsl — 85 1 551 /
A AS/S,SIP(I<SSH) dz
1 s
_ E/ 2 P (z < smin{Sy, S, ..., Sn_1}) P (z < §'S, dr)
881
81(8/ _ 1) 1 /551 3/82 —r
= - ;
As As Jvs,  sAs T
1 52 8§89 — X n—1 8/52 —
- 7/ ( ) dx
AS 551 SAS S’As
S22 — 518 1 -

, . s%sT—§%s? 12 (59 — )" " (/59 — ) d
— 5 | 8's2si(s = 8') — — Tp——
As As?s 2 Asntlgn=lg
Sy — 818 si(s—¢) G(s2) — G(ss1)

/ !/
= — — 2 _
As As?s! (5752 = s1(s +57)/2) Asmtlsn=lg'n(n + 1)’

where
G(x):=(ssy—x)" (nx+ 88y — 898 —nsys).
Now let s’ > 5. Then

P (Dp)(s,s)=1— L /82 P (z < smin{S1, S, ..., S 1) P (x < §'S,) dx

As S1
_ S5 s fssslfl P (z < smin{Sy, Sy, ..., Sn-1}) dx
B As As
1 s
— A—/ ‘P (x < smin{Sy, S2, ..., Sn_1}) P (x < §'S,) dx
S Js'sqy
Sy — 518 fsss/fl(ssg —x)" !t dx G(s2) — G('s1)
- As Asnsn—l Asntlisn=lgn(n 4 1)
_s2— 818 (ss2—ss1)" —(ss2—8's1)"  G(s2) — G(s's1)
 As Asnst—ln Asntlisn=lgn(n 4 1)
_sa—s18 s (ss2—8's1)"  G(s2) — G(8's1)
 As n Asmsn—ln Asrtlsn=lgn(n 4+ 1)
The case s9/s1 < §' is obvious. O

Proof of Proposition 10. Let the sellers’ offer strategy be s and one seller’s offer strategy
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be s’. Then that seller’s expected profit is

1 8/82 ! _ 1 8/82
E (Ps)(s,s') = A /, 1peat (x — /') dx = %,QAS // P(Deal) x dx
s's1 §'81

1 s'so
= ZIQTS /S/S1 P (zr < min(Sy, S, ...,5,), © < B) x dz

s —1 51 by — by $S9 —x\" L by —x
A R () ;
S 2AS ( < s’'s1 Ab Tar+ max(s,s’)s1 SAS Ab rar

s =1 1by —w 1 52 -
Y P o
5?As ( = Jes Ab vars SPLAS™ Jmaz(s,s')s1 (852 —2)" " (br —2) & :E)

s —1 1 2 5% (s — %) + 3 s¥sy(s? — 52) N A(s9) — A(max(s, s')s1)
§2As \ ¥ 6As sn—LAs™ '

The primative A is defined as in proposition 2. O]

Proof of Proposition 11. Let m(z) be the pdf of smin{S;,Ss,...,S,_1} and f(z) be the
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pdf of §'S,,. Then

SS9 s'so

E(Pp)(s,s') = /

S1 s's1

L / P () f(2)1es,P(B > y)E(Pp|B > ) dxdy

$81 's1

- / . )/Sy m(y) f(z)P(B > z)E(Pg|B > z) dzdy

mazx /51

[ / ) m(y)f(2)P(B > y)E(Ps|B > vy) dxdy

ss1 Jmax(y,s's1)

52 v (sso —y)"™2 1 sy—wsy—1
= -1 dxd
/max(ss1,s’51) /5’51 (n ) (SAS)nfl s’As As 2 ey

52 o2 (ss2—=y)"? 1 sy—yss—y
—1 dzd
551 /ma:v(y,s’sl)(n ) (SAS)n_l s'As As 2 vy

n—1 s2 Yy L )
S $s9 —y)" (89 — x)° dxd
IAgnt+lgn—1g/ </mm(ssl’s,51)/8,51( 2 —y)" (52 ) y)
n—1 sz [s2 L )
+ 2Asntlgn—1lg/ </ssl /maa:(y,s’sl)<882 y) (82 y> v y)

n—1 S92 /
s (50" (52 o0 = (529 )

max(ss1,s's1)

+

n—1 o2 n—2 2
b ([ 2 = masty, 50)) (552 = 0)" 252 — 0)® dy)

S1

S/<S n — ]_ 52 n— n—
- m/ (52— y)" (s2 = 8's1)" — (552 —9)" H(s2—y)" dy

$81

n—1 52 .

* m/ (ss2—y)" (s2—y)" dy
551

(n—1)(sy — s's1)? /32

6Asntlsn—lg!

(ss2—y)" % dy

S1
n—1 52 .
Aoy | (55— ) s —w)" dy
S$S1

n—1 82 .
b gy [ (s =y s — )" dy

1 (= 1)(H(ss) — H(ss1))

— M ((SAS)TL_l _ (8 (S _ 1))n—1) +
© GAgntlgn—lg 2 3Agntlgn—lg
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Now let s < s’ < s5/s1. Following analogous steps as in the first case we get

p n—1 52 e ,
E(Pg)(s,s") = GAsngn—1g </S,S (ss2 —y)" ((32 —8's1)" — (52 — ?/)3> dl/>

n—1 s's2 .
T oAy (/ (52— 's1)(s52 — )" (52 — y)* dy)

51

n—1 52 o 5
+WW</S (ss2 —y)" " (s2 —y) dy)

/81

(n—1)(sg — 8's1)3 52 e
- 6A3”+125”—18’1 (/s (552 = ) i dy)

/51

n—1 52 .
T GAsi g1y (/ (ss2 = y)"*(s2 —y)° dy)

/sl

n—1)(sy —s's s's1 B
+ ( 2A52S123n15/1) </53 (ss9 —y)" 2(32 - y)2 dy)
n—1 52 o

v VN BRI

S9 — §'51)3 o o
= M ((SSQ — S 81) - (82(8 — 1)) 1)

(n —1)(H(s2) — H(s's1))
3Asntlgn—lg/
4 (n—1)(se — §'s1)(I(s's1) — I(ss1))

2A5n+18n—18/

The primatives H and I are defined as in the proposition.

O

Proof of Theorem 2. First it will be shown that the unilateral offer strategy in its optimum

1

does not exceed the optimal multilateral strategy, i.e. s2,, < ;..

To do so, we rearrange the

formulas for the sellers’ expected profit. First, the formula for the expected profit of a seller

is calculated, when all sellers pursue multilateral offer strategy s € [1,s2/s1]. As all sellers

have the same expected profit, we refer to an arbitrary seller as seller 1. Before the formula

is introduced, we define the event
A(s) := "Seller 1 with offer strategy s places winning bid”
Then the expected profit of that seller is

E(Ps,)(s) = P(A(s))E(Profit of seller 1 with offer strategy s|A(s))(s).

Note that the probability in the formula above deceases when the sellers increase their offer

strategy s. In contrast, when a seller places the winning bid, then her expected profit increases

when her offer strategy s was higher.

Secondly, we rearrange the formula of a seller’s expected profit, when that seller places
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her bid unilaterally with strategy s’ € [1,s2/s1], while the other sellers pursue multilateral

offer strategy s € [1,s2/s1]. To simplify that formula, we define the event

B(s, ') :="The unilateral bidding seller with offer strategy s’ places the winning bid.

The other sellers pursue multilateral offer strategy s.”
Then the expected profit of the unilaterally bidding seller is
E(Ps)(s,s") = P(B(s, s"))E(Profit of seller with unilateral offer strategy s’ |B(s,s"))(s, s').

Note that the probability in the formula above deceases when the unilaterally bidding seller
increases her offer strategy s’. In contrast, when that seller places the winning bid, then her
expected profit increases when her offer strategy s’ was higher.

When we assume that a seller placed the winning bid and then calculate her expected
profit as a function of her offer strategy, then this expectation is independent of the other
sellers’ offer strategies. That is to say, that the other sellers’ offer strategies only change the
probability that a player places the winning bid. Thus, the expectations in both formulas

above are equal. That is,

E(Profit of seller with unilateral offer strategy s’ |B(s,s'))(s,s)
= E(Profit of seller 1 with offer strategy s'|A(s"))(s").

When we analyse the probabilities in the formulas above, we conclude that
P(B(s,s')) < P(A(s)),

while s < §'. That is, when the unilaterally bidding seller places a higher average offer than
the other sellers (s’ > s), then that seller’s probability to win the auction is lower than a

multilaterally bidding seller’s chance to do so.

1

When all sellers pursue optimal multilateral offer strategy s,

then this strategy generates
the highest profit for each seller. Now assume that a unilaterally bidding seller chooses an
offer strategy that exceeds the multilateral strategy. That is s’ > sipt. Then that seller’s
probability to win the auction is lower than the chance of a multilaterally bidding seller.

Further, her expected profit when she wins the auction is lower than if she placed her bid
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with strategy s’ = 5 . That is, when s’ > s! . then the unilaterally bidding seller’s profit is

opt

E(Ps)(s0y,8') = P(B(sg,, s'))E(Profit of seller with unilateral offer strategy s’ |B(sl,, ")) (5L, ')
= P(B(s},, s'))E(Profit of seller 1 with offer strategy s'|A(s"))(s')
< P(A(s"))E(Profit of seller 1 with offer strategy s'|A(s"))(s")
=E(Ps,)(s) < E(Ps,)(501).

The inequation shows that a unilateral bidding seller can not increase her profit when she

has an offer strategy that exceeds the optimal strategy s! . that the other sellers pursue. In

opt
summary, a unilaterally bidding seller has a lower expected profit when her offer strategy

exceeds that of the multilaterally bidding sellers. As a result, an optimal level 2 offer strategy

must not exceed the optimal level 1 strategy. That is, sopt
Next, we show that the optimal level 2 strategy is unique. As the optimal strategy is
within (1, Sopt)> the further analysis will exclusively consider that case. For s’ < s, the level 2

bidding seller’s expected profit is

< sopt

s’ —1 2 83 (53 — 83) + 3 s239(s% — 52 1 n_
B (Ps) (s.8) = Sorr (n Lo Z DA ot 25Ty L (s )" (s ) (s — )

(s = 1)si ‘3 3 2 '2 6 n—1
= G TIAS Tyes (2 s51(s°—58°)+3s2(s”°—s )) + T AT (ssa—y)" " (b2 —y) y(s2 — ss1)
1

— (8/_1) 1 2) (/3_ 3)+3 (2_ /2) +
= ) s'<s S1 (S S S2(Ss S Cc2 ),

where ¢; and ¢, are positive constants as functions of the unilateral offer strategy s’ given by

c1 = 57/As%/6
6

— n—1
Cy ‘= m (882 — y) (bg — y) y(SQ — 851).

The expected profit for s’ = 1 is zero. The expected profit for s’ = s is greater zero. This

case represents multilateral level 1 optimization strategy which is positive while s > 1.
The first derivative of expected profit in unilateral level 2 optimization is

OE (Ps) (s, s') (202—625’+65252 —48%s; —2818’3—1—4818’4—3825’3—352828’4—283515')
0s’ - §'3

(4s1) S (—2s1 — 3s9) ¢34+ (51 532—52323—02) s — (sl 534—52326—202)

/3 :

:Cl
S

The second derivative as a function of s’ is
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O?E (Ps) (s,8) (4s1) S + (=51 5% 4 + 50526 +20¢3) 8 + (51 5°12 — 5552 18 — 6 ¢5)
02’ S/4

The second derivatives is zero if and only if

0=2s8"+ (33252 — 253 +02)s’—93282+633sl — 3¢y
= as’ +bs' +c,

where a := 2s;, b:=35%sy —25%s; +cxand c: = —95%s9+65%s; —3cy. As s9 >0, a > 0.
Furthermore b > 0 because 3s%s; — 2s3s; > 3s2s; — 25%s; = 515%(3 — 25) > 0, while s < 3/2.
Assume ¢ > 0. Then as’*+bs'+¢ > 0 while ' > 0. Then the second derivative has no positive
roots. Assume ¢ < 0. Then as’* + bs’ + ¢ has exactly one positive root, because as’ 4> 0 and
bs' are positive and increasing in s’. In this case the second derivative therefore has exactly
one root. Therefore for &' > 0 and thus all s’ in the feasible region 1 < ¢ < s, the second
derivative has at the most one root. Therefore there is exactly one maximum of the expected

profit in 1 < " < s} . O

Proof of Proposition 12. Theorem 2 showed that s7,, < s;,

holds. The unilateral bidding
seller places a lower bid than the other sellers on average. This lower bid has positive effect
on the buyer’s expected profit. This effect can be observed from buyer’s expected profit as
a function of the bidding strategies, that was introduced in proposition 11. That function is

increasing when the offer strategy decreases. O

Proof of Theorem 3. Assume the sellers’ multilateral strategy is s = s5/s;. Then each
seller’s expected profit is zero. Then a single seller may pursue some strategy s’ < s to gain
a positive expected profit. Therefore at the level 3 optimum, the optimal sellers” multilateral
strategy is lower than s,/s;. For the multilateral strategy s to be optimal level 3, i.e. no seller
benefits by pursuing the unilateral strategy s’ # s, it must hold that the multilateral strategy
s is the maximum in level 2 optimization. This means that %(s, s) = 0 must hold.
Proposition 10 introduced the formula for the expected profit of a seller with a unilateral

strategy s’, while the other sellers pursue strategy s. This formula was rewritten in the proof
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of theorem 2 and is of great value in this proof.

OE(Ps)(s, s) 6s' "y (52 — s81) (88 — y)n_l (sg — Sl)l_n (s2 —y)

(s,8) =

s’ 5252
(6ssy —65%s1) (s —1)
— >
1257y (sp—ss1) (ss2—9)"  (se—s) " (sa—y) (s— 1)
5352
_ 6y (52— s51) (585 — )" " (s2 —¥) _ bs(s2—ss1) (s—1)

Agn—Lgn+lg,? 52

12y (sa—ss) (s —)" " (sa—y) (s—1)

gnt+2 AsanSIZ ’
is zero if

y(sso—9)" " (2—y) s(s—1) 2y(sso—y)" " (s2—y) (s—1)

Asn—lgntlg 2 52 sn+2 Agn—1lg, 2
< 0=sy(ssy — y)"_l (sg —y) — " (s — 1) As™ s] — 2y (ssy — y)"_1 (s2—y) (s—1)
= 0= (s — p)(s55 — )" (5 — 25 — 1) — 87 (s — 1) A2

= 0=ylsa—y)(ssa—y)" " (2—5) =" (s — 1) As" s,

0=

To keep the notation clearer, the last term is defined as f(s). Note that f(1) > 0. Assume the
derivative of f as a function of s is negative. Then there is at the most one s > 1, such that
f(s) =0 can hold. This implies that the first derivative of the expected profit %(s, s)
has at the most one root, which means that there is at the most one maximum. In theorem
2 it was shown that there is a maximum. Thus there is exactly one multilateral strategy s,

such that unilateral optimization s’ is not preferable compared to multilateral optimization.
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If remains to be shown that f'(s) < 0, while 1 < s < s5/s;.

gi =y(s2 —y) (32(n —1)(ss2 —y)" (s —2) — (859 — y)”’l) — As" 8T ((n+1)s"(s — 1) + s")
=y(s2—y)(ss2 = )" (s2(n = 1)(s = 2) — (552 —y)) — As" Isis" (n+ 1)(s — 1) + 1)
< y(s2 —y)(ss2 — )" " (s2(n — 1)(s = 2) — (s52 — )
—(s2—y)(ss2 —y)" %" ((n+ 1)(s — 1) + 1)

92 (y (s2(n — 1)(5 = 2) = (55 — ) — 5" ((n+ 1)(s — 1) + 1))
)2 (SQnsy — 2590y — S95Y + 259y — 8oy + y* — ns" T + ns™ — s"+1)
559 — )" 2 (ss9y(n — 2) — 2s9y(n — 1) + s"(—ns + 1 — s))
)

"2 (soy(sn — 25 —2n + 2) + s"(—ns + 1 — s))

=(sa—y)(ss2—y)" | say(n(s—2) +2(1—5))+s"(-ns+1—3s).| <0
<0 <0 <0

The derivative is negative and therefore there is exactly one optimum level 3. It remains to be
shown that the level 3 optimisation leads to a Nash equilibrium. Assume all sellers optimise
their strategy multilateral level 1. Then each seller can optimise her offer strategy, given the
multilateral strategy of the remaining sellers. Thus there is no equilibrium. This statement is
true unless unilateral optimisation of a single seller leads towards the same optimal strategy
as a multilateral offer strategy. This is characterised by level 3 optimisation. In this case
no seller benefits from applying a unilateral strategy unequal to the multilateral strategy.
Therefore level 3 optimisation is an equilibrium strategy.

At last, it will be shown that for the equilibrium strategy s3, < s2,, holds: Assume the

following proposition (p) holds: "The optimal level 2 response strategy sgpt as a function of

the other sellers’ multilateral strategy s is increasing in the multilateral strategy”. Let now

1

S5t > Sopr- Then the expected profit of the seller with the unilateral strategy s2,, increases

by applying unilateral strategy. Thus this case is not possible, as the multilateral strategy

1
opt*

exceeds its optimal response strategy s2,. Let s, < s3, < s, Then the optimal level 2

response strategy to the multilateral strategy sgpt is lower than the optimal response strategy

1

t0 S,

Therefore s}, can not be a Nash equilibrium. At last, just the case s}, < s2,

remains to be possible. Finally proposition (p) remains to be shown: Theorem 2 showed
E(Ps)(s,1) = 0 and E(Ps)(s,s) > 0 and E(Ps)(s,s") > 0 for s € (1,s) (while s # 1). It
82 E(Ps)(s,s")

0%’

profit’s first derivative is furthermore decreasing in the multilateral strategy s, then the level

further was shown that (s,s") < 0. Then just one maximum exists. If the expected
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2 optimum also decreases with s’ (and thus increases in s):

OE(Ps)(s,s')

5 - (53(2313/ — 451) — 5%(s95" + 653) + c) .

The addends (2s15" —4s1) and —(s98" 4 6s2) dependent on s are both negative. The expected
profit’s first derivative is decreasing in s as all powers of s are positive while s is positive.

Thus proposition (p) and therefore the theorem holds. O

Proof of Proposition 13. In theorem 3, the necessary condition

NG —y)" (a—y) sls—=1 2y(ssi—y)" (sa—y) (s—1)
AsnflsTH’l S]_2 52 Sn+2 Asnfls:LQ

was established for an offer strategy s to be optimal level 3. The first and third addend
converges to zero for n — oco. That is,

yss2=y)" (2—y) s(s—1) 2(ss—9)" (2=1) (5= nope s(s—1)

Agn—1lgn+l 812 s2 gnt2 A8n71812 s2

The limit —% is zero for s = 1. Therefore the optimal offer strategy is sgpt =1.
In proposition 1 the expected profit of a seller under multilateral strategy s was calculated.
That profit is

(s—1) (Als2) —Alss1) )

E (Ps) (s) = gntl Agntl

This formula shows that the offer strategy s = 1 generates a profit of 0 for a seller. m

Proof of Proposition 14. Proposition 13 showed that the optimal level 3 offer strategy in
the limit is sgpt = 1. In proposition 2 the seller-group profit under multilateral offer strategy

was calculated. That formula is

n(s—1) ( A(sg) — A(ss1) )

E(S5)(s) = gntl Agntl
That profit is zero for s = sgpt = 1. Furthermore, the limit of a zero sequence is zero.

Therefore the sellers’ group profit under optimal level 3 strategy is zero for a group size

n — o0o. O

Proof of Proposition 15. Proposition 13 shows the optimal level 3 strategy sgpt — 1 for

n — 00. According to proposition 6 the buyer’s profit in the limit is

E(B)(s) = (522;221) =
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Proof of Proposition 16. Proposition 1 introduced the formula for the buyer’s deal proba-
bility. That formula was dependent on the sellers” multilateral offer strategy and the number
of sellers. Proposition 13 showed that in level 3 optimum and for infinitely many sellers, the

optimal strategy is s;,, = 1. When we combine these statements we obtain

P(Dp)(s) = 22 4 _° ((82(3_1)>n+1—1)"3"82_1'51:1.

As n+1 sAs

The probability that the auction is successful converges to 1. That proves the proposition. [J

Proof of Proposition 17. The proof of proposition 17 is shown by Seemiiller (2013) in the
discussion of the Dealer’s Market. O

Proof of Proposition 18. The proof of proposition 18 is shown by Seemiiller (2013) in the
discussion of the Dealer’s Market. O

Proof of Proposition 19. According to proposition 17 each seller accepts the dealer’s offer

with probability ps = (a + f5)/(2a). Sellers determine their reservation prices independently.

Thus the expected number of acceptances is binomially distributed with the success parameter
a+fs

pa- Expectation thus is npg = n<2=. O

Proof of Theorem 4. The dealer’s profit per round-trip transaction is f,— fs > 0. Therefore
the dealer profits from every round-trip transaction if f; < f,. The buyer prefers the Dealer’s
Market over the reverse auction, while f, < finq. The seller prefers the Dealer’s Market over
the reverse auction, while f; > f;inq. As a result the Dealer’s Market is Pareto efficient under

the given conditions. O]

Proof of Theorem 5. The theorem is a summary of the analysis of this section. The proof

is delivered in the section’s argumentation above. O
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On the Pareto Efficiency of an Intermediary
Over a Multiple Buyer and Seller Auction Market

Johannes Seemitiller

Abstract

We introduce two markets where a single non-divisible good is traded. In the Buyers’
Market, buyers and sellers directly trade on a platform under full price information. Sec-
ondly, a dealer offers his services in the Dealer’s Market under information asymmetry. Profit
optimizing buyers and sellers may choose one of these markets to trade the good. We show
that both markets can generate a positive expected profit for all traders, so they benefit from
participating in these markets. Furthermore, under generally non-restrictive conditions, an
optimal dealer’s pricing strategy causes the market participants to prefer the Dealer’s Mar-
ket over the Buyers’” Market. In this case, the market under information asymmetry Pareto
dominates the market under full price information. This property is noteworthy, as numerous
authors such as Akerlof (1970) or Stiglitz and Weiss (1981) found information asymmetry a

factor that leads towards inefficient market allocations.
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1 Introduction

How markets allocate resources depends on the institutions that govern transactions and
a market’s design. There are, however, markets where the price system operates, but perfect
resource allocations are not obtained. The Nobel price committee recognized that a centralized
clearinghouse can improve market efficiency by implementing certain market procedures. In
particular, Roth and Shapley, who have been awarded the 2012 Nobel price for economic
sciences!, have illuminated how markets operate. Their research was involved in designing
institutions that help markets function better. They built the groundwork that has led to the
emergence of the branch of economics known as market design.

In this paper, we study a market where buyers and sellers directly trade on a platform
that is similar to Amazon and the buy-it-now option of eBay. Sellers disclose their prices for
an homogeneous good or service. Buyers arrive one after another and decide to buy at the
lowest price. The efficiency of this platform is analysed and compared to a dealer’s market
design. On the platform full price information is available, whereas a dealer operates under
information asymmetry. We introduce conditions when the Dealer’s Market is preferable for
all parties.

Empirical studies of online trading platforms are performed for instance by Roth and Ock-
enfels (2002). Wang et al. (2004) in particular study buy-it-now offers and present statistics
on their popularity. Accordingly, eBay introduced its buy-it-now service in 2000, which has
been adopted subsequentially by 45% of eBay’s U.S. auctions by the end of its first year.
These buy-it-now auctions accounted for 29% of gross merchandise sales on eBay in 2003.
The empirical work of Park and Bradlow (2003) further shows that the buy-it-now feature is
an important element in auction design.

The benefits of eBay’s buy-it-now option have been discussed in recent literature. Mathews
(2003) shows that the buy-it-now option is beneficial to bidders who want to buy their product
in a shorter span of time than others. That impatience does not reflect the limited cognitive
resources that most consumers appear to apply in making decisions, as Ratchford (1982) and
Mehta et al. (2003) note.

Studies have empirically and experimentally analysed the influence of transaction costs
on online auctions. For instance, List and Lucking-Reiley (2002) found in a field experiment
that cognitive costs influence a bidder’s strategic behaviour.

Seemiiller (2013b) introduces a model on bilateral trade, where bargainers value the traded
good or service imprecisely. In that model, individuals may behave rationally or naively and
it further allows for different negotiation skills of the traders. Seemiiller (2013a) generalizes

his paper on markets with an arbitrary number of sellers who trade with a single buyer. He

1See in Nobelprize.org (2012) for reference
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shows that a dealer under information asymmetry can improve the efficiency of these markets.
The present paper is a further generalisation of his trading model and allows for an arbitrary
number of buyers who buy from the same number of sellers. Where Seemiiller focuses on
optimal offer strategies in the referred papers, the present paper’s analysis concentrates on
the platform’s efficiency.

In our analysis, we compare a market under full price information and a market under
information asymmetry. Within our framework of profit maximizing individuals, we add
imprecise valuation. Each individual has a certain reservation price for the good. These
reservation prices are random and identically and independently distributed. Based on her
reservation price, each seller assigns an offer price to the good, such that this seller’s expected
profit is maximized. As a result, a seller’s offer price is also random. Buyers arrive one after
another. Each buyer accepts to buy the good or service at the present lowest price, if that
price does not exceed his reservation price.

Both analysed markets are wealth increasing for all traders. However, we show under
which conditions the market under information asymmetry is preferable to the market under
full price information.

Section 2 introduces the framework of the market under full price information (the Buyers’
Market) and analyses its properties in detail. Section 3 discusses the dealer’s pricing strategy
under information asymmetry in the Dealer’s Market. Furthermore, it analyses the traders’
profit in this market. The market preferences of the traders are discussed in section 4. Section

5 concludes.

2 The Buyers’ Market

We model a platform market similar to buy-it-now offers on eBay, where a single indivisible
good is traded. Several owners (sellers) of the good disclose their offer prices on the platform.
Potential buyers can observe the sellers’ offers and decide whether to buy at each seller’s offer
or not. Denote P; as the lowest available sellers’ offer. In our model, a buyer buys a good
at that lowest price Py, when that buyer’s reserve price exceeds P;. The good then is traded

2. When a subsequent buyer enters the market, then that buyer observes the

at that price
remaining sellers’ offers. Similar to the prior buyer, the good is sold at the lowest available
price, when that price does not exceed the present buyer’s reserve value. This procedure
continues until no further buyer arrives. When a deal is successful, then a buyer’s profit is
determined by the difference between the deal price and that buyer’s reserve value. A seller’s

profit is given by the deal price.

2The event that a buyer’s reserve price and a seller’s offer are equal is a zero set. It thus has probability
zero. Therefore the events (a) a buyer’s reserve price exceeds a seller’s offer; and (b) a seller’s offer exceeds
the buyer’s reserve price; add up to a probability of 1.
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In our model the parties suffer from valuation imprecision. Their reservation prices thus are
not identical. We model imprecision as independent uniformly distributed random variables.
When there are n sellers, then the i-th seller’s reservation price is given by Vg,. If there are m
buyers, then the j-th buyer’s reservation price is given by V.. Due to the lack of a valuation
benchmark, neither party knows whether he underestimates or overestimates the value of the
asset. They just know that their valuation is uniformly and symmetrically distributed around
some average valuation V' > 0.

In order for a seller to expect a positive profit trade, her offer must be lower than her
reservation price. Otherwise her expected profit is zero, or even negative if her offer exceeds
her reservation price. In our model, each seller’s offer strategy is to adjust her reservation
price by a certain factor s > 1. Then her offer is sVg. With this strategy, each seller can
determine her offer sV, such that it maximizes her expected profit. This offer strategy is a
special case of Chatterjee’s model Chatterjee and Samuelson (1983).

When there is one buyer and one seller in the auction, then the model simplifies to a
two-player double auction. In this auction, optimal offer strategies are studied by Seemiiller
(2013b). Optimal strategies in the one buyer and n seller case are further studied by Seemiiller
(2013a).

We distinguish two types of the Buyers’ Market: Level 1 can be regarded as the initializing
of the trading platform. Each player knows that he suffers from valuation imprecision and
knows that the other players know, knows that they do and so forth. The players furthermore
know the imprecision’s distribution, know that the others know, etcetera. Thus there is
mutual full information in the sense of Aumann (1976). The players, however, are not aware
whether they over- or undervalue the good because they have no respective benchmark. When,
for instance a seller values the good at 160 and knows the imprecision’s distribution, she still
cannot determine neither over- nor undervaluation. This can be regarded as the initializing
of the platform as there are no reference offers present from which over- or undervaluation
can be derived.

Although the sellers’ reservation prices are not identical, their expected profit is the same
ex ante. Profit is further dependent on each seller’s individual offer strategy: Assume there
are 2 sellers. The first seller places an offer twice her reservation price. The second seller
places an offer that is 10% higher than her reservation price. Then it is likely that the offer of
seller two is lower than seller one’s. That is, each seller’s offer strategy influences individual
and other sellers’” deal probability and expected profit. Underlying rational sellers, they apply
a homogeneous equilibrium offer strategy as can be derived from Chatterjee Chatterjee and
Samuelson (1983).

The Buyers’” Market level 2 is in post initialization phase, where sellers can observe offers

from previous sellers. Post initialization thus allows sellers to compare their individual reser-
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vation price to their peers’ prices. This a seller to install a profit optimizing offer strategy, that
is conditioned on the other sellers’ offers. As a result, offer strategies are non-homogeneous
in the level 2 post initialization phase because a newly arriving seller conditions her offer
strategy on the previous sellers’ strategies.

This paper studies the level 1 initializing phase. That focus allows us to make use of the
sellers” homogeneous offer strategy.

In our model, the sellers’ offers Og and the buyers’ reservation prices Vg have the same
uniform distribution. In mathematical terms, this is represented by the equation Vg £ Og 4
unif(si, s3]V = unif[l —a, 1+ «]V, with valuation imprecision a € (0,1) and some average
valuation V' > 0. Further we assume that the number of arriving buyers and offering sellers
is identical. That framework allows for analytical solutions in decently sized markets.

Let us start with an analysis of the Buyers’ Market’s properties.

2.1 The Buyers’ Market Properties
In this section we analyse major properties of the Buyers’ Market. We start with a lemma
which will prove worthwhile for numerous proofs throughout the paper.

Lemma 1. Let X, X, ..., X,, be #id random variables, with X, 4 uni flzy, xs]. Then the cdf
of min(Xq, X, ..., X,,) is given by M(z) =1— (m)n The pdf of min(X1, X, ..., X,,) is

Tro2—T1
given by m(zx) = n%
Proof: See the Appendix. O]

If needed, the notation of the functions M and m is expanded in an intuitive way. Then
we may for instance write M (z,x1,z2,n) instead of M (z). This lemma is a key ingredient
for the calculation of expected prices and deal probabilities in the Buyers’ Market. Before we
calculate these, the next proposition introduces the cumulative distribution function of the

above minimum, given the prior deal history.

Proposition 1. Let Xy, X,,..., X, Y1,Y5,....Y; and Zy,Z,, ..., Z; be iid random variables,
with X; % unif|xy, z5]. Conditioned on Yy, > min(Xy, Xo, ..., Xp) > Z; for allk =1,...;1 and
l=1,....7, the cdf of min(Xy, Xs, ..., X,,) is

—14i x~J =144\ (j —1+i—k g1 k4j—1 1 k4141 k+1+1
i (") (@) () g (R )
bl o —1+4i =140\ (5, m—1i—k 1 1 k4141 k41+1

Z:l ‘ g:l (n k Z) (3)55" L+ kmjl (_1)k+j lk+l+1 <x2 — I )

The corresponding pdf is
fiix) = (z—y)" "y —m) dy
i, = 11—y 10N (9N 1 il 1 k+i+1 k+1+1
221 ) g:1 (n . 7,) (]l)mn 144 kle (_1)k+] lk—i—l-{—l(x? — )
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Proof: See the Appendix. n

The above proposition calculates the minimum of the n sellers’ offers. Compared to lemma
1, that proposition is conditioned on the event that prior buyers accepted and declined sellers’
offers. Explicitly, in proposition 1 j buyers traded on the market and ¢ buyers did not find a
suitable offer.

Next, we analyse the probability that the k—th arriving buyer finds a suitable offer. Then
that buyer’s deal is successful. We calculate the probability of the complementary event, that
is, that the k—th deal is unsuccessful py(k). In other words, the number py(k) represents the
probability that all sellers’ offers exceed the k-th buyer’s reservation price.

We first calculate the probability py(1) that the first deal is unsuccessful.

Proposition 2. The probability that the first deal is unsuccessful is given by

1
n+1

pa(l) =
Proof: See the Appendix. n

The above formula shows that the probability that the first deal is unsuccessful is inde-
pendent of valuation imprecision «. In fact, it is only dependent of the number of sellers n in
the marketplace. When there are infinitely many sellers, then the probability that the first
buyer rejects to trade is zero. When the market has the minimum possible size (i.e. n = 1),
then trade success probability is 0.5. That is, the first buyer has probability of at least 0.5
that he finds a suitable offer. An higher number of sellers increases that probability. With an
increase in the number of sellers, the first buyer’s deal success probability converges to 1.

In the next propositions, we calculate the probability that the second buyer rejects trade.

Proposition 3. The probability that the second deal is unsuccessful is given by
pa(2) = (2n+3)/((n+1)(n +2)).

Proof: See the Appendix. O

As in proposition 2, we observe that the deal probability is dependent on market size,
whereas the imprecision’s distribution does not affect it. Furthermore, for infinitely many
sellers, the probability that the second buyer rejects trade is zero. That is, that buyer finds
a suitable offer with probability 1.

It becomes increasingly time intensive to calculate the probability that the k-th buyer
rejects trade when k increases. This can be seen from the proof of proposition 3. To calculate

the probability pg(k), 2! different integrals, each with up to 2! integrands, need to be

129



calculated. This can in particular be observed in the proof of proposition 3, where we calculate
the probability that the third buyer rejects trade.

Proposition 4. The probability that the third deal is unsuccessful is given by

3n? +12n + 10

pa(3) = (n+ )(n+2)(n+3)

Proof: See the Appendix. n

The above proposition shows that the probability that the third arriving buyer finds a
suitable offer is increasing in the number of offering sellers. That probability further converges
to 1 for infinitely many sellers.

As mentioned prior to proposition 4 and as can in particular be observed in the proof of
that proposition, the calculations of the deal reject probabilities is of increasing complexity.
The next proposition lists the probabilities that the k—th buyer rejects trade. The calculations
of these formulas are omitted in this paper to save on space. Note that in order to calculate
the probability that the 13th buyer rejects trade, it is necessary to calculate 237! = 4,096
different integrals, each with up to 4,096 integrands. That is, approx. 16 million integrals
have to be calculated. Despite the number and length of the integrals, each is (apart from
time and effort) straightforward to solve. Up to this date, general formulas apart from the list

below, can not be obtained with standard computers within reasonable computation time.

Proposition 5. The probability that the 4th, 5th, ..., 13th buyer rejects trade is

W

4! = 4n3 + 30n® + 66n + 39

b
oY
=
I/
3

N
ot

5! = 5n + 60n°® + 24512 + 385n + 176

]
By
~—
ot
=

6! = 6n° 4+ 105n* + 6801 + 1,980n? + 2,455n + 905

]
&
—~
(=)
=

\"

70 =7n% +168n° 4+ 1,575n* + 7, 24513 + 16, 709n? + 17, 213n + 5, 244

oo

3

8! = 8n" + 252n5 + 3,220n° + 21, 350n* 4 77, 728n3

]
<
—
oo
Nt

+ 150, 066n% + 132, 664n + 34, 111

9! = 9n® 4+ 360n" + 6,006n° + 54, 054n° + 283, 017n* + 863, 648n°

s
U
—
=)
~—

s}
=
)
S + S 4+ 3+ 3 + = +
N——— vv&vv

3
S +
©

+ 1,444, 754n* + 1,122, 771n + 250, 425

10! = 10n° + 495n® + 10, 440n" + 122, 220n° + 866, 287n° + 3, 798, 446n*

pa(10) (n 4;110)
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+ 10, 066, 8461 + 14,955, 830n2 + 10,419, 777n + 2,129, 527

11
pa(11) (” + ) 11! = 11n'° + 660n° + 17, 160n® + 253, 107n" + 2,327, 413n°
n
+ 13,789, 050n° + 52,535, 054n* + 123, 712, 231n°
+ 167, 594, 90912 4 102, 992, 233n + 26, 263, 013
12
pa(12) (” + ) 12! = 12n" + 8581 + 26,9501 + 488, 567n® + 5,645, 402n"
n
+ 43,314, 695n° + 222, 582, 744n® + 755, 718, 615n* + 1,606, 727, 220n°
+ 2,047,731, 583n2 4+ 1,016, 664, 378n + 543, 306, 757
13
pa(13) (" N )13! = 13n"? + 1,092n"" + 40, 755n'° + 890, 180n" + 12,611,931n®
n
+ 121,362, 534n" + 806, 312, 138n° + 3,691, 200, 773n°
+ 11,308, 692, 054n* + 22, 562, 585, 539n°
+ 24,689, 032, 812n2 + 17,959, 414, 927n
Proof: A computer was programmed to automatically calculate these probabilities. O

The last four propositions calculated probabilities that the 1st, 2nd, ..., 13th buyer refuses
to buy at the sellers’ lowest offer. These probabilities are increasing, because a buyer who
enters the market has a positive chance that the offer he receives is higher than that of
previous buyers. As a result, the probability that a buyer who enters the market later refuses
to trade is higher when that buyer enters the market comparably late.

When the market size increases, that is, when more sellers present their offers on the
platform, then there are more offers that are comparably low. Therefore the probability that
the k—th buyer who enters the market rejects to trade decreases when more sellers place
offers for the good. That is, then the probability that a particular buyer finds a suitable offer
increases with the number of offering sellers.

The next two propositions calculate average prices of successful deals.

Proposition 6. The expected price for the first successful deal is
E(Pr) + ! A
ry) =s +——As
! R

Proof: See the Appendix. ]
Proposition 7. Let k € N with k < n. Then the expected price of the k—th successful deal is

n+1—k k

BPn) = = st oy
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Proof: See the Appendix. n

Proposition 6 calculates the price of the first successful deal. That price is dependent on
the lowest possible deal, the spread between the highest and the lowest offer and the number
of sellers in the market. The first two criteria are dependent on valuation imprecision «.
When « increases, then the lowest possible offer decreases and the spread between that offer
and the best offer increases. An increase in valuation imprecision therefore reduces the first
deal price. With regards to deal price, an increase in valuation imprecision therefore is a good
property for the first buyer and affects a seller’s expected price negatively. More sellers in
the market also reduce the price of the first successful deal. The first buyer therefore profits
from an increasing number of sellers in the market. In contrast, the price the seller with the
lowest offer achieves, is affected negatively when more sellers are in the market place.

The influence of valuation imprecision and the number of seller on the price of the first
successful deal are also true for prices of subsequent deals, as proposition 7 shows: More
sellers in the market always reduce the deal price. When we calculate the price of the k-th
successful deal, then proposition 7 shows that these prices are increasing in k. That is, the
prices of later deals exceed the prices of deals that are closed earlier. The intuition behind
the formula is, that a buyer who arrives earlier, gets better offers than a buyer that arrives
later, when the best offers are gone. When k < (n + 1)/2, then the price of the k-th deal is
lower than average valuation. Then valuation imprecision influences the deal price positively.
When k > (n+1)/2, then the price of the k—the deal exceeds average valuation and a higher
valuation imprecision increases the price of that deal. When k& = (n 4 1)/2, then the price is
the average valuation and it is not influenced by valuation imprecision. In summary, prices
below average valuation are reduced by increasing valuation imprecision, whereas prices that
exceed average valuation, are increased by higher valuation imprecision.

Next, we calculate the expected profit of a buyer that has knowledge of the last successful

deal price and the number of remaining sellers.

Proposition 8. Assume the prior buyer’s deal was successful and priced at x) and there are

m remaining offers from sellers. Then the buyer who enters the market next, has expected
profit of

(59— x1)?> m

B(P)(@y,m) = —

Proof: See the Appendix. n

Proposition 8 allows to calculate the expected profit of buyers that enter the market at a
certain stage: When there are m remaining offers from sellers and the last deal was successful

and priced at xy, then the proposition introduces a formula to calculate the profit of a buyer
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who enters the market in this stage. That profit is dependent on the number of remaining
offers m. When more offers are available, then a buyer’s profit exceeds that when there are
less offers. When the previous successful deal was prices at zj, then all remaining offers
exceed that price. Therefore that price influences expected profit of a subsequent buyer.
That buyer’s price is at least as high as xx. When z; is comparatively high, then a buyer’s
expected profit shrinks. In contrast, a lower previous price allows for a higher expected profit
for subsequent buyers. When z, < V' (2 > V'), then an increase in valuation imprecision
has positive (negative) effect on a buyer’s expected profit. That is, when the last successful
deal was priced below average valuation, then valuation imprecision has positive effect of
subsequent buyers, whereas a previous price above average has negative effect for subsequent
buyers’ expected profits.

When the present lowest offer is common knowledge, then a buyer’s expected profit before

he determines his reserve price is calculated in the next proposition.

Proposition 9. Assume the present lowest offer is x. On entering the market, a buyer’s

expected profit then is

Proof: See the Appendix. O

The proposition allows the calculation of a buyer’s expected profit before that buyer assigns

a reserve price, but after he knows the present lowest offer. When the price of that offer is

(s2—x)?
2As

higher, when the present lowest offer is low. Intuitively, then a buyer has a higher chance that

known to be x, then a buyer’s expected profit is E(P)(x)= . That is, expected profit is
his reserve price exceeds the lowest offer, which increases a buyer’s expected profit. When
the present lowest offer x < V' (x > V'), then valuation imprecision has positive (negative)
effect on a buyer’s expected profit. That is, when the lowest available offer is below average
valuation, then valuation imprecision has positive effect on a buyer’s profit, whereas an offer
above average has negative effect for a buyers’ expected profit.

Propositions 2 - 5 are illustrated in figure 1 (a). It calculates deal failure probabilities as
a function of the number of sellers. It can be seen in the figure that the probability that the
k-+1—th deal is unsuccessful exceeds the probability that the k—th deal is unsuccessful. That
is, a buyer entering the market gets offers at least as good as subsequent buyers. Furthermore,
a buyer’s deal is successful with positive probability, such that subsequent buyer’s deal failure
probability increases. When the number of sellers increases, then the price of the k — th
lowest offer drops, according to proposition 7. Therefore, the k£ —th buyer has higher chances

to find an offer that exceeds his valuation, when more sellers present their offers. This can
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Fig. 1 — Summary of deal failure probabilities as a function of market size

be observed in the figure, as all deal failure probabilities decrease in the number of sellers.
Deal failure probabilities are drawn for the 1st, 2nd, ..., 13th buyer who enters the market.
Propositions 2 - 5 presented formulas to calculate these probabilities.

Figure 1 (b) shows the average probability that a deal is unsuccessful as a function of
market size (i.e. the fraction of unsuccessful deals in a market of size three would be given by
(pa(1)+pa(2)+pa(3))/3). It can be seen that this probability is a strictly decreasing function.
Average deal failure probability is 0.5 for market size 1 (i.e. when there is one buyer and one
seller present) and reaches down to 0.3871 for market size 13. However, it is not clear whether
average deal failure probability converges to zero or some value greater zero for big markets.
A convergence to zero would imply that on average each deal is successful, when the number
of market participants approaches infinity. Then each individual would profit from entering
the market with probability 1. When the average deal failure probability converges to some
value v greater than zero, then on average, each v — th deal is unsuccessful.

The average rate of unsuccessful deals, in a market with n buyers and n sellers is calculated
by the term (pg(1) +pa(2)+ ... +pa(n))/n. therefore it is necessary to calculate all probabilities
pa(1),pa(2), ...,pa(n). As discussed in proposition 4, these calculations are time sensitive for
big markets. It is therefore wise to shift to a quicker technique to analyse the behaviour of
the rate of unsuccessful deals for big markets.

We ran Monte Carlo simulations for markets of size greater 13. Due to the Law of Large
Numbers, the average of these simulations converges to the actual ratio of unsuccessful deals.
Each simulation represents the average of 100.000 sample markets for each market size and
therefore consists of a decent sample size such that the simulation’s results are sufficiently
close to the actual rate of unsuccessful deals.

The red line in figure 2 is the analytic solution for the ratio of unsuccessful deals, as shown

in figure 1 (b). Its derivation and properties were discussed thoroughly. The blue lines show
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Fig. 2 — Rate of unsuccessful deals as a function of market size

Monte Carlo simulations of the average rate of unsuccessful deals for markets that have a size

that exceed 13. When we combine the analytical calculations with the Monte Carlo solutions,

it can be summarized that the rate of unsuccessful deals is a strictly decreasing function in

the market size that converges to a value greater 0.36.
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Fig. 3 — Simulated distribution of unsuccessful deals for different market sizes

Figure 3 analyses the simulation of deal failures in more detail. It shows the distribution
of unsuccessful deals in markets with sizes 5, 10, 25, 50, 100 and 250. It can be seen that dis-

tributions are approximately symmetrically distributed. Furthermore with increasing market

size, deal failures seem to be close to a normal distribution.

In order to compare the distributions for different market sizes, we normalized the distri-

butions of unsuccessful deals in figure 4. On the x—axis deal failure rates are drawn. It can

be seen that the mean values of deal failures are strictly decreasing in market size. That is in

accordance with figure 2, that illustrated that deal failure rates are decreasing in market size.

A second property, that can be seen from figure 4, is a strict decrease in variance with
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Fig. 4 — Simulated distribution of unsuccessful deals as a fraction of market size

Market Size 10 25 50 100 250

Mean of deal failure 39.2834% | 37.7727% | 37.3151% | 37.0565% | 36.8897%

Variance of deal failure 1.6532% 0.6381% 0.3149% 0.1586% 0.0625%

Table 1 — Key properties of the simulated deal failure distribution

increasing market size. This statement is supported by the intuition that in markets with size
10, there are some samples where 0 or 10 deal successes occur. When there are more market
participants, then there are fewer samples where such extremes can be observed. Observations
tend to be gathered around the average value of deal failures in bigger markets. This fact
suggests that average deal failure rate does not only converge, it moreover is increasingly

likely that this rate is actually observed in an arbitrary sample of a Buyers’ Market.

Market Size 1 2 3 4 5 6
Average deal failure (in %) 50 4583 | 43.61 | 42.25 | 41.33 | 40.67

Market Size 7 8 9 10 11 12 13

Average deal failure (in %) || 40.18 | 39.80 | 39.49 | 39.24 | 39.04 | 38.86 | 38.71

Table 2 — Average deal failure probability

Decreasing variances in deal failure probabilities is supported by the calculation of deal
failure variances for different market sizes, which are noted in table 1. The table shows that
deal failure variance decreases with increasing market size. Furthermore this decrease is a

reciprocal function in market size. That means for instance, that doubling market size has the
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effect that variance decreases by the factor 0.5. Despite convergence to a certain deal failure
rate above 36%, we conclude that variance shrinks reciprocal in market size. Therefore the
probability that a Buyers’ Market in fact possesses the average deal failure rate converges
to 1 for big markets. In summary, figure 4 shows that (although number of simulations per
market size is constantly 100.000) the Monte Carlo simulations are closer together, the bigger
the market. This simulation’s behaviour also is explained by shrinking variance for bigger

markets.
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Fig. 5 — Average prices of the first 10 deals as a function of market size.

The average price of the k—th deal was calculated in proposition 7. Figure 5 illustrates
the behaviour of the prices of the first 10 deals as a function of the number of sellers. When
there are more sellers in the market, then there are more offers. These offers are uniformly
distributed on the interval [1 — «, 1+ «|V. Thus, when there are more sellers, then there are
more comparatively low offers. As a result, deal prices diminish. This effect can be observed
in figure 5. On the r—axis the number of sellers is drawn and the y—axis shows the expected
deal price®. The figure shows that the deal price of the 1st, 2nd, ..., 10th deal is decreasing in
the number of sellers. In the limit of infinitely many sellers, the price of each deal converges
to 1 — «, which is the lowest possible offer.

The next two paragraphs will discuss expected profits of the market participants. Let us

start with the expected profit of a seller.

2.2 The Sellers’ Profit

The profit of a seller is given by her offer if the seller’s offer leads to a successful deal.

Otherwise the seller’s profit is zero. A seller has no benchmark to compare her offer to.

3Without loss of abstraction, we set V' = 1 in that figure.
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Therefore she is not aware whether her offer is above or below average and how it compares
to other sellers’ offers.

A seller’s expected profit is given by the product of that seller’s probability that the deal
is successful and her reservation price. To determine deal probability, a seller assumes that
she is an average seller with an average offer, as she has no benchmark to compare her offer
to. That is, her deal probability is the average probability of the seller with the lowest, second
lowest, third lowest, ..., n-th lowest offer.

We sort the sellers such that the first seller’s offer S; is the lowest offer and the offer of
the k-th seller is the k-th lowest offer. In order to calculate the profit of an average seller, the
expected profit of the k-th seller for £k = 1, ..., n needs to be calculated.

We start with the calculation of the expected profit of the seller with the lowest offer as
a function of the number of buyers. Without loss of abstraction, we set average valuation

V =1 in the following sections.

Proposition 10. The expected profit of the seller with the lowest offer is

n+ 2+ no
(n+1)(n+2)

E(Ps,)=1-—

Proof: See the Appendix. m

Proposition 10 shows that the profit of the seller with the lowest offer depends on the
number of buyers and the valuation imprecision «. That profit is decreasing in «. That is,
a higher valuation imprecision has negative effect on the first seller’s profit. More buyers are
beneficial for the seller. When there are more buyers, then the probability that one buyer’s
reservation price exceeds the seller’s offer increases. As a consequence the probability of a
successful deal for the seller and her expected profit increase. For infinitely many buyers, her
expected profit converges to 1 (i.e. V).

The next two propositions calculate the expected profits of the sellers with the second and

third lowest offers.

Proposition 11. The expected profit of the seller with the second lowest offer is

! 1 2As ol 1 2As
EPs )= ——— —
(P) = 2 kK2(k +1) ('92 k:+2> kn(n+1) (SQ n+2>

M

k=1
! 1 As s As
+ - .
;k(kﬂ) (82 ) ; n—l—l) <82 n—|—2>
Proof: See the Appendix. ]
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Proposition 12. The expected profit of the seller with the third lowest offer is

E(Ps,)
=2 2 Z_Qk ((l_1);(z+1) [252_;8?;] (li_i)

1 2As 1 2 1 1
(TS [52_z+21 (kz(kz+1) DR ET, (l+1)(l—k+1)>

l1 As 1 2 1
I+1 82_l+2] (k:(k:+1)(l—k:+1) RENED (l+1)(l+2)(l—k+1)>>
-2 2 l—2k ((n—1)7lz(n+1) [232_:ﬁ82] (/]{;_D

1 2As 1 2 1 1
U [82_n+2] (k;(k;Jrl) TWHD k=Rt (l+1)(l—k+1))
As 1 2 1
+n+1[82_n+2] (k(k+1)(l—k+1) I+ +2) (l+1)(l+2)(l—k+1))>'

Proof: See the Appendix. O

The above two propositions calculate formulas for the profit of the sellers with the second
and third lowest offers. These profits are increasing in the number of buyers and decreasing
in valuation imprecision. That is, more buyers increase the probability that a buyer’s offer
exceeds these sellers’ offers. The increased deal probability has positive effect on a seller’s
profit. Both sellers have expected profit of 1 for n — oo buyers. That is, in the limit each
seller’s offer is successful eventually.

Figure 6 (a) shows the expected profits of the first three sellers as a function of the number
of buyers, as calculated in propositions 10 - 12. The y—axis shows their expected profits
and the number of buyers is drawn on the r—axis. For this example, we used a valuation
imprecision av = 10%*.

The figure shows that each seller’s expected profit is increasing in the number of buyers.
The profit of the seller with the lowest offer exceeds that of the seller with the second lowest
offer and her profit exceeds that of the seller with the third lowest offer. This is intuitive
because the second offer can be successful only after the lowest offer is sold. The same
relation holds between the second and the third lowest offer.

Figure 6 (a) further shows that the seller’s expected profits converge to 1 for the number
of buyers n — oco. That is, for a high number of buyers, each seller’s profit approaches 1 up

to an arbitrarily small distance.

4Note that the sellers’ expected profit are negatively affected by increasing valuation imprecision. However,
this effect is comparably small in contrast to the effect that the market size has on the sellers’ expected profits.
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In this section we calculated expected profits of the first sellers with the first three lowest
offers. To calculate the expected profit of an average seller in a market with size n, the
formulas for the profits of all sellers need to be calculated.

The formulas the of the profits for the first, second and thirds sellers, as seen in propositions
10 - 12, develop increasingly long terms. Their length further increases exponentially for the
expected profit of the seller with the k—th lowest offer, with 3 < £ < n. Thus it is not efficient
to calculate these profits analytically. A more efficient method is a Monte Carlo simulation
to calculate all sellers’ profits and an average seller’s profit.

In our Monte Carlo simulation we ran 50,000 samples per market size n = 1,...,200 and
used valuation imprecision o € {0.05,0.1,0.25,0.5,0.75}. That is 50 million samples, which

allows for a sufficiently high significance of the simulation.
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Fig. 6 — Sellers’ profits as a function of market size

Figure 6 (b) shows the Monte Carlo simulation’s results. The x—axis shows the market
size and on the y—axis an average seller’s profit is drawn. The average profit increases for each
valuation imprecision and they are all bounded. Valuation imprecision has negative effect on

an average seller’s expected profit.

Valuation imprecision « 0.05 0.1 0.25 0.5 0.75

Average seller’s profit (n = 1) 049 | 0.48 | 0.46 | 041 | 0.37
Average seller’s profit (n =200) | 0.62 | 0.61 | 0.57 | 0.51 | 0.46

Table 3 — An average seller’s profit for small and big markets as a function of valuation
imprecision

The effect of the market size and valuation imprecision on an average sellers profit are

summarized in table 3. It can be seen that bigger markets increase a seller’s profit for each
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valuation imprecision. Independent of the market size, valuation imprecision influences a
seller’s expected profit negatively.

The next section calculates the profit of a buyer.

2.3 The Buyers’ Profit

In this section, a buyer’s profit is analysed. When the first buyer enters the market, then
that buyer can buy at the lowest price of all sellers’ offers. A buyer that enters the market
in a later stage therefore has a lower range of available offers and the lowest offer is at least
as high as the offer for the first buyer. When a buyer enters the market in a later stage, then
that buyer’s expected profit is lower than that of a prior buyer.

We calculate the expected profit of the first, second and third buyers in this section.
Expected profits of subsequent buyers will be calculated with a Monte Carlo simulation. Let

us start with the profit of the first buyer.

Proposition 13. The expected profit of the first buyer as a function of the number of sellers
n s

n
n+2

E(PBl) =

Proof: See the Appendix. O

Proposition 13 calculates the expected profit of the first buyer that enters the market.
It is dependent on the valuation imprecision and the number of available offers from sellers.
Both parameters have a positive influence on the first buyer’s profit.

When valuation imprecision increases, then expected profit also rises. In fact, the first
buyer’s expected profit is linear as a function of valuation imprecision . When there is no
valuation imprecision, then the first buyer’s expected profit is zero. Expected profit of the
first buyer exceeds that of subsequent buyers. When there is no valuation imprecision, then
all buyers therefore have zero profit in the Buyers’” Market.

The number of sellers n also has positive effect on the first buyer’s expected profit. Intu-
itively, more sellers make more offers the buyer can choose from. This increases the chance
of particularly good offers for the buyer and his profit increases.

In the limit of infinitely many sellers, the first buyer’s expected profit is the valuation
imprecision «. That buyer’s expected profit therefore is bounded by valuation imprecision.

The next 2 propositions calculate the expected profits of the second and third buyers.

Proposition 14. The expected profit of the second buyer as a function of the number of
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sellers n is

nd+2n%—n

E(Pp,) = a(n +3)(n+1)(n+1)

Proof: See the Appendix. O

Proposition 15. The expected profit of the third buyer as a function of the number of sellers
n s
n® +4n* +2n3 — 12n2 4+ Tn + 6

B(Fs) = o s )+ 3)(n 4 1)

Proof: See the Appendix. O

The expected profit of the second and third buyers are both increasing in valuation im-
precision a and the number of sellers n. The expected profit of the second buyer exceeds that
of the third buyer because the probability that the second buyer accepts the lowest offer is
greater zero. Then the third buyer is left with offers that are higher than those of the second
buyer. Both expected profits converge to o for n — oo. That is, in the limit it is insignificant
when a buyer enters the market. Expected profit further is a linear function in valuation
imprecision. That is, an increase in imprecision has positive effect on the buyers’ expected
profits. Additionally, doubling valuation imprecision has the effect that expected profit also
is doubled.
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(a) Profit of the first 3 buyers (b) Simulated average profit of a buyer

Fig. 7 — Buyers’ profits as a function of market size

Figure 7 (a) shows the expected profits of the first three buyers. On the z-axis the number
of sellers are drawn. The y-axis illustrates expected profits. The first buyers’ profit exceeds

the second buyer’s profit, which exceeds the third buyer’s profit. Buyers that arrive later
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thus have lower expected profit. This is true for any number of sellers. When the market
size increases, then each buyer’s profit converges to . The maximum valuation imprecision
therefore is an upper bound for a buyer’s expected profit, independent of the time of a buyer’s
market entry.

The calculations of the second and third buyers’ expected profits in propositions 14 and
15 developed progressively extensive terms. It is therefore more productive to shift to quicker
techniques for the analysis of the k-th buyers’ expected profit, with £ > 3. We performed
Monte Carlo simulations to analyse expected profits for buyers 4,5, ... up to the number of
sellers n. An average buyer is not aware whether he enters the market comparatively early or
late. Therefore the expected profit of the average buyer is the mean profit of the first, second,
third, ..., n—th buyer.

That simulated profit of an average buyer is illustrated in figure 7 (b). The z-axis shows
the number of buyers and sellers. The simulated expected average profit of a buyer is drawn
on the y-axis. That profit is increasing in the market size. A greater market size implies that
there are more sellers. That is, there are more comparatively low offers. On the other hand,
there are more buyers in a greater market. Buyers who arrive late might get high remaining
offers. The effect of more low offers is stronger as can be observed in the figure; the average
buyer benefits from a bigger market size. An average buyer’s profit furthermore converges
to approximately 0.43«. That is, when the market becomes infinitely large, then an average
buyer’s profit is approximately 0.43a.

An average buyer’s profit therefore is a linear function in valuation imprecision ov. When
« is increased by a certain factor, then average profit also is increases by that exact factor.
Doubling imprecision thus doubles a buyer’s expected profit. Therefore valuation imprecision
is beneficial for buyer’s and higher valuation imprecision leads to higher expected profits.
When there is no imprecision, that is, when each party values the good precisely, then a
buyer’s expected profit from trade is zero.

Let us next introduce a dealer and analyse his pricing strategy.

3 The Dealer’'s Market

On Dealer’s Market, there is a dealer present. The dealer has past experience regarding
the good and therefore knows its average value. He therefore has precise valuation. He acts
as market maker and charges a bid-ask spread: The dealer offers to sell the good at a buyer’s

reservation price multiplied by 1 — fp and offers to buy the good at a seller’s offer multiplied
by 1-— fg.
Proposition 16. When fs > fp, then the dealer profits on average from his pricing strategy.

Proof: See the Appendix. O
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Buyers and sellers each get different prices, dependent on their price expectations. The
dealer thus needs to be experienced in order to find out the player’s true price expectations.
Otherwise the bargainers may lie to the dealer about their true price expectations.

The dealer pursues the strategy to install an environment under information asymmetry.
On Dealer’s Market buyers and sellers do not interact. They solely communicate with the
dealer and choose whether to accept his offer, or not. Otherwise they might complain about
the dealer’s pricing strategy, because each player gets a different price, dependent on a player’s
valuation. In this sense there is information asymmetry on Dealer’s Market. Asymmetric
information is important to the success of dealer’s strategy. This means that buyer and seller
should either consult the dealer or choose trade on the Buyers” Market. Otherwise buyer and
seller first bargain on the Buyers’ Market. In case they are unsuccessful, they may consult the
dealer in the next step. While this sequential strategy is beneficial for buyer and seller, the
dealer is left with a lemons problem: Buyers with low reservation price and sellers with high
reservation price. Thus the dealer suffers from adverse selection. Installing a beneficial fee
strategy consequently becomes more complicated under full information as dealer’s strategy
may collapse otherwise.

The next propositions calculate a buyer’s and seller’s expected profit in Dealer’s Market.

Let us start with a buyer’s profit.

Proposition 17. When fg > 0, then a buyer’s expected profit in the Dealer’s Market is
positive. Then it is given by E(Pg) = fp

Proof: See the Appendix. n

Proposition 17 shows that the buyer has a positive expected profit from participating in
Dealer’'s Market if the condition fg > 0 is met. The higher the dealer chooses the discount
fB, the more attractive Dealer’s Market becomes to the buyer.

We continue with the calculation of a seller’s profit.

Proposition 18. When fs <1, then a seller’s expected profit in the Dealer’s Market is

positive. When that condition is met, a seller’s profit is
E(Ps)=1- fs.

Proof: See the Appendix. n

The above proposition shows that dealer’s pricing strategy fs influences a seller’s expected
profit in Dealer’s Market. That pricing strategy affects a seller’s expected profit negatively.
That is, a higher discount fg reduces a seller’s profit, whereas a lower discount increase that

profit.
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In summary, buyers profit from high dealer’s discounts, whereas sellers prefer lower dis-
counts.

In the next section, we analyse the relative attractiveness of the Buyers’ Market and the
Dealer’s Market.

4 The Downside of Full Information

This section compares the attractiveness of the Buyers’ and the Dealer’s Market. Condi-
tions that allow the Dealer’s Market to Pareto dominate the Buyers’” Market will be estab-

lished. We start with a buyer’s market preferences.

Proposition 19. When a buyer has a choice between a profit of x and participation in the
Dealer’s Market, then the buyer prefers the Dealer’s Market, when fg > x.

Proof: See the Appendix. n

The above proposition calculates a criterion that allows the Dealer’s Market to Pareto
dominate an opportunity, where a buyer gets a fixed profit x. That is, when the dealer’s
discount fp exceeds a buyer’ alternative, then the buyer prefers the Dealer’s Market over
that alternative.

A buyer’s preference of the Dealer’s Market over the Buyers’ Market is analysed in the

next proposition.

Proposition 20. Independent of market size, a buyer’s expected profit in the Dealer’s Market
exceeds expected profit on the Buyers’ Market, when fg > 0.43c.

Proof: See the Appendix. m

Proposition 20 shows that, when fp > 0.43c, then the Dealer’s Market is more preferable
than the Buyers’ Market for a buyer. That is, when the dealer’s discount on a buyer’s
valuation fp is sufficiently high, then a buyer is in preference for the dealer’s offer compared
to the Buyers’” Market.

The necessary dealer’s discount increases with a higher valuation imprecision. When the
buyer values the good less precise, then the dealer needs to reduce his offer in order to attract
that buyer to his market.

The inequation fg > 0.43« holds for any market size because it considers the limit for
market size n — oo. For a smaller market size, fg may be below that lower bound. That
is, then the dealer’s discount may be smaller. The exact lower bound for dealer’s discount
can be seen in figure 7 (b). For markets of size 1, the lower bound is fp > «/3, according

to proposition 13. The lower bound for the dealer’s discount is therefore increasing in the
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market size. This fact implies that a dealer needs to give higher discounts when more buyers
and sellers are present.

Next, we focus on a seller’s preferences.

Proposition 21. When a seller has a choice between a profit of profit x and participation in
the Dealer’s Market, then the seller prefers the Dealer’s Market, when fs <1 — x.

Proof: See the Appendix. ]

When a seller can choose between a profit of x on a market and selling the good in the
Dealer’s Market, then a seller prefers the latter market, when fs¢ < 1 — z holds. That is,
the dealer’s discount on a seller’s offer must not exceed 1 — . When the dealer’s discount is
to high, then the seller may not be satisfied with that offer and thus prefer the market with
profit x.

Section 2.2 analysed a seller’s profit in the Buyers’ Market as a function of valuation
imprecision o and market size n. That profit is illustrated in figure 6 (b) and table 3. When
we define that profit to be x, then proposition 21 allows us to calculate, when a seller prefers
the Dealer’s Market over the Buyers’ Market.

Valuation imprecision « 0.05 0.1 0.25 0.5 0.75
Lower bound for fp min 0.022 | 0.043 | 0.108 | 0.215 | 0.323
Upper bound for fg s 0.38 0.39 0.43 0.49 0.54

Table 4 — Bounds for dealer’s fee such that Dealer’s Market is Pareto efficient

Table 4 shows the maximum (minimum) dealer’s discount such a seller (buyer) is in prefer-
ence of the Dealer’s Market. It can be seen that higher valuation imprecision leads to a higher
dealer’s discount that allows him to attract market participants to trade in the Dealer’s Mar-
ket. Independent of valuation imprecision and market size, the discount for a buyer may be
lower than a seller’s discount. Therefore the dealer can choose buyer’s and seller’s discounts
such that both players are in favour for his market. At the same time, the dealer furthermore
generates positive expected earnings.

Feasible dealer’s discounts are illustrated in figure 8. In this figure, the z-axis shows the
market size. The dealer’s discount is illustrated on the y-axis. The blue area shows feasible
dealer’s discount strategies. The lower bound in that area represents the lower bound for the
discount a buyer demands. The discount for a buyer’s offer therefore needs to exceed that
bound. The upper bound of the blue area represents the maximum discount a seller allows.
The discount that a dealer applies to a seller’s offer thus must be lower than that bound. For

each market size, the dealer may choose discounts for a buyer fg and the seller fg. When the
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Fig. 8 — Simulated feasible dealer’s discounts for Pareto dominance of the Dealer’s Market
over the Buyers’ Market

dealer pays attention to the condition fgz < fg, then his expected profit is positive according
to proposition 16. In the figure, the blue area is non-empty. Therefore the dealer may choose
discounts that attract buyer’s and seller’s to the Dealer’s Market and generate a positive gain
at the same time.

Figure 8 (a) draws feasible discounts for valuation imprecision o = 10%. When the market
is smaller, then the dealer has a greater variety of discount strategies. In fact, for market size
1, he may choose 0.033 < fp < fs < 0.517. When the market size is arbitrarily big, then the
dealer’s discount strategy restricts to approximately 0.043 < fp < fs < 0.39.

Figure 8 (b) draws feasible discounts for valuation imprecision o = 25%. When the market
is smaller, then the dealer has a greater variety of discount strategies. In fact, for market size
1, he may choose 0.083 < fp < fs < 0.542. When the market size is arbitrarily big, then the
dealer’s discount strategy restricts to approximately 0.108 < fp < fs < 0.54.

When valuation imprecision increases, then the dealer may choose more extreme discounts,
as can be seen from this example.

From feasible dealer’s discounts, feasible deal prices can be calculated. These are illus-
trated in figure 9. In that figure, the x-axis shows the market size. The dealer’s feasible prices
are illustrated on the y-axis. The blue area shows feasible deal prices as a function of the
Buyers’ Market size. That is, while prices are within the blue area, buyers and sellers prefer
the Dealer’s Market over the Buyers’ Market.

The lower bound in that blue area represents the highest discount that a seller accepts.
When prices are lower, then sellers are not in favour for the Dealer’s Market. While prices
exceed that lower bound, sellers favour the Dealer’s Market over the Buyers” Market.

The upper bound of the blue area represents the maximum price that a buyer is willing
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Fig. 9 — Simulated feasible deal prices for Pareto dominance of the Dealer’s Market over the
Buyers” Market

to accept. When the dealer’s offer exceeds that bound, then buyers are in favour for the
Buyers’ Market. In order to attract buyers, the dealer offers the good for a price within the
blue area. Then buyers accept and the dealer’s offer dominates their expected profit in the
Buyers” Market.

When the dealer discounts a seller’s offer higher than that of a buyer, then the dealer
expects a positive gain from his strategy.

Figure 9 (a) draws feasible discounts for valuation imprecision « = 10%. When the
market is smaller, then the dealer has a greater set of possible discount strategies. In fact, for
market size 1, he may choose discounts on the interval [0.483,0.967]. When the market size
is arbitrarily big, then the dealer’s discount strategy restricts to approximately [0.61,0.957].

Figure 8 (b) draws feasible discounts for valuation imprecision o« = 25%. When the market
is smaller, then the dealer has a greater set of discount strategies. In fact, for market size 1,
he may choose discounts on the interval [0.458,0.917]. When the market size is arbitrarily
big, then the dealer’s discount strategy restricts to approximately [0.46,0.892].

When valuation imprecision increases, then dealer’s discounts may increase, as can be seen

from this example.

5 Conclusion

This paper presented a detailed analysis of a realistic auction market, the Buyers” Market.
In this market, sellers reveal their offer prices for a good and the buyers arrive one after
another. Each buyer buys the good if the present lowest offer does not exceed that buyer’s
reservation price. Buyers and sellers therefore have full price information on this market.

The Amazon market platform and buy-it-now auctions on eBay are examples, where such a
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market design is installed.

The deal success rate in the Buyers’ Market increases with market size. That is, when
there are more buyers and sellers, then a higher fraction of deals is successful. In minimal
markets with one buyer and one seller, every second deal is unsuccessful. The success rate
however converges to 0.64 for big markets. The variance of the success rate decreases in the
market size. That is, if the market size increases, it becomes more certain that a particular
market actually possesses the deal success rate of 0.64. Therefore, we conclude that the
platform becomes more attractive, when more individuals use it for their transactions.

Furthermore, it was shown that a greater number of sellers generate a higher profit for
each buyer. This follows from the fact, that when there are more sellers, the price of the
lowest offer decreases. This reduction of the lowest offer represents more profit for a buyer.

In case of one buyer and one seller, the average buyer’s profit is one third of the valuation
imprecision (i.e. %a). That profit converges up to 0.43« for big markets. Thus, an average
buyer’s profit is linearly dependent on the valuation imprecision «. Therefore, a doubling of
the valuation imprecision doubles a buyer’s profit. A buyer therefore profits from valuation
imprecision and has a profit of zero when the traders value the good precisely.

When there is an equal number of buyers and sellers, then an average seller’s profit is
increasing in the number of traders. For a comparably low valuation imprecision of 5%, an
increase in the market size from 1 to 200 increases a seller’s profit from 0.49 to 0.62 (as
a proportion of the average valuation). A comparably high valuation imprecision of 75%
generates a seller’s profit of 0.37 for markets with only one buyer and one seller. This profit
increases up to 0.46 for big markets with a size of 200 buyers and sellers. In summary, an
average seller’s profit is increasing in the market size and decreasing in valuation imprecision.

In the Dealer’s Market, a dealer buys the good from a seller and then sells it to a buyer.
He offers to buy the good at a discount from the seller and offers it to the buyer at a price
that is lower than that buyer’s reservation price. It is critical that the dealer hides his price
quotes to a trader from other traders, as each trader gets a different price offer. That is, the
dealer needs to maintain information asymmetry between all buyers and sellers.

The dealer can set his pricing strategy in a way that the buyer and the seller expect
positive profit from the dealer’s offer. In addition, his strategy allows him a positive gain
on average. Therefore the dealer may set pricing strategies such that all parties profit from
participation in the Dealer’s Market.

A buyer’s and a seller’s profit in the Dealer’s Market can exceed their expected profit on
the Buyers’ Market. In other words, when the dealer sets his discount strategy adequately,
then buyers and sellers prefer the Dealer’s Market over the Buyers’ Market. These discounts
can be set non-restrictively for any valuation imprecision and market size. At the same time,

his discount strategy allows the dealer a positive gain. Then the Dealer’s Market Pareto
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dominates the Buyers’ Market. That is, the market under information asymmetry Pareto
dominates the market under full price information.

Our research suggests that the above results hold for further generalisations of the Buy-
ers’ and Dealer’s Market. Simulations show that valuation imprecision may be normally
distributed (instead of uniformly) with the same implications on the deal success rate. We
believe that symmetrically distributed valuation imprecision is a sufficient condition for most
of the established characteristics of the Buyers’ Market. Furthermore, the properties of the
Buyers” Market with an unequal number of buyers and sellers may be an interesting field
for further research. In this case, the dealer’s inventory additionally demands attention. Al-
though some of these topics have been touched in this paper, a detailed study of the mentioned

market abstractions may be worthwhile.

6 Appendix

Proof of Lemma 1: The cdf of min(Xy, Xs, ..., X,,) is given by
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The density is the first derivative of the distribution function. Using the First Fundamental
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Theorem of Calculus and the Binomial Theorem we derive the density.
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Proof of Proposition 2: We use lemma 1 to obtain first deal’s unsuccess probability.
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Proof of Proposition 3: Before we prove the proposition’s statement, we introduce the
notation for a binary vector v € [0,1]¥. It describes concrete deal success and unsuccess
structures, e.g. v = (1,0,0) means that the first deal is successful, whereas deal two and
three are unsuccessful. The unsuccess probability of the second deal p,4(2) is thus represented
by the sum py(2) = P((1,0)) + P((0,0)), that is the sum of the independent probabilities of
the two events ‘Fist deal successful, second deal unsuccessful’ and ‘First deal unsuccessful,
second deal unsuccessful.* We calculate P((1,0)) and P((0,0)) separately:
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Proof of Proposition 4: As in the proof of proposition 3, we use the notation p,(3) =
P((0,0,0))+P((0,1,0)) +P((1,0,0)) +P((1,1,0)) and calculate each probability separately:
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B n(n—1)(n —2) /52 -
= T Dn(n = )(n=2)as0 Jy, 277

S1
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(2s9n + 51 + n’x; — n’s; — 5o — 2nxy) day
_ n(n—1)(n — 2)As"™33(n> +n — 1) _ 3(n*+n-1)
n+3)(n+2)(n+1)nn—1)(n—2)As"*3  (n+3)(n+2)(n+1)

]

Proof of Proposition 6: We calculate the expected price of the first successful deal, using

lemma 1.

E(Pry) = /52 m(s)s ds = AZ” /52(32 —5)" s ds
n 1 1 1
Asm (n s n(n + 1)As"+1> st ntlo

]

Proof of Proposition 7: Let n offers be uniformly distributed on [x, s5]. Then the expected

price of the lowest offer is

n

(82 — )"

E(min(Xy, X, .., X)) = /82 m(s,z,s9)s ds = /82(82 —5)" s ds

n N 1
T Ss.
n—+1 n+12

The pdf required here is obtained from lemma 1. Then the integral is calculated along the
lines of the proof of proposition 6. Note that when we set x = s1, we get exactly the formula

that was established in proposition 6. The expected price of the first deal is

n 1

E(Pry) = n+181+ i’

2.

The second deal is the minimum of n — 1 independent random variables that are uniformly
distributed on [E(Pry), ss]. By the formula we calculated above, the second deal therefore

has expected price

n 1 n n 1 1
E(Pr,) = —E(P _
(Pr2) n+1 (1>+n+132 n+—1(n+151+n+182)Jrn+152

n—1 + 2
= S So.
n+1 ' 17t

[teratively calculating the next deal prices, the k — th deal price is

n+1-—k n k
S S9.
n+1 T pg1?

E(P’f’k) =
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Proof of Proposition 8: Assume the & — th successful deal was priced at x. Then the
m remaining offers are independently uniformly distributed on the interval [z, s5]. When a

buyer enters that market, then that buyer’s profit is

)(zg, m / / (s, Tk, S2) (b — s) dbds
Ty Js

_ —AS(SQ o /22(32 — z)ml /:Q(b — s) dbds
it [

As(sg — xp)™ 2
_ m P lse— 8™ d
2A8(sy — xp)™ /xk (52 = 5) s
m(sy — xp,)™ 12 ~(s2—axp)? m

- 2As(sy — xp)m(m+2) 2As  m+2
0

Proof of Proposition 9: We calculate a buyer’s expected profit, when the lowest present

offer is x.
E(P)(z) = [ 1pea(b—z) db= / “b—a db
s1 T
sy —a®—2x(so—x)  (sy—x)?
B 2 ~ 2As
O
Proof of Proposition 10: The profit of the seller with the lowest offer is
1 fs2
E(Ps,) = 2—/ P (3 Buyer with Vg > z)z dx

o Jsq
_1/”(1 P (v Buyers have Vi < 1))z dr — — [ (x_&)nd
=5 /. uyers have Vg < z)) v dv = 5= | o=z = x

1 (1,5, 1 (z—s)"tt 17 s2 1 (x— s
=— | =(s3 —s7) — d

2c0 (2<82 51) [n+ 1 Asm v . + s n+1 Asn v

1 (4« 1 Asttl N 1 As™t?
=—|—= - s

20\ 2 n+1 As® 2 (n+1)(n+2) As

1 1 1 1 1
= — (20— ——Assy + As? | =1- S2 + As

2 n+1 (n+1)(n+2) n+1 (n+1)(n+2)

n+ 2+ no
=1- :
(n+1)(n+2)
O
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Proof of Proposition 11: When a seller’s offer is uniformly distributed on the interval
[s1, x], then the probability that the k-th buyer buys that offer is

P(k — th buyer buys offer) =

/IP(VB <y for k—1 buyers)P(Vg > y) dy

xr — 81 81
_ 1 vy —si\Flsa—y
_ZL‘—Sl/s1( As ) As dy

1 z .

= (x_slmskfs (y—s1)" (52 —y) dy
— ; 1 _ k _ ; o k+1
= @ —s)As <k($ si) (52— @) + gy (@ =)
_ 1 - k—1 o ; o k
= g T ) (s ) e (=)

To simplify later calculations, we evaluate the following integral for some m € IN.

/:2 x(r —s1)"(s2 — x) dx = _mi—l :2(x — 1) (59 — 22) dx
1 1 m+2 - 1 o2 m+2
- ([m+ (= 1)y — zx)L s [ dx)
T (m+ 1)1(m +2) <<82 — 5" (s — 202) + mi— gls2 = Sl)m+3>
s A2 2As™ T3 _ Asmt? 2As
T mHD)m+2) (m+D)m+2)(m+3)  (m+1)(m+2) (82_ m+3> '

Next, we calculate the expected profit of the seller with the second lowest offer.
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E(PSQ)

1 n 1
/ — th buyer buys first offer)P(One of n — k buyers buys second offer)) x dx

1 '& : 52 1 1 1 (2 —s1)" "
:Ask;/sl ((kAsk(‘”_sl)k (82_x)+k:(k+1)As’f<x_81)k> (1_ N ))xdw

12 s (2 —8) Wsg— ) (27— 51)" (59 — ) (x —s1)F (x — sp)"
~As Z/sl ( NG - FAsn TRk )ASF R+ 1)As”> vde

k=1

n-l 1 /s2 ( )k—l( ) d = 1 /52 ( )n—l( ) d

= —_— r\r — S So — xr — —_— r\xr — S So — T a
Z kAsH ' ? ,; N ' ?

_ n—1 1

S92 k /32 n
—5)F da - — s d
Z Kk + 1) Ask+1/ ww—s) d ,;k(kﬂ)asnﬂ , S@ms)td

B Z 1 Asktl 2As _”z_:l 1 Asntl B 2As
= kAska(kJrl) 2T k12 kAs™1 n(n +1) n 42

2—: A5k+1 Z Asn-i-l B AS
2 k(b + 1 Ask+1k+1 2 k+2 k+1As”+1n+1 2T r2)

O

Proof of Proposition 12: When the third lowest offer is z € [1 — «a, 1 + a, then for 1 <
k <l <n, we can calculate the probability

P(The k—th and [—th buyers buy the first and second lowest offer| Third lowest offer is x)

2 z
= (@ —51) /81 P(k — 1 buyers have Vg < y and one Vi > y)
1 T
/ P(l — k — 1 buyers have Vg < z and one Vg > z) dz dy
r—y
9 v (y — s1)k 152 y sk sy — 2
a (x —s1)? /sl Asgk—1 / Asl k-1 As dz dy
2 : k= I—k—1
T (z— s5)2A8 - - —2)dzd
(x — s1)2As! /sl (y = 1)" (52 = y)/y (2 —s1) (82 —2) dz dy
= 2 ‘ k—1 1 I—k x z Ik
= oapan ), ) (2= 0= ([ =0 = 2] = ["(e =) M) d2) ay

((a: )Ry — Sl)l—k+1>> dy
2
(z — Sl)l—k+1

T (- sl>22Asl(z &) [ =50 (s = w) (2 = 50 (s2 = 2) = (5= 51 (52~ p)
1
Ly
= (l’ . 81)2ASZ(Z _ k‘) ((7) - Sl)l_k(52 - ZL’) /81 (y - Sl)k_l(SZ - y) dy - /s1 (y - Sl)l 1(52 - y) dy
v k-1 1 x
i L e dy = e [

(y —s1)'(s2— ) dy)
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2 Ik 1 k 1 k1
= (x—sl)QASl(l—k) <(l‘—81) (Sz—x) (k(x—81) (52_x>+m($—81) >
C(=s)l(s2—2) 2@ —s) M (sa—x) 2z —s)F

l 1(1+1) I+ 1)(1+2)

(x —sp) 7K (1 1 1
W <(:)§ — Sl)k(SQ — x) + k(k N 1) (l’ — 31)k+ )

k
1 1 1 1 )
T i—kt1 <l+1($_31)l+ G2 =)+ @ ) >>

+

2 1 , 1 1
N (x — s1)2AsH(l — k) <k($ —51)'(s2 = )"+ k(k+1) (x —s1)'* (52 — )
(x— s1) (sg — x)? _ 2(x - s1) L (sy — ) 2z — s1)i+2
l (1+1) (I+1)(1+2)
1 I+1 1 1+2
ey e e e

1
I+ —k+1)
2 1 1

= o (e =0 =7 (5 - 7)

-1 1 2 1 1
@ =s)" s —2) (k(k+1) T TRI—kTD) (l+1)(l—k+1)>

1 142
DT )

(x— 51) (59 — ) +

! 1 2 !
+ (z — 1) (k(k—i—l)(l—k—i-l) I+ +2) (l+1)(l+2)(l—k+1)>>

In addition note that for m € IN

82 m 9 Asgmt3 6As
Aﬁx‘“’“@‘x>‘0n+nmﬁaxm+al "m+J

We calculate the expected profit of the seller with the third lowest offer as follows

E(P53>
1 n 2 n 1

/ (Exactly the k—th and [—th buyers buy the first and second lowest offers)
AS k=11=k+1"51

P (One deal at z after the second deal))x dz

LEE s [ (- 55 (oo (1)

As =50 A

-1 1 2 1 L
+ (z—51)" (52— 7) <k(k+1)_l(l+1)+k(l—k+1) _(l+1)(l—k+1)>
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l 1 2 1
‘”x_*>(uk+na_k+n‘wa+ma+zy‘U+Du+®ﬂ—k+9>>dx

¥ oo
t+a(w —51)' " (52— @) (kz(lir DE( i Dk —1/~c+ o+ 1>(11— k+ 1>>

l 1 2 1
Frle=s) <k(k+1)(l—/<:+1) DI+ (l+1)<l+2>(l—’f+1)>> "

2 n—2 n—1 1 s - ) 1 1
T As Asi(l— k) Js, (x(x —s) (s - o) (k B z)

n—1 1 2 1 !
+z(z —51)"" (52 — 2) (k(k+1) Tty TR—ErD (z+1>(l—k:+1)>

n 1 2 1 ;
Fetrm) (kf(k' 1)(l—k’+1)_l(l+1)(l+2)_(l+1)(l+2)(l—k+1)>> !
2 2 Asitt 6As 1

kzlz%lﬁs (l )(l+1)[ T l+21 (k_l)
2

k) \(
Ast! 2A 1 1
i+ 1) [2 It ]( k:+1 )+k(l—k+1)_(l+1)(l—k+1)>
Asl“ 2 1
T l z+2] (k l—k+ l(l+1)(l+2)_(l+1)(l+2)(l—k+1)>>

: AS"Jrl 6As 1
e - 221G
S f=11=k+1 23 (l_k') (n—1)n(n+1) n+2| \k [
Astl A
_|._

s 1 2 1 1
2] (k:(k:+1) WAL Ri—ktD) (l+1)(l—k+1)>
1 2 1
ENCESY &_nﬁﬁl(Mk+nﬂ—k+n_VU+DU+2Y_U+DU+%U—k+D>>

= 1 ,. _ 6 (1 1)
— Sy — — - 4
S L RN =D+ 1) 2012\

1 275 1 2 1 1
NI 52_z+21 k(k+1)_l(l+1)+k(l—k+l)_(l+1)(l—k:+1)>
1 As 1 2 1
T 52_z+2] (k:( 00—kt D) l(l+1)(l+2)_(l+1)(l+2)(l—k+1)>>
2l 9 1 6As | /1 1
_kllk+ll—k<(n—1 [2 n—i-Q] (k:_l)
1 2As 1 2 1 1
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Proof of Proposition 13: We calculate the profit of the first buyer.

5P = [ [ ) 0 o) s = [7 [ L g
B1) — s1 by b>sTN\ S Ab S § = o . n (82 — 81>n Ab S S

_ n 52 n—1 b2 . n S2 n—1 b% — 32 _ 28(62 — 3)

_Abnﬂ/sl (s9 — $) /S (b—S)albals—Aan/Sl (53— 5) : ds

_ n 52 n—1 b% -+ 52 _ 25b2 - n S92 . (bg . 5)2

= gy [, (2 3 ds = sy [ (s — )T R ds

__n 52 _yn+l _ n B 1 ni2ys

PN / (52 = )" ds = 5 R (T g (2 =9l

— L 1 bn+2 _ & n — n

2A n + 2 2 n+2 n+2

[]

Proof of Proposition 14: We calculate the expected profit of the second buyer. The func-

tions introduced in lemma 1 and propositions 7 and 9 are used for the calculations.

E(Pg,) = /S2 m(n, s1, s2,x1) [P(B < x1)E(P)(x1) + P(B > 21)E(P)(z1,n — 1) dx]

S1

n o[ i —si(so—2)? sy —xy(se—x1)?n—1
- — )" d
As™ /31 52— 21) [ As 2As + As 2As  n+1 i
n 52 n—1 rs
= W [/51 (;Ul — 81)<82 — $1)n+1 dxl + n 1 o) (82 — xl)”+2 dl’l
n 1 s o (n —1)As"*3
_ _ )2 g
2Asn+2 ln o), e m)Tdn A ST
nAs { 1 +n—l} nd+2n% —n
J— = X .
2n+3) In+2 n+1 (n+3)(n+1)(n+1)

]

Proof of Proposition 15: We calculate the expected profit of the second buyer. The func-
tions introduced in lemma 1 and propositions 7 and 9 are used for the calculations. We
continue to use the notation from the proof of proposition 2 and calculate the third buyer’s

expected profit as the sum of the prior bargaining process. Then
E(Pp,) = E(Pp,) [(0,0)] + E(Pp,) [(0,1)] + E(Pp,) [(1,0)] + E(Pg,) [(1, 1)]

We calculate each of these expected profits separately:

B(Pu,) [0,0] = [ mle)P(B < 2P B(P)a) de = e [ (s — oy g
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n 52 " n so .
= g [, (2= oo o0t e = g [ e e s de

S1 S1

= A1 2)(n 1 3)As T [ (s m e o= )+ D)

52

E(Pp) [(1L0)] = [~ m(ar,nP(B > 1) [ mlazn — YP(B < o1 B(P) (w2, — 2) diyda,

51 1

_n /82(5 _x)n_lsg—xl n—1
Ast Jo, 2T As  (sg—xp)" !
$2 noTy — 81 (82— m)?n—1
- dxad
/231 (52 = 22) As 2A0s n—+1 20t

n(n —1)2 52 52
- Q(n:_ 1)A)Sn+3 / (s2 = -Tl)/ (82 — @2)"(z2 — 51) dradmy

~ n(n—-1)° 2, 1
2(n + 1)Asn+3 / (52 = 1) (n+1)(n+2)
_ n(n —1)° /
2(n+1)2(n+2)Agn+3
n(n — 1) AstH g n(n—1)
2(n+1)2(n+2)(n + 4)Asn+3 (n+1)2(n+2)(n+4)

(82 — $1)n+2 dl’l
S1

(59 — 21)" da,
S1

2

E(Pg,)[(0,1)] = /82 m(z1,n)P(B > z1)P(B < 21)E(P)(x1,n — 1)dx;

S1

onoez L ss—mm =S (se—a)in—1

Agn /51 (52 = 1) As As 2As n+1 dy

_ n(n _ ]') 52 n+2 o TL(TL — 1)

~ 2(n+ 1)Asnt! / (52 =)™ =) d = G e R
n(n—1)

B a(n+ 1)(n+3)(n+4)

E(Pg,)[(1,1)] = / m(z1,n)P(B > 1) / m(za,n — DP(B > 21)E(P) (22,1 — 2) dusday
_on 52 B n152 — T3 n—1
 Asn /sl (52 —21) As  (sg —xp)" !

2982 — T (9 — x9)%n — 2
/331 (52 = @) As 2As
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(n—1)(n—2)
(n+2)(n+4)

We calculate the sum of these four terms.

E(Pp,) = E(Pg,) [(0,0)] + E(Pg,) [(0, 1)] + E(Pg,) [(1,0)] + E(Pg,) [(1,1)]
P +Ant 420 — 120 + Tn + 6
T A 12m )+ 3)ntd)

O

Proof of proposition 16: On each round-trip transaction, the dealer has income (1— f5)Vp
and has expenses (1— fs)Og. Then his gain from a round-trip transaction is Pp = (1—f5)Vs—
(1— fs)Og. Taking the expectation of the gain gives E(Pp) = (1— fp)—(1—fs) = —fs+ fs,
which is greater zero if and only of fg > fg. ]

Proof of Proposition 17: A buyer’s profit in the Dealer’s Market is the difference between
his reservation price Vg and the dealer’ offer, that is (1 — f5)V. We calculate that profit.

E(Pg)=E (Vs —(1- f)VE) = 5.

A buyer’s profit therefore is greater zero if and only if fg > 0. [

Proof of Proposition 18: A seller’s profit is given by
E(Ps)=(1— fs)E(Os) =1 — fs.

That profit is greater zero if and only if fg < 1. [

Proof of Proposition 19: According to proposition 17, a buyer’s profit in the Dealer’s Mar-
ket is fg. That profit exceeds profit of x, when fgp > x. n

Proof of Proposition 20: Proposition 19 calculated a conditions for the dominance of the
Dealer’s Market. A buyer’s profit on the Buyers’” Market is bounded by 0.43c, as shown in
section 2.3. When we combine these statements, then a buyer prefers the Dealer’s Market
over the Buyers’” Market when fg > 0.43a. O]

Proof of Proposition 21: Proposition 18 calculates a seller’s profit in the Dealer’s Market.

That profit needs to exceed profit of x, that is

l—fs>r<<= fs<1—nx.
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On a Firm’s Choice of Debt:
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Abstract

This paper focuses on two different forms of debt financing and thereby analyses Bank
loans and the public placement of bonds by an investment banker. Under reasonable condi-
tions, bond financing using the services of an investment banker, who operates under informa-
tion asymmetry, Pareto dominates financing with bank loans, where a firm opens its books to
creditors and provides full information. The firm’s management and the bank often have dif-
ferent valuations of the firm. We model a Bayesian updating of the management’s estimation
on their valuation precision based on the loan negotiation process. At times loan negotia-
tions are unsuccessful, resulting in a loss of negotiation costs. Upon successful floatation,
an investment banker receives a fee as a percentage of the bond proceeds. Bond transaction
costs are incurred exclusively upon successful financing, as opposed to bank loan negotiation
costs, which are incurred even when the financing is declined. We show that if the investment
banker is able to maintain information asymmetry between investors and the issuing firm,

bond financing is optimal.
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1 Introduction

When external sources for capital are considered, a firm may sell equity or borrow.
Seemiiller (2013) focuses on the choice between raising venture capital and an IPO. In this
paper we focus on borrowing capital.

Debt can be separated into private and public debt. The former dominates the public debt
market in size. Within the private debt market, firms may choose among different alternatives,
such as bank loans and traditional private placements. Some firms borrow mainly from
financial intermediaries such as banks and their providers of debt. Others prefer to publicly
or privately issue bonds. In 2009, international syndicated lending amounted to $1.8 trillion
and firms borrowed another $1.5 trillion in international bond markets!. As debt is by far
the major source of capital, it is worth asking how firms prefer one sort of debt over another.

Quantitative analysis on the form of debt firms prefer has been undertaken. Recently,
Arena (2010) examined possible determinants of a firm’s choice between different forms of
debt financing. He analysed the most comprehensive sample of U.S. corporate debt issues.
His study focuses primarily on the connection between a firm’s credit rating and its debt
choice. Arena finds that firms with a high credit quality prefer public bond offerings, whereas
small firms with good credit quality are more likely to issue traditional private debt. Firms
with moderate credit quality prefer bank loans. In fact, Arena finds that poor quality firms
preferentially issue 144A debt. That is, 144A debt allows private placements only to trade to
and from qualified institutional investors. Arena’s findings challenge the conventional view of
firms with poor quality credit rating to choose non-bank traditional private placements, as for
instance proposed by Mihov (2003). Fenn (2000) and Arena (2010) further suggest that after
1990, 144 A bonds may have sequentially replaced traditional private placements of low-quality
high risk debt. They find that firms that issue 144A debt usually have higher information
asymmetry and lower credit quality than firms issuing traditional non-bank private debt.

Houston and James (2012) investigate the relation between a firm’s growth opportunities
and its mix of private and public debt claims by the analysis of a panel data set of 250 pub-
licly listed U.S. firms. Besides investigating on financial characteristics as potential factors
influencing a firm’s debt choice, further determinants were analysed. More recently, Lin et al.
(2012) correlated the ownership structure of a firm with its choice between bank debt and
public debt. They examined the relation between a borrowing firm’s ownership structure and
its choice of debt. They use a data set on corporate ownership, control and debt structure of
almost 10,000 global firms from 2001 to 2010. Their results are consistent with the hypoth-
esis that firms controlled by large shareholders with excess control rights prefer public debt

financing over bank debt.

1See Lin et al. (2012)
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In addition to statistical explanations, various corporate theories provide a variety of
explanations on a firm’s choice of debt. Bank debt potentially has the ability to soften costs
of information asymmetry compared to traditional private debt. When banks maintain long
term relationships with borrowing firms, they may accumulate additional and soft information
about these firms. Banks further have significant comparative advantages in monitoring
efficiency because they can get access to private information as insiders, as for instance Fama
(1985) and Diamond (1984) have shown. Houston and James (1996) prove that the fragmented
ownership structure of public debt and the resulting free rider problems weaken an individual
bondholder’s incentives to engage in costly monitoring. Assuming bondholders were willing to
monitor, it would be inefficient as it would involve unnecessary and thus redundant duplication
of monitoring costs and efforts. In summary, banks are more efficient in monitoring than the
sum of private investors. Contrary, Lin (2012) finds that banks may be more likely to impose
strong and intensive monitoring on borrowing firms. Anticipating strict monitoring by banks,
firms might prefer bond financing over bank debt as a way of avoiding scrutiny from bank
monitoring. This explanation has been suggested by Houston and James (1996) as well as
Denis and Mihov (2003) among others.

This paper presents a theoretical approach to this field and concentrates on two major
observations. When estimating a firm’s value, potential creditors and a firm’s management
suffer from valuation imprecision, as each party arrives at a different firm value. As valuation
always is a subjective matter to some extent, valuation imprecision occurs even if both parties
can check a firm’s accounts and thus full information is available. Secondly, when a creditor
and a firm negotiate about the terms for debt financing, both parties inevitably suffer costs
from negotiations and from checking the firm’s accounts. Hence, there is a risk involved that
loan negotiations are unsuccessful. In this case, costs invested in negotiations are lost on
both sides. When an intermediary is hired to place a firm’s bonds, he may offer them to
interested investors. Again, a firm’s management and investors have a certain valuation of
the firm. Contrary to the option of checking the firm’s accounts, an investor merely is able to
estimate the firms value. By pursuing a firm’s management to decrease their valuation and
the investor to increase her valuation, chances for successful bond placement increase. When
an intermediary’s fee structure is reasonable, all parties can profit from his bond placement
services.

Section 2 of this paper presents our model in detail. Section 3 focuses on private loan
financing. In section 4 intermediation and public placement of bonds is discussed. Section 5

compares those different forms of debt financing. Finally, section 6 concludes.
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2 The Model

2 are the prices of time and state contingent claims which promise

Arrow Debreu prices
one unit of a specific good in a specific uncertain state at a specific date in the future. Such
claims were introduced by Arrow and Debreu in their work on general equilibrium theory
under uncertainty, to allow agents to trade state and time contingent claims separately. Then
the general equilibrium problem with uncertainty can be reduced to a conventional game
without uncertainty. In finite state financial models, Arrow-Debreu claims can be viewed as
atomic building blocks of more complex multiple state and multiple time dependent financial
framework. In fact, Arrow-Debreu prices of time and state contingent claims determine a
unique arbitrage-free price system.

Let a firm invest K at the beginning of a one-period model to produce uncertain output
with a payoff that is dependent on investment K and the uncertain future. Then expected

value of the firm at the end of the period can be interpreted as a function
V:Rs—=R: K~ V(K).

Expected present value of the firm, dependent on K and future uncertain cash-flows can be
determined using Arrow Debreu prices. In this context the obligation of the firm to pay back
the amount K can further be priced with Arrow-Debreu state contingent prices.

Assume each of n agents cannot precisely value a firm, but approximate it. In the pro-
cess, each agent makes a certain deviation from the firm’s Arrow Debreu value V. We
model these deviations independent and uniformly distributed on [1 — «, 1+ ], with 0 <
a < 1. The parameter a represents maximum imprecision of the evaluating parties. Fol-
lowing the model, maximum valuation is V.. =(1 4+ «@)V(K) and minimum valuation is
Vinin = (1 — @)V(K). Obviously average valuation is exactly the Arrow-Debreu value. Let
for instance X; < uni f[1 — a, 1+ ] be valuation imprecision of player i. Then that player’s
valuation is V; = X,V (K).

We assume that the company’s management decides on optimal investment level K™ such
that expected company value is maximized. In order to raise necessary capital K*, manage-
ment follows two options: (a) Loan negotiations with banks or (b) consulting an investment
banker to sell bonds of volume K*. In case (a) management opens the firm’s books for po-
tential investors such that the firm’s accounts are fully observed. In this case there is full
information available. Deviations in valuation therefore are caused by valuation imprecision
of management and potential investors. On the contrary in case (b), when management uses

the services of an investment banker, books are not opened for investors. The investment

2See Debreu (1959) and Arrow (1964) for reference.
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banker acts as an intermediary and makes certain offers to potential investors. Investors can
merely approximate the firm’s value. Then deviations in valuation on the buy side are caused
by information asymmetry. We assume that a firm’s management and an investor can agree
on terms of financing if management’s valuation of the firm is lower than or equal to that of

the investor®.

3 Loan Financing

In case of loan financing, management approaches banks, one potential lender after an-
other. A potential lender checks the company’s books and thereafter negotiates with man-
agement the loan’s terms. If management values the company not higher than a potential
creditor, the parties agree on terms for raising investment level K*. We assume that manage-
ment negotiates with potential creditors one after another until the first satisfying financing
rate is achieved. Furthermore we assume that searching for a creditor, due diligence and ne-
gotiations generates a certain cost for management c,; per potential creditor. In our model,

each player’s valuation is uniformly distributed on
[1—a, 14+ a]V(K")=[(1 = a)V(K"), (1 + a)V(K")]=: [va, vu].

Denote management’s valuation by Vi, and potential lender k’s valuation by V;, . Probability
that management values the company higher than lender k is thus ex ante given by 0.5,
independently for each lender. When a negotiation is successful, then the "financing charge"
that lender k offers is drawn from a known random variable, which is uniformly distributed
on [r,7], with 0 < r < T < oco. We use the term financing charge to account for the loan
interest and all other cost imposed by debt covenants.

Management acts fully rational and thus pursues an optimal negotiation strategy. This in-
cludes that, given a certain negotiation history, management can determine future negotiation
success more precisely. Assume that management has already lead one successful negotiation
and is offered financing charge r to finance investment K*. Then management has to decide
to either accept this offer or to approach another potential lender. The latter case costs at
least the amount ¢y, as at least one more potential lender needs to be approached. How-
ever, there is a chance that further negotiations lead to a better financing charge r* and
thus to decreased financing costs r*K*. Savings due to better financing conditions add up
to rK* —r*K* = (r — r*)K*. On the other hand, that additional negotiation costs the firm

the amount c;;. Therefore after each negotiation management faces the decision whether to

3The probability that a firm’s management’s and an investor’s valuation are equal is a zero set. The
probability of this event thus is zero. With no loss of generality, we may also say that the parties can agree
on terms of financing, when an investor’s valuation exceeds that of a firm’s management.

168



close the negotiation process or to conduct further negotiations with a potential creditor. A
crucial ingredient for this decision is negotiation history.

The first lemma is needed on the way to calculate expected cost until deal settlement.

Lemma 1. Let X1, X, ..., X,, be #id random variables, with X, 4 unif|xy, z5]. Then the cdf
of min(Xy, Xo, ..., Xp) is given by M(z) =1 — (u)n The pdf of min(X1, X, ..., X,,) is

To—T1
given by m(z) = n%
Proof: See the Appendix. O

If needed, the notation of the functions M and m is expanded in an intuitive way. Then
we may for instance write M (z,xq,x2,n) instead of M(x). The lemma is a key ingredient
to next proposition’s proof. The proposition introduces a formula for the updated density of

valuation imprecision that management calculates during the negotiation process.

Proposition 1. When n prior negotiations were successful and m were unsuccessful, then the
posterior density of a firm’s management’s valuation imprecision is calculated by the formula
(b—=)" (x—a)"

2 k=0 2120 (Z) (T) (—1)k+m*lam*lb"*kﬁ(bk+l+1 — gkt

fmn(2)

For simplification we use the notation a :==1— « and b :=1+ a.
Proof: See the Appendix. O]

Proposition 1 introduces the formula of the updated posterior density of their valuation
imprecision that management calculates at each stage in the negotiation process. The formula
is dependent on the number of prior successful negotiations m and unsuccessful negotiations
n. At the beginning of the negotiation process (that is represented by m = n = 0), manage-
ment believes that their imprecision is uniformly distributed on the interval [1 — «, 1 4 af.
This is represented by density function f; o = 0.5/, which is the density function of a random
variable that is uniformly distributed on [1 — «, 1 4 «]. In negotiation process, management
knows that m prior negotiations were successful and n prior negotiations were unsuccessful.
Management then can optimally update their valuation imprecision density to f, . When
more prior negotiations were successful than unsuccessful, then the probability that manage-
ment undervalues the firm is above average. That is represented by a shift of management’s
updated density to the left. On the contrary, when more prior negotiations were unsuccess-
ful than successful, then the probability that management has a valuation above average
increases. As a result, the updated density function shifts to the right.

In negotiation process, management decides to accept the best offer from previous suc-

cessful negotiations or to continue negotiating. The decision management faces is dependent
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on several factors. As discussed above, prior negotiations and their successes changes the
updated density function of valuation imprecision. Negotiation history therefore influences
management’s decision, whether to accept a given offer or not. Further deciding factors are
the financing charge r, the distribution of offers, the volume of the loan K* and the cost per
negotiation cy;:

In fact, in any stage of the negotiation process, management calculates their updated
density of valuation imprecision. From that function, management can derive the posterior
probability that the next negotiation is successful. Negotiation history thus is a crucial
decision factor. Proposition 1 presents the formula for these calculations.

Assume management has a certain financing offer at rate r. When r is above average, then
further negotiations lead to better financing charges with a probability that exceeds 0.5. A
financing offer r below average implies a lower probability to achieve a better offer in further
negotiations.

When the firm wants to raise the amount K*, then a reduction in financing charges reduces
the cost of capital. Now assume that credit volume is below K*. Then the effect of reduced
capital costs looses strength. When the loan size is above K*, then a change in the financing
rate reduces costs of capital more. The loan size K* therefore is a factor that management
takes into consideration for its optimal negotiation strategy.

Now consider cost per negotiation cp;. If that cost is high, then negotiations will be
continued when chances to improve financing conditions are promising. Underlie small, or
even zero negotiation cost. This favours further negotiations, even when the probability for
improved financing conditions is low.

We summarize that negotiation history, best available financing charge r, loan size K* and
cost per negotiation ¢, are factors that a firm’s management considers to implement optimal

negotiation strategy. The theorem formalizes the verbal argumentation above.

Theorem 1. Assume n > 1 prior negotiations were successful and m > 0 were unsuccessful.
Let 0 < ¢y be a firm’s cost per negotiation and financing charge be uniformly distributed on
the interval [r,7], with 0 < r < r < oo. Let the current best financing charge be r € [r,T]|.
Then the firm’s management closes the negotiation process and accepts charge r if r < r*.

The indifference charge r* is defined by

2ATC

rfi=r+ ,
B P

where P > 0 is the probability that the next negotiation is successful.

Proof: See the Appendix. n

Theorem 1 gives management a decision rule for accepting the current loan conditions or
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to conduct further negotiations. That decision rule uses all available information from prior
negotiations.

When the actual cost of debt capital rK* exceeds management’s expectations, then the
management seeks alternative sources of debt capital. When the actual financing charge r is
higher than the indifference cost of debt capital 7*, then a firm’s management should conduct
further negotiations. If  is below that charge, management should settle the financing deal at
rate 7. When the loan cost equals management’s expected cost of capital, then management
is indifferent. As shown in the proof theorem 1, for a continuous distribution density function,
the probability of this event is zero.

In addition, theorem 1 shows that when loan negotiation cost are zero, the optimal fi-
nancing charge is r + \/% = r. Therefore when search and negotiation costs are zero,
management stops the search until the best loan conditions are offered. In the remainder of
this section this issue is discussed in more detail.

The analysis of management’s negotiation strategy provides a decision rule on continu-
ing loan search and negotiations. The next 2 propositions set conditions under which the

management will accept a successfully negotiated offer.

Proposition 2. When relative search and negotiation cost cpr/ K* exceeds the bound (T—r)/3,
then a firm’s management deterministically accepts the first successfully negotiated offer. The

expected financing charge is (T —r)/2 in this "shortest negotiation process’.
Proof: See the Appendix. n

Proposition 3. When relative search and negotiation cost cpr/ K* exceeds the bound (7 — 1) /12,
then a firm’s management accepts the offer of the first successfully negotiated offer with prob-
ability of at least 0.5.

Proof: See the Appendix. O

The above propositions 2 and 3 set conditions under which management accepts the
offer of the first successfully negotiated offer. Proposition 2 states when management always
accepts the first financing offer, whereas proposition 3 gives a condition for an acceptance
with probability of at least 0.5.

Proposition 2 sets conditions when a firm’s management accepts the first successfully
negotiated financing offer with certainty, whereas proposition 3 gives a condition for accepting
that offer on average. Here, by on average we mean that the probability exceeds 0.5. Obviously
the condition of accepting the first offer deterministically is stronger than to accept it on
average. The intuition behind this proposition is that the lower bound of (7 —1)/12 is smaller
than the lower bound (7 — r)/3. Under the first bound the shortest negotiating process is

chosen on average while under the second bound it is chosen deterministically.
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For the 2 propositions we need the following parameters: (1) Search and negotiation cost as
a proportion of loan size ¢, = ¢/K*, and (2) the spread A between best and worst financing
charges. That is, A =7 —r. When relative negotiation costs are higher than one third of the
spread of financing charges, that is ¢, > A/3, then proposition 2 states that management
always closes the negotiation process after the first successfully negotiated offer. That is, when
the negotiation cost are higher, then a firm’s management ends negotiations sooner. When the
loan size increases, management is willing to conduct more loan negotiations. This proposition
also implies that a higher spread in financing charges encourages management to conduct
additional negotiations. When financing charges vary by a spread of larger difference in best
and worse financing charges, then this increases chances to improve financing conditions by
continuing negotiations.

For example, let us consider relative negotiation cost that exceeds the bounds of the fi-
nancing spread. Assume relative negotiation costs are higher than 1/12 of financing spread,
i.e. ¢ > A/12. Then proposition 3 states that management on average closes the nego-
tiation process after the first successfully negotiated offer. When the financing offer of that
negotiation exceeds the upper bound set in theorem 1, then negotiations are continued. The
inequality ¢, > A/12 has the same implications regarding changes in model parameters as
proposition 2. The above argumentation provides us with a lower bound for relative nego-
tiation cost such that management on average accepts the first successfully negotiated offer.
That cost is ex ante 1/12 of the spread between best and worst outcome of a successful nego-
tiation. For instance, when the spread is 12%, then a negotiation cost of 1% of loan size (or
higher) causes a firm’s management to accept the first offer on average. When that relative
cost is 1/3 of the spread or higher, then management accepts the first successfully negotiated
offer with probability 1. In our example, management deterministically accepts the first offer
when the relative negotiation cost exceeds the lower bound ¢, = ¢/K* > 4%. In other words,
the first offer is accepted deterministically when the cost per negotiation is higher than 4%
of debt capital K*.

In summary, under the above 2 propositions, the first successfully negotiated offer will
accepted with probability of at least 0.5, or deterministically. We have acceptance with
probability of at least 0.5 when A/12 < ¢,y < A/3 and first offer acceptance with probability
1, while ¢, > A/3.

The next proposition provides a general formula that combines the probability for the

shortest negotiation process and a lower bound for the relative negotiation cost.

Proposition 4. A firm’s management optimally chooses the shortest negotiation process
with at least probability p € [0, 1], when relative negotiation cost c,e exceed the lower bound

p?(T—r)/3. That is, when relative negotiation cost and spread in financing charges are known,
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then the probability* that it is optimal to stop the negotiation process after the first successfully
negotiated offer is at least p* = \/%.

Proof: See the Appendix. n

The above proposition calculates lower bounds for the relative negotiation cost such that
management optimally chooses the shortest negotiation process with at least probability p €
[0, 1]. The proposition is in accordance with the formulas from propositions 2 and 3 when we
allow p =1 and p = 0.5, respectively.

The formula from the proposition may further by rearranged. As a result, we get a bound
for the probability that management finds the shortest negotiation process most preferable
as a function of financing spread and relative negotiation cost. This bound is, p* = \/?’Z—7 :
As a result, assume that relative negotiation cost and the spread in financing conditions are
known. Then a lower bound for the probability that a firm’s management chooses shortest
negotiation process can be calculated. This probability is given by the formula above. It can
be seen that an increase in relative negotiation cost and a decrease in the financing spread
have positive effect on the probability that management closes loan negotiations after the first
successful negotiation.

The lower bound for relative negotiation cost is a linear function in the spread of financing
conditions. That is, when this spread is zero (then each lender offers the same conditions
deterministically) then that lower bound is zero. As a result, a firm’s management always
optimally chooses the shortest negotiation process. Intuitively, when the spread in financing
conditions is zero, then the first offer is the best that can be achieved. Further negotiations
thus can not result in a more favourable financing charge.

When the spread in financing conditions doubles, then relative negotiation costs also may
double, while the probability that management optimally chooses the shortest negotiation
process remains constant.

In the next proposition we discuss the influence of zero negotiation costs on the negotiation

process.

Proposition 5. If and only if negotiation cost is zero, management negotiates indefinitely.
When negotiation costs are greater than zero, there is a deterministic end to the negotiation

Process.
Proof: See the Appendix. m

Proposition 5 shows that only when negotiations are not costless, then management even-

tually accepts an offer and closes the deal. Intuitively, proposition 5 means that for every

4Note that this formula may exceed a maximum probability of 1. Rigorously, the term p* = min(y/ 3Z;l ,1)
is correct.
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positive negotiation cost, there is a financing offer, which should optimally be accepted. That
is, then additional negotiation costs are no longer justified by potential gains by further ne-
gotiations. Theorem 1 provides a formula for calculating the acceptable optimal loan cost,
given a financing charge.

When there are no negotiation costs, then there is a chance that the management finds a
better financing offer in the future by continuing negotiations. Therefore it is not optimal for
the management to end the negotiation process.

The next proposition calculates the average cost for a shortest negotiation process.

Proposition 6. Assume the firm follows the shortest negotiation process and stops negotia-
tions after N € IN unsuccessful negotiations. When negotiation cost are cyr, then the firm’s

expected negotiation costs are

E(C) = cur (ln(N) 40 (j;)) ,

where v = 0.5772 is the Euler Mascheroni constant.
Proof: See the Appendix. n

Proposition 6 allows to calculate the expected costs for loan negotiations that the firm
incurs. These costs are dependent on the cost per negotiation. When this cost is higher,
then the total costs also rise. Expected negotiation costs in particular is a linear function in
cost per negotiation. That is, when that cost is zero, then the negotiation process is costless.
Further, doubling cost per negotiation doubles expected cost for the negotiation process.

Its cost furthermore depends on the number of unsuccessful negotiations that the man-
agement allows until the negotiation process is unsuccessfully stopped. That is, when the
management allows a high number of unsuccessful negotiations, then the total costs for the
negotiation process increase.

Let us now analyse the implication of our model from a financiers perspective. In partic-

ular, we investigate the effect of expected deal settlement cost on providers of debt capital.

Lemma 2. Given a negotiation cost of ¢y for the bank and negotiations cost of c.eq > A/3

for a firm, then on average a bank spends 2cy to close a debt contract.
Proof: See the Appendix. n

Lemma 2 analyses individual bank negotiations with a credit applicant. The bank receives
an acceptable loan application with p = 1/2 (our modelling is robust for values 0 < p < 1)
and then makes a financing offer to that applicant. If the firm’s relative negotiation costs are

greater than A /3, then the firm accepts the debt contract. Therefore successful debt contracts
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are geometrically distributed with p = 1/2. The mean of this distribution is 2. That is, a bank
on average negotiates with 2 applicants before it successfully closes a deal. Therefore a bank’s
negotiation costs are 2¢;. This cost is derived based on the firm’s management accepting the
first bank loan contract. When ¢,; < A/3 threshold, then the firm’s management may reject

a few loan offers. In that case, the bank’s negotiation costs would be greater than 2c¢;.
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Fig. 1 — Lower bound for relative negotiation cost to cause shortest negotiation process

We analyse the interdependence of the probability that management chooses the short-
est negotiation process, a firm’s management’s relative negotiation cost and the spread in
financing charges. A formula for the lower bound of relative negotiation cost as a function
of probability and financing spread was established in proposition 4. Figure 1 illustrates this
formula.

In figure 1 (a), the z-axis illustrates probability. On the y-axis, the lower bound for
relative negotiation cost is drawn. Each of the three lines shows the lower bound for relative
negotiation cost, such that the shortest negotiation process is the best negotiation strategy,
as a function of the probability for this event. The three lines represent financing spread of
0.05 in blue (that is, Ar =7 —r = 0.05), a spread of 0.1 (in red) and 0.2 (in black).

When the probability is zero on the z-axis, that is, the shortest negotiation process is
chosen with a probability that exceeds zero, then any relative negotiation cost is sufficient
for this event. When we observe probability of 1, then a relative negotiation cost of Ar/3
is necessary to have shortest negotiation process with that probability. This can be seen
from the figure, where these values are 1.67% (when Ar = 0.05), 3.33% (when Ar = 0.1)
and 6.67% (when Ar = 0.2). When we observe for instance p = 0.5, then the lower bound
for relative negotiation cost is Ar/12. This can also been observed from the figure. The
bound for relative negotiation cost is linear in financing spread. Furthermore, that bound is

increasing in financing spread. This means that, given a certain bound for the probability, a
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firm’s management is less likely to conduct shortest negotiation process when the financing
spread increases.

Figure 1 (b) shows the lower bound for relative negotiation costs as a function of financing
spread, such that a firm’s management chooses the shortest negotiation process at least with
a given probability. On the z-axis, the financing spread is drawn. The y-axis shows the
lower bound for relative negotiation cost. The three lines determine lower bounds for relative
negotiation cost, such that the shortest negotiation process is chosen at least with a given
probability. The black line in this figure shows conditions, when the shortest negotiation
process is optimal with probability 1. The red (blue) line illustrates this condition for a
probability that is at least 0.75 (0.5).

When the spread in financing charges increases, then management is more likely to con-
duct more negotiations. That is, then the opportunity to obtain better financing conditions
by further negotiations increases. When we decrease the certainty of the event that a firm’s
management finds the shortest negotiation process optimal, then the conditions may be weak-
ened. This can be observed in the figure, as the black (red) line always is above the red (blue)
line.

In our model each party suffers from a valuation imprecision. However, the distribution
of the valuation imprecision is known by both parties. Let us continue with a numerical
simulation, where the maximum valuation imprecision is o = 10%. However, our analysis is
robust enough that it holds for any valuation imprecision 0 < a < 1.

Figure 2 (a) and (b) is drawn for two different negotiation processes. Management’s
updated estimation of their valuation imprecision in each negotiation process A and B is
graphed in figure 2.

The graphs in figure 2 are distribution functions for management’s Bayesian updated
estimation of valuation imprecision during bank loan negotiations®.

Figure 2 (a) is based on a relatively less successful sample negotiation process A. In this
process the first five negotiations are unsuccessful (indicated by (j,0), 7 =0,1,...,5). This is
followed by four successful negotiations, where management receives financing offers (indicated
by (5,i), i = 1,2,3,4). At the beginning of the negotiations (when there is no negotiation
history) management estimates a uniform distribution of imprecision. This is indicated by
a horizontal line at negotiation history (0,0) (i.e. a constant distribution function). During
the negotiations, management’s loan application is denied 5 times. In that case, management
updates its imprecision estimation and concludes that it is likely that it has initially overvalued
the firm. This process is indicated by the dashed functions drawn between (0,0) and (5,0).

SIf the value of « is different than 0.1, then the scale of the graphs changes. However, the proportions
of the curve do not change. That is, the shape of management’s updated estimation of their imprecision is
independent of maximal valuation imprecision a.

176



301 Negotiation History (5,0) 30F Negotiation History (0,4)

20 F. Negotiation History (2,4)

Negotiation History (5,4)

Density mass
Density mass

+ Negotiation Hist 0,0, - .
151 Negotiation History (0,0) Negotiation History (0,0)

8.9/ 0.9457 - i 1.05 11 8.9 0.§5 i —1705 ‘1.‘1
Valuation imprecision Valuation imprecision
(a) Imprecision distribution for negotiation (b) Imprecision distribution for negotiation
process A process B

Fig. 2 — Management’s Bayesian updated estimation of valuation imprecision during bank
loan negotiations

In these dashed functions, the updated distribution mass shifts to the right of the curve. In
subsequent negotiations, 4 bank loan applications of this firm are approved. This shifts the
firm’s updated Bayesian distribution function toward the mean valuation. This is indicated
by (5,4) and the process is drawn by the dotted functions between (5,4) and (5, 0).

When the negotiation process starts, the probability of receiving a loan approval is ex
ante 50%. However, at (5,4), calculating the probability of a loan approval from the evolved
density function, results to a Bayesian loan approval probability of 37.7%.

Figure 2 (b) graphs a relatively more successful negotiation process B. In that process the
firm receives four loan approvals (indicated by (0,4) , where i = 0,1, ...,4). These four loan
approvals are followed by two loan rejections (indicated by (j,5), where j = 1,2). At the
beginning of the negotiation process (point (0,0)), the management has a uniform valuation
imprecision on the interval [1 —c«, 1+a]. This is indicated by the uniform distribution function
f = 5. Note that a different o than 0.1 generates a different uniform distribution, that the
integral over the interval [1 — «, 1 4 o] is equal 1. As the negotiation process continues, after
(0,4), where four loan applications are approved and none rejected, the management updates
its distribution of its Bayesian distribution. They are confident that their estimation has more
mass below average valuation. This can be seen by the distribution function with negotiation
history (0,4) that has most mass left to 1. Updated distribution functions of the negotiation
process (0,4), i = 1,...3 are plotted in dashed lines between distribution functions (0,0) and
(0,4). Management can be more optimistic for future negotiation success. In sample process
B however, the firm’s management’s loan application is rejected in the next two negotiations
(indicated by negotiation history (2,4)). That process is graphed by the dotted distribution
function (1, 4) between the distribution functions (0,4) and (2,4). After 4 loan approvals and
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2 rejections, management updates their estimation on valuation imprecision. It calculates
that their valuation distribution has high mass close to, but below average valuation. In fact,

for the next negotiation, management’s updated Bayesian success probability is 77.3%.
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Fig. 3 — Indifference financing charge as a function of negotiation history and cost

Figure 3 shows indifference financing charges r* as a function of negotiation history and
cost. Tables 1 and 2 summarize key properties of negotiation processes A and B, respectively.
For the above calculations r < unif[5%, 10%]. In both figures the z-axis illustrates the
number of unsuccessful negotiations and negotiation successes are drawn on the y-axis. The
colour indicates indifference financing charges for different combinations of successful and
unsuccessful negotiations.

In figure 3 (a) the sample negotiation process A is illustrated. In this figure, the underlying
indifference financing charges for a relative negotiation cost ¢, = cpr/K* = 0.001 are shown.
The figure shows that r* is roughly between 5.5% and 8.0%. Also r* is increasing in the
number of unsuccessful negotiations. This result is not surprising, as an increasing number
of unsuccessful negotiations suggests that a firm’s management’s valuation is comparatively
high and therefore ex ante, the probability of future negotiation success decreases. Thus, the
probability that negotiation costs are wasted is increasing. As a result, management is willing
to accept higher financing charges.

An increasing number of negotiation successes on the contrary indicates ex ante that
further negotiations are more likely to be successful as well, leading to a decreasing level of
acceptable financing charges.

The black line in figure 3 (a) shows example negotiation process A. That process further
can be followed in table 1. In figure 3 (a) the negotiation process starts at (0,0), which means
that there are no previous successful or unsuccessful negotiations. In negotiation process
A, the first 5 negotiations are unsuccessful. During that negotiation process, management’s

updated indifference financing charge rises from 5.70% to 7.00%, as can be seen in the figure
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on the black line from (0,0) to (5,0). This means that at the initiation of negotiations,
management would have found 5.70% an acceptable offer. As the first, second, third, fourth
and fifth negotiations fail, management estimates their valuation higher compared to the
average of further financiers’ valuations. That higher valuation on management’s side leads to
a diminishing probability for negotiation success. Therefore management is willing to accept
a higher financing charge for the loan. In the example, the 6th negotiation is successful. That
is represented by the point (5,1) on the plane in figure 3 (a). As a result, management’s
indifference charge decreases to 6.27%. That is, when for instance an investor’s offer is 8%,

then management continues negotiations, because that offer exceeds management’s upper
bound.

Negotiation # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Success n n n n n y y y y
Offer rate - - - - - 8.0% 6.1% 6.0% 5.5%
Best offer - - - - - 8.0% 6.1% 6.0% 5.5%
Indifference rate 6.00% 6.27% 6.53% 6.77% 7.00% 6.27% 6.00% 5.85% 5.76%
Further Negotiations y vy y y y N y vy n

Table 1 — Properties of negotiation process A (¢ = 0.1%)

It can be seen from table 1 that the firm’s management leads 3 more negotiations, which are
all successful in negotiation process A. During these successful negotiations, the management’s
indifference charge decreases from 6.27% to 6.00% (represented by the point (5,2)), to 5.85%
(represented by the point (5,3)), to 5.76% at the point (5,4). When for instance the second
successful negotiation’s offer is 6.1%, then this offer is more favourable than the previous best
offer. However, that offer exceeds the current management’s indifference charge of 6.00%. The
investor’s offer after the next successful negotiation is 6%. In the previous step, management
would have accepted that offer. Due to a further negotiation success, management is more
optimistic regarding future negotiations. In fact, management’s updated indifference charge
is 5.85% and therefore the current offer is declined and further negotiations are conduced.
That next negotiation is successful and the investor offers 5.5%. That investor’s offer is below
management’s updated indifference charge, which is 5.76%. Therefore the firm’s management
accepts that offer.

In summary, management conducted 9 negotiations. Thus the firm’s negotiation costs
sum up to 9 ¢ = 9-0.001 K* = 0.009K*, which is 0.8% of credit volume.

Underlying high negotiation costs, management accepts higher financing charges. That
is, the number of negotiations should be reduced due to increased costs. The actual influence
of comparatively high negotiation costs are illustrated in figure 3 (b). In this example, we

follow negotiation process B with negotiation cost per negotiation that amounts to 1% of loan
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volume.

Negotiation # 1 2 3 4 ) 6
Success y y y y n n
Offer rate 9.0% 9.3% 8.4% 8.6% - -
Best offer 9.0% 9.0% 8.4% 8.4% 8.4% 84 %
Indifference rate 8.52% | 8.24% | 8.09% | 8.00% | 8.35% | 8.68%
Further Negotiations y y y y y n
Table 2 — Properties of negotiation process B (¢, = 1%)
8 8
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(a) Average number of successful negotiations (b) Average number of negotiations

Fig. 4 — Properties of negotiation process as a function of relative negotiation cost ¢,

The figure shows that when the number of unsuccessful negotiations exceeds the number of
successful negotiations, then management should accept the best available offer and conduct
no further negotiations deterministically. In the plane of maximal 10 (un)successful negoti-
ations, minimum indifference charge is just below 8%. That indifference charge significantly
exceeds that from figure 3 (a), where negotiation costs were lower. When relative negotiation
cost is 1%, then indifference charge of 10% is reached whenever there are more unsuccessful
than successful negotiations. In that case management accepts any given offer.

We follow negotiation process B, that is indicated by the red line in figure 3 (b) and
summarised in table 2. Negotiations start at the point (0,0), that indicates that no previous
negotiations have been lead. The first negotiation is successful. As a result of this success,
management’s updated indifference charge is 8.52%. Management however gets offered 9%.
That coupon exceeds management’s indifference charge. Therefore it is optimal for the man-

agement to conduct a further negotiation. That next negotiation is successful in our example
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and it is optimal that further negotiations are conducted until 4 negotiations were successful.
That process is represented by the red line from (0,0) the point (0,4) in figure 3 (b). Due to
these successful negotiations, management updates their indifference charge to 8.00%. In our
example, the present best offer is a charge of 8.40%. If that was the offer of the first successful
negotiation, management would have accepted it. However, in the negotiation process, man-
agement updated their assumptions about the success probability of further negotiations.
In fact, they estimate relatively well success probability and thus management decline the
present offer of 8.40%. In our example the next negotiation fails, represented by a move to
the point (1,4) in figure 3 (b). Consequently management’s updated indifference charge rises
to 8.35%, which still exceeds the present best offer. Therefore it is optimal for the manage-
ment to conduct further negotiations. In the example the next negotiation is unsuccessful
and management increases their updated indifference charge to 8.68%, that is represented by
the point (2,4). At this point of the negotiation process, the indifference interest charge of
8.68% exceeds the best offer of 8.35%. Therefore it is optimal to close the negotiation process
and accept the best offer, which is 8.35%.

In this negotiation process 6 negotiations were conduced. Therefore the firm’s negotiation
costs sum up to 6 - 0.01K* = 0.06 K*, which amounts to 6% of the loan size.

Probabilities are an important factor to this negotiation model because negotiation success
and financing charges are random. That is, the negotiation process, its length and financing
conditions depend on numerous interacting random factors. The remainder of this section
analyses properties of the negotiation process and expected financing conditions. We have
proven that when ¢, > A/3, then a firm’s management deterministically closes the negotia-
tion process after the first successful negotiation. This was shown in proposition 2. Financing
charges then are the average between the most favourable and the worst possible offer. While
relative negotiation costs are within the bounds A/12 < ¢, < A/3, proposition 3 states
that management closes the negotiation process after the first negotiation with a probability
that exceeds 0.5. Proposition 4 further provided a lower bound for relative negotiation cost
as a function of probability such that the shortest negotiation process is preferred. However,
while that probability is below 1, ex post management may find it optimal to continue nego-
tiations. When ¢, = 0, then the firm’s management always continues negotiating because
the next negotiation always offers positive expectation on better financing conditions for free,
according to proposition 5.

Next, we analyse how often management negotiates on average until a financing agreement
is met. Furthermore, the average financing charge as a function of relative negotiation cost
will be analysed. The number of negotiations, average financing conditions and costs per
negotiation finally lead to the total costs associated with loan financing.

The further analysis is based on a Monte-Carlo simulation. 250,000 random negotiation
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Fig. 5 — Properties of negotiation process as a function of relative negotiation cost ¢,

processes were ran and their average properties are presented. Due to the Law of Large
Numbers, that is a decent size to draw sufficiently exact conclusions on analytical mean
values.

Figures 4 and 5 show major properties of the negotiation process as a function of ne-
gotiation costs. As in the above examples, the distribution of financing charges is r 2
unif[5%,10%]. On the z-axis of each figure, relative negotiation costs ¢, = cp/K* are
drawn. We concentrate on negotiation cost that exceed zero because in the latter case, a firm
deterministically gets offered best financing conditions for zero cost.

When relative negotiation cost is above or equal to Ar/3, then it is optimal for a firm’s
management to always accept the first offer. In this example, Ar/3 = 5/3% ~ 1.67%. This
statement can be observed in figure 4, when the management behaves accordingly and accepts
the first successfully negotiated offer when negotiation cost exceeds 1.67% of loan size.

In figure 4 (a), average number of successful negotiations until negotiation process is
terminated is shown. For low negotiation costs, management continues negotiations even when
they received an offer. The number of rejected offers decreases with increasing negotiation
costs. From negotiation costs of approx. 1% of loan size, management accepts most offers.
Management deterministically accepts the first offer when negotiation costs exceed of 1.67%
of loan size.

The number of negotiations of an average negotiation process is decreasing in negotiation
costs, as can be seen in 4 (b). In fact the number of negotiations per negotiation process
converges to approximately 3.57° for high negotiation costs. That is, there are approximately
2.57 unsuccessful negotiations until deal settlement, even when management accepts the first

successfully negotiated offer. The explanation is that when management values the company

6 Apply proposition 6 with N = 20.
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comparably high, then the negotiation success probability diminishes to a greater extent than
the success probability increases as a result of undervaluation.

Figure 5 (a) shows average financing charges for the loan. While negotiation costs are
low, management negotiates more and as a result, the financing charges are relatively low at
approx. 5.5%. This is almost the minimum charge, which is 5%. When management decides
on fewer negotiations when the negotiation costs increase, then the financing charges rise.
When management accepts the first offer deterministically, then financing charges are exactly
average at 7.5%.

Financing costs are analysed in figure 5 (b). The red line shows costs for the negotiation
process. Total cost, which is the sum of negotiation costs and financing charges are illustrated
by the black line. Obviously both costs are increasing in negotiation costs. Their increase is
approximately linear.

In proposition 4 we calculated a lower bound for the probability that the shortest negoti-
ation process is the most efficient negotiation strategy. This lower bound is a function of the
spread in financing charges and relative negotiation cost. Figure 6 shows this lower bound as
a function of relative negotiation cost and for different spreads in financing charges.

For the simulation of the actual probability 100,000 sample negotiation processes were
run for each relative negotiation cost. For the simulation, one needs the probability of a
negotiation success when no prior negotiation was successful and m were unsuccessful. That
probability can be calculated from proposition 1 and is given by 2/(m + 3).

In figure 6 (a) a spread of 5% in financing charges is illustrated and in figure 6 (b) that
spread is 20%. On the z-axis, the relative negotiation cost is drawn. The y-axis illustrates
the probability as a function of negotiation cost. Additionally to the lower bounds that
are calculated from proposition 4, the simulated probabilities are illustrated. The simula-
tions are close approximations to the true probability that a firm’s management chooses the
shortest negotiation process. Intuitively, the simulation therefore exceeds the lower bound
of that probability. In both figures, however, the calculated lower bound is close to the true
probability.

In figure 6 (a), where the spread in financing conditions is 5%, the shortest negotiation
process is deterministically preferable, when relative negotiation cost exceeds 1.67%. That can
be seen from the figure when both, the simulation and the analytically calculated probability
for this event are 1. A probability that exceeds 0.5 is obtained from negotiation cost that
exceed 0.05/12% ~ 0.42% of loan size.

In figure 6 (b), where the spread in financing conditions is 20%, the shortest negotiation
process is deterministically preferable, when relative negotiation cost exceeds 16.7%. That can
be seen from the figure when both, the simulation and the analytically calculated probability

for this event are 1. A probability that exceeds 0.5 is obtained from negotiation cost that
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exceed 0.2/12% = 1.67% of loan size.

Comparing figure 6 (a) and (b), one can see that the shapes of the lines in both figures are
similar. Just the scale of the x—axis is different. That is, in figure 6 (a), relative negotiation
cost reach up to 0.02, whereas the scale of figure 6 (b) reaches its maximum at 0.08. The latter
figure however, illustrates probabilities for a financing spread that is 4 times higher than that
in figure 6 (a). As a result one can see that the probability for the shortest negotiation process
to be optimal is linear in the financing spread, as these figures are almost indistinguishable

from their shape.
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Fig. 6 — Calculated lower bound and simulation of the probability that the shortest negotiation
process is most efficient negotiation strategy

Now, let us introduce an investment banker’s strategy.

4 Intermediation

The placement of debt securities is conducted pursuant to the 1933 Securities Act or to
Rule 506 of regulation D., as Arena (2010) notes. According to these rules, firms may issue an
unlimited amount of securities to an arbitrary number of accredited investors and up to 35 so
called sophisticated investors. Typically firms place private debt with insurance companies,
banks, high net worth individuals and private investment firms. Although these firms are
still important players, they lost their dominance after the private debt market crunch in the
early 1990s, as Carey et al. (1993) note.

An intermediary brings issuer and investor together. They are usually underwriters of
banks or private investment firms. Usually private offerings are conduced on a best efforts
rather than on firm commitment basis.

Underwriter’s compensation is often closely bounded to bond volume and therefore depen-

dent on the underwriter’s success and the bond volume he places. Smith (1985) asks, "What
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determines optimal fee structure?" Baron (1979) analyses contracts in investment banking in
general and in particular focuses on contracts under asymmetric information together with
Holstrom (1980). In our model we work with fees that are proportional to bond volume.

Section 3 showed that the negotiation process in loan financing is cost intensive for a firm
and investors, with negotiation costs cjp; and ¢y, respectively. An underwriter, such as an
investment banker, is assigned to market a firm’s debt in the form of bonds in this section.
In our model, the bond volume is fixed at K*. The intermediary operates under a best efforts
basis and earns a fixed fee f (that is a proportion of bond volume K*) when he successfully
markets the bonds. Therefore the costs for the bond issuance are deterministic for the firm.
A firm’s management and investors are aware of costs that are associated with loan financing.
In our model, the firm’s management is therefore willing to accept a discount d > 0 on their
valuation of the firm. Analogously investors are willing to increase their valuation by a certain
amount u > 0. The investment banker then matches the firm’s management’s and investor’s
adjusted valuations. Thereby the parties must not know their respective adjusted valuations.
Otherwise they could find a mutually satisfying agreement without the intermediary, who
would be redundant. He therefore creates an environment of information asymmetry, where
he systematically hides information from either party. In this section we show that this
strategy creates positive expected earnings for the underwriter and that it is beneficial for
the firm and its investors.

In our model the expected costs for deal settlement in loan financing are known and
given as proportions of financing volume, represented by ¢ = ¢;/K* and ¢}; = ¢p;/K*. The
intermediary’s fee is denoted by f and a proportion of bond volume.

The next propositions shows when a firm and its creditor profit from the intermediaries

services.

Proposition 7. The firm profits from intermediation while d < ¢}, — f and a creditor profits
from intermediation while uw < cj. This means that these players profit from intermediation
while discount d (valuation adjustment u) is lower than the deal settlement costs for loan

negotiations (minus dealer fee in case of the firm).
Proof: See the Appendix. O

Proposition 7 determines the conditions under which the firm and lenders profit from
intermediation.

A firm profits, while discount d on their valuation is below loan negotiation cost minus
investment banker’s fee (each given as a proportion of placed debt K*). Therefore low discount
d favours bond issuing over loan financing. A low dealer fee f has the same effect. As an

intuitive result, an investment banker can attract more clients when he offers lower fees.
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A creditor prefers intermediation over granting a loan, while his increase in valuation is
below deal settlement cost for loan negotiations. Investing in a bond does not incur cost for
deal settlement for an investor. Thus he is willing to adjust his firm valuation while that
adjustment does not exceed deal settlement cost in loan negotiations.

The next proposition calculates the probability for successful bond placement.

Proposition 8. The probability that an intermediary can match a financier and a borrower

; +(u+d— f)K*/2/V/a.

Proof: See the Appendix. O

Proposition 8 shows the influence of model parameters on the probability for successful
bond placement. It is 0.5 plus the product (u+d — f)K*/2/V/a.

Management’s valuation discount d thus has positive effect on the success probability.
That is, a high discount makes it easier for the investment banker’s to successfully place the
bond. Therefore the firm’s reduction in their valuation favours bond financing negotiations
to be successful.

A high investor’s valuation adjustment u further increases the success probability for
the bond placement. That is, an investor with a higher valuation is more likely to exceed
management’s valuation than an investor with a lower valuation. When an investor accepts
a higher valuation adjustment wu, then he thereby affects negotiation success positively.

Low intermediation fee favours the probability that the bond can be placed successfully.
The firm pays the underwriter’s fee. Therefore it reduces the firm’s value. Compared to a
high company value, a lower valued firm is less attractive for investors. Therefore higher fees
are accompanied with a decrease in the probability that the bond can be placed successfully.

When the bond volume as a fraction of company value (K*/V') increases, then this affects
the intermediary’s success probability negatively. K*/V is a measure of debt to firm value.
That is, when the bond volume increases, then that ratio rises. This bares a higher risk and
consequently deal success probability decreases. This can be deducted from proposition 8 with
an analysis of the term (v +d — f)K*/2/V/a = (uK* + dK* — fK*)/2/V/«a. Increasing K*
by keeping all other values fixed needs some care in this case. uK* and dK* are constant
values management and investors use to adjust their respective valuations. Increasing K*/V/
thus solely affects an investment banker’s fee f K*, which is per definition a variable dependent
on K*. It therefore can summarised that a rise in K*/V affects deal settlement probability
negatively.

Valuation imprecision « influences the intermediary’s probability for successful bond place-
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ment negatively. High valuation imprecision implies that management’s and investor’s val-
uations may differ to a greater extent. A firm’s Management increases their valuation and
investors decrease their valuation. However, given a higher valuation imprecision, the prob-
ability that adjusted valuations are compatible decreases. This affects investment banker’s
success probability negatively. When valuation imprecision is minimal (« = 0), then all val-
uations are equal. As a result, any valuation adjustment that exceeds zero has the effect
that a firm’s management’s and an investor’s adjusted valuations are compatible. Then the
intermediary may agree with the first investor on terms to place the bond.

The intermediary tries to sell bonds to investors sequentially until mutually satisfactory
agreement is met. The next lemma calculates the expected negotiations until the bond is

placed.

Lemma 3. On average the intermediary conducts

«

T2+ (ut+d— K]V

E(N)

negotiations until the bond is successfully placed.
Proof: See the Appendix. O

Lemma 3 calculates average number of negotiations until the bond is successfully placed
by an underwriter. This negotiation process can be interpreted as a geometrical distribution
with success probability p = % + (u+d— f)K*/2/V/a. The expectation of that process is
E(N) =1/p, as stated in lemma 3.

A high success probability p lowers the expected number of necessary negotiations until
the bond is placed. Therefore the interpretations from proposition 8 apply to E(N): high in-
vestor’s adjustment, high management’s valuation discount, low intermediation fee, low K*/V/
and low valuation imprecision have positive effect on the number of necessary negotiations
until the investment banker successfully places the bond.

Proposition 8 show the influence of the model’s parameters on the intermediary’s negoti-
ation success. He earns a fee f for his services. Lemma 3 shows that the negotiation success
probability of that results from low fees exceeds that from higher fees. For an intermediary,
the upside of high fees are more earnings for successful bond placement. The downside of high
fees are more (costly) negotiations until the bond is successfully placed. Therefore there is
an optimal adequately chosen fee that maximises an intermediary’s expected earnings. When
we combine proposition 8 and lemma 3 we can calculate a dealer’s expected earnings. These

calculations are the first step to determine the dealer’s optimal fee strategy.
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Proposition 9. Let dealer’s cost (as a proportion of K*) per negotiation be cq. Then his

expected earnings are

B(D) = K (7 = BN)ei) = K (7~ afoa) = K* (= o 20 )

Proof: See the Appendix. n

Proposition 9 shows that the dealer’s expected earnings depend on a number of parameters:
his fee f and cost per negotiation ¢4. A further determinant is E(N), the expected number
of negotiations until an agreement is met. Lemma 3 shows that the figure E(N) depends on
further model parameters.

The dealer’s expected earnings drop when his negotiation costs increase. That is, a higher
cost per negotiation affect his earnings negatively. That fact can be seen from the formula,
where ¢4 and expected earnings are negatively connected. This is intuitive, has higher costs
usually have negative effect on one’s earnings.

Expected negotiations E(V) is a major determinant to a dealer’s expected earnings. In
particular, high investor’s adjustment, high management’s valuation discount, low K*/V and
low valuation imprecision have positive effect on the number of negotiations and therefore for
a dealer’s expected earnings.

His fee f further determines an intermediary’s expected earnings. His earnings are neither
strictly increasing nor decreasing as a function of that fee. In fact, there is an optimal fee f,,
for which earnings are maximised. The next propositions develop a formula for the optimal
dealer’s fee strategy. The next proposition shows how the dealer optimally treats the firm

and investors.

Proposition 10. The dealer optimizes his earnings by persuading the firm’s management and
the investors to mazimally discount their valuation (d = ci; — f) and to mazimally increase

their valuation (u = c;), respectively.
Proof: See the Appendix. m

Proposition 10 shows that an intermediary tries to persuade management to undervalue
their firm as much as possible. At the same time he persuades investors for a maximal increase
in their valuation. This strategy allows the intermediary to earn maximal fee, as shown in
proposition 10.

The optimal investment banker’s fee and its influence on expected earnings are analysed

in the next theorem.
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Theorem 2. When the intermediary’s auxiliary condition is to require at the most as many
negotiations as an investor in bilateral loan negotiations, then his optimal fee and expected

earnings in fee optimum are

fopt = min{u +d+ aV/K* —\/2c,aV/K*, u + d}

u+d— 2cq, g < =52
E(D)=K*- d d = 2K*]V

u+d+aV/K* =2\ 2ac,V/K*, cq> SR
Proof: See the Appendix. ]

Lemma 4. When the intermediary applies optimal fee fo,, then the intermediation success

probability per negotiation is greater or equal 0.5.
Proof: See the Appendix. O

Theorem 2 calculates the optimal intermediary’s fee f,,:, such that his expected earnings
are maximised. This maximum is calculated under the constraint that the dealer places the
bond quicker than bilateral loan negotiations are. That goal is achieved by requiring the
intermediation success probability per approach to exceed 0.5. Lemma 4 shows that this

requirement is met. By theorem 2 the intermediary’s expected earnings are

u~+d— 2cq, g < % —
E(D) = K* - d d = 3K*]V

u+d+aV/K*—2 2CMCdV/K*7 Cd>ﬁ’

when the intermediary applies optimal fee f,.

When his negotiation costs are sufficiently low (cq < then his expected earnings

)
are K*(u + d — 2¢q4). In this case the earnings can be calculated by 3 parameters - man-
agement’s and investor’s valuation adjustments and the dealer’s negotiation cost. Then the
statement from proposition 10 becomes more intuitive: The dealer maximises his expected
earnings by persuading management for maximal undervaluation and investors for maximal
over valuation. Furthermore he profits from minimising his own negotiation costs.

When the intermediary’s negotiation costs exceed a critical level (¢; > then a

2Kg/v)’
lower bound for his expected earnings can be established:

. . - . . 2aV/K*a
K*(u+d+aV/K* —2,/2ac,V/K*) > K (u+d+aV/K _Q\JT*/V)

=K' (u+d+aV/K*—2aV/K")
=K' (u+d—aV/K").
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In that case it can be observed that the valuation imprecision « has negative effect on the
lower bound of the dealer’s expected earnings. Analysing the effect of valuation imprecision

in more detail, we see that it also influences the case ¢; < For any fixed negotiation

o .
KV

cost, there is a sufficiently high valuation imprecision, such that the case ¢; < is met.

QKC:/V
This is beneficial for the dealer. That is, when valuation imprecision is sufficiently high, then
it stops to influence a dealer’s earnings.

Let us formalise a further property of the dealer’s earnings in the following proposition.

Proposition 11. When the intermediary applies optimal fee schedule, then his earnings are

strictly positive while cq < (u+ d)/2.
Proof: See the Appendix. O

Proposition 11 shows that the intermediary expects positive earnings while his negotiation
costs are lower or equal to average valuation adjustments of management and investors. When
this condition is met, then he profits from intermediation. An intermediary’s skills therefore
are a critical issue, as it is of his benefit when he can pursue a firm’s management and investors
to maximally adjust their original valuations.

The next proposition formalises the influence of the valuation imprecision on an interme-

diary’s earnings.

Proposition 12. When an intermediary applies optimal fee fo, then his earnings are in-

dependent of valuation imprecision while c¢qg < ﬁ When cq > ﬁ, then valuation
imprecision has negative effect on his expected earnings.
Proof: See the Appendix. O

When the intermediary’s negotiation costs are below or equal to then proposition

(0%
2KV
12 states that valuation imprecision and his expected earnings are independent. When his
negotiation costs exceed that bound, then the party’s valuation imprecision has negative effect

on his earnings. The bound is dependent on valuation imprecision a. Therefore for any

a
2K* ]V
given negotiation cost ¢y, there/is a sufficiently large valuation imprecision «, such that the
intermediary’s expected earnings are independent of imprecision. That is, for each negotiation
cost c¢g, there is some valuation imprecision a*, such that the imprecision has negative effect
on the expected earnings while o € [0, @*] and no effect on expected earnings while a > «o*.
Therefore the intermediary does not need to consider valuation imprecision when it exceeds
o. In that case, his earnings are independent of valuation imprecision.

A firm and investors profit from intermediation while their valuation adjustments stay
within certain bounds. Proposition 7 calculates these bounds explicitly. The intermediary

profits from strong valuation adjustments and thus peruses management for strong discount
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and investors for high adjustment of their valuations. Proposition 11 shows that this behaviour
is the most efficient strategy for the intermediary.

Theorem 2, lemma 4 and propositions 11 and 12 build the framework for further analysis
on optimal intermediary’s strategy. Theorem 2 determines the optimal fee as a function of
the model parameters. It furthermore includes the constraint that intermediation needs to be
at least as efficient as loan financing with respect to the duration of the negotiation process.
Lemma 4 proves that intermediation is more efficient than bilateral loan negotiations under
optimal fee f,,;. Theorem 2 closes with the calculation of the expected intermediary’s gain
in fee optimum. That formula is the basis to determine the intermediary’s optimal strategy
to maximise his gain.

Proposition 11 introduces the condition ¢4 < (u + d)/2 < (¢}, + ¢})/2. This means that
the intermediary’s cost for negotiations are necessary lower than average negotiation costs of
management and investors. That is reasonable as an intermediary leads negotiations more
often than management or investors and therefore is more skilled and can more easily conduct
negotiations. Under this condition proposition 11 states that the intermediary’s expected gain
is always positive. An intermediary always profits on average from bond marketing when his
negotiation cost is sufficiently low.

Proposition 12 shows that there always is a certain border a*, such that intermediary’s
expected gain is independent of the distribution of valuation imprecision. That is, an interme-
diary may profit from intermediation independent of the imprecision’s distribution. Therefore,
when imprecision exceeds a certain bound «*, he has no intention to influence management
or investors with regards to the accuracy of their valuation precision. This point of view is
valid as long as the intermediary possesses only the ability to alter valuations symmetrically.
That is, higher valuation imprecision bares the same risk of high over- and undervaluation.

Intuitively speaking, the expected gain of an intermediary increase when bilateral loan
negotiations are costly. Furthermore low intermediation costs lead to a higher expected gain
for the intermediary. An intermediary tries to cut his own costs on intermediation and
persuades management and investors to high valuation adjustments.

The relative advantage of bond financing and intermediation over bilateral loan negotia-

tions is discussed in the next section.

5 The Upside of Information Asymmetry

In this section, we will discuss when bond financing by intermediation is preferred by all
parties over loan financing. The investment banker creates an environment of information
asymmetry, whereas in loan financing negotiations full information is available. Consequently

the preference of intermediation over loan financing implies preference of information asym-
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metry over full information.

The next theorem states conditions for Pareto efficiency of bond financing.

Theorem 3. When a firm’s management’s and investor’s valuation adjustments are bounded
by d < iy — f and u < ¢, respectively and the intermediary’s cost per negotiation is bounded
by cq < (d+u)/2, then all players prefer bond financing by intermediation over loan financing.

That is, then information asymmetry Pareto dominates full information.
Proof: See the Appendix. O

When the conditions of the theorem are satisfied, then the firm and an investor prefer in-
termediation over bilateral loan negotiations. Furthermore, then the intermediary has positive
expected earnings from his strategy. Therefore all parties find that intermediation dominates
bilateral loan negotiations. As a consequence, bond financing by intermediation is Pareto
efficient over bilateral loan negotiations. The intermediary holds more information than the
other parties and systematically hides information from them. In bond financing information
is therefore asymmetrically distributed, compared to bilateral loan negotiations, where full
information is available.

The theorem holds, while the intermediary pursues management to increase their valuation
by u and bond investor to decrease his valuation by d. His costs must not exceed average
valuation adjustments (u + d)/2. That is, he either needs ex post low negotiation costs or
needs to pursue management and investor to high valuation adjustments. These parties are
willing to adjust their valuations until a certain bound is met. When the adjustment exceeds
that bound, then the firm and investors prefer bilateral loan negotiations over bond financing.

Next, the previous 2 sample negotiation processes from section 3 are discussed and the
intermediary’s strategy is illustrated.

Example (Sample process A): In sample process A, management approaches 8 po-
tential lenders until management and lender agree on loan financing conditions in the ninth
negotiation with financing charge 5.5%. Cost per negotiation are 0.1% of loan volume. There-
fore negotiation costs for the firm add up to 0.9% of loan volume and the investor’s negotiation
costs add up to 0.2% by lemma 2. If loan volume K* is 500, then the firm’s negotiation costs
are 4.5 and cost of capital is 27.5, whereas the investor faces absolute negotiation cost of 0.5
and earns 27.5 on interest.

In our example the intermediary’s fee is 0.5% of bond volume. Then management can
be pursued to reduce their valuation by up to 0.4% of bond volume, which is 2 in absolute
terms. Let management’s original valuation be 1005. Then it can be pursued to reduce its
valuation to 1003. Furthermore, the intermediary may pursue a bond investor to increase his
original valuation by up to 0.2% of bond volume, which is 4.5 in absolute terms. Now let first

investor’s valuation be 975. Even if the intermediary achieves maximum valuation increase
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to 979.5, management’s and investor’s valuation are incompatible. Let the second investor’s
valuation be 999. The intermediary may pursue the investor for a valuation of 1003.5. Then
that investor’s valuation is higher than management’s valuation and the bond can be placed.
In our example, the coupon is 5.5%. Then the costs of capital (and profit from interest) are
the same as in loan financing.

The firm pays the dealer a fee for successful bond placement, which is 2.5 and lower than
negotiation costs of 4.5 in the loan negotiation case. Investors save negotiation costs of 4.5
compared to loan negotiations. At last, the intermediary faces costs for two negotiations
and has earned a fee of 2.5. When the cost per negotiation is lower than management’s and
investor’s, then his negotiation costs are at the most 1 and he earns at least 1.5. Summing
up the preferences of all parties, intermediation and bond financing Pareto dominates loan
financing in this example.

Example (Sample process B): In sample process B, the firm’s management approaches
5 potential lenders until the parties agree on financing conditions after the 6th negotiation.
The negotiated financing charge is 8.4%. The costs per negotiation are 1% of loan volume.
Therefore the negotiation costs for the firm add up to 6% of loan volume and the investor’s
negotiation costs add up to 2% by lemma 2. That is, when the loan volume K* is 200, then
the firm’s negotiation costs are 12 and the financing charge is 16.8. The investor has absolute
negotiation cost of 4 and earns 16.8 on financing charges.

In this example, the intermediary’s fee is 1% of bond volume. Then the firm’s management
can be pursued to reduce their valuation by op to 5% of bond volume, which is 10 in absolute
terms. When the firm’s management’s original valuation is 1005, then it can be pursued to
reduce valuation to 995. Furthermore, the intermediary may pursue an investor to overvalue
his original valuation by up to 2% of bond volume, which is 4 in absolute terms. When the
first investor’s valuation is 996, then the intermediary may achieve a maximum valuation
increase to 1000. That is, then investor’s valuation exceeds management’s valuation and the
bond can be successfully placed. Note that the investor does not have to adjust her valuation
when management adjusts to 995. In our example, the coupon is 8.4%. Then the cost of
capital (and profit from capital) is as high as in loan financing,.

The firm pays the dealer a fee for bond placement, which is 2 and thus lower than negoti-
ation costs of 12 in loan negotiations. Investors save negotiation costs of 4 compared to loan
negotiations. At last, the intermediary has costs for one negotiation and has earned a fee of
2. When the intermediary’s negotiation costs are lower than management’s and investor’s,
then his negotiation costs are at the most 1. That is, his earnings are at least 1. Summing up
the preferences of all parties in this example, bond marketing with intermediation is Pareto

efficient over loan financing.
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6 Conclusion

We have presented a model that shows how a firm’s management and potential investors
optimally behave in loan negotiations. That model’s parameters were negotiation costs and
- although investors have full insight into the firm’s books - valuation imprecision on both
sides. When the management’s and the investor’s valuations are not compatible, then loan
negotiations are unsuccessful and negotiation costs are lost on both sides. If these negotiations
are successful, the firm’s management still may choose to conduct negotiations with further
investors as the expected reduction in financing costs may be higher than the costs of fur-
ther negotiations. The negotiation process is closed when a mutually satisfactory agreement
between the firm and an investor is achieved. That process is associated with an expected
negotiation cost on both sides.

As an alternative, an intermediary can be hired to market a firm’s bonds. He necessarily
needs to maintain information asymmetry between a firm and an investor to create an "either-
or' decision between bilateral loan negotiations and the intermediary’s services. Otherwise,
a firm’s management and an investor first may conduct bilateral negotiations. When their
negotiations fail, the intermediary can be hired as a second alternative. Finally only "lemons"
are left for the intermediary. This means firms with high expectations on their value and
investors with low valuations seek his services. While the intermediary maintains information
asymmetry between the parties, he experiences the full spectrum of valuations. In fact,
when he determines his fee wisely, his services can be Pareto efficient over bilateral loan
negotiations. Then the firm and investors prefer his services over conducting bilateral loan
negotiations. That is, they accept information asymmetry over bilateral loan negotiations
under full information.

Our framework can be extended in various ways. For example, the parties’ valuation im-
precision may be distributed more generally. A log-normally distributed valuation imprecision
can be such an intuitive extension. Furthermore, a firm’s and an investor’s valuation may
have a different distribution, as their information on a firm’s value is divergent. Additionally,
the loan financing charges and the coupon size may be modelled in a more general way. In
fact, considering bonds with a maturity that exceeds one period is an interesting extension

of our model.
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7 Appendix

Proof of Lemma 1: The cdf of min(X;, Xs, ..., X,,) is given by

M(z) =P (min(Xy, Xs, ..., Xp) <z) =1—-P (min(Xy, Xs, ..., X;,) > )

:1—P(Xi>x,¢=1,...,n>=1—P<X1>~””>n:1_(zz_x>

To — X1
The pdf is given by the first derivative of M (x). O
Proof of Proposition 1: We first calculate the updated distribution function of manage-

ment’s valuation imprecision, given negotiation history.

Fon(x) = P(Vayy < z|n negotiations successful, m negotiations unsuccessful )

P (Vi < z, n negotiations successful, m negotiations unsuccessful)

P(n negotiations successful, m negotiations unsuccessful )
i > Py <min(Xy,..., X,))P(y > maz(Xy, ..., X)) dy
f11+§ 21a P(y < min(Xy, ..., X,))P(y > mazx(Xy, ..., X)) dy

(mﬂi(?@”@%flw
f1+o(f i Py < min(Xy, ..., X,))P(y > mazx(Xy, ..., X;,) dy
o)y (=) (y—a)" dy
CQa)yrent [ER b —y) (g — @)™ dy

-«

The density is the first derivative of this distribution function. Due to the First Fundamental

Theorem of Calculus and the Binomial Theorem we derive the density.

_ OF g a(x) b—2)" (x—a)™
) = T T o) dy
_ =) (@ —a)"
1+a Zk 0( )( 1)k kpn— kzm (m)(_l)m—lylam—l dy

)y
(b—2)"(x —a)"
T o it S () 0 () CUm i dy
_ (b—2)"(z—a)"
oo Sio (1) (1) (S Lyt tam=tbn kg (1 @)ttt — (1= )kttt

]

Proof of Theorem 1: The probability P that the next negotiation is successful (after n
negotiations were successful and m were unsuccessful) can be calculated from proposition 1.
Assume that this probability exceeds zero. Otherwise further negotiations are unsuccessful

deterministically and are therefore not conducted.
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It is a firm’s management preference to continue negotiations, when the expected reduction

in financing charges exceeds the cost for that negotiation. That is,

E (Improvement in financing charges|Negotiation history) > ¢,

<=P (Deal success|Negotiation history) P (Better offer than r) (r — E (Offer|Offer < r)) > ¢,

epl— L (r r) >
Ar \2 2 ol

= (r2 —2rr + [2>

P
A ‘Lre 0.
oAr € s

The above term is zero for

T2 =1+ /2Arcq/P.

When r = r, then the term is negative while relative negotiation cost exceed zero, that is
crep > 0. For r — oo, that term is positive. As a result, the above term is positive, when
r > ry =1+ /2Arc.q/P. In that case, management favours further negotiations. When
r < r 4+ /2Arc.q/P, then further negotiations are rejected. Then the next negotiation’s

expected improvement in financing conditions is lower than the cost that negotiation. O]

Proof of Proposition 2: Take the assumption that the first negotiation is successful with
highest financing charge 7. If the first negotiation is successful, then a firm’s management
estimates their success probability in future negotiations higher than that, when the first nego-
tiation is not successful. Given highest charge 7, a success in a future negotiation deterministi-
cally leads to lowered costs for financing. Therefore, in this setting it is the most probable that
management continues negotiations. In all other variations negotiation (un)successfulness and
financing charges, management is thus less inclined to continue negotiations, compared to the
case where the financing charge is maximal at 7. Therefore, if management rejects further
negotiations in this case, it will reject further negotiations in any other case as well.

Density of valuation imprecision after the first negotiation was successful is

_y—a _ y—a _y—l+ao
fl,O(y> - ff(y— CL) dy o (b_ a)2/2 a 200

Management rejects further negotiations if expected cost reductions due to better financing
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conditions are lower than the cost for these negotiations. This is represented by the inequality

E(FK™ — r K*|1 negotiation success) < ¢/

<= K"P(Negotiation success|1 previous negotiation success) (T — E(r)) < ¢

— K*'(r—(F+1r)/2) /abf(x)P(VI > ) dr < cy

* (— 1 b 2
<:>K(r—z)/2@/a(x—a) dx < ¢y
3

8
— K*(F—r)/2 ¢ cm

1203
= (T—1)/3 <cu/K"

Therefore relative negotiation cost ¢y, /K* higher than (7 —r)/3 deterministically make man-
agement accept the first successful negotiation’s financing conditions. On average these ne-

gotiation’s charges are given by (7 + r)/2. ]

Proof of Proposition 3: Take the assumption that the first negotiation is successful with
average financing charge r* = (¥ — r)/2. If the first negotiation is successful, a firm’s man-
agement updates their estimation of valuation imprecision in a way that affects further ne-
gotiations positively. Given average financing charges (¥ —r)/2 underlines that the first
negotiation’s offer is average. Management rejects further negotiations if its expected cost
reductions due to better financing conditions are lower than the cost for these negotiations.

This is represented by the inequality

P (Negotiation success|1 previous negotiation success)P(r > r*) (r* — E(r|r < r*)) < cp /K"
21
= 35 (F+r)/2—(T/4+3r/4)) <cu/K”

— (T—r)/12 < cpy/K*

Therefore on average relative negotiation cost ¢/ K* higher than (7 —r)/12 make management

accept the first successfully negotiated offer with probability of at least 0.5. n

Proof of Proposition 4: As in the proofs of propositions 2 and 3, we assume that the first
negotiation is successful. When the first successful negotiation is not the first negotiation
then, due to a worse estimated negotiation success probability, a firm’s management is more
likely to decide to conduct no further negotiations.

Let p € [0,1] be some probability. After the first successful negotiation, a firm’s man-
agement gets offered a financing charge that is at least as good as R = r(1 — p) + 7p with
probability p.
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When management gets offered financing charge R after the first negotiation, then it
conducts no further negotiations if expected cost reductions due to better financing conditions

are lower then the cost for these negotiations. That is,

K*P (Negotiation Success) P (Offer < R) E (Offer|Offer < R) < ¢y

2R—rR—r

2 = = K*

3 Ar 2 </
BAT rel

p?Ar

<~

< Cyrel-

The above calculation are lead along the lines of these from propositions 2 and 3. The formula
above establishes a lower bound for relative negotiation cost, such that the probability that
a firm’s management chooses the shortest negotiation process is at least p € [0,1]. This
lower bound is in accordance with propositions 2 and 3, which calculated lower bounds for
relative negotiation costs such that management chooses the shortest negotiation process
deterministically and with probability of at least 0.5. Rearranging the above equation gives

* __ 3Crel
pt =Rt O

Proof of Proposition 5: Take the assumption that all prior negotiations were successful.
This scenario makes management assume best success probability for future negotiations and
therefore dominates all other negotiation processes with respect to future success probability.
Taking the limit of this process, management assumes to succeed in future negotiations with
probability 1. Assume that a firm’s management will not continue negotiations in this optimal
negotiation process, then it will not continue negotiations in any other negotiation process as
well.

Assume management gets offered financing charges r7 and management decides to continue
negotiations. Then, after the next successful negotiation, the best financing conditions r; are
uniformly distributed on the interval [r,r;]. Continuing negotiations sufficiently finally gives
management an offer r* = r + ¢ for all 0 < . This means that after a sufficient number of
successful negotiations, management can receive an offer r* arbitrary close to best available
offer r.

These described assumptions are the best negotiation results that a firm’s management
can possibly achieve. Therefore, if management does not continue this negotiation process,
it will not continue any other negotiation process. Given rate r* management rejects further

negotiations if and only if expected cost reductions due to better financing conditions are
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lower than the cost for these negotiations. This is represented by the inequality

P(Negotiation success)P(r < r*) (r* — E(r|r <)) < cp/K*
2

<:>1-F8 (r+e—r—¢e/2) <c/K* < < cp/K*

€
—r B 2(F —r)
Management may receive offers r* = r 4 ¢ arbitrary close to best offer r. Therefore for any
given negotiation cost c¢p; > 0, there will be best offer rate r* such that management decides
against further negotiations. The only cost, where management always decides to continue

the negotiation process thus is a negotiation cost of zero. O

Proof of Proposition 6: Let X be a geometrically-like distributed random variable with
success probability p € [0, 1], with the difference that all mass that exceeds N lies on zero,
that is

Geo(p), when Geo(p) < N

X = .
0, when Geo(p) > N
Then the expectation of X is
N N-1
X)=> kpd" ' =Y (k+1)pg* = kaq +ZPQ
k=1 k=0
N-1 N-1 1— ¢V
=q > kpd +p Y 0" = q(E(X) = Npg" ') +p —
k=0 k=0

¢E(X) — Npg" +1—¢"
We rearrange the equation and obtain
1
E(X) = ; (1-4¢") = Ng".

Now consider a geometrically-like distributed random variable Y that is defined as follows:

Let Geo(p) be geometrically distributed with success probability p € [0, 1]. Then we define

0, when Geo(p) < N

Y = .
N, when Geo(p) > N
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Then the expectation of Y is

= k—1 — & 1 1—g" N

> Npg" ' =NpY ¢ =Np(7——7 = Ng
k=N+1 k=N —4q —dq

Management’s negotiation success probability p, is dependent on its valuation. When that

valuation is v € [1 —a, 1+ @, then p, = (1 + a —v)/(2a) and ¢, = (v — 1+ a)/(2a). In

summary, the expected number of negotiations is

1 1+a

E=c /1_a (E(X)(p,) + E(Y)(p,)) dv
1 el —gN 1 plraN-1
20‘/* Do "2 ica kzz;]q” v
1 N-1 1+o 1 N—1 oo

- ZQkak/ (0 —1+a) ZQkak/ o* dx

1 =1 1 N-1 4 .
2a;§o2kakk+1(“) S n(N)+7+0 (53

where 7 = 0.5772 is the Euler Mascheroni constant. The firm’s expected negotiation cost is

the product of the above expectation and cost per negotiation c;. O

Proof of Lemma 2: The number of companies an investor negotiates with is geometrically
distributed with parameter 1/2. Thus expected number of negotiations is given by 1/p = 2.

Each negotiation involves cost of ¢; such that expected cost of deal settlement is 2¢;. O

Proof of Proposition 7: From management’s perspective, intermediation is favoured while
VM—CMSVM—U—f@USCM—f,

which is exactly the statement of the proposition. An investor’s preferences are proven ac-

cordingly. O

Proof of Proposition 8: An intermediary can place a bond if and only if

Vu—dK*+ fK* < Vi+uK" <=V, = Vi+ fK* <uK*"+ dK~*
K*

— Xy—X;<(ut+d- f)v

Note that valuation imprecision is independently uniformly distributed, i.e.

Xor, X L unif[1 — a,1+al.
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The probability that an intermediary can match a financier and borrower is

P<XM—XI<(u+d—f)[‘{/*>.

To keep notation to a minimum define ¢ := (u+d — f)£*. Then

14+«

14+«
P (Xy — X; < 1) :/1 /% 1/(40?) dn dm

—Q

1+«
:1/(4a2)/ l+a+t—mdm
1

=1/(40?) (1 +a+1)2a - ((1+a)’ = (1-a)?) /2)
_att
200

which is the formula that is stated in the proposition. O

Proof of Lemma 3: Proposition 8 established negotiation success probability p,;. As the
negotiation process is geometrically distributed, the expected number of negotiations until

deal settlement is

(0%

20+ (u+d— f)K* )V

E<N) = 1/pd =

Proof of Proposition 9: An intermediary’s expected earnings E(D) are

E(P) = ipd(l —pa)" N (K" — keaK™)

k=1
= K~ (f ipd(l —pa)" ! — ey ipd(l —pd)k1k>
k=1 k=1
—_ K* (f — Cq ipd(l —pd)k_lk'>
k=1

Along the lines of lemma 3 the second sum can be interpreted as the expected value of a
geometrically distributed random variable with success parameter p;. That expectation is

given by 1/ps. As a result, the expected earnings are
E (D) = K" (f — ca/pa)

o B 2acy
=K <f a+(u+d—f)K*/V>
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Proof of Proposition 10: Proposition 9 calculates a formula for dealer’s expected earnings.
These are determined by K* (f — c¢q/paq). Obviously expected earnings increase when negotia-
tion success probability py increases. Proposition 8 shows that p; = %+(u +d— f)K*/2/V/a,
which is increasing in v and d. Therefore a dealer profits from increasing u and d. There-
fore the dealer tries to increase these parameters maximally. That maximum is given by the

boundary conditions u < ¢j; and d < ¢j. O

Proof of Theorem 2: Tt is necessary that Xy, —X; < ((u+d)— f)K*/V for an intermediary
to match a borrower with a financier. With proposition 8 we obtain probability of successful
matching at a time pg = (@ + ((u +d) — f)K*/V)/2/a. An intermediary’s objective is to
deliver at least as high negotiation success as capital market success rate. Therefore p; > 1/2
is a necessary condition. We derive that the condition implies f € (0,u + d). Expected

intermediary’s gain E(D) and its derivative with respect to fee f are

E (D) = K" (f — Ca/pa)

. 2acy
=k (f_ a+ ((u+d) —f)K*/V)

B0 =k (1 e
(ot ((u+d)— ) KV)

The first derivative is zero for

K*(u+d)+Vat+ 2V, Fau
Ji2 = o V' — (u+d) + aV/K* + /2cqaV/K*.

There is at the most one fi 5 in the feasible region (0, v + d) It is given by

f1 = (U"— d) + OéV/K* — \/2CdOéV/K*.
As the constraint f € (0,u + d) must hold, optimal fee is
fopt = min{(u+d) + aV/K* — \/2cqaV/K*,u + d},

which is the formula stated in the theorem. Expected earnings in fee optimum are obtained

by plugging optimal dealer’s fee into the formula for his expected earnings. O]

Proof of Lemma 4: A negotiation’s success probability in fee optimum is
pa= (a+u+d— fou)/2/a > 1/2,
because fop,r < u+d. O
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Proof of Proposition 11: Theorem 2 introduced optimal intermediary’s fee

fopt = min{(u+d) + aV/K* — \/2cqaV/K*,u + d}.

Assume dealer’s fee is fo,x = u 4+ d. We show that his expected earnings that result from
this fee are positive. That is sufficient in order to prove that expected earned fee is always
positive under f,,. Applying fee u + d yields expected earnings E(D) = u + d — 2¢4, which
is greater zero if and only if ¢4 < (u + d)/2. O

Proof of Proposition 12: We analyse the cases (a) : ¢4 < and (b) : cq > In

2KO*[/V 2K?:/V‘
case (a) intermediary’s expected earnings are (u + d) — 2¢4. That formula is not dependent
on valuation imprecision. In case (b) intermediary’s expected earnings and first derivative as

a function of « are

E(P) = (u+d)+ aV/K* —2\/2ac,V/K*

20d

E(P)=V/K* | —= 77

Assume the intermediary profits from increasing valuation imprecision. Then

20d
E(P)>0«<— V/K*— >0
(P) / aK*/V
20d
— V/K* > .
/ aK* |V

As we observe case (b), we conclude

26d 2 «
— V/K*
\/aK*/V ~ \/aK*/V w v =V

Thus for valuation imprecision to be beneficial for the intermediary, it must hold that

V/K* > V/K*,
which is not possible. Therefore valuation imprecision has negative effect on an intermediary’s
expected earnings. O]

Proof of Theorem 3: Proposition 7 proved that within the bounds u < ¢}, — f and d < ¢j,
a firm’s management and an investor prefer bond financing by intermediation. Furthermore,
proposition 11 introduced the condition ¢4 < (u + d)/2 for the intermediary to expect posi-

tive earnings. Consequently, while all conditions hold, each party prefers bond financing by
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intermediation over loan negotiations.
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Concluding Remarks

When negotiations for a trade are modelled and the negotiating parties have different
valuations of the traded object, then literature usually models these different valuations as
randomly distributed. These distributions are usually known to the bargaining parties, so
each party knows the lowest and highest possible valuations. Gibbons (1992) as well as
Chatterjee and Samuelson (1983) model the parties’ valuations in that fashion. Accordingly,
each trader can benchmark his own valuation to the distribution of his peers’ valuations.
That information endows a negotiant with a detailed bargaining strategy. As a matter of
fact, when a seller’s valuation is comparatively high, then that seller sets a price that is close
to his valuation. In contrast, a seller with a comparatively low valuation may exaggerate his
price to a greater extent.

This work takes a different approach. Each party knows that its valuation is imprecise and
is aware of the maximal degree of imprecision. However, there is no valuation benchmark.
Hence, a bargainer only knows the percentage of his maximum valuation imprecision compared
to an unknown average valuation. In particular, he does not know whether his valuation is
above or below average. Thus, although some information is known to each negotiating party,
that party’s negotiation strategy is limited, compared to the model investigated in numerous
papers as mentioned above.

This work comes to the result that rational behaving traders are less efficient than naive
bargainers. It can be observed that an intermediary may exploit this inefficiency and offer a
higher gain for all traders. At the same time, his price strategy allows him a positive gain as
well. While there may be full information when the parties trade without the intermediary,
that intermediary maintains an environment of information asymmetry. Thus, when the
traders are in preference of the intermediary, they prefer information asymmetry over full
information. A noteworthy result, when other literature in this field is considered.

Applicable examples illustrate the theory of this work. For instance, the first paper’s
theory can be used to explain why a firm that wants to hire an employee should prefer a
recruitment firm over direct negotiations with a job applicant. It becomes clear that the
recruitment firm’s strategy can be more efficient than direct salary negotiations, even if the
firm and the job applicant are truthful to each other.

Another application is the IPO of a firm’s shares, where an investor’s information is
limited. In contrast, the firm opens its books to an investor when they directly negotiate
over the price of a firm’s share. In this case, full information is available. Determinants
for a firm’s and an investor’s preference of an IPO under information asymmetry over their
bilateral negotiations under full information are examined. Furthermore, our model presents

an explanation for the underpricing of IPOs.
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This work compares different market designs, which allow bargainers to directly trade with
each other. The efficiency of these platforms, under different information sets, is analysed
thoroughly. Additionally, a dealer - operating under information asymmetry - and the attrac-
tiveness of his pricing strategy for the bargainers is presented. All papers within this work
introduce conditions for the dealer being more efficient than direct trade. In this case, infor-
mation asymmetry may Pareto dominate full information. There are numerous further market
designs that allow for direct trade. Their attractiveness can be compared to an intermedi-
ary’s pricing strategy. It would be interesting to establish criteria allowing the intermediary
to Pareto dominate these market designs as well.

The determinant for profit from trade often is the players’ imprecision in their valuations.
Throughout this work, valuation imprecision is uniformly and identically distributed. A
worthwhile extension of the models presented in each paper would be allowing different,
non identical distributions of the players’ valuation abilities. When these distributions are
symmetrical, we believe that major results in this work remain valid. Our simulations already

support this hypothesis.
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