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UNIVERSITY OF PAVIA

Abstract
Economics

Department of Economics and Management

Doctor of Philosophy

Six papers on computational methods for the analysis of structured and unstructured
data in the economic domain

by Giancarlo NICOLA

This work investigates the application of computational methods for structured and unstruc-
tured data. The domains of application are two closely connected fields with the common
goal of promoting the stability of the financial system: systemic risk and bank supervision.

The work explores different families of models and applies them to different tasks: graph-
ical Gaussian network models to address bank interconnectivity, topic models to monitor
bank news and deep learning for text classification. New applications and variants of these
models are investigated posing a particular attention on the combined use of textual and struc-
tured data. In the penultimate chapter is introduced a sentiment polarity classification tool in
Italian, based on deep learning, to simplify future researches relying on sentiment analysis.

The different models have proven useful for leveraging numerical (structured) and tex-
tual (unstructured) data. Graphical Gaussian Models and Topic models have been adopted
for inspection and descriptive tasks while deep learning has been applied more for predictive
(classification) problems. Overall, the integration of textual (unstructured) and numerical
(structured) information has proven useful for systemic risk and bank supervision related
analysis. The integration of textual data with numerical data in fact, has brought either to
higher predictive performances or enhanced capability of explaining phenomena and corre-
lating them to other events.
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Executive Summary
Economics

Department of Economics and Management

Doctor of Philosophy

Six papers on computational methods for the analysis of structured and unstructured
data in the economic domain

by Giancarlo NICOLA

This thesis work investigates the application of computational methods for structured
and unstructured data to the economic domain. Due to the abundance of unstructured data
generated, there is great interest in their combination with traditional data sources, normally
structured data. Unstructured data, differently from structured data, are not organized via
pre-defined data models or schema, therefore, specific algorithms are needed to extract their
internal structure and organize them. Once organized, the data can be leveraged in combi-
nation with traditional structured data to solve a particular task. Specifically, the methods
investigated in this work are network models for timeseries analysis and text analytics mod-
els (topic models and deep learning). The domains of application are two closely connected
fields with the common goal of promoting the stability of the financial system: systemic risk
and bank supervision.

The work delves into methodologies that leverage structured and unstructured textual
data both separately and combined. It explores different families of models and applies them
to tackle different tasks: graphical Gaussian network models to address bank interconnec-
tivity, topic models to monitor bank news and deep learning for text classification. New
applications and variants of these models are investigated posing a particular attention on
the combined use of textual and structured data. Finally, the thesis aims also to ease future
researches leveraging Italian sentiment analysis. In the penultimate chapter is introduced a
python package for sentiment polarity classification in Italian based on deep learning. The
computational methods investigated in the thesis can also be adapted to different contexts al-
lowing the generalizability of this research towards other task where the integration of textual
data can be useful. The work is articulated in nine chapters in which six papers on the use of
structured and unstructured textual data for systemic risk and bank supervision are presented.

The first chapter presents an introduction to the problem and to the works exposed in the
rest of the manuscript. It follows, in Chapter 2, a literature review of the relevant concepts,
methodologies and models explored in the subsequent chapters. The literature review is
divided in five sections on Systemic Risk, Contagion, Gaussian Graphical Models, Topic
models and Deep Learning for Natural Language Processing. In each section the theory and
the relevant literature regarding the topic is reviewed in order to provide the reader with a
theoretical support.
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In Chapter 3 is presented a framework for systemic risk estimation, based on Graphical
Gaussian Models. Two different data sources are incorporated in the stochastic network
model, financial markets data and financial tweets, suggesting a way to combine them with
a Bayesian approach. The result is a systemic risk estimation model that has been applied to
the Italian banking system incorporating network effects and taking into account both twitter
and market data.

In Chapter 4 is tested the causal effect between measures derived from a graphical model
fitted on US banks stock prices and several financial stress indexes. The graphical model
is fitted on market data with a very fast recently developed algorithm based on filtering net-
works. This allows to update the graphical model for each single market day. Granger causal-
ity is then applied to test the causality between the measures computed from the graphical
model and the financial stress indexes. The methodology has been applied to the U.S. banking
system allowing to calculate a corresponding network model and identifying several system
and bank level measures correlating and Granger-causing financial stress indexes.

Chapter 5 presents a work focusing on financial news spreading. It explores how the
topics covered in financial news evolve over time among the different considered countries.
A causal effect in the diffusion of news is investigated by means of a Granger causality test
among topic proportion time-series. The application of a Structured Topic Model, taking into
account numerical and categorical covariates as well, allows to incorporate a geographical
dimension into the analysis. The Granger causality analysis has evidenced several causal
relations in the news diffusion among the different countries.

In Chapter 6 the existence of a causal link between Italian banks’ stocks and sentiment
analysis on the same bank tweets is investigated. The causality is tested by means of a
Granger causality test between the timeseries of twitter sentiment polarity scores and the
price, volume, volatility senior and subordinated CDS spreads and subordinated bond spreads
of the stocks. The results show that both Twitter sentiment and Twitter volume do signifi-
cantly affect several financial variables for some of the banks in the sample in particular,
those that have recently experienced many episodes of high volatility and negative news.

Chapter 7 exposes a model for bank supervision that combines financial variables and
textual news data through a deep learning architecture. In this work the combination of news
data and financial structured data is leveraged to improve bank distress predictions. The
model has shown to be able to learn the combinations of banks’ financial conditions and news
semantic content more frequently associated with distress conditions. This is reflected in the
improved performance obtained when leveraging both news data and financial numerical data
as input to the model.

Chapter 8 introduces a sentiment analysis tool for Italian based on deep learning and
discusses the details of the model, its training process and its evaluation. The results of the
participation to the ABSITA 2018 challenge from the EVALITA conference along with an
analysis on its structure and how it processes the textual input are presented. The chapter
includes also a brief guide to the installation and use of the python package implementing
the model which is available for download.

Chapter 9 finally presents the conclusions of the thesis discussing the principal lessons
learned from the analysis and the possible impact of ongoing researches on the combination
of structured data and unstructured textual data.

In conclusion, all of these models, applied to solve different problems have proven to be
a valid choice for leveraging numerical (structured) and textual (unstructured) data. Graph-
ical Gaussian Models and Topic models have been successfully adopted for inspection and
descriptive tasks while deep learning has been applied more for predictive (classification)
problems. Throughout the different works presented, the integration of textual (unstructured)
and numerical (structured) information has proven useful for systemic risk and bank supervi-
sion related analysis. Depending on the task in fact, the integration of textual and structured
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data has brought either to higher predictive performances or enhanced capability of explain-
ing phenomena and correlating them to other events.
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Chapter 1

Introduction

1.1 Structured and unstructured data

Nowadays, social media, mobile applications, smart homes, Internet of Things, financial
transactions and other technologies are generating an unprecedented amount of multistruc-
tured data. Thanks to falling sensor prices, fast internet connections, large availability of
computational power and storage space, an increasing amount of data is generated, recorded
and stored every day. These key differential factors, compared to some decades ago, have
triggered an exponential growth of data. These data contain useful information that can be an-
alyzed to describe and make predictions regarding the involved phenomena and can be used
to improve organizations, systems and products. The analysis to convert them in actionable
insights and to distil useful models involve different procedures depending on their structure
and characteristics. Algorithms are quite specific on the type and structure of information
they work on, thus, different types of data are treated with different methods.

There are two main families in which data can be categorized, structured and unstruc-
tured. Structured data are information organized in a given structure and comprised of clearly
defined data types whose patterns makes them easily searchable both with human generated
queries and via algorithms using type of data and field names. Unstructured data instead,
while retaining some internal structure, are not structured via pre-defined data models or
schema and therefore they are not as easily searchable. A characteristic of the current perva-
sive origination of data from several endpoints is the abundance of unstructured data. Around
80% of the data generated today are unstructured and they comprehend texts, images, sensors
stream data, videos and audio files, each one of these requiring different pre-processings and
algorithms.

This thesis work investigates computational methods for structured and unstructured data
applied to the economic domain. More specifically, the methods explored are network mod-
els for timeseries analysis and text analytics models (topic models and deep learning). The
financial domains of application are two closely connected fields with the common goal of
promoting the stability of the financial system: systemic risk and bank supervision. Sys-
temic risk is the risk of severe instability or collapse of the financial system triggered by a
single institution failure. It captures the risk of a cascading failure caused by interlinkages
between the financial institutions and it has been a major contributor to the financial crisis
of 2008. The financial crisis has stressed the necessity of understanding the financial system
as a network of institutes, where cross-bank linkages play a fundamental role in the spread
of systemic risks. Financial network models, that take into account these complex interre-
lationships, seem to be an appropriate tool in this context where the focus is posed on the
risk contagion and spillover between banks. These models allow to understand which banks
are the most interconnected and how they affect each other. Moreover, it is possible to inte-
grate network models derived from different data sources in a model that aggregates different
views on systemic risk. Banking supervision has the goal to ensure that banks are operat-
ing safely and soundly and following all the rules and regulations. This is done identifying
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the risks in all areas of operations of the banks (credit risk, liquidity risk, operational risk,
capital risk, interest rate risk, profitability risk, reputational risk, internal controls, corporate
governance, anti-money laundering) in a timely fashion, and ensuring the stability of credit
institutions and of the system through effective action. Both systemic risk estimation and
bank supervision can take advantage of the information contained in the news and in the sen-
timent of financial operators. Text analytics models can be used to process text coming from
news and social media to convert it in structured data actionable for systemic risk estimation
and bank supervision. In particular, textual data can be leveraged as an additional source of
information to complement traditional ones in the analysis. The information contained in
texts in fact, are often complementary to those reflected in standard financial databases (i.e.
financial ratios, sector indicators, macroeconomic data). While the last, in general, contain
very accurate and objective but lower frequency information, text is characterized by higher
frequency, higher noise and a certain degree of subjectivity. Considering these differences
it is interesting to combine them taking advantage of both their aspects. However, text in
the form of natural language, has many peculiarities and requires appropriate techniques for
its processing and its inclusion in the analysis. Natural language, intended as the tool that
people use to express themselves, is inherently difficult to interpret and "quantify". In fact,
it has specific properties that reduce the efficacy of textual information compared to classic
structured data, like linguistic variation and ambiguity. By linguistic variation it’s meant the
possibility of using different words or expressions to communicate the same concept. Lin-
guistic ambiguity instead is related to the several nuances that words or a phrases can have,
allowing for different interpretations. Natural Language Processing (NLP) is the field at the
intersection of Computer Science, Linguistics and Machine Learning that is concerned with
enabling computers to interpret and generate human natural language. In this work we will
resort to Natural Language Processing for extracting the information contained in text and
then combine them with different data sources.

1.2 Motivation and objective of this thesis

In this dissertation we explore ways to leverage structured data and unstructured textual data
for systemic risk estimation and bank supervision. The motivation is to provide method-
ologies for the combination of structured and unstructured textual data with the objective of
benefiting from it in terms of phenomena explicability and predictability. In doing so we
consider different class of models. We resort to graphical Gaussian network models when
addressing bank interconnectivity, to topic models when monitoring bank news and deep
learning when classifying text. We investigate new applications and variants of these models
posing a particular attention on the combined use of textual and structured data. In the last
chapter is also presented a tool for sentiment analysis in Italian. The aim here is to ease
future researches leveraging Italian sentiment analysis. Furthermore, the generalizability of
this research towards other tasks and domains where textual data can be exploited, combined
or not with structured data, plays an important role. In fact, both the methodologies and
the computational tools investigated are of general purpose and can be adapted to different
contexts.

1.3 Structure

The manuscript is divided in nine chapters. The first is represented by this introduction to
the themes considered and to the work exposed in the rest of the manuscript. It follows, in
Chapter 2, a literature review of the relevant concepts, methodologies and models explored
in the subsequent chapters. The literature review is divided in five sections on Systemic
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Risk, Contagion, Gaussian Graphical Models, Topic models and Deep Learning for Natural
Language Processing.

In Chapter 3 is presented a framework for systemic risk estimation, based on Graphical
Gaussian Models. Two different data sources are incorporated in the stochastic network
model, financial markets data and financial tweets, suggesting a way to combine them with a
Bayesian approach.

In Chapter 4 is tested the causal effect between measures extracted from a graphical
model fitted on US banks stock prices and several financial stress indexes. The graphical
model is fitted with a very fast recently developed algorithm based on filtering networks.
This allows to update the graphical model for each single market day. Granger causality is
then applied to test the causality between the measures extracted from the graphical model
and the financial stress indexes.

Chapter 5 presents a work focusing on financial news spreading. It explores how the
topics covered in financial news evolve with time among the different countries. A causal
effect in the diffusion of news is investigated by means of a Granger causality test among
topic time-series. The application of a Structured Topic Model, taking into account numerical
and categorical covariates as well, allows to incorporate a geographical dimension into the
analysis.

In Chapter 6 the existence of a causal link between Italian bank stocks and twitter sen-
timent analysis on the same banks is investigated. The causality is tested by means of a
Granger causality test between the timeseries of twitter sentiment polarity scores and the
price, volume and volatility of the stocks.

Chapter 7 exposes a work on bank supervision that combines financial variables and
textual news data through a deep learning model. In this work the combination of news data
and financial structured data is leveraged to improve bank distress predictions.

Chapter 8 introduces a sentiment analysis tool for Italian based on deep learning. The
details of the model, training process and evaluation are discussed. The results of the partici-
pation to the ABSITA 2018 challenge from the EVALITA conference along with an analysis
on its structure and how it processes the textual input are presented. The chapter includes
also a brief guide to the installation and use of the python package implementing the model
which is available for download.

Chapter 9 finally presents the conclusions of this work discussing the principal lessons
learned from the analysis and the possible impact of ongoing researches on the combination
of structured data and unstructured textual data.

1.4 Publications

Work contributing to this thesis has been published in the following peer reviewed Journals
and conferences:

• Chapter 3: Cerchiello, P., Giudici, P. and Nicola, G. (2017). Twitter data models for
bank risk contagion, In Neurocomputing, Volume 264, Pages 50-56, ISSN 0925-2312,
https://doi.org/10.1016/j.neucom.2016.10.101.

• Chapter 5: Cerchiello, P., Nicola, G., (2018). Assessing News Contagion in Finance.
Econometrics 6 (1), pages 5–24. 10.3390/econometrics6010005.

• Chapter 8: Nicola, G. (2018). Bidirectional Attentional LSTM for Aspect Based Sen-
timent Analysis on Italian. In Tommaso Caselli, Nicole Novielli, Viviana Patti, and
Paolo Rosso, editors, Proceedings of the 6th evaluation campaign of Natural Language
Processing and Speech tools for Italian (EVALITA’18), Turin, Italy. CEUR.org. - Best
Single-Author Student Contribution at the EVALITA’18 conference.
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1.5 Collaborations

Work contributing to these Chapters has been fruit of the following collaborations:

• Chapter 3: Paola Cerchiello and Paolo Giudici from University of Pavia.

• Chapter 4: Tomaso Aste from University College London (UCL) and Paola Cerchiello
from University of Pavia.

• Chapter 5: Paola Cerchiello from University of Pavia

• Chapter 6: Giuseppe Bruno and Juri Marcucci from Bank of Italy and Paola Cerchiello
from University of Pavia.

• Chapter 7: Paola Cerchiello from University of Pavia, Samuel Rönnqvist from Univer-
sity of Turku and Peter Sarlin from Hanken School of Economics.
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Chapter 2

Literature review

This chapter is meant to provide a common background to the works presented in the up-
coming chapters. It gives a brief introduction to the concepts and the literature of Systemic
Risk and Contagion and revises the theory and the literature of the methodologies and mod-
els applied in this work. It is divided in five sections on Systemic Risk, Contagion, Gaussian
Graphical Models (GGM), Topic models and Deep learning. The introductory sections on
Systemic Risk and Contagion revise their definitions and the different interpretations avail-
able in literature. The subsequent sections, related to statistical models, expose the theory on
which the models are based on, the relevant literature and the connection with their applica-
tion in the following chapters.

2.1 Systemic Risk

The recent financial and economic crisis has made evident the critical role played by the
financial system interconnections in channeling and amplifying shocks. In fact, a distin-
guishing trait of the last crisis has been the impact of systemic risk and of systemic effects
arising from the existing linkages among banks and financial institutions. Broadly speaking,
systemic risk refers to the risk that financial instability becomes so widespread that it impairs
the functioning of a financial system to the point where economic growth and welfare suffer
materially [ECB 2009]. While it’s difficult to give a precise definition of systemic risk and
currently there is not an entirely commonly accepted definition of systemic risk, it is possible
to recall some of its more widely adopted descriptions. Systemic risk can be described as the
risk of experiencing a strong systemic event that adversely affects several systemically impor-
tant intermediaries or markets (including potentially related infrastructures). The event could
be triggered by both endogenous shocks from within the financial system or the economy at
large or exogenous shocks external to the financial system. The exogenous shock in turn can
be systematic (widespread) or idiosyncratic (limited in scope). The resulting systemic event,
in turn, can be considered weak or strong if it involves failure of concerned intermediaries
or dysfunctionality of the affected markets. Moreover, it is possible to differentiate between
a “horizontal” view of systemic risk, where the attention is confined to the financial system,
and a “vertical” view of systemic risk where the two-sided interactions between the financial
system and the economy at large are considered [De Bandt and Hartmann 2000]. When it
comes to assessing the severity of systemic risk and systemic events one possible way is to
look at the effects that they have on the real economy in terms of consumption, investments
and growth or economic welfare.

Systemic risk is a complex phenomenon due to its interaction effects, and the several dis-
tinctions between idiosyncratic or systematic factors, exogenous or endogenous triggers and
sequential or simultaneous impacts illustrate the complexity of this phenomenon. To restrict
and delimit the possible research directions resulting from the combination of these elements
normally three main “forms” of systemic risk are considered: the contagion risk, the risk of
macroeconomic shocks inducing simultaneous problems and the risk of the unravelling of
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imbalances in the system. These three main forms of systemic risk which are not mutually
exclusive can realize independently or jointly. Contagion usually refers to a supposedly id-
iosyncratic problem that becomes more widespread in the cross-sectional dimension, often
in a sequential fashion. A contagion example is the failure of a bank triggering the failure
of other banks that initially seemed solvent. The second type of systemic risk refers to the
risk of widespread exogenous shocks simultaneously affecting several intermediaries or mar-
kets. Materializations of this risk are the bank crisis that have been witnessed in conjunction
with macroeconomic shocks like cyclical downturns, interest rate hikes and stock market
crashes [Gorton 1988, Lindgren et al. 1996]. The third type of systemic risk stems from the
unravelling of widespread imbalances built-up endogenously over time within the financial
system which may adversely affect several intermediaries or markets simultaneously.

2.2 Contagion

In this Section we revise the concept and definition of contagion, in view of its importance
for the topics covered in this work, as a major driver and justification for bank regulation.
We discuss its definition from the viewpoint of the application domain of systemic risk and
bank supervision and its connection to related terms like spillover and interdependence. Most
of the literature on economic contagion deals with contagion among countries, banks, within
large-value payment systems and among major financial markets. [Forbes and Rigobon 2002]
define contagion as a shock transmission between markets (or portion of markets) where there
was no previous dependence prior to the shock. Thus, contagion is regarded as a marked in-
crease in the market dependence following to a shock event. In fact, even if two markets are
highly linked one to another and share a high degree of correlation but this hasn’t changed af-
ter the shock, the phenomenon can’t be considered contagion but rather integration. [Bekaert
et al. 2005] describe contagion as an excess of correlation between markets, more than it can
be explained by economic fundamentals. Both these definitions come with the necessity to
identify the normal degree of dependence during periods of stability, together with the fun-
damentals. [Corsetti et al. 2001] consider contagion as a break in the parameters governing
the correlation system. According to them, in fact, it’s normal to have some comovement
across markets following a shock caused by global or regional factors, and such phenomena
is not contagion but can be regarded as a consequence of interdependence. For example,
a rise in volatility of asset prices in one market can be expected to correlate with a rise of
volatility in other markets due to international interconnectedness and the related transmis-
sion mechanisms. However, when contagion takes place, this degree of transmission is very
high and exceeding what can be predicted whit a constant transmission mechanism, and it’s
propagated mainly by irrational investor behaviours.

A slightly different approach is taken in [Kaminsky et al. 2003] where contagion is re-
garded as an instantaneous effect following a shock propagating rapidly between the markets.
According to this definition, the fundamental characteristic is the speed of diffusion of finan-
cial distress. When the propagation to the other markets is gradual, then the event can’t be
regarded as contagion, but rather as a spillover episode. The term spillover also indicates the
phenomenon in which an event in one context is triggered from other events in seemingly un-
related contexts. Anyway, compared to contagion it lacks the “unexpected” or “surprising”
component of the transmission of shocks across markets. In the category of spillovers are
included the effects of common shocks throughout all the markets, such as changes in ref-
erence interest rates and energy commodity prices. Thus, spillover effects are transmissions
of financial distress due to interdependence among markets. Economic interdependence is a
phenomenon that stems from having multiple economic agents depending on each other to
source the necessary inputs to produce their outputs. It’s characteristic of societies with a high
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degree of division of labor where the agents cannot produce all the goods that they need to
realize their products. The interdependence can be at different level, individuals, companies
and countries. From the 1950s, global economic interdependence has grown exponentially,
as a result of a great technological progress and policies aimed at opening national economies
internally and externally to global competition that finally resulted in increased international
trading flows. When the actors of an economic system need to participate to a trading network
to obtain the products they cannot produce efficiently for themselves, economic interdepen-
dence is generated among the network participants. The high degree of interdependence of
modern global economy has been a key driver in the evolution and the spreading of the last
financial and economic crisis.

Returning to contagion, a different approach to its definition, in contrast with the previ-
ous, relates it directly to investor expectations and behaviours. [Masson 1998] for example,
associates pure contagion to changes in investors’ expectations unrelated to the macroeco-
nomic fundamentals of a country, often identified as monsoonal effects. [Karolyi and Stulz
2006] in disagreement with this view, instead relate contagion to investors irrational and panic
behaviour when a shock is propagated from one market to another. They consider that mar-
ket contagion can be defined regardless of whether it is transmitted through macroeconomic
fundamentals or not. Another point of view is given in [Engle 2009] where the contagion
channels, next to the fundamentals, are found within the investor behaviours, and traced to
the portfolios that they trade within multiple markets. This theory grounds on the fact that
volatilities and the correlations between asset returns and stock markets depend on the infor-
mation available to the investors. In fact, assets are hold by investors in anticipation of the
payment that are to be made in the future, so the asset value is fundamentally linked to the
forecast on its future price evolution and the news regarding the market are what make in-
vestors change their future price forecast, as formulated in the model of changing asset prices
by [?]. So, countries with similar economies are correlated because they are influenced by the
same events and the same news will drive investors to decisions. According to this approach,
contagion can be defined as a sudden shift in investor’s market expectations or confidence.

As we have seen there are many definitions of contagion in literature and all of them
frame this phenomenon from different points of view. Even within the same author literature
is possible to witness gradual shifts over time in the definition of contagion, like in [Rigobon
2016], where the author in contrast with [Forbes and Rigobon 2002] uses the words “conta-
gion” and “spillovers” as describing very loosely the phenomenon in which a shock from one
country is transmitted to another. Despite the little convergence about the definition of conta-
gion there are two main characteristics that seem to be prominent and they are the suddenness
and unexpectedness of the shock transmission in the contagion process. When referring to
this contagion in the rest of this work we refer to it considering these two main properties.

2.3 Gaussian Graphical Models

Graphical models are a general framework to compactly represent large joint probability dis-
tributions using a set of ‘local’ relationships among neighbouring variables in a graph [Dar-
roch et al. 1980, Kindermann et al. 1980, Lauritzen 1996, Jordan et al. 1999]. Several com-
monly used statistical models (e.g. Kalman filters, Hidden Markov Models, Ising Models)
can be described as graphical models. In fact, they have been successfully applied to a broad
range of problems, from computer vision to financial modelling to computational biology.
Graphical models provide a principled approach for dealing with uncertainty through the use
of probability theory, and an effective approach for coping with complexity through the use
of graph theory. In these models, the graph structure defines the conditional independence
properties of the underlying probability distributions. It encodes the information about which
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variables influence each other. This allows to answer questions like: are variables X and Y
dependent because they "interact" directly, or because they are both dependent on a third
variable Z? The advantage of Graphical models consist in efficiently representing a joint dis-
tribution P over some set of random variables X = {X1, ...,Xn}. In fact, even in simple cases
where these variables are binary-valued, a joint distribution requires the specification of 2n

numbers (the probabilities of the 2n different assignments of values x1, ...,xn). However, it is
often the case that there is some structure in the distribution that allows to factor its repre-
sentation into modular components. Graphical models precisely provide a general-purpose
modelling language for exploiting the independence properties of distributions, which exist
also in many real-world phenomena. The independence properties in fact, can be leveraged to
represent such high-dimensional distributions more compactly and this compact parametriza-
tion is what enables the model learning. Finally, inference in Graphical models provides the
mechanisms for gluing all these components back together in a probabilistically coherent
manner. The two most common subclasses of graphical models are the Bayesian networks
(also known as belief networks or causal networks) and Markov networks (also known as
Markov random fields (MRFs)). The representation of Bayesian networks is based on di-
rected graphs and hence they are also called directed graphical models. The representation
of Markov networks instead, is based on undirected graphs and hence they are called also
undirected graphical models. Mixed directed and undirected representation (see, for exam-
ple, the work on chain graphs [Lauritzen and Wermuth 1989,Buntine 1995]) are possible but
less common. The main research problems regarding Graphical models are: representation,
sampling, inference and learning. In [Jensen 1996, Bishop 2006, Koller and Friedman 2009]
there exhaustive reviews of the several research questions associated with graphical models.
Representation concerns choosing the right model for the considered application. Sampling
considers the problem of generating samples from the model’s joint probability distribution.
Inference regards using the model to answer probabilistic queries like, computing marginal
probabilities or inferring the value of unobserved variables. Model learning focuses on re-
covering the model from data, estimating its structure and the values of its parameters. This
is a very common task because in many settings it is necessary to estimate a model from a
dataset with no details about the model. In this chapter we will focus on Markov networks
and in particular, Gaussian graphical models that are the class of models applied in the next
chapters.

2.3.1 Markov networks

Markov networks (or MRFs) are based on undirected graphical models. They are useful in
modelling a variety of phenomena where is not possible to naturally ascribe a directionality
to the variables interaction. Furthermore, the undirected model often proves itself simpler
in terms of independence structure and inference task compared to directed models. The
nodes in the undirected graph of a Gaussian graphical model represent the variables, and the
edges correspond to some notion of direct probabilistic interaction between the neighbouring
variables. The graph structure represents the qualitative properties of the distribution. To
completely represent the distribution, it is necessary to associate the graph structure with a set
of parameters. In Gaussian graphical models, partial correlations can be estimated assuming
that the observations follow a multivariate Gaussian, in which the covariance matrix Σ is
constrained by the conditional independences described by a graph [Lauritzen 1996].

More formally, let X = (X1, ...,XN) ∈ RN be a N− dimensional random vector distributed
according to a multivariate normal distribution N (µ ,Σ). Without loss of generality, we will
assume that the data are generated by a stationary process, and, therefore, µ = 0. In addition,
we will assume throughout that the covariance matrix Σ is not singular.
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Let G = (V ,E) be an undirected graph, with vertex set V = {1, ...,N}, and edge set
E = V ×V , a binary matrix, with elements ei j, that describe whether pairs of vertices are
(symmetrically) linked between each other (ei j = 1), or not (ei j = 0). If the vertices V of this
graph are put in correspondence with the random variables X1, ...,XN , the edge set E induces
conditional independence on X via the so-called Markov properties [Lauritzen 1996]. In
particular, the pairwise Markov property determined by G states that, for all 1≤ i < j ≤ N:

ei j = 0⇐⇒ Xi ⊥ X j|XV\{i, j}; (2.1)

that is, the absence of an edge between vertices i and j is equivalent to independence between
the random variables Xi and X j, conditionally on all other variables xV\{i, j}.

Let the elements of Σ−1, the inverse of the variance-covariance matrix, be indicated as
{σ i j}, [Whittaker 1990] proved that the following equivalence also holds:

Xi ⊥ X j|XV\{i, j}⇐⇒ ρi jV = 0 (2.2)

where

ρi jV =
−σ i j
√

σ iiσ j j
(2.3)

denotes the i j-th partial correlation, that is, the correlation between Xi and X j, conditionally
on the remaining variables XV\{i, j}.

Therefore, by means of the pairwise Markov property, and given an undirected graph
G = (V ,E), a graphical Gaussian model can be defined as the family of all N-variate normal
distributions that satisfies the constraints induced by the graph on the partial correlations, as
follows:

ei j = 0⇐⇒ ρi jV = 0 (2.4)

for all 1≤ i < j ≤ N.
Finding the right model or models underlying the data is equivalent to finding the graph or

graphs G which best represent the conditional independences between the different variables.
Stochastic inference in graphical models may lead to two different types of learning: struc-
tural learning, which implies the estimation of the graphical structure G that best describes the
data, and quantitative learning, that aims at estimating the parameters of a graphical model,
for a given graph. In a Bayesian framework, structural learning can be achieved choosing
the graphical structure on the basis of the posterior distribution for G or the marginal likeli-
hood for the model corresponding to G [Berger 1985]. If we use the [Diaconis and Ylvisaker
1979] conjugate prior distribution for the precision matrix K, the marginal likelihood is ac-
tually equal to the ratio of norming constants of two Wishart distributions conditional on
having those entries corresponding to the missing edges of G equal to zero. Such Wishart
distributions will be called G-Wishart. The norming constant of the G-Wishart with shape
parameter δ and inverse scale parameter D is therefore equal to the integral over the set of
positive definite matrices with zero i j entries whenever (i, j) /∈ E, of a Wishart density

g (K) ∼ det (K)
δ−2

2 e−
1
2 tr(KD) (2.5)

This norming constant is also needed for the computation of the Bayes factors in model
comparisons and for any Markov chain or stochastic search on the space of all possible graphs
on p vertices. Its efficient and accurate computation is therefore very important. While when
G is complete or decomposable, this norming constant is well known and can be obtained
analytically, when G is non-decomposable, it has to be computed numerically. Considering
this if we can now recall the expression of the likelihood of a graphical Gaussian model.
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For a given graph G, consider a sample X of size n. For a subset of vertices A ⊂ N,
let ΣA denote the variance-covariance matrix of the variables in XA, and define with SA the
corresponding observed variance-covariance sub-matrix.

When the graph G is decomposable (and we will assume so) the likelihood of the data, un-
der a graphical Gaussian model, nicely decomposes as follows [Dawid and Lauritzen 1993]:

p(X |Σ,G) =
∏C∈C p(XC|ΣC)

∏S∈S p(XS|ΣS)
, (2.6)

where XC and XS respectively denote the set of random variables belonging to the cliques
and to the separators of the graph G, and where:

P(XC|ΣC) ∝ |ΣC|−n/2exp[−1
2

tr
(
SC (ΣC)

−1) (2.7)

and similarly for P(XS|ΣS).
This is a key result since it allows to calculate analytically the likelihood of a proposed

model during the structural learning and will be used in the next chapters for Gaussian graph-
ical model selection.

2.4 Topic Models

Statistical document interpretation stems from the necessity to organize large volumes of
documents in an easily searchable structure. For this, several statistical methods have been
developed to represent texts in a compact way. Among them, probabilistic topic models, a
class of statistical methods for interpreting the contents of document collections, have proven
very useful. These models help understanding and organizing corpora by learning sets of
topics from words frequently co-occurring in documents.

Probabilistic topic models are the last stream of a research that grounds on semantic rep-
resentations of documents. Among these representations one of the first and widely adopted
is the Vector Space Model (VSM) [Salton 1975] also known as semantic space or Bag-of-
Words (BoW) representation, where documents and terms are represented by vectors over
an Euclidean space. The most common type of semantic space is the term-document ma-
trix [Salton 1975, Salton and McGill 1983, Turney and Pantel 2010]. The term-document
matrix C incorporates information regarding the frequency of terms within the corpus docu-
ments. Given a vocabulary of W terms and a collection of D documents it will have a size
of W ×D. It’s elements, ci j are the counts of the occurrences of the ith word in the jth docu-
ment. Often they are also weighted using the TF-IDF (Term Frequency – Inverse Document
Frequency) weighting [Salton and McGill 1983]. However, pure VSMs are characterized by
high dimensionality and sparsity of the semantic space. The high dimensionality is caused
by large number of unique terms that normally appears in texts and the sparsity is due to the
fact that many terms appear only in few documents. These problems impact the accuracy
when calculating the similarity between documents or terms.

These limitations can be mitigated by reducing the high dimensionality and sparsity of
the term-document matrix with methods like Latent Semantic Analysis (LSA) [Deerwester
et al. 1990, Landauer and Dumais 1997]. LSA decompose the term-document matrix C into
three other matrices applying a Singular Value Decomposition (SVD):

C =UΣV T (2.8)

where U is the word vectors matrix with size W ×W whose columns are the eigenvectors
of CCT , Σ is the diagonal W ×D matrix of the singular values and V is the document vectors
matrix of size D×D whose columns are the eigenvectors of CTC. The multiplication of the
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three component matrices results in the original matrix C if the number of singular values is
no smaller than the smallest dimension of C (i.e. the matrix is perfectly decomposed). How-
ever, LSA reduces the dimensionality of the semantic space, by deleting part of the singular
values in the diagonal matrix Σ starting from the smallest one. Doing so, the three matrices
product becomes just an approximation of the original matrix C. In this way it is possible to
reduce the dimensionality of the original semantic space. The resulting approximated matrix
obtained by keeping only the K largest singular values is the following:

C ≈UKΣKV T
K (2.9)

where UK is the word vectors matrix with size W ×K, ΣK is the K×K diagonal matrix
of the K singular values and VK is the document vectors matrix of size K×D. [Stevens 2012]
shows that LSA can be interpreted already as a topic model. In fact, it learns a set of topics TK

obtained by multiplying the word vectors matrix UK with the diagonal matrix of the singular
values ΣK :

TK =UKΣK (2.10)

Moreover, LSA returns also the topic assignments for each document, given by the matrix
V T

K . However, topics learned by LSA are not easily interpretable. In fact, the topic vectors
are linear combinations of the term-document frequencies consisting both of positive and
negative values [Stevens 2012] preventing a straightforward interpretation as unnormalized
probabilities. This limitation is overcome by the probabilistic topic models that produce more
descriptive and coherent topics compared to LSA.

2.4.1 Probabilistic Topic Models

Introduced around the early 2000s in [Hofmann 1999, Blei et al. 2003], probabilistic topic
models are algorithms for discovering the main themes that pervade a large and otherwise un-
structured collection of documents [Blei 2012]. While texts analysis is their main application,
topic models algorithms can be adapted to different types of data. Among other applications,
they have been used to find patterns in genetic data, images, and social networks.

From a statistical modelling point of view they are generative models that learn a set
of latent variables called topics. Topic models are based on the assumption that documents
are generated by a mixture of topics and that topics are defined by probability distributions
over words. Normally documents are represented as "Bag of Words" (BoW), ignoring word
order and taking into account only the terms count per document. The only information
that is relevant to topic models is the number of times a word appears in each document.
Collections of documents are then represented as term-document matrices where the terms
count for each document are recorded. The topic models receive in input a term-document
matrix (representative of the corpus) and return as output a set of topics together with topic
assignments to the documents. Usually, to calculate the term-document matrix, documents
are tokenized (split up) into words or phrases and converted to their lower-case form.

Each topic is represented by a probability distribution over all the unique tokens (words)
in the vocabulary. Tokens that co-occur frequently in documents will be assigned a high
probability in the same topics and likely to represent a coherent subject. Each document is
represented as a probability distribution over topics with only a few topics assigned with high
probability. Topic models can be used to organize large text collections by clustering docu-
ments under different topics and to infer the topic themes by inspecting their soft-clustered
terms.



12 Chapter 2. Literature review

Probabilistic generative models can be represented using the so-called plate notation, a
convenient method for representing variables that repeat in a graphical model (see e.g. Fig-
ures 2.1, 2.2, 2.3). In this representation, shaded nodes indicate observed variables while
unshaded nodes indicate latent variables. Conditional dependency among variables is rep-
resented by arrows while plates (boxes) surrounding nodes indicate repetitions of sampling
steps with the number of repetitions indicated in the bottom right corner of the plate.

2.4.2 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (PLSA) is a topic model presented by [Hofmann
1999] based on a mixture decomposition derived from a latent class model. In PLSA each
word in a document, containing N words, is modelled as a sample from a mixture model
built on a set of T topics in the form of multinomial random variables. Like in the other topic
models structure, words represent the observed variables while topics represent the latent
variables. To fit the model, once the number T of topic is fixed, it’s necessary to calculate the
probability distribution over words for each topic and the probability distribution over topics
for each document.

Let assume a topic φz is a distribution over a fixed vocabulary of size V . In the original
PLSA model, the distribution φ while not explicitly specified is in the form of a Multinomial
distribution. Thus, φz is a vector that represents the topic distribution over words.

Let also assume that a document consists of multiple topics. Therefore, there is a distri-
bution θd over a fixed number of topics T for each document d. This distribution also takes
the form a Multinomial distribution, where each element represents the probability that topic
z appears in document d.

The topics obtained from the algorithm are the result of the following generative process
which is represented in plate notation in Figure 2.1:

1. For each document d within a corpus D with probability P (θ ,d),

2. For each word wn of document d with n ∈ 1, ..,N:

• select a latent topic z with probability P(z|d),
• select a word w with probability P(w|z).

The expression of the joint probability that defines the above process is the following:

P (θd ,w) = P (θd)P (w|θd) (2.11)

P (w|θd) = ∑
z∈Z

P (w,z)P (z|θd) = (2.12)

P (θd ,w) = P (θd)∑
z∈Z

P (w,z)P (z|θd) (2.13)

Where, P(z|θd) is the topic distribution of document d and P(w|z) is the word distri-
bution of topic z ∈ Z. given a document d and each document consists of multiple topics.
This process, respects the main assumption of topic models by representing each document
directly as a list of topic weights. This leads to several problems: (1) the number of parame-
ters in the model grows linearly with the size of the corpus, which leads to serious problems
with overfitting, and (2) it is not clear how to assign probability to a document outside of the
training set [Blei et al. 2003].
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FIGURE 2.1: pLSA model representation in plate notation

2.4.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) has been presented in [Blei et al. 2003] as an extension
of PLSA to overcome the two problems mentioned above. To this purpose, LDA introduces
symmetric Dirichlet priors on both the topics distribution for a particular document, θ , and
on the words distribution for a particular topic, φ . In LDA the topic weights for each doc-
ument are treated as a hidden random variable with T , equal to the number of topics. The
topics obtained from the algorithm are the result of the following generative process which
is represented in plate notation in Figure 2.2:

1. For each topic t in T

• Draw a word distribution over words φ ∼ Dir(β )

2. Choose N, the number of words in a document (depends on the vocabulary)

A document d within a corpus D is represented by latent topics through the following
generative process [Blei et al. 2003]:

3. Draw the topic distribution for a document θ ∼ Dir(α)

4. For each word wn with n ∈ 1, ..,N:

• Choose a topic zn ∼Multinomial(θ )

• Choose a word wn from p(wn|zn,β ), a multinomial probability conditioned on
the topic zn

where:

• N is the number of words in a document.

• zn is the topic for the word wn.

• θ is the distribution over topics for a document.

• α is the parameter of the Dirichlet prior on the per-document topic distributions.

• β is the parameter of the Dirichlet prior on the per-topic word distribution.

The following equation describes the joint probability of the corpus D given the corpus level
hyperparameters α and β :

P(D|α ,β ) =
T

∏
t=1

D

∏
d=1

N

∏
n=1

P(φt |β )P(θd |α)P(zdn|θd)P(wdn|φzdn) (2.14)

The per-topic word distributions φ and the per-document topic distributions θ are the
main variables that need to be estimated in the model. Since Inferring direct estimates from
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Equation 2.14 is intractable, different optimization methods have been applied to the prob-
lem. [Hofmann 1999] used the expectation-maximisation (EM) algorithm to estimate φ and
θ directly. However, the EM algorithm may get stuck in local maxima, thus approximation
methods like Bayesian Variational Inference [Blei et al. 2003] and Gibbs sampling [Grif-
fiths and Steyvers 2004] have been used to overcome this problem. Gibbs sampling is an
algorithm of the Markov Chain Monte Carlo (MCMC) family for sampling values from mul-
tivariate probability distributions. Gibbs sampling is commonly used for statistical inference,
especially Bayesian inference, as an alternative to deterministic algorithms for statistical in-
ference such as the expectation-maximization algorithm (EM) [Dempster et al. 1977]. Gibbs
sampling initially assigns each word w to a random topic t ∈ {1, ...,T} for every document in
corpus D. Then, for each word, it estimates the probability of allocating that current word in
each topic, given the topic allocations of the other words. The calculation for this probability
is provided in [Griffiths and Steyvers 2004]:

P(zi = j|z−i,wi,di, ·) ∝
CWT

wi j +β

∑
W
w=1CWT

w j +Wβ

CDT
di j +α

∑
T
t=1CDT

dit +T α
(2.15)

with zi = j representing the topic allocation of word wi in topic j, z−i being the topic
allocations of the other words, and · representing the remaining information from words,
documents and hyperparameters α and β . The element CWT

w j of the matrix CV T , with size
V ×T , counts the number of times that word w has been allocated to topic j. The element
CDT

d j of the matrix CDT , with size D×T , represents the number of times topic j is assigned
to words in document d. The words distribution per topic and the topic distributions per per
document are given by the elements of matrices Φ and Θ, which can be obtained by the
following equations:

φi j =
CWT

i j +β

∑
W
k=1CWT

k j +Wβ
θ jd =

CDT
d j +α

∑
T
k=1CDT

dk +T α
(2.16)

where φi j represents the probability of word wi in topic j and θ jd represents the proba-
bility of topic j in document dd .

FIGURE 2.2: LDA model representation in plate notation

2.4.4 Correlated Topic Models

The Correlated Topic Model (CTM) [Blei and Lafferty 2006] overcomes one limitation of
LDA, the independence hypothesis among topics, which leads to ignore possible inter-topic
correlations. The Correlated Topic Model, models these correlations through a logistic nor-
mal distribution over topics. Let {µ ,Σ} be a K-dimensional mean and covariance matrix, and
let topics φ1:T be T multinomials over a fixed word vocabulary of size W . The Correlated
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Topic Model, whose plate notation representation is shown in Figure 2.3, assumes that an
N-word document arises from the following generative process [Blei and Lafferty 2006]:

1. Draw θ |{µ ,Σ} ∼N (µ ,Σ)

2. For each word wn with n ∈ 1, ..,N :

• Choose a topic zn|η from Multinomial( f (θ ))

• Choose word wn|{zn,φ1 : T} from Multinomial( f (φzn))

The only difference between this process and the generative process of LDA is that the
topic proportions are drawn from a logistic normal rather than a Dirichlet. The Correlated
Topic Model is more expressive than LDA because removes the strong independence as-
sumption imposed by the Dirichlet in LDA. This hypothesis is not realistic when analyzing
document collections, where it’s possible to find strong correlations among topics [Blei and
Lafferty 2006]. The covariance matrix of the logistic normal distribution defines a topic graph
where each node represents a topic and the edges represent the correlations among them.

FIGURE 2.3: CTM representation in plate notation

2.5 Deep Learning for Natural Language Processing

Deep Learning is a class of machine learning models that employ multiple processing layers
to learn hierarchical representations of data. While many classic machine learning meth-
ods require an extensive feature engineering to make accurate predictions, deep learning
tries to jointly learn good data representations (features), across multiple level of increas-
ing complexity and abstraction, and the final prediction [LeCun et al. 2015]. The auto-
mated feature learning allows an easier automation of the entire learning process, reducing
the need for time consuming feature handcrafting and simplifying the model application to
different tasks. Deep learning draws its origins from the early research on Neural Networks
(NNs) [McCulloch and Pitts 1943, Rosenblatt 1958, Ivakhnenko 1967]. After that, many im-
portant milestones have contributed to evolve the early neural networks in what we call today
deep learning models. Some of these milestones have been the adoption of the backpropaga-
tion algorithm for the training [Rumelhart et al. 1986], the identification of the fundamental
deep learning problem (vanishing-exploding gradients) [Hochreiter 1991], the introduction
of the Long Short Term Memory (LSTM) networks for long sequences, the introduction of
the convolutional neural networks for images and the normalized initialization strategy for
the layer weights [Glorot and Bengio 2010]. All these theoretical contributions (and many
more, the list is not exhaustive) gradually have made neural networks training easier and
faster. This, along with a great availability of computational power (through CPUs, GPUs
and TPUs) and open source automatic differentiation frameworks (e.g. Pytorch and Tensor-
flow) has promoted the application of deep learning and its growing diffusion since the early
2000’s.
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In this Section we introduce the basics concepts of neural networks with a particular
attention to the architectures used in NLP.

2.5.1 Feed-forward Neural Network

FIGURE 2.4: Schematic representations of a shallow neural network (left)
and of a deep neural network (right) [Nielsen 2015]

Neural networks are composed by a sequence of layers (represented vertically in Figure
2.4), each layer containing one or more units (or neurons, represented with circles in Figure
2.4). In the network in Figure 2.4, each unit is connected to every unit the following layer
(vice-versa a unit/neuron is connected to every unit/neuron in the previous layer). The con-
nections are represented by lines, that define some weighting of the output of the unit at the
start of the line (from left), for the input of the unit at the end of the line. Each layer can be de-
scribed mathematically as a vector of activations. In the case of the first layer (the input layer,
on the left side of both the networks represented in Figure 2.4), these activations are equal to
the input. In the final layer (output layer, on the right side of both the networks represented
in Figure 2.4) which encodes the output of the network, we would like these activations to
be such to minimize the error of the model. The collection of all connections (lines) between
two layers, can be mathematically described as a matrix of weights (e.g. W0). The application
of the weight matrix to the input of the network correspond to a matrix multiplication and
can be described in linear algebraic notation as

~z1 =W0~x (2.17)

where ~z1 is the vector resulting from this linear transformation. The~z-vectors resulting from
the matrix multiplication are called pre-activation vectors. Each hidden layer thus, first en-
codes the sum of the multiplications of each of the activations in the previous layer by some
weight in the pre-activation vectors. Then, to obtain the output of each unit (neuron) in the
layer, a non linear activation function is applied to the pre-activation vector,

~a1 = f (~z1) (2.18)

where f is the non-linear activation function. Figure 2.5 summarizes the entire calculation
that take place in a single unit, which consists of inputs xi, bias unit b, an activation function
f and the output.

The output of the unit is computed by the following function:

~a = f (W T x+ b) (2.19)
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FIGURE 2.5: Schematic representation of the calculations that take place in
a neural network neuron. The scheme shows the input (x1, ...,xn), their cor-
responding weights(w1, ...,wn), a bias b and the activation function f applied

to the weighted sum of the inputs [Medium]

where f is the activation function, also called a nonlinearity. The first commonly used activa-
tion function was the sigmoid function:

f (x) = sigmoid(x) =
1

1+ e−x (2.20)

A neural network stacks several of such single units (also called neurons) to compose a layer
(vertically in Figure 2.4) and stacks multiple layers in sequence followed by a final output
layer. For multiple units each neuron’s activation ai is computed by one inner product with its
parameters, followed by an addition with its bias: ai = f (Wi · x+ bi), where each parameter
vector Wi ∈ Rn. It is possible to disentangle the multiplication and the nonlinearity and write
this in matrix notation for m many units stacked in a layer as:

z = wx+ b and a = f (z) (2.21)

where W ∈ Rm×n, b ∈ Rm and the function f is applied elementwise:

f (z) = f ([z1,z2, ...,zm]) = [ f (z1), f (z2), ..., f (zm)] (2.22)

The output of such a neural network layer can be seen as a transformation of the input
that captures various interactions of the original inputs. Thus, Neural networks can be seen
as a collection of non-linear functions applied to a series of matrix-vector multiplications,
mapping from one domain (e.g., words) to another (e.g., sentence polarity). This most ba-
sic neural network variant, depicted in Figure 2.4 is called Feed-forward Neural Network
(FFNN) (also known as a multilayer perceptron) and was first introduced in 1958 in [Rosen-
blatt 1958]. The architectural difference between a simple FFNN and a deep learning FFNN
it’s only in the number of layers the network is composed of.

2.5.2 Activation functions

Each hidden unit applies an activation function to the sum of its weighted inputs, as written
in equation 2.19. Different functions can be used as activation functions but they should have
two main properties:
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1. The function needs to be non-linear, since it is for this kind of functions it has been
proven that a feed-forward network with a single hidden layer containing a finite num-
ber of neurons is a universal function approximator [Cybenko 1989].

2. The function should be monotonic since the error surface associated with a single-layer
model will then be convex [Wu 2009].

Some of the most commonly used activation functions that meets these requirements are
listed in Table 2.1.

Name Function

Logistic (Sigmoid) f (x) = 1
1+e−x

Hyperbolic tangent (tanh) f (x) = e2x−1
e2x+1

Rectified Linear Unit (ReLU) f (x) =

{
0 for x < 0
x, for x≥ 0

Leaky ReLU f (x) =

{
0.01x for x < 0
x, for x≥ 0

Softmax f (x) = exi

∑
K
k=1 exk

for i = 1, ...,K

TABLE 2.1: List of activation functions most commonly used in neural net-
works

Other activations are often preferred in practice over the traditionally popular logistic
function due to better empirical performance like computational speed and stability to the
vanishing gradient problem. In certain cases activation functions are inspired by biological
neurons like the Rectified Linear Unit (ReLU). The nonlinearity applied by the ReLU it’s in
part similar to what happens in a biological neuron [Hahnloser et al. 2000, Hahnloser and
Seung 2001]. That is to say, when the input is below a certain threshold, the neuron does not
fire, and when the input is above this threshold, the neuron fires with a current proportional to
the input. ReLUs are nowadays commonly used in many neural network architectures since
they suffer less from the vanishing gradient problem and they have been found to make it
substantially easier to train deep networks [Nair and Hinton 2010]. The main disadvantage
of ReLUs is that they can end up in state in which they are inactive for almost all inputs,
meaning that no gradients flow backward through the unit. This is known as "dying ReLU"
problem and can be mitigated by using leaky ReLUs activation functions, for which even
negative input have some negative activity associated, preventing complete inactivity of the
unit and allowing for error propagation. A particular case is the softmax function that in
general is used as the final layer activation for classification problems. In fact, softmax
has the property of normalizing the activation on an entire layer to 1 yielding a probability
distribution based on its input. Moreover, by construction it makes easy for the network to
assign much more probability to one class than to the the others thus, it is commonly used in
classification problems were the classes are mutually exclusive.

2.5.3 Training

During the training phase the weights of the neural network are adjusted in order to mini-
mize the loss function calculated on the training examples. Practically due to computational
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constraints the only optimization methods used nowadays for neural networks are gradient
based. Thus, the training of the model consists of an iterative procedure in which each it-
eration is composed by two sequential phases, first a “forward pass” and then a “backward
pass”. The training phase in its complex is a continuous succession of forward and backward
passes. During the forward pass the input is fed into the network and the algebraic operations
and nonlinearities map the input to the prediction to calculate the value of the loss function.
Then in the backward pass the error signal (value of loss function) is backpropagated into
the layers of the network to adjust the weights. The two passes have opposite directions, in
the forward pass the information and the operations flow from the input layer to the output
layer while in the backward pass they flow from the output layer back to the input layer.
The weights adjustment takes place in the backward pass where each trainable weight of the
network is modified by a quantity proportional to the gradient of the error with respect to
that weight. The key actors of this process are the Loss function that gives the error signal,
the Stochastic Gradient Descent (SGD) (or one of its recent variants) that defines the mag-
nitude of the weight adjustment (given the gradient of the error with respect to that weight)
and the backpropagation algorithm that "backpropagates" the gradients from the output layer
of the network back to the inner layers. In the next sections we well briefly introduce these
arguments.

2.5.4 Loss function

Deep learning models are trained adjusting the network weights on the base of an error signal
provided by a loss function. Different loss functions can be defined to measure the model
error for different type of problems. In general, the loss functions applied in NNs fall into
two classes depending upon the prediction task: “classification losses” applied in classifica-
tion problems (i.e. when attempting to predict some discrete class label, out of a finite set
of labels), and “regression losses” applied in regression problems (i.e. when attempting to
predict some continuous score). These two settings account for most of deep learning appli-
cations and classification particularly is the most common case in NLP (e.g. in POS tagging,
NER, language identification, machine translation). In classification problems, the activation
function of the output layer of the network is the softmax function that allows to interpret
the network prediction as a probability distribution over the different classes. In these tasks
normally, the loss function applied to calculate the error is the cross-entropy between the
output of the softmax activations and the target labels probability distribution:

L(~̂y,~y) = −
N

∑
i=1

~yi log~̂yi (2.23)

where L denotes the loss function,~y is the target probability distribution over labels, ~̂y is the
model’s predicted distribution given an input x. The more different the two distributions, the
highest the error of the model. In regression problems, instead the most commonly applied
loss function is the Mean Squared Error (MSE), defined as:

MSE =
1
N

N

∑
i=1

(yi− ŷi)
2 (2.24)

where ŷ is the predicted label, and y is the true label. This function is commonly used in
regression, and is especially handy for explaining backpropagation, as in the next section.
While these losses can be applied to most of the problems, there are many more complicate
loss functions that can be applied to specific cases and, in general, defining the loss function
to apply is one of the most important and impactful step in training a model.
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FIGURE 2.6: Schematic representation of a block of the three layers in a
neural network for the illustration of the backpropagation algorithm. Three
layers anywhere in the network, derivative is taken with respect to the weight
shown in red. The middle neuron is enlarged for visualization purposes

[Medium]

2.5.5 Backpropagation algorithm

The Backpropagation algorithm [Bryson et al. 1963, Werbos 1974, Rumelhart et al. 1986]
allows to calculate the gradient of the loss function for each weight which can be then used
by the optimization algorithm (like SGD) to update the weight. It is referred to also as
Backpropagation of errors because the error is calculated at the output and distributed back
through the network layers, following the inverse direction of the forward pass. Training the
network is about understanding how changing the weights and biases in a network changes
the cost function, which consists in computing the partial derivatives ∂C/∂w and ∂C/∂b
of the cost function C with respect to any weight w or bias b in the network. Recalling the
equations to calculate a single unit activation:

z = wx+ b and a = f (z) (2.25)

and the following network scheme:
The input sum of a neuron k in layer l is expressed as:

zl
k = ∑

j
wl

k ja
l−1
j + bl

k (2.26)

and similarly, the input sum of a neuron m in layer l + 1 is expressed as:

zl+1
m = ∑

k
wl+1

mk al
k + bl+1

m (2.27)

Then, the derivative of the error function with respect to a weight connecting a unit j to unit
k in layer l can be expressed using the derivatives chain rule as:

∂C
∂wl

k j
=

∂C
∂ zl

k

∂ zl
k

∂wl
k j

=
∂C
∂al

k

∂al
k

∂ zl
k

∂ zl
k

∂wl
k j

(2.28)

=

(
∑
m

∂C
∂ zl+1

m

∂ zl+1
m

∂al
k

)
∂al

k

∂ zl
k

∂ zl
k

∂wl
k j

= (2.29)
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=

(
∑
m

∂C
∂ zl+1

m
wl+1

mk

)
f ′
(

zl
k

)
al−1

j (2.30)

To compute these derivatives, we first introduce an intermediate quantity, δlk, which we call
the output error in the kth unit. Backpropagation gives us a procedure to compute the error
δlk and relate δlk to ∂C/∂wl

k j.

δ
l
k ≡

∂C
∂ zl

k
(2.31)

Substituting this definition in Equation 2.30 we have a recursive formula for the error signals,
that allows us to backpropagate the error:

δ
l
k =

(
∑
m

δ
l+1
m wl+1

mk

)
f ′
(

zl
k

)
(2.32)

Similarly, for the bias the error function can be derived with respect to them as well,
remembering that bl

k = 1:

∂C
∂bl

k
=

∂C
∂ zl

k

∂ zl
k

∂bl
k
= δ

l
k (2.33)

We can see that the gradient of the cost function with respect to the bias for each unit is
simply the unit’s error signal. To apply this recursive formula, we need the first error signal
to backpropagate that is the error signal of the neurons in the output layer L of the network.

δ
L
j =

∂C
∂ zL

j
=

∂C
∂aL

j
∂aL

j ∂ zL
j =

∂C
∂aL

j
f ′
(
zL

j
)

(2.34)

Having this we can "propagate" backwards through the network calculating all the error sig-
nals to update the weights according to the applied optimization algorithm. From a compu-
tation point of view, it is interesting to note that derivatives computed for higher layers are
reused when computing derivatives for lower layers, making the process very efficient. More-
over, if it is created a library of differentiable functions or layers where for each function is
known how to forward-propagate (directly applying the function) and how to back-propagate
(knowing the function’s derivative), it is possible to compose any complex neural network.
It is only necessary to keep a stack of the function calls during the forward pass and their
parameters in order to know the way back to backpropagate the errors using the derivatives
of these functions. This can be done by de-stacking through the function calls. This tech-
nique is called auto-differentiation, it requires only that each function is provided with the
implementation of its derivative and is at the basis of deep learning frameworks like Theano,
Tensorflow and Pytorch.

2.5.6 Stochastic Gradient Descent

The most common optimization algorithms for neural networks training are the Stochastic
Gradient Descent (SGD) and its variants (Adagrad, RMSProp, Adam, and others [Hinton
et al. 2012, Kingma and Ba 2014]. In SGD, the gradient for weight updates is calculated
based on a minibatch of n samples drawn from the training set [Bottou 1998], differently
form the gradient descent algorithm that approximates the gradient with the entire training
set. This is done for memory constraints when the training set is too large to fit entirely in
the optimization device memory. As a result, SGD updates are noisier compared to gradient
descent updates and they point only on average the parameter updates in the direction of
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maximum decrease of the loss function. The updates for a weight are defined by the following
equation:

w := w−λ∇C(w) = w−λ
1
n

n

∑
i=1

∇Ci(w) (2.35)

Where w is the weight to optimize, λ is the learning rate, C is the cost function and n is
the minibatch size. Interesting variants of the SGD are Adagrad and RMSProp that adjust
the learning rate for each weight and the Adam algorithm that is similar to RMSProp and
has shown better results compared to the others on many problems [Kingma and Ba 2014].
While the goal of the optimization algorithm is to tune the model parameters to find the
global minimum of the cost function, with deep networks there is no guarantee of achieving
this. Most of the times during the training the network ends up in a local minimum of the cost
function. However, in the case of supervised learning with deep neural networks, most local
minima appear to have a low loss function value, roughly equivalent to that of the true global
minimum [Saxe et al. 2013,Dauphin et al. 2014,Goodfellow et al. 2015,Choromanska et al.
2015].

2.5.7 Network initialization

Parameter initialization is fundamental for neural networks stability during training. One of
the key factors that have greatly improved NNs trainability in the last ten years are the strate-
gies developed for weights initialization. NNs must be initialized with different weights
among the units of the same layer otherwise a zero-like initialization would result in all hid-
den units representing the same function and, due to how backpropagation works, receiving
the exact same weight updates. Therefore, it is necessary to initialize the weights according
to a distribution with non-zero variance. The work of [Glorot and Bengio 2010] has intro-
duced the idea of rescaling the variance of the distribution according to the number of hidden
units in the layers that the weights connect. In fact, their strategy is to initialize each weight
with a small Gaussian value with zero-mean and variance based on the fan-in and fan-out
of the weight. Other commonly used methods include those introduced by and [Saxe et al.
2013], by [He et al. 2015] when using the ReLU activation function and by [Goodfellow et
al. 2016] often used in the case of recurrent neural networks for which particular care needs
to be taken.

2.5.8 Regularization in Neural Networks

Regularization is an important tool to contrast overfitting during neural network training.
Overfitting prevents the model from generalizing well to new examples and it’s more likely
when the training examples are scarce or when the network is heavily overparametrized for
the task. There are several methods to reduce overfitting like L1 or L2 regularization but the
most used nowadays in deep networks is the dropout mechanism [Srivastava et al. 2014].
The key idea of dropout is to randomly drop units (along with their connections) with a pre-
determined probability from the neural network during training. The same units are dropped
during both the forward and backward pass. This prevents units from co-adapting too much,
forcing the network to select more robust features and to be less reliant on specific units.
Dropout can be regarded as a form of ensembling similar to bagging [Breiman 1994], in
fact during training, it samples from an exponential number of different “thinned” networks.
At test time, it is easy to approximate the effect of averaging the predictions of all these
thinned networks by simply using a single unthinned network that has proportionally smaller
weights. For recurrent neural networks, like for the initialization, special dropout variants
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FIGURE 2.7: Representation of a Recurrent Neural Network in its folded
and unfolded form [Deloche 2017]

can be applied like recurrent dropout [Semeniuta et al. 2016], or variational dropout [Gal
and Ghahramani 2016] in which the same dropout mask is used for each time step.

2.5.9 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are deep learning models designed for dealing with se-
quential data [Elman 1990]. They are very deep feedforward neural network that have a
hidden layer receiving its own input for each timestep and share weights (U, V in Figure 2.7)
across time steps.

They are dynamic models that map sequences to sequences working on sequential in-
puts of arbitrary length (x1,x2, ...,xn) and outputting another sequence (y1,y2, ...,yn). With a
sufficient number of hidden units, an RNN can approximate any measurable sequence-to-
sequence mapping to arbitrary accuracy [Hammer 2000] (this is the equivalent of the univer-
sal approximation theorem for FFNN). Each ot in the output sequence can take advantage of
the information in the input sequence up to step t thanks to the recurrent connections. In fact,
they allow a "memory" of previous inputs to persist in the network’s internal state, which
can then be used to influence the network output. On the left side of Figure 2.7 the RNN is
represented as an FFNN with a loop, whereas on the right side it’s depicted in its unrolled
(unfolded) version. The output of RNNs is given by the following equations:

~zt =Ws~xt , (2.36)

~st = fs(~zt), (2.37)

~yt = fy(Wy~st) (2.38)

where Ws is the matrix of weights for the current time step’s input ( xt), U is the weight
matrix for the connections from the previous time step, st is the internal state vector of the
network representing the history of the sequence, t is the index of the current time step, Wy
is the matrix of weights for the output, and fs and fy are the activation functions applied to
the preactivations of internal state and to the preactivations of the output. This architecture
is referred to as Elman net, or Simple RNN [Elman 1990]. The advantage of having the
internal state s, is that the network can leverage preceding information when calculating the
output ~̂yt . In practice, the prediction at each time step is conditioned on the inputs of the
entire preceding sequence. RNNs however, are difficult to train on problems with long-range
temporal dependencies [Bengio et al. 1994, Hochreiter and Schmidhuber 1997, Martens and
Sutskever 2011] due to their nonlinear iterative nature. In fact, a small change to an iterative
process can compound, resulting in very large effects many iterations later. The implication
of this is that the derivative of the loss function at one timestep can be exponentially large with
respect to the hidden activations at a much earlier timestep making the gradients "explode"
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FIGURE 2.8: Schematic representation of a LSTM and of the computation
that performs [Olah 2015]

during training; this is known as the exploding gradient problem. Moreover, RNNs also suffer
from the opposite problem of "vanishing gradient", first described by [Hochreiter 1991] and
[Bengio et al. 1994]. Since the gradients in early layers of the network are the result of many
multiplication operators on numbers smaller than one, they become very small and don’t
provide the training signal. Both these problems derive from the fact that RNN are very deep
neural networks and thus suffer from having unstable gradients, as the gradients calculated
by backpropagation are dependent on the output of the network, which can be quite far away
from the first layers in the network. The vanishing and the exploding gradient problems make
it difficult to optimize RNNs on sequences with long-range temporal dependencies.

2.5.10 Long Short Term Memory Networks

Long Short Term Memory (LSTM) networks, introduced in [Hochreiter and Schmidhuber
1997], are an improvement of RNN with memory cells specifically designed to mitigate the
problem of unstable gradients. They suffer less from the vanishing and exploding gradient
problems and are able to capture long-range dependencies [Cho 2015]. A LSTM network
is formed exactly like a simple RNN, except that the nonlinear units in the hidden layer
are replaced by memory blocks. Each memory block contains one or more self-connected
memory cells and three multiplicative units, the input, output and forget gates, that modify
the extent to which old information is remembered or forgotten.

The key idea behind LSTMs is the introduction of components along which information
can flow mostly unchanged and be preserved for many time steps. This idea is implemented
by the cell state, the horizontal line running through the top of the diagram in Figure 2.8.
The cell state in fact, has few linear interactions with the input, output and forget gates that
regulate the addition or removal of information to the cell state. The gates are composed by
a simple sigmoid neural net layer and a pointwise multiplication operation and are a way to
optionally let information through. They allow the memory cells to store and access informa-
tion over long sequences of time steps. When the gating units are shut (i.e. low activation),
the gradients can flow through the memory unit without alteration for an indefinite amount
of time, thus overcoming the vanishing gradients problem. A low activation of the input gate
(gate closed), prevents new inputs from overwriting the cell activation, that can therefore be
read from the net much later in the sequence, by opening the output gate. The behaviour
of the gates and of the other vectors of the LSTM are governed by the following equations
(for clarity of notation due to the presence of the forget gate and output gate the activation
function is indicated with σ instead of f ):

ft = σ(Wf xt +U f yt−1 + b f ) (2.39)
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it = σ(Wixt +Uiyt−1 + bi) (2.40)

ot = σ(Woxt +Uoyt−1 + bo) (2.41)

ct = ftct−1 + itσc(Wcxt +Ucyt−1 + bc) (2.42)

ŷt = ot ∗σ(ct) (2.43)

where ft represents the output of the forget gate, it represents the output of the input gate, ot
represents the output of the output gate, ct represents the cell state, ŷt represents the output
vector, W and U represent the weight matrices, xt represents the current input, and b repre-
sents bias units. These are the equations that describe how the input and output gates preserve
the contents of the memory unit and how the forget gate can make the memory unit forget its
contents.

LSTM have been successfully applied to many real world problems requiring long range
memory like reinforcement learning [Bakker 2002], music generation [Eck and Schmidhu-
ber 2002], speech recognition [Graves and Schmidhuber 2005, Graves et al. 2006], protein
secondary structure identification [Chen and Chaudhari 2005, Hochreiter et al. 2007], hand-
writing recognition [Liwicki et al. 2007, Graves et al. 2008], machine translation [Sutskever
et al. 2014], robotic control [Mayer et al. 2006], and to solve Partially-Observable Markov
Decision Processes [Wierstra and Schmidhuber 2007, Dung et al. 2008].

2.5.11 Bidirectionality

For many sequence labelling tasks, it could be useful to condition the output on both past
and future context. For example, when working with language, since many of its properties
depend on both preceding and proceeding contexts, it is desirable to condition the network
output on both contexts simultaneously. This can be achieved using Bi-directional RNNs.
The idea behind Bi-directional RNNs is to feed each training sequence forwards and back-
wards to two different recurrent hidden layers, which are both connected to the same output
layer. This provides the network with a symmetric, past and future context for every timestep
in the input sequence [Schuster and Paliwal 1997, Graves and Schmidhuber 2005, Goldberg
2015]. Bi-directional LSTMs have been successfully applied to several NLP tasks, like POS
tagging, named entity tagging, and chunking [Wang et al. 2015,Yang et al. 2016,Plank et al.
2016] improving performances compared to standard LSTMs.

2.5.12 Word vector representations

Distributional word representation methods exploit word co-occurrences to build dense vec-
tor encodings of words. They are based on the distributional hypothesis which states that
words used and occurring in the same contexts tend to purport similar meanings [Harris
1954]. According to this hypothesis each word can be represented by means of its neigh-
bours [Firth 1957]. This idea has proven very useful in NLP and distributional representa-
tions (also called word vector representations or word embeddings) are at the basis of most
deep learning NLP models used today and also many Bag of words methods ground on it,
like LSA [Deerwester et al. 1990] and LDA [Blei et al. 2003]. In these representations
each word is associated to a real-valued vector, often tens or hundreds of dimensions. This is
contrasted with sparse vector representations, such as a one-hot encoding, that have a single
"1" at the index location of the current word and require thousands or millions of dimensions
(the size of the vocabulary). Thus, the main advantage of word vector representations over
sparse vector representations is that they offer a more expressive and efficient representa-
tion by maintaining the context similarity of words and by building low dimensional vec-
tors. Popular distributional analysis methods such as Word2Vec [Mikolov et al. 2013] and
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GloVe [Pennignton et al. 2014] have been critical to the success of many recent natural lan-
guage processing applications [Collobert and Weston 2008, Turney and Pantel 2010, Turian
et al. 2010, Socher et al. 2013, Goldberg 2015]. The idea at the basis of such algorithms is
to construct a neural network that outputs high scores for windows of words that truly occur
in a large unlabelled corpus and low scores for corrupted windows (where for example one
word is replaced by a random word). When such a network is optimized via gradient descent
the derivatives backpropagate into a word embedding matrix L ∈ Rn×V , where V is the size
of the vocabulary and n the dimensionality of the vector representation. In this way, the word
vectors are trained to capture distributional semantics and co-occurrence statistics. The re-
sulting word vector space encodes grammatical and semantic properties (i.e. gender and verb
tense) in specific distance vectors, allowing to perform meaningful algebraic operations on
words (i.e. adding a “gender changing” vector to another word vector to find its male/female
equivalent). The vectors can be learned both in an unsupervised way, relieving the network
from the burden of words semantic through the labelled dataset (normally smaller), and in a
supervised way, in general for fine-tuning them on specific tasks.

2.6 Summary

In this chapter was revised the foundational literature review of graphical models, topic mod-
els and deep learning for NLP in order to provide a theoretical support for the methodologies
applied in the next chapters. These methods allow to handle also unstructured data like text
and some of them are fit for combining them taking advantage of both. While this is a
sufficient introduction to understand the algorithms applied in this thesis, it is by no means a
complete account of these topics. For a more in-depth review, I refer the readers to [Lauritzen
1996] and [Koller and Friedman 2009] for graphical models, to [Blei and Lafferty 2009] for
topic models and to [Goodfellow et al. 2016] and [Goldberg 2015] for neural networks and
their application to NLP.



27

Chapter 3

Twitter data models for bank risk
contagion

3.1 Summary

A very important and timely area of research in finance is systemic risk modelling which
concerns the estimation of relationships among different financial institutions. Understand-
ing these relationships can help to establish which institutions are more contagious/subject to
contagion. The aim of this chapter is to develop a systemic risk model that includes not only
the information from financial market prices, but also the information contained financial
tweets. From a methodological viewpoint, we propose a new framework, based on Graphical
Gaussian Models, to estimate systemic risks from two different sources and suggest a way
to combine them, using a Bayesian approach. From an applied viewpoint, we present a sys-
temic risk model based on financial markets prices timeseries and financial tweets sentiment
timeseries and show that such data can shed further light on the interrelationships between
financial institutions.

3.2 Introduction

Systemic risk models address the issue of interdependence between financial institutions and,
specifically, measure how bank default risks are transmitted among banks.

The study of bank defaults is important for two reasons. First, an understanding of the
factors related to bank failures enables regulatory authorities to supervise banks more effi-
ciently. If supervisors can detect problems early enough, regulatory actions can be taken, to
prevent a bank from failing and reduce the costs of its bail-in or bail-out. Differently these
costs would be mainly faced by shareholders, bondholders and depositors in case of bail-in
or governments and, ultimately, taxpayers in case of bail-out. Second, the failure of a bank
can induce failures of other banks or of part of the financial system. Understanding the de-
terminants of a single bank failure may thus help to understand the determinants of financial
systemic risks, were they due to microeconomic idiosyncratic factors or to macroeconomic
imbalances. When problems are detected, their causes can be removed or isolated, to limit
"contagion effects".

Most research papers on bank failures are based on financial market models, that originate
from the seminal paper [Merton 1974], in which the market value of bank assets is matched
against bank liabilities. Due to its practical limitations, Merton’s model has been evolved into
a reduced form (see e.g. [Vasicek 1984]), leading to a widespread diffusion of the resulting
approach, and the related implementation in regulatory models.

The last few years have witnessed an increasing research literature on systemic risk, with
the aim of identifying the most contagious institutions and their transmission channels. A
comprehensive review is provided in [Brunnermeier and Oehmke 2012]. Specific measures
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of systemic risk have been proposed for the banking sector; in particular by [Adrian and
Brunnermeier 2009], [Acharya et al. 2010](MES), [Brownlees and Engle 2011, Huang et
al. 2011], [Acharya et al. 2012](SRISK), [Cao 2013](δCoVaR), [Banulescu and Dumitrescu
2015](CES), [Calabrese and Giudici 2015, Segoviano and Goodhart 2009]. On the basis of
market prices, these authors calculate the quantiles of the estimated loss probability distribu-
tion of a bank, conditional on the occurrence of an extreme event in the financial market. The
above approach is useful to establish policy thresholds aimed, in particular, at identifying
the most systemic institutions. However, it is a bivariate approach, which allows to calculate
the risk of an institution conditional on another (or on a reference market), but it does not
address the issue of how risks are transmitted between different institutions in a multivariate
framework.

Trying to address the multivariate nature of systemic risk, researchers have proposed a
network modelling approach, following the idea in [Diamond and Dybvig 1983] and the sem-
inal papers of [Sheldon and Maurer 1998, Eisenberg and Noe 2001, Boss et al. 2004, Upper
and Worms 2004]. In this literature, interconnectedness is related to the detection of the
most central players in a network that describes financial flows between agents. The simplest
way of measuring the centrality of a node in the network is by counting the number of its
neighbours. However, more sophisticate measures of centrality have been developed, includ-
ing that shown in [Battiston et al. 2012] who develops a network algorithm, the DebtRank,
starting from Google’s PageRank algorithm.

A different type of network models, recently proposed, are based on correlations (or
distances) between financial descriptors of agents, such as their stock market prices, bond
interest rate spreads or corporate default spreads. The first contributions in this framework
are [Mantegna 1999,Onnela et al. 2004] and, more recently, [Billio et al. 2012] and [Diebold
and Yilmaz 2014], who propose measures of connectedness based on Granger-causality tests
and variance decompositions. [Barigozzi et al. 2013, Ahelegbey et al. 2015] and [Giudici
and Spelta 2016] have extended the approach introducing stochastic graphical models. Here
we shall follow this latter approach, considering a stochastic framework, based on graphical
models. We will thus be able to derive, on the basis of market price data on a number of finan-
cial institutions, the network model that best describes their interrelationships and, therefore,
explains how systemic risk is transmitted among them. It is well known that market prices are
formed in complex interaction mechanisms that often reflect speculative behaviours, rather
than the fundamentals of the companies to which they refer. Market models and, specifically,
financial network models based on market data may, therefore, reflect "spurious" components
that could bias systemic risk estimation. This weakness of the market suggests to enrich fi-
nancial market data with data coming from other, complementary, sources. Indeed, market
prices are only one of the evaluations that are carried out on financial institutions. Other
relevant ones include ratings issued by rating agencies, reports of qualified financial analysts,
and opinions of influential media.

Most of the previous sources are private, and not available to the general public. However,
summary reports from these sources are now typically reported, almost in real time, in social
networks and in tweets. In parallel with these developments, seminal papers on the statistical
analysis of such type of data have recently appeared: see, for example, [Bollen et al. 2011,
Bordino et al. 2012,Choi and Varian 2012,Feldman 2013,Cerchiello and Giudici 2015] who
all show the added value of tweets and, more generally, of textual data in economics and
finance. Indeed, twitter data offer the opportunity to extract complementary information to
market prices and that can, in addition, "replace" market information when not available (as
it occurs for banks that are not listed). In order to extract these information from tweets it
is necessary to preprocess their text with Natural Language Processing techniques. In our
context, we rely on sentiment analysis to obtain a daily sentiment score from financial tweets
collected daily on a number of Italian banks. These scores are then aggregated in timeseries
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that express the average daily Twitter users sentiment towards each considered bank.
In this paper we propose to build Graphical Gaussian Models using daily variation of

banks "sentiment", and to integrate them with graphical models based on market data, by
means of a Bayesian approach. This allows to obtain a comprehensive measurement frame-
work of bank interconnectedness, that can be employed to understand contagion effects. The
novelty of this work is twofold. From a methodological viewpoint, we propose a new frame-
work, based on Graphical Gaussian Models, to estimate systemic risks from two different
sources and suggest a way to combine them, using a Bayesian approach. From an applied
viewpoint, we present a systemic risk model based on financial markets prices timeseries
and tweets sentiment timeseries and show that such a model can help updating the default
probability of a bank, conditionally on the others.

The rest of the Chapter is organised as follows: in Section 3.3 we introduce our proposal;
in Section 3.4 we explore the analyzed financial and tweet data; in Section 3.5 we apply our
method to the Italian banking system; finally, in Section 3.6 we present some concluding
remarks.

3.3 Methodology

We first introduce the graphical network models that will be used to estimate relationships
between banks, both with market and tweet data. Relationships between banks can be mea-
sured by their partial correlation, that expresses the direct influence of a bank on another.
Partial correlations can be estimated assuming that the observations follow a graphical Gaus-
sian model, in which Σ is constrained by the conditional independences described by a graph
(see e.g. [Lauritzen 1996]).

More formally, let X = (X1, ...,XN) ∈ RN be a N−dimensional random vector distributed
according to a multivariate normal distribution N (µ ,Σ). Without loss of generality, we will
assume that the data are generated by a stationary process, and, therefore, µ = 0. In addition,
we will assume throughout that the covariance matrix Σ is not singular. Let G = (V ,E) be
an undirected graph, with vertex set V = {1, ...,N}, and edge set E =V ×V , a binary matrix,
with elements ei j, that describe whether pairs of vertices are (symmetrically) linked between
each other (ei j = 1), or not (ei j = 0). If the vertices V of this graph are put in correspondence
with the random variables X1, ...,XN , the edge set E induces conditional independence on X
via the so-called Markov properties (see e.g. [Lauritzen 1996]).

In particular, the pairwise Markov property determined by G states that, for all 1 ≤ i <
j ≤ N:

ei j = 0⇐⇒ Xi ⊥ X j|XV\{i, j}; (3.1)

that is, the absence of an edge between vertices i and j is equivalent to independence between
the random variables Xi and X j, conditionally on all other variables xV\{i, j}. Let the elements
of Σ−1, the inverse of the variance-covariance matrix, be indicated as {σ i j}, [Whittaker 1990]
proved that the following equivalence also holds:

Xi ⊥ X j|XV\{i, j}⇐⇒ ρi jV = 0 (3.2)

where

ρi jV =
−σ i j
√

σ iiσ j j
(3.3)

denotes the i j-th partial correlation, that is, the correlation between Xi and X j, conditionally
on the remaining variables XV\{i, j}.
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Therefore, by means of the pairwise Markov property, and given an undirected graph
G = (V ,E), a Graphical Gaussian Model can be defined as the family of all N-variate normal
distributions that satisfies the constraints induced by the graph on the partial correlations, as
follows:

ei j = 0⇐⇒ ρi jV = 0 (3.4)

for all 1≤ i < j ≤ N. Stochastic inference in graphical models may lead to two different
types of learning: structural learning, which implies the estimation of the graphical structure
G that best describes the data, and quantitative learning, that aims at estimating the param-
eters of a graphical model, for a given graph. Structural learning can be achieved choosing
the graphical structure with maximal likelihood. To this aim, we now recall the expression
of the likelihood of a Graphical Gaussian Model. For a given graph G, consider a sample
X of size n. For a subset of vertices A ⊂ N, let ΣA denote the variance-covariance matrix
of the variables in XA, and define with SA the corresponding observed variance-covariance
sub-matrix.

When the graph G is decomposable (and we will assume so) the likelihood of the data, un-
der a graphical Gaussian model, nicely decomposes as follows [Dawid and Lauritzen 1993]:

p(X |Σ,G) =
∏C∈C p(XC|ΣC)

∏S∈S p(XS|ΣS)
, (3.5)

where XC and XS respectively denote the set of random variables belonging to the cliques
and to the separators of the graph G, and where:

P(XC|ΣC) ∝ |ΣC|−n/2exp[−1
2

tr
(
SC (ΣC)

−1) (3.6)

and similarly for P(XS|ΣS). Operationally, a model selection procedure compares different
G structures by calculating the previous likelihood substituting for Σ its maximum likeli-
hood estimator under G. For a complete (fully connected) Graphical Gaussian Model such
an estimator is simply the observed variance-covariance matrix. For a general (decompos-
able) incomplete graph, an iterative procedure, based on the clique and separators of a graph,
must be undertaken (see e.g. [Lauritzen 1996]). Through model selection, we obtain a graph-
ical model that can be used to describe relationships between banks and, specifically, to
understand how risks propagate in a systemic risk perspective. [Cerchiello and Giudici 2015]
and [Giudici and Spelta 2016] have shown, respectively in the context of country financial
flows and bank returns, that Graphical Gaussian models are well suited to estimate inter-
connections between a large set of financial institutions, on the basis, respectively, of the
available inter-country bank liability data or financial market data. In our context, we have
the additional task of selecting a graphical model for two different data sources: market data
and financial tweets on the same banks. Indeed, the two data sources should be combined
into a single one, before performing model selection. This is the additional contribution of
the present work, and can be achieved within a Bayesian framework, characterised by an
Empirical Bayes approach to the specification of the prior distribution.

Empirical Bayes models [Casella 1985,Carlin and Louis 2000] address the issue of spec-
ifying the prior distribution, not on a priori ground, but using data assumed to come from a
different population from the one considered as the main object of the statistical inference. In
our context, the main object of inference is the correlation structure of market prices, which
can be summarised in the correlation matrix parameter. Eliciting a prior distribution on a
correlation matrix is a rather complex task, especially when a large number of variables is
involved. Furthermore, even when feasible, such a prior may be highly influential on final
inferences possibly distorting Bayesian estimates toward the prior, rather than towards the ac-
tual data (see e.g. [Casella 1985, Carlin and Louis 2000] and in a financial context, [Giudici
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2001]). The Empirical Bayes approach offers a possible solution to this problem. In fact, it
allows the prior distribution to be also estimated from real data, possibly different from what
used as main object of the inference. In our context, such data is available from Twitter and,
therefore, can be employed to estimate an "a priori" correlation matrix. This prior, based on
sentiment data, will be then combined with the market price correlation matrix in a Bayesian
model. More formally, we first specify a prior distribution for the parameter Σ. [Dawid and
Lauritzen 1993] propose a convenient prior, the hyper inverse Wishart distribution. The hy-
per inverse Wishart distribution can be obtained from a collection of clique-specific marginal
inverse Wishart as follows:

l(Σ) = ∏C∈C l(ΣC)

∏S∈S l(ΣS)
, (3.7)

where l(ΣC) is the density of an inverse Wishart distribution:

l(ΣC) =
|TC|

α

2

2
α p
2 Γp(

α

2 )
|ΣC|−

α+p−1
2 exp(−1/2)tr(TCΣ−1

C ) (3.8)

with hyperparameters TC and α , and similarly for l(ΣS). For the definition of the hyper-
parameters here we follow [Giudici and Green 1999] and let TC and TS be the submatrices of
a larger "scale" matrix T0 of dimension N×N, and choose α >N. [Lauritzen 1996] and [Giu-
dici and Green 1999] show that, under the previous assumptions, the posterior distribution
of the variance-covariance matrix Σ is a hyper Wishart distribution with α + n degrees of
freedom and a scale matrix given by:

Tn = T0 + Sn (3.9)

where Sn is the sample variance-covariance matrix. The previous result can be used to com-
bine market data with tweet data in a Bayesian prior to posterior analysis assuming that the
former represent "data" and the latter "prior information" . To achieve this task we recall that,
under a complete, fully connected graph, the expected value of the previous inverse Wishart
is:

E(Σ|X) = Tn = (T0 + Sn)/(α + n) (3.10)

and, therefore, the Bayesian estimator of the unknown variance covariance matrix, the
a posteriori mean, is a linear combination between the prior (Twitter data) mean and the
observed (market data) mean. When the graph G is not complete, a similar result holds
locally, at the level of each clique and separator. The previous results suggest to use the
above posterior mean as the variance-covariance matrix of a complete graph on which to
base model selection. This leads to a new selected graphical model based on a "mixed" data
source, containing both financial and tweet data in proportions determined by the quantities α

and n. The model selection can be performed by maximizing, rather than the likelihood, the
Bayesian a posteriori probability. To achieve this task in an efficient way we will implement
a Markov Chain Monte Carlo algorithm, following [Giudici and Green 1999].

We now consider the issue of quantitative learning. In the context of systemic risk, a
relevant quantity to be estimated is the partial correlation coefficient which, interpretationally,
corresponds to the geometric mean between two regression coefficients in two differently
directed multiple regression model. More formally:

ρi jV = ρ jiV =
√

ai jV ·a jiV . (3.11)

where ai jV and a jiV are, respectively, the regression coefficient of the multiple regression
of Xi on all other V variables (including X j) and the regression coefficient of the multiple
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regression of X j on all other V variables (including Xi).
This interpretation of the partial correlation coefficient helps the construction of a novel

contagion effect model. This is based on "modifying" a financial institution’s probability of
default with the contagion effect from the institutions to which it is connected. The mag-
nitude of this modification is specified by the partial correlation coefficient. For each node
(institution) we assume to know the "idiosyncratic" probability of default, πi. This could be
estimated for example on the basis of the rating assigned by a rating agency, or of a credit
scoring calculation based on balance sheet data. From the probability of default we can de-
rive, through the inverse Gaussian cumulative distribution function, the (idiosyncratic) credit
score of the corresponding institution, as follows:

Z0
i = φ

−1(1−πi)

where πi is the default probability of institution i and 1−πi is the corresponding survival
probability. We then assume that the idiosyncratic score of an institution can be modified
through contagion, in a manner that depends on the credit scores of the neighbours, and on
their partial correlations with i, as follows:

Z
′
i = φ

−1(1−π0)− ∑
j∈neigh(i)

ai j|restφ
−1(1−πi) (3.12)

where ai j|rest is the partial correlation coefficient between variables Xi and X j given all
the others (rest). To interpret the previous assumption, consider the frequent case of posi-
tive partial correlations (which occur when banks are highly interrelated, as it occurs within
the same country) and negative scores (which occur when default probabilities are less than
50%). In this case the idiosyncratic score increases through contagion and, therefore, the
default probability increases too. The modification to the credit score is schematized in Fig-
ure 3.1.

FIGURE 3.1: The impact of contagion on the probability of default: z is the
credit score before contagion with the corresponding probability of default
coloured in light blue and z′ is the credit score after contagion with the corre-
sponding probability of default given by the sum of the light blue and orange

area.

3.4 Data

For reasons of information homogeneity we concentrate on a single market: the Italian bank-
ing system. The Italian banking system is characterized by a large number of banks operating
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in a rapidly changing environment due to reforms and the mutated economic conjuncture. We
focus on large listed banks, for which daily financial market data exist and can be compared
and integrated with tweets data.

Table 3.1 contains the list of the considered banks along with a measure of bank size,
their total assets at the end of the last quarter of 2013 (in Euro). Banks are described by their
stock market code (ticker).

Bank Name Ticker Total Assets
UniCredit UCG 926,827
Intesa Sanpaolo ISP 673,472
Banca Monte dei Paschi di Siena BMPS 218,882
Unione di Banche Italiane UBI 132,433
Banco Popolare BP 131,921
Mediobanca MB 72,841
Banca Popolare dell’Emilia Romagna BPER 61,637
Banca Popolare di Milano BPM 52,475
Banca Carige CRG 49,325
Banca Popolare di Sondrio BPSO 32,349
Credito Emiliano CE 30,748
Credito Valtellinese CVAL 29,896

TABLE 3.1: List of considered listed Italian Banks

For each bank we calculate the daily stock returns, obtained from the closing price of
financial markets, for a period of 148 consecutive days, from July 2013 to February 2014, as
follows:

Rt = log(Pt/Pt−1) (3.13)

where t is the day index, t−1 the preceding day index and Pt and (Pt−1) are the closing
prices of the considered bank stock corresponding to the day indexes t and t−1.

For the same period, we have crawled Twitter 1 and selected a relevant set of tweets based
on their text content to match with the market data. The selected tweets are those containing
either one of the banks in Table 3.1 either a keyword belonging to a financial taxonomy. The
taxonomy has been developed on the basis of which balance sheet information may affect
financial risk; in Table 3.2 we report the taxonomy thematics used to generate the search
keywords.

Assets Liabilities P& L
Liquidity Deposits Commissions

Corporate bonds Customer deposits Interest Margin
Government bonds Allsale funding Labour Costs

Loans Interbank funding Loans
Consumer loans Capital Loans losses

Derivatives Equity
Shares

TABLE 3.2: Initial proposed taxonomy analysis

1We have crawled Twitter using the open source TwitteR package available within the R project environment
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Keywords in Table 3.2 have been tested preliminarly to select the most effective in ob-
taining informative tweets. Keywords contained in Table 3.3 have been regarded as the most
relevant figures contained in a bank balance sheet. The complete original taxonomy is longer
and more detailed considering synonyms and acronyms as well, but only the few reported in
Table 3.3 are characterized by relevant frequencies.

Before extracting tweets, we have preliminarly filtered the most relevant financial twit-
terers, using the T-index methodology proposed in [Cerchiello and Giudici 2015]. Such
methodology relies on an index that ranks sources according to the number of posted tweets,
and the corresponding re-tweets obtained. The higher the T − index, the stronger is the in-
formative impact of a twitterer because not only she/he posts many tweets but they are also
highly shared among the community.

For a formal definition, given a set of n tweets posted by a twitterer to which a retweets
count vector of each tweet is associated, we consider the ordered sample of retweets {X(i)},
that is X(1) ≥ X(2) ≥ . . . ≥ X(n), from which X(1) (X(n)) denotes the most (the least) cited
tweet. Consequently, the T index can be defined as follows:

T = max{t : X(t) ≥ t} (3.14)

Once completed the preliminary phase as described above, each selected tweet has been
classified into a sentiment class, with scores ranging from 1 to 5. The higher the category,
the more positive the sentiment that the tweet assigns to the bank under analysis(1:very neg-
ative, 2:negative, 3:neutral, 4:positive and 5:very positive). The sentiment classification has
been carried out according to an appropriate classifier, trained on the data and relying on a
vocabulary of positive and negative Italian words adapted to the specific financial application
under analysis in [Cerchiello and Giudici 2016b]. Such vocabulary is inspired by the famous
opinion lexicon (first presented in [Hu M., Liu B. 2004]) that comprises around 6,400 terms.
In addition, several experiments and manual cross check have been carried out to improve the
reliability and stability of the results. Moreover, since the total number of analyzed tweets
is around 1,000, thus easily manageable, the quality of the sentiment classification has been
tested accurately comparing methods based on different versions of the vocabulary.

Table 3.3 describes the final employed taxonomy, along with the average sentiment as-
sociated to each keyword. Here the sentiment scores are grouped by keywords, so that the
average sentiment takes into account all the sentiment scores obtained for that specific word,
regardless of the analysed bank.

Keyword Frequency*100 Average Sentiment
Commissions 0.03 2.67
Labour costs 1.49 3.21

Deposits 0.08 2.83
Interbank 0.14 2.19

Management 28.58 3.01
Interest margin 4.91 2.79

Subsidiaries 0.99 3.02
Capital 35.67 3.07

Loan losses 0.73 2.90
Loans 10.11 2.93

TABLE 3.3: Taxonomy proposed and descriptive sentiment analysis

For each bank we have then calculated the daily sentiment variation, mimicking the mar-
ket returns:
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St = log(Tt/Tt−1) (3.15)

where t is the day index, t−1 the preceding day index, and Tt and (Tt−1) are the average
daily sentiment scores for the considered bank tweets corresponding to the day indexes t and
t−1.

3.5 Results

In this section we consider the application of our proposed Bayesian model. In terms of prior
parameters, we assume that α = n+ 2 and that T is a diagonal matrix, which implies zero
a priori partial correlations. Later on we also test the stability of the model to variations of
these parameters.

Initially the MCMC procedure described in Section 3.3 is applied to estimate a graphi-
cal model from the twelve daily sentiment timeseries obtained from the preprocessing of the
tweet data. In this case the prior on the partial correlations is given by the diagonal matrix T .
The MCMC based on the Metropolis-Hastings algorithm is run for 500,000 iterations with
10,000 iterations of burn-in. Finally the resulting partial correlation matrix representative of
the graphical model obtained from tweet data is used as prior in place of T when estimating
the graphical model from the twelve daily stock return timeseries (market data). Also in this
case the MCMC algorithm has been run for 500,000 iterations with a burn-in of 10,000 itera-
tions. The resulting partial correlations matrix is representative of both the graphical models
estimated on the sentiment timeseries and on the stock returns timeseries with proportion
defined by the parameter α . In terms of structural learning, the selected model is the fully
connected model: this is quite reasonable, in a national market that is fully integrated, with a
strong country effect on bank risk.

Concerning quantitative learning, we report in Table 3.4, below the estimated partial
correlations, obtained by model averaging them over the most likely models from the last
10,000 iterations of the MCMC (including, the fully connected model). In Table 3.4 we also
report, as a systemic risk measure for each bank, their weighted degree, calculated as the sum
of all partial correlations, that expresses the intensity of the contagion.

Table 3.4 and the weighted degree in the last row indicate, which could be the most
correlated banks: BPE, BP, followed by BPM and UBI: these are the four largest cooperative
banks that are indeed linked to each other. The three largest (public) banks, UCG, ISP and
MB, follow. Other smaller banks as well as the troubled MPS have a lesser degree. It is
very interesting to notice the high correlation among UCG and ISP which are by far the two
largest Italian, which is the highest among all the bank pairs. This is reasonable since both
of these banks in similar measure are very influenced by the Italian economy dynamics and
by its public debt spread. Table 3.4 is also very useful to draw "stress test" analysis. For
example: if UCG returns drop by 100 basis points, each of the other connected banks drop,
on average, by 7 basis points, with a total impact on the system of 81 basis point. A similar
drop in a smaller and relatively isolated bank, such as CVAL, causes an average drop of the
other banks of only 3 basis points.

However the above conclusions do not take bank size into account. It is very likely that
the contagion effects among banks depends also on the relative size of their balance sheets.
The impact of a large bank, like UCG, on a smaller bank, such as CE, in more extreme
scenarios is likely to be greater than what expressed by the weighted degree in Table 3.4. To
take size into account, we propose a modification to the calculation of the contagion effect on
the probability of default, in Equation 3.12. We introduce a weight that is equal to the ratio
of the total assets of the considered bank over the total market assets:
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Z
′
i = φ

−1(1−π0)− ∑
j∈neigh(i)

ai j|restφ
−1(1−πi) ∗

A j

ATot
(3.16)

where A j represent the assets of the jth neighbour of the bank i (for which the credit score
is being calculated) and ATot are the sum of all the total assets of the different banks.

From this equation and an initial estimate of the idiosyncratic probability of default (e.g.
that associated with the bank ratings from the rating agencies) we can calculate the banks
probability of default incorporating the proposed contagion effect. Accordingly, Table 3.5
and Figure 3.2 indicate the effect of contagion on the idiosyncratic PDs of the considered
banks. The second and the third column of the table indicate the probability of default before
contagion, and the corresponding percentage variation (∆PD) with respect to the original
probability of default (e.g. +100 corresponds to a 100% relative increase in the probability
of default and thus a doubling of the original PD). For robustness purposes, we have also
reported the same percentage variation assuming different values for the prior parameter T : a
common partial correlation of 0.8, rather than 0, which correspond to a more connected graph
in the a priori twitter structure, and different values of the parameter α , which correspond to
a higher weight for the twitter prior.

Bank Contagioned PD ∆P.D. [%] ∆P.D.T=0.8 [%] ∆P.D.α=3∗(n+2) [%] ∆P.D.α=30∗(n+2) [%]

UCG 0.0064 +220 +220 +220 +220
UBI 0.0059 +195 +175 +200 +200
MB 0.0030 +50 +95 +50 +50
ISP 0.0086 +330 +365 +330 +335
CVAL 0.0055 -28 -1 -28 -28
CE 0.0073 -4 +20 -4 -4
BP 0.0145 +91 +66 +91 +91
BPSO 0.0025 +25 +75 +25 +25
BPM 0.0145 +108 +70 +109 +109
BPER 0.0134 +76 +80 +76 +78
BMPS 0.0024 +20 +5 +20 +20
CRG 0.0070 -8 +12 -8 -8

TABLE 3.5: Partial correlations and systemic risk measures based on the
selected mixed graphical Gaussian model

Figure 3.2 illustrate the impact of the contagion effect on the probability of default and
how it modifies it. The bank ratings from the rating agencies have been used to estimate the
idiosyncratic probability of default. Then applying Equation 3.16 to the partial correlation
matrix obtained the graphical model it has been possible to calculate the updated banks PDs
taking into account the systemic interconnections. This is a very interesting result because
it provide us with a framework to systematically monitor the effect of bank interconnections
starting from stock and tweet data.

From both Figure 3.2 and Table 3.5 we can see that the banks which are most impacted
by contagion (in relative terms) are the largest banks ISP, UCG as well as UBI, which is the
most connected of the cooperative banks. This result finds justification in the fact that due to
their size these banks are those that play the most central role in the Italian banking system.
Thus, they have on average strong connections with the other banks as can be seen also from
the partial correlation matrix in Table 3.5. In terms of robustness analysis, changing the a
priori parameters T and α does not change sensibly the results and this indicates stability of
the proposed model.
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FIGURE 3.2: Impact of the contagion effect on the idiosyncratic probability
of default. On the left of the image we can see the bank ratings from the
rating agencies that have been used to estimate the idiosyncratic probability
of default. The graph on the right shows the idiosyncratic probability of
default in blue and the probability of default modified by the contagion effect

in blue.

3.6 Conclusions

In this work we have shown how tweet data can be usefully employed in the field of systemic
risk modelling by means of Graphical Gaussian Models. We have provided a methodology
to combine tweet based systemic risk networks with those obtained from financial market
data, using a Bayesian approach and, correspondingly, a Bayesian model selection procedure.
This has allowed to develop a framework for systemic risk analysis that integrates these two
different, albeit complementary, sources of information.

The proposed model has been applied to the case study of the Italian banking system
allowing to estimate the effect of banks linkages starting from tweets on the twelve major
Italian banks and their market price data. The developed systemic risk model can be very
useful to estimate and take into account contagion risk and its effect on the idiosyncratic
probability of default. This kind of analysis can help to individuate vulnerable financial
institutions.

Another important value of the model is its capability of including in systemic risk mod-
els institutions that are not publicly listed, using the tweet data component alone. This is
a relevant advantage for banking systems with many unlisted banks, as it occurs in several
European countries, for instance.

The model can be extended in several directions. A promising one could be to replace
the inverse cumulative Gaussian link with an extreme value one, as in [Calabrese and Giudici
2015] so to focus more the analysis on tail events.
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Chapter 4

Information network modeling for
U.S. banking systemic risk

4.1 Summary

In this chapter we investigate whether information theory measures derived from a bank
network model, like mutual information and transfer entropy, Granger cause financial stress
indexes such as LIBOR-OIS spread, STLFSI and USD/CHF exchange rate. The information
theory measures are computed from a Gaussian Graphical Model fitted on the daily stock
time series of the top 74 listed US banks. The graphical model is calculated with a recently
developed algorithm (LOGO) characterized by a very fast inference that allows us to update
the graphical model each market day. From these daily updates of the Graphical Models
we can derive daily time series of mutual information and transfer entropy for each bank of
the network from April 2003 to May 2017. The Granger causality between the bank related
measures and the financial stress indexes is investigated with both standard Granger-causality
and Partial Granger-causality conditioned on control measures representative of the general
economy stress.

4.2 Introduction

The stability of the financial system is a basic condition for sustainable growth of an econ-
omy as a whole. Its importance arises from the key role of financial institutions in capital
allocation, i.e. the transfer of financial resources from entities with funds surplus to entities
with funds deficit. The 2008 crisis, triggered by large writedowns of bank assets related to
subprime mortgages, unfortunately highlighted this principle. This crisis was characterized
by the bankruptcy or distress of several large banks like Bear Stearns, Citigroup, Lehman
Brothers, Merrill Lynch, Wachovia, and Washington Mutual that in several cases, had to be
rescued by the government. This instability of the financial system resulted in a severe credit
and liquidity crisis in the financial markets affecting the real economy. This type of risk,
wherein the entire financial system is simultaneously distressed, is generally referred to as
systemic risk. Systemic risk, when realized, impacts not only financial markets and institu-
tions, but also the real economy as a whole due to decreases in capital supply and increases
in capital costs.

The term systemic risk was coined the early 1980s by the economist William Cline
[Ozgöde 2011] at the onset of the Latin American debt crisis. According to his definition,
systemic risk is a threat that disturbances in the financial system will have serious adverse
effects on the entire financial market and the real economy. Systemic risk models address the
issue of interdependence between financial institutions and, specifically, measure how bank
default risks are transmitted among banks.
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The last few years have witnessed an increasing research literature on systemic risk,
with the aim of identifying the most contagious institutions and their transmission channels.
Specific measures of systemic risk have been proposed for the banking sector; in particular
by [Adrian and Brunnermeier 2009], [Acharya et al. 2010](MES), [Brownlees and Engle
2011, Huang et al. 2011], [Acharya et al. 2012](SRISK), [Cao 2013](δCoVaR), [Banulescu
and Dumitrescu 2015](CES), [Calabrese and Giudici 2015]. These approaches leverage fi-
nancial market price information to asses the financial institution’s appropriate quantiles of
the estimated loss probability distribution, conditional on a crash event in the financial mar-
ket. However, they do not address the issue of risk transmission between different banks. In
order to, address this aspect of systemic risk, researchers have introduced financial network
models. Networks have emerged as a useful tool for understanding contagion and systemic
risk, in financial systems. In fact, after the 2008 financial crisis, there have been many studies
on financial networks and their role in systemic risk. A major finding emphasized by these
studies is that financial contagion is mainly driven by system-wide interconnectedness of
institutions. In particular, [Billio et al. 2012] propose several econometric measures of con-
nectedness based on Granger-causality networks and principal component analysis. [Hautsch
et al. 2014,Peltonen et al. 2015] propose tail dependence network models aimed at overcom-
ing the bivariate nature of the available systemic risk measures. [Diebold and Yilmaz 2014]
propose LASSO regularized Vector Autoregressive models for selecting the significant links
in a network model. Network models are based on the assumption of full connectedness
among all nodes, which makes their interpretation difficult and also estimation when a large
number of them is being considered. Trying to tackle this limitation, [Giudici and Spelta
2016] and [Cerchiello and Giudici 2016] resorted to graphical correlation models, which
can account for partial connectedness, expressed in terms of conditional independence con-
straints. A similar but alternative approach has been explored by [Barigozzi et al. 2013]
introducing multivariate Brownian processes with a correlation structure determined by a
conditional independence graph.

Correlation networks have proven a suitable tool to visualize the structure of pairwise
marginal correlations among a set of nodes corresponding to the investigated banking sys-
tems. In these models each banks is represented by a node in the network, and each pair of
nodes can be connected by an edge, which has a weight related to the correlation coefficient
between the two nodes. Furthermore, the banking system represented with these models can
be described by the adjacency and inverse covariance matrix of the corresponding graphical
model.

Our contribution follows this latter development estimating a Graphical Gaussian Model
on the market prices of the 74 largest listed U.S. banks. We estimate the model with a recently
developed algorithm (LoGo) for reconstructing the sparse inverse covariance matrix from the
data.

The LOGO algorithm is characterized by a very fast inference that allows us to update
the graphical model for each market day of the observation period. With these daily updates
of the Graphical Models we can generate daily time series of the mutual information and the
transfer entropy for the entire system and also for each bank of the network, from April 2003
to May 2017.

Then we investigate how the information theory measures (mutual information and trans-
fer entropy) derived from the graphical model, correlate with and Granger cause financial
stress indexes like LIBOR-OIS spread, STLFSI and USD/CHF exchange rate. The idea is
to understand how these measures compare to the financial stress indexes and which banks
show Granger causality links with the indexes. The Granger causality between the bank
related measures and the financial stress indexes is investigated applying Partial Granger-
causality tests conditioning on control measures representative of the economic and financial
system stress.
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The remainder of this chapter is organized as follows. In Section 4.3 we present in differ-
ent subsections the theory and the models applied in this study. Subsection 4.3.1 introduces
the graphical models and their theoretical background. In Subsection 4.3.2 we briefly recall
the LoGo methodology that we use to infer the graphical model on the bank network. In
Subsection 4.3.3 we introduce the measures that we calculate from the bank network model.
In Subsections 4.3.4 and 4.3.5 we presents formally the Granger causality and the partial
Granger causality discussing their application. In Section 4.4 we present the bank stocks
data that we use to fit the network model and the financial stress indexes whose causality
relationship is investigated. In Section 4.5 we present the results of the causality analysis
between the measures derived from the bank stock network model and the financial stress
indexes. Finally in Section 4.6 we briefly discuss the results of the work.

4.3 Methodology

4.3.1 Network model

Here, we briefly describe the Gaussian graphical models that will be applied to estimate
relationships between the N banks, both with market and sentiment data. Direct relation-
ships between banks can be measured by their partial correlation, that expresses the direct
influence of a bank on another. Partial correlations can be estimated assuming that the obser-
vations follow a graphical Gaussian model, in which the covariance matrix Σ is constrained
by the conditional independences described by a graph (see e.g. [Lauritzen 1996]). More
formally, let X = (X1, ...,XN) ∈ RN be a N−dimensional random vector distributed according
to a multivariate normal distribution N (µ ,Σ). Without loss of generality, we will assume
that data are generated by a stationary process, and, therefore, µ = 0. In addition, we will
assume throughout that the covariance matrix Σ is not singular.

Let G = (V ,E) be an undirected graph, with vertex set V = {1, ...,N}, and edge set
E = V ×V , a binary matrix, with elements ei j, that describe whether pairs of vertices are
(symmetrically) linked between each other (ei j = 1), or not (ei j = 0). If the vertices V of
this graph are put in correspondence with the random variables (X1, ...,XN), the edge set E
induces conditional independence on X via the so-called Markov properties [Lauritzen 1996].
In particular, the pairwise Markov property determined by G states that, for all 1≤ i < j≤N:

ei j = 0⇐⇒ Xi ⊥ X j|XV\{i, j}; (4.1)

that is, the absence of an edge between vertices i and j is equivalent to independence between
the random variables Xi and X j, conditionally on all other variables xV\{i, j}.

Let the elements of Σ−1, the inverse of the covariance matrix, be indicated as {σ i j}.
[Whittaker 1990] proved that the following equivalence also holds:

Xi ⊥ X j|XV\{i, j}⇐⇒ ρi jV = 0 (4.2)

where

ρi jV =
−σ i j
√

σ iiσ j j
(4.3)

denotes the i j-th partial correlation, that is, the correlation between Xi and X j, conditionally
on the remaining variables XV\{i, j}.

Therefore, by means of the pairwise Markov property, and given an undirected graph
G = (V ,E), a graphical Gaussian model can be defined as the family of all N-variate normal
distributions that satisfy the constraints induced by the graph on the partial correlations, as
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follows:
ei j = 0⇐⇒ ρi jV = 0 (4.4)

for all 1≤ i < j ≤ N.

4.3.2 LoGo algorithm

In our study we investigate a relatively large number of banks (74) and we take advantage of
a recently presented algorithm LoGo [Barfuss et al. 2016] to estimate graphical models on
the basis of time series data. LoGo is a methodology that makes use of information filtering
networks to produce probabilistic models that are sparse and with high likelihood. One of
its main advantages is that it’s computationally fast, making possible applications with very
large data sets. The LoGo algoritm calculates the global sparse inverse covariance matrix
from a simple sum of local inverse covariances computed on small subparts of the network
matrices. The use of low-dimensional local inversions makes the procedure computationally
efficient, statistically robust and only slightly sensitive to the curse of dimensionality [Bar-
fuss et al. 2016]. In particular the method is based on a recent, new family of information
filtering networks, the triangulated maximal planar graph (TMFG) [Massara et al. 2016] that
are decomposable graphs. A decomposable graph has the property that every cycle of length
greater than three has a chord, an edge that connects two vertices of the cycle in a smaller
cycle of length three. The construction of the algorithm, through a sum of local inversion,
makes this methodology particularly suitable for parallel computing and dynamical adapta-
tion by local, partial updating, as described in [Barfuss et al. 2016] where a more detailed
explanation of the method is presented.

4.3.3 Information theory measures

We leverage the network model fitted on the bank stocks to calculate several bank and system
related measures. We fit a new Gaussian Graphical Model for every market day, based on the
stock time series of the 90 previous market days, so we can calculate the bank and system
related measures every market day and they are representative of the last 90 days trends. We
obtain a time series that goes from March 2003 to October 2017 for every measure that we
calculate from the network model. We selected a time frame of 90 days to fit the graphical
model for three main reasons: i. have more datapoints (90) than the number of banks (74); ii.
Obtain a network representative only of the last few months; iii. the LoGo algorithm outper-
forms the Glasso specially in the case when the number of variables (banks) and datapoint
(days) are comparable [Barfuss et al. 2016]. While it’s possible to extract many interesting
indicators from the network model like bank and system average partial correlations, number
of edges, Pagerank and others, we focus on two measures derived from information theory:
Mutual Information and Transfer Entropy between banks.

The mutual information is a measure derived from information theory and probability
theory that can be calculated among two random variables. It is a measure of the mutual de-
pendence between the two variables and it quantifies the amount of information that one can
tell us about the other. Intuitively, it measures the information shared by the two variables and
quantifies how much knowing one variable reduces the uncertainty about the other [Mackay
2003]. When two variables are independent, knowing one does not give any information
about the other and vice versa, so their mutual information is zero. At the other extreme, if
one is a deterministic function of the other and vice versa then all the information conveyed
by one variable is shared with the other: knowing just one of them determines the value of
the other and vice versa. As a result, in this case the mutual information is the same as the
uncertainty contained in one of the variables alone, namely their entropy. In general, if we
represent the different entropies of the two random variables with an analogy to set theory,
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the mutual information is the intersection of the two sets and represents the uncertainty that
is common to both the random variables.

The definition of the mutual information for two continuous random variables is:

I(X ;Y ) =
∫

Y

∫
X

p(x,y)log(
p(x,y)

p(x)p(y)
)dxdy (4.5)

Mutual information however says little about causal relationships, because it lacks direc-
tional and dynamical information. In fact, it is symmetric between the random variables and
thus, it cannot distinguish between driver and response variables [Vicente et al. 2011].

Also the transfer entropy is a measure derived from information theory and probability theory
that can be calculated among two random variables. It is a measure of the amount of directed
(time-asymmetric) transfer of information between the two variables. Thus, transfer entropy
from a random variable X to another random variable Y is the amount of uncertainty reduced
in future values of Y by knowing the past values of X given past values of Y [Schreiber et al.
2000]. In other words, the Transfer entropy is the conditional mutual information, with the
history of the influenced variable Yt−1:t−L in the condition [Wyner 1978]

TX→Y = I(Yt ;Xt−1:t−L | Yt−1:t−L). (4.6)

This means that the transfer entropy can be taken as an indicator to understand which are
the driver and response variables in a system [Schindler et al. 2007].

In our study we calculate the mutual information and the transfer entropy among the
banks of the network for each day of the observation period to produce a corresponding
time series for each bank. The mutual information is updated every market day for every
edge of the network (GGM inferred by the LoGo algorithm) and then for each bank we take
the summation of the mutual information over its network edges. In other words, we take
summation of mutual information between a bank and all its first neighbours. As a result we
obtain a timeseries for each bank that describes the evolution of the total mutual information
of the bank with its neighbours.

Similarly we obtain a time series for the transfer entropy but in order to calculate the
transfer entropy we need the time dimension within the model so we had to fit the GGM
with the LoGo algorithm considering also lag-1 variables, since the transfer entropy exists
between lagged and contemporary variables as shown in the formula 4.6. So, every bank in
this network is represented by a contemporary variable (e.g. JPMt) and a lag-1 variable (e.g.
JPMt − 1). For every bank couple (e.g. JPM and BAC) we have two "transfer entropies":
JPMt −1 to BACt and vice versa BACt −1 to JPMt ; the first (JPMt −1 to BACt) is a transfer
entropy inflow for BAC and a transfer entropy outflow for JPM while the second (BACt − 1
to JPMt) is a transfer entropy inflow for JPM and transfer entropy outflow for BAC. Thus,
we have two transfer entropy measures for each bank: "transfer entropy inflow" and "transfer
entropy outflow". As for the mutual information, for each bank we take the summation of
these quantities over its edges (the bank first neighbours). The transfer entropy inflow is
related to how much a bank stock behaviour is predictable given the previous behaviour of
its neighbours while the outflow is related to how much a bank stock previous behaviour is
useful for predicting its neighbours stocks.

4.3.4 Granger Causality

Since our research hypothesis aims at analyzing whether information theory measures ex-
tracted from the bank network are useful to predict the financial stress indexes and if they
cause them according to a temporal dimension, we need a method to assess such effect. In
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this paragraph, we introduce the Granger causality test, a well-known econometric test use-
ful when causality is the object of interest. Granger causality entails the statistical notion
of causality based on the relative forecast power of two time series. Time series j is said to
“Granger-cause” time series i if past values of j contain information that helps in predicting
i above and beyond the information contained in past values of i alone. In a well known
paper [Granger 1969], Granger has proposed a useful test based on the following principle:
if lagged values of time series Xt contribute to foresee current values of time series Yt in a
forecast achieved with lagged values of both Xt and Yt , then we say Xt Granger causes Yt .
As was first shown in [Sims 1972], the Granger causality corresponds to the concept of ex-
ogeneity and it is therefore necessary to have a unidirectional causality in order to guarantee
consistent estimation of distributed lag models. The mathematical formulation of this test is
based on linear regressions of Xt+1 on Xt and Yt

In our research framework, we propose to calculate the Granger causality test on pairs of
times series defined as follows:

• Rkq
t : given a network measure k, for bank q at time t.

• Rp
t : given a financial stress index p at time t.

To ease the notation we refer to Rq
t given the network measure k and bank q. Thus,

applying the test for a given pair of network measures for bank q and financial stress index
p, we result in fitting the following equations:

Rp
t+i = β

p
0 Rp

t +β
pq
1 Rq

t + ep
t+i (4.7)

Rq
t+i = β

q
0 Rq

t +β
qp
1 Rp

t + eq
t+i (4.8)

Our null hypothesis is therefore: H0 : β
pq
1 = β

qp
1 = 0. Taking into account that we are

dealing with daily time series, in our tests we have considered up to five lags as plausible
windows of analysis to be able to represent the effects of one business week.

4.3.5 Linear Partial Granger Causality

Often economic network models, like in our case, involve the step of ’structural model se-
lection’, in which a relevant set of variables is selected for analysis. In practice, this step is
likely to exclude some relevant variables, which can lead to the detection of apparent causal
interactions that are actually spurious [Pearl 1999]. One recent response to this challenge
has been the ’partial Granger causality’ method introduced in [Guo et al. 2008]. The idea
is that latent variables may give rise to detectable correlations among the residuals of the
corresponding vector autoregressive model. By analogy with the concept of partial correla-
tion [Kendall and Stuart 1979], an additional term based on these correlations can mitigate
the confounding influence of the latent variables. Later, [Barrett et al. 2010], redefined the
F1 statistic as a model comparison between nested models where the present conditioning
variables are added as predictors to the autoregressive model.

The linear partial Granger causality is defined as follows. Consider two time series Xt

and Zt which admit a joint autoregressive representation of the form

Xt =
∞

∑
i=1

a1iXt−i +
∞

∑
i=1

c1iZt−i +
−→
ε1t +

−→
ε

E
1t +
−−−−−→
B1(L)εL

1t (4.9)

Zt =
∞

∑
i=1

b1iZt−i +
∞

∑
i=1

d1iXt−i +
−→
ε2t +

−→
ε

E
2t +
−−−−−→
B2(L)εL

2t (4.10)
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For simplicity of notation, let us define

ui(t) =
−→
εit +

−→
ε

E
it +
−−−−−→
Bi(L)εL

it (4.11)

where i = 1,2. The noise covariance matrix for the model then can be represented as

S =

[
var(u1t) cov(u1t ,u2t)

cov(u2t ,u1t) var(u2t)

]
(4.12)

Extending this concept, the vector autoregressive representation for a system involving
three variables Xt , Yt and Zt can be written as follows:

Xt =
∞

∑
i=1

a2iXt−i +
∞

∑
i=1

b2iYt−i +
∞

∑
i=1

c2iZt−i +
−→
ε3t +

−→
ε

E
3t +
−−−−−→
B3(L)εL

3t (4.13)

Yt =
∞

∑
i=1

d2iXt−i +
∞

∑
i=1

e2iYt−i +
∞

∑
i=1

f2iZt−i +
−→
ε4t +

−→
ε

E
4t +
−−−−−→
B4(L)εL

4t (4.14)

Zt =
∞

∑
i=1

g2iXt−i +
∞

∑
i=1

h2iYt−i +
∞

∑
i=1

k2iZt−i +
−→
ε5t +

−→
ε

E
5t +
−−−−−→
B5(L)εL

5t (4.15)

The noise covariance matrix for the model can be represented as

Σ =

 var(u3t) cov(u3t ,u4t) cov(u3t ,u5t)
cov(u4t ,u3t) var(u4t) cov(u4t ,u5t)
cov(u5t ,u3t) cov(u5t ,u4t) var(u5t)

 (4.16)

where
ui(t) =

−→
εit +

−→
ε

E
it +
−−−−−→
Bi(L)εL

it (4.17)

where i = 3,4,5
In order to consider the influence from Y to X controlling for the effect of the exogenous

input, the noise covariance matrix S is partitioned in the following way:

S =
[

var(u1t )|cov(u1t ,u2t )
cov(u2t ,u1t )|var(u2t )

]
=
[

S11|S12
S21|S22

]
(4.18)

Hence the variance of u1t by eliminating the influence of u2t is given by:

R1
XX |Z = cov(u1t ,u1t)− cov(u1t ,u2t)cov(u2t ,u2t)

−1cov(u2t ,u1t) = S11−S12S−1
22 S21 (4.19)

For the matrix Σ, by eliminating the second row and the second column, the remaining
noise covariance matrix Σ can be partitioned in the following way

Σ =
[

var(u3t )|cov(u3t ,u5t )
cov(u5t ,u3t )|var(u5t )

]
=
[

Σ11|Σ12
Σ21|Σ22

]
(4.20)

The variance of u3t can be defined by eliminating the influence of u5t similarly

R(2)
XX |Z = cov(u3t ,u3t)− cov(u3t ,u5t)cov(u5t ,u5t)

−1cov(u5t ,u3t) = Σ11−Σ12S−1
22 Σ21 (4.21)

The value of R(1)
XX |Z measures the accuracy of the autoregressive prediction of X based on

its previous values conditioned on Z by eliminating the influence of the common exogenous
input and latent variables, whereas the value of R(2)

XX |Z represents the accuracy of predict-
ing the present value of X based on the previous history of both X and Y conditioned on Z
by eliminating the influence of the exogenous input and latent variables. According to the
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causality definition of Granger, if the prediction of one process is improved by incorporat-
ing the information of the second process, then the second process Granger causes the first
process. Similarly it is possible to define this causal influence by

F1 = ln

(
|R(1)

XX |Z|

|R(2)
XX |Z|

)
= ln

(
S11−S12S−1

22 S21

Σ11−Σ12S−1
22 Σ21

)
(4.22)

F1 it’s called partial Granger causality. For comparison, the standard conditional Granger
causality F2 is defined by

F2 = ln

(
|S11|
|Σ11|

)
(4.23)

While in theory, partial Granger causality is only able to eliminate confounders effects when
their influence is identical for every time series however in [Roelstraete et al. 2012] it has
been shown to be robust for deviations from this assumption. Moreover, in the presence
of unknown latent and exogenous influences, it is shown in [Guo et al. 2008] and again
in [Roelstraete et al. 2012] that partial Granger causality better eliminates their influence than
conditional Granger causality and simple Granger causality outperforming both of them.

4.4 Data

The data we analyze are banks stock price time series and for sake of comparability and
homogeneity, we focus on a single banking market, the U.S. banking system. This is an
interesting group of banks to study, due to its relevance in the world economy and particu-
larly for its role in originating the 2008 financial crisis, with many large banks which have
seriously impacted the world and U.S. economy and politics. We take into account the top
74 U.S. large listed banks, for which there exist daily financial market data that we collect.
In Table 4.1 we reported the list of the banks that we consider, along with their stock market
code (ticker) and their total assets at the end of 2016 (in US dollars).

For each bank, we consider the daily log-returns obtained from the stock closing price
of financial markets, for a period of 3,716 days from Jan 2003 through October 2017, as
follows:

Rt = ln(Pt/Pt−1) (4.24)

where t is a day, t−1 the day preceding it and Pt the corresponding closing price of that
bank in that day while Pt−1 is the closing price of the previous market day.

In our study we want to inspect the causality relations among bank stocks and the overall
system financial stress, thus we need to consider some suitable stress indicators. For this we
select three three indexes commonly considered when evaluating the stress of the financial
system: the St. Louis Fed Financial Stress Index (STLFSI), the London Interbank Offering
Rate–Overnight Index Swap spread (LIBOR-OIS spread) and USD/CHF exchange ratio.

The STLFSI is a financial stress index constructed by the Federal Reserve Bank of St. Louis.
It measures the degree of financial stress in the markets and is constructed from 18 weekly
data series: seven interest rate series, six yield spreads and five other indicators. Each of
these variables captures some aspect of the financial stress. Accordingly, as the level of
financial stress in the economy changes, the data series are likely to move together. The
average value of the index, which begins in late 1993, is designed to be zero. Thus, zero
is viewed as representing normal financial market conditions. Values below zero suggest
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Bank Ticker Assets ($ bn) Bank Ticker Assets ($ bn)
JPMorgan Chase Bank JPM 2,118 Banco Popular de Puerto Rico BPOP 30
Wells Fargo Bank WFC 1,741 Frost Bank CFR 30
Bank of America BAC 1,660 Synovus Bank SNV 29
Citibank C 1,356 Associated Bank ASB 29
U.S. Bank USB 448 First Tennessee Bank FHN 28
PNC Bank PNC 358 Webster Bank WBS 26
The Bank of New York Mellon BK 300 Umpqua Bank UMPQ 25
Capital One COF 279 Commerce Bank CBSH 25
TD Bank TD 265 Whitney Bank HBHC 23
State Street Bank STT 252 Valley National Bank VLY 22
Branch Banking and Trust
Company

BBT 217 First National Bank of Pennsylvania FNB 21

HSBC Bank USA HSBC 204 Prosperity Bank PB 21
SunTrust Bank STI 200 Pacific Western Bank PACW 21
Charles Schwab Bank SCHW 165 TCF National Bank TCF 21
Goldman Sachs Bank USA GS 158 Iberiabank IBKC 21
Fifth Third Bank FITB 141 UMB Bank UMBF 19
Morgan Stanley Bank MS 127 MB Financial Bank MBFI 19
Manufacturers and Traders
Trust

MTB 126 Bank of the Ozarks OZRK 18

Regions Bank RF 124 Sallie Mae Bank SLM 18
The Northern Trust Company NTRS 120 Raymond James Bank RJF 17
MUFG Union Bank MTU 117 FirstBank FBP 17
BMO Harris Bank BMO 107 Bank of Hawaii BOH 16
KeyBank KEY 101 Washington Federal WAFD 15
Huntington National Bank HBAN 100 Astoria Bank AF 15
Santander Bank SAN 85 Old National Bank ONB 15
Compass Bank BBVA 85 BancorpSouth Bank BXS 15
Comerica Bank CMA 74 Flagstar Bank, FSB FBC 14
Deutsche Bank Trust Company
Americas

DB 55 Cathay Bank CATY 14

American Express Bank AXP 46 Sterling National Bank STL 14
New York Community Bank NYCB 46 Bank of Hope HOPE 14
Silicon Valley Bank SIVB 43 Trustmark National Bank TRMK 13
People’s United Bank PBCT 40 First Midwest Bank FMBI 11
E*TRADE Bank ETFC 36 Stifel Bank and Trust SF 11
East West Bank EWBC 33 Banc of California BANC 11
First-Citizens Bank &
Trust Company

FCNCA 33 Fulton Bank FULT 11

BOK Financial BOKF 33 United Community Bank UCBI 10
Barclays Bank Delaware BCS 31 State Bank of India SBIN 10

TABLE 4.1: List of the banks object of the study
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below-average financial market stress, while values above zero suggest above-average finan-
cial market stress [Federal Reserve 2010, Federal Reserve Bank of St. Louis 2018].

The LIBOR-OIS spread is the difference between the 3-month London Interbank Offered
Rate (LIBOR) and the corresponding overnight indexed swap (OIS) rates and is regarded as
a strong indicator of the health of the banking system [Sengupta et al. 2008]. The LIBOR
is the interest rate at which banks borrow unsecured funds from other banks in the London
wholesale money market for a period of 3 months. Alternatively, a bank can enter into an
overnight indexed swap (OIS) that entitles it to receive a fixed rate of interest on a notional
amount called the OIS rate. In exchange, the bank agrees to pay a (compound) interest pay-
ment on the OIS rate to be determined by a reference floating rate (in the United States, this
is the effective federal funds rate) to the counterparty at maturity [Sengupta et al. 2008].
Briefly, the LIBOR-OIS spread it’s a measure of how expensive or cheap it will be for banks
to borrow, as shown by LIBOR, relative to a risk-free rate. It is an important measure of risk
and liquidity in the money market, and thus an indicator for the relative stress in the money
markets. In general, when the spread is wider (higher LIBOR) is considered as a lower
availability to lend by major banks, while a narrow spread indicates higher liquidity in the
market. For this reason, the spread can be regarded as an indication of banks’ perception of
the creditworthiness of the other financial institutions and of the general availability of funds
for lending purposes. Compared to LIBOR the LIBOR-OIS spread provides a more complete
picture of how the market is viewing credit conditions because it strips out the effects of un-
derlying interest-rate moves, which are in turn affected by factors such as central bank policy,
inflation and growth expectations. During the financial crisis of 2007-2010, the LIBOR-OIS
spread reached its maximum indicating a severe credit crunch and peaked concurrently with
announcements of emergency funding to rescue Northern Rock, large write-downs by large
investment banks and large bank failures.

The USD/CHF exchange rate is considered a measure of financial stress because in period of
financial stress and instability safe haven inflows are likely to play a key role in the appre-
ciation of the Swiss franc [Deutsche Bundesbank 2014]. Currencies in fact, can appreciate
in times of crisis because they are offered as safe investment instruments by the countries
issuing them. The currencies of such countries are commonly referred to as safe haven cur-
rencies and the media and the literature are unanimous in ascribing the strength of the Swiss
franc to its status as a safe haven currency. Empirical findings support this theory like when
in mid-2011, the franc appreciated so strongly against the Euro that it almost attained parity,
the Swiss National Bank announced that it would defend a minimum exchange rate of 1.20
CHF against the Euro and it was prepared to purchase unlimited amounts of foreign currency
if needed [Swiss National Bank 2011]. The aim, as explained in its press release, was to
counteract the massive overvaluation of the Swiss franc and protect Swiss economy that is
heavily reliant on the exports of goods and services worth over ca. 65% of the GDP [World-
bank 2018].

In our study thus, we investigate the causality relationship among these three financial stress
indicators and the measures extracted from the network model inferred with the LoGo algo-
rithm from the bank stock time series. Moreover, when testing the Partial Granger Causality
we conditioned on three control variables related to the general economic conjuncture: US
10Y Treasuries yield, gold price and EUR/USD exchange ratio. We derived the time series
of the daily returns for both the gold price and the EUR/USD exchange ratio (like for the
case of the bank stocks) given by Equation 4.24 while the 10Y US Treasuries yield time se-
ries hasn’t been preprocessed since it represents an interest rate. We decided to condition on
these variables in order to control for the effect of the general status of the economy in the
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FIGURE 4.1: Network model inferred from stock returns data for the period
2003-2017 by the LoGo algorithm

partial Granger causality analysis.

4.5 Results

Initially, we estimated a graphical model of the U.S. banks over the entire time horizon (2003-
2017) with the LoGo algorithm to gather insights regarding the most correlated banks (from
the stock price point of view). In this case we have a single time series for each bank with
the daily returns of stock closing price spanning from January 2003 to May 2017. Thus, the
graphical model obtained is representative of the partial correlations of the returns from 2003
to 2017. Given such a long time frame we would expect to see only some constant properties
of the banks emerge from the graphical model structure, like characteristics connected to the
bank dimension, business model, nationality. Interestingly from Figure 4.1 we can see that
the estimated network posits many of the largest bank like C, BAC, GS, MS, TD close to
each other and connected by edges in the lower left corner of the network. At the same time,
foreign banks like BBVA, BCS, DB, UBS are located together in the right top corner.

Secondly, we calculate a different graphical model for each market day based on the data
of the 90 previous days. Literally, we apply a moving window of length 90 to the stock re-
turns time series and for every step of the moving window we fit a graphical model through
the LoGo algorithm. Thus, for every market day we obtain a network representative of the
bank stocks returns correlations and market structure in the previous 90 days. All these net-
works can be imagined as a daily time series of graphical models from May 2003 to May
2017 (we start from May 2003 instead of January, due to the moving window lag). We will
leverage these dynamic ’snapshots’ of how the U.S. bank system stock correlations evolve
to generate several time series of measures derived from the network models. It is possi-
ble to compute different bank related measures from the graphical models (namely mutual
information, pagerank, transfer entropy from lagged variables, number of bank edges) that
allow for an interesting inspection of the system evolution, highlighting different aspects. In
order to be able to calculate the transfer entropy, we fit also a model that comprehends 1-day
lagged returns as input variables. Thus, the input are two time series of 90 days of length
for each bank, one with contemporary returns and one with 1-day lagged returns. When we
derive the mutual information time series we don’t need to use the model with 1-day lagged
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FIGURE 4.2: Total network mutual information vs STLFSI trends compari-
son

returns, while when computing the transfer entropy time series we use it. Both the mutual
information and the transfer entropy are calculated for each edge of every graphical model
with the distinction that for transfer entropy is calculated only for the edges that go from
1-day lagged nodes to contemporary ones. Calculating these measures only for the network
edges is a great computational saving because it means computing around 100 measures per
graphical model (the number of edges of our sparse LoGo inferred model on average) instead
of calculating 2,485 quantities ((n2−n)/2, with n number of nodes). Then we aggregate the
mutual information and transfer entropy time series both at bank level and system level. The
system level aggregation produces measures that summarize the behaviour of the entire bank
network and can be compared with the overall financial system stress indexes. For example,
from Figure 4.2 it is possible to see how the network total mutual information resembles very
closely (especially in the trends) the STLFSI. We can see from the figure that the trends are
very similar and timely coincident, specially around the stress peaks registered during the
2008 financial crisis. This result is coherent with [Dilip et al. 2013] where the authors show
that correlation spikes tend to predict or coincide with significant economic or market events,
especially during the 2007-2008 financial crisis.

The Transfer entropy trend compared to the STLFSI (see Figure 4.3) instead is more dif-
ficult to interpret and doesn’t show such a high correlation as the the total mutual information
but we can see that in coincidence with certain peaks in the STLFSI also the total transfer
entropy of the network peaks.

While the system aggregated measures give us information regarding the overall system
financial stress through bank level measures we would like to investigated which banks helps
to predict the financial stress indexes. The bank level timeseries are computed aggregating the
single edges mutual information and transfer entropy according to the procedure illustrated
in Section 4.3.3 for each market day. After these pre-processing we obtain three timeseries
for each single bank: mutual information (the total mutual information between the bank
and its neighbours), transfer entropy inflow (the sum of the transfer entropy incoming to the
bank from its 1-day lagged neighbours), transfer entropy outflow (the sum of the transfer en-
tropy going from the 1-day lagged bank node to its contemporary neighbours). These three
measures summarize, respectively, three different types of information; i) how much a bank
returns are correlated with the rest of the banking system (more precisely with its neigh-
bours); ii) how much knowing a bank returns helps predicting the rest of the system returns;
iii) how much knowing the system returns helps to predict a bank returns. We want to in-
vestigate whether some of these bank level measures helps to predict financial stress indexes
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FIGURE 4.3: Total network transfer entropy vs STLFSI trends comparison

like STLFSI, Libor-OIS spread and USD/CHF exchange rate. From such a finding we could
understand that a bank has an important role in the financial stress dynamics of the system.
To test if these measures help to predict the financial stress indexes we resort to the Granger
causality test and in particular a recent extension of it, the partial Granger causality [Guo et
al. 2008]. We resort to the partial Granger causality to mitigate the possible confounding in-
fluence in the eventuality of missing and latent variables [Pearl 1999] as explained in Section
4.3.5. When testing for causality we condition on three macroeconomic variables to control
the effect of the macroeconomic cycle and eventual spurious correlations. These three con-
trol variables are the US 10Y Treasuries yield, the gold price and the EUR/USD exchange
rate and are related to the general economic conjuncture. For the partial Granger causality
test we resort to the R package FIAR (Functional Integration Analysis in R) [Roelstraete et
al. 2011]. We test the linear partial Granger causality from the bank level timeseries to the
different financial stress indexes for three different periods in which we split the analysis:
pre-crisis (2003-2006), financial crisis (2007-2010), post-crisis (2011-2017). Prior to testing
for causality, the timeseries have been tested for stationarity with a Dickey-Fuller test and
where necessary the time series have been differentiated with the "forecast" package avail-
able in R [Hyndman et al. 2008, Hyndman et al. 2018]. Each causality test is performed
considering up to the 5th lag for the bank level time series. In Table 4.2 we report the results
of the partial Granger causality test.

Analyzing the results in Table 4.2, where we list the banks with at least two significant
lags at α = 0.05, we can see that the statistically significant banks comprehend both large
banks like JPM, C, WFC, medium size banks like STL, ASB and smaller banks like NYCB.
The list includes also large foreign banks like BBVA, HSBC and DB that have considerable
activities in the US.

In Table 4.3 we report the banks that appear more frequently among the statistically
significant banks within each period and for each bank level measure. Thus, given all the
banks that have at least 2 significant lags at α = 0.05 within a period and one bank level
measure we select by majority voting those that appear most frequently. The logic behind
this choice is that if a bank is very relevant in predicting the stress indexes, it should give
causality signals to all the stress indicators (STLFSI, Libor-OIS spread and CHF/USD rate
returns). So, the most significant banks should have significant lags in predicting not only
one stress index but possibly more. In this table we see many of the largest US banks, in
particular when the transfer entropy outflow is considered. This is reasonable because largest
banks are more likely to influence the rest of the system and thus their stock returns should
help in predicting the returns of the other banks.
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Period Bank level measure Financial stress index Statistically significant banks
’03-’06 Mutual Information CHF/USD returns ASB, CBSH, PACW, TCF, UMPQ
’03-’06 Mutual Information Libor-OIS spread BBT, PNC
’03-’06 Mutual Information STLFSI AF, UMPQ
’03-’06 Transfer Entropy out. CHF/USD returns BANC, IBKC, OZRK
’03-’06 Transfer Entropy out. Libor-OIS spread AF, BANC, PBCT
’03-’06 Transfer Entropy out. STLFSI BOKF, FNB, SAN, SCHW, SIVB
’03-’06 Transfer Entropy in. CHF/USD returns FBP, IBKC, NYCB, RF
’03-’06 Transfer Entropy in. Libor-OIS spread FCNCA, FITB, PACW, SIVB
’03-’06 Transfer Entropy in. STLFSI BMO, FITB, FULT
’07-’10 Mutual Information CHF/USD returns AXP, BK, DB, SBIN, SIVB, UCBI, WBS
’07-’10 Mutual Information Libor-OIS spread CMA, DB, FHN, FITB, HBAN, SAN, TD, UCBI
’07-’10 Mutual Information STLFSI BANC, BK, PNC, STL
’07-’10 Transfer Entropy out. CHF/USD returns GS, MTB, SLM
’07-’10 Transfer Entropy out. Libor-OIS spread ASB, BAC, BBT, BBVA, COF, JPM, TCF
’07-’10 Transfer Entropy out. STLFSI BAC, BANC, BCS, COF, JPM, STI
’07-’10 Transfer Entropy in. CHF/USD returns BBT, BXS, KEY, SBIN, WFC
’07-’10 Transfer Entropy in. Libor-OIS spread HBAN, HSBC, PBCT, SBIN, WBS
’07-’10 Transfer Entropy in. STLFSI AF, BANC, SBIN, WBS
’11-’17 Mutual Information CHF/USD returns BOKF, C, CFR, FBC, JPM, MTU, RF, RJF, STL
’11-’17 Mutual Information Libor-OIS spread BANC, C, CFR, RJF, STL
’11-’17 Mutual Information STLFSI C, CFR, RJF, SAN, SLM, STI, STL, VLY
’11-’17 Transfer Entropy out. CHF/USD returns
’11-’17 Transfer Entropy out. Libor-OIS spread ASB, BOKF
’11-’17 Transfer Entropy out. STLFSI NYCB, SF, UMBF
’11-’17 Transfer Entropy in. CHF/USD returns
’11-’17 Transfer Entropy in. Libor-OIS spread BBVA, TD, WFC
’11-’17 Transfer Entropy in. STLFSI CFR, OZRK, WFC

TABLE 4.2: Partial Granger causality results: causality test from bank level
measures to financial stress indexes; statistically significant banks have at

least two significant lags at α = 0.05

Period Bank level measure Most significant banks
2003-2006 Mutual Information
2003-2006 Transfer Entropy outflow BANC
2003-2006 Transfer Entropy inflow FITB
2007-2010 Mutual Information BK, DB
2007-2010 Transfer Entropy outflow BAC, COF, JPM
2007-2010 Transfer Entropy inflow SBIN
2011-2017 Mutual Information C, CFR, RJF, STL
2011-2017 Transfer Entropy outflow
2011-2017 Transfer Entropy inflow WFC

TABLE 4.3: Most significant banks: list of the banks that appear more times
in the Statistically significant banks within a period and fixed the bank level

measure in Table 4.2
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In the pre-crisis period ’03-’06 we find less significant banks, specially when testing the
partial Granger causality for the STLFSI and Libor-OIS spread. This is expected since both
the indexes have been widely adopted and regarded during and after the crisis. In particular,
STLFSI has been developed after the crisis and backward calculated with the goal of being a
good indicator for the crisis. Moreover both the indicators during the pre-crisis period were
not subject to sudden and extensive spikes or changes thus is more difficult that a single bank
stock is useful in predicting its behaviour.

During the crisis period ’07-’10 there there are more banks with statistically significant p-
values in the partial Granger causality tests due to the greater correlation of the entire system,
found also by other studies [Dilip et al. 2013]. This is also in agreement with the fact that
both the total mutual information and the transfer entropy of the network peak during the
crisis. During the crisis is interesting to look at the banks whose transfer entropy outflow is
most relevant in Granger causing the indexes. These banks in fact, are those whose influence
on the rest of the system (transfer entropy outflow) is more useful to predict the stress indexes;
they are mainly large banks (Bank of America, Capital One Financial, J.P. Morgan) that had
an important role during the crisis.

Bank of America (BAC) is the second largest financial institution in the US and has
been severely affected by the crisis. Several acquisitions in fact, had increased its exposition
towards consumer credit and house mortgages. In 2005 it bought the credit card giant MBNA,
in 2008 it acquired Countrywide Financial, the largest mortgage originator in America at the
time and the troubled stockbroker Merrill Lynch. All of these businesses registered enormous
losses during the crisis.

Capital One Financial (COF) in mid 2007 in fact, announced that it would have eliminate
1,900 jobs and shut down a wholesale mortgage unit it had acquired less than a year before,
in response to the U.S. housing downturn, and posted great losses.

J.P. Morgan (JPM) has been a protagonist bank during the crisis in positive terms com-
pared to the others. J.P. Morgan in fact, in the years prior to the crisis mostly avoided sub-
prime mortgages, structured investment vehicles and collateralized debt obligations. When
the subprime bubble triggered a massive deleveraging J.P. Morgan was mostly unharmed
compared to its rivals. So J.P. Morgan was in such a good position, that it offered to take over
Bear Sterns.

During the post-crisis period, ’11-’17 we register less statistically significant banks, in
line with the intervention of the central banks whose policies have helped cooling down
the financial system. Among the most relevant, we find both large banks like Wells Fargo
(WFC) and Citigroup (C) and smaller institutes like Frost bank (CFR), Raymond James bank
(RJF) and Sterling National bank (STL). The two large banks are bad performers among
their peers. Wells Fargo while recovering from the crisis has witnessed a troubled post-crisis
period studded with lawsuits and scandals that have undermined its reputation at the point
that in 2018 the bank launched a marketing campaign called "Re-Established" to empha-
size the company’s commitment to re-establish trust with stakeholders. Citigroup after the
government bailout, has failed FED stress test in 2012 and 2014 and has seen a period of
downsizing characterized by market exits, sell-off and shutdowns of different units. Instead
the smaller statistically significant institutes (CFR, RJF and STL) are all characterized by an
intense expansion and acquisition activity during the post crisis period.

It is also important to note that there are certain banks that are significant in more than
one time period. For example, ASB, BANC and SAN are significant in all the three periods
(’03-’17), while SIVB, TCF, BBT, PNC are significant before and during the financial crisis
(’03-’10) and STL, SLM, JPM and STI (’07-’17) are significant during and after the crisis.
These banks comprehend both important hubs in the network model like ASB, SIVB and
STL and more peripheral nodes like TCF or SAN (see Fig. 4.1)
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4.6 Conclusions

In this work we have presented two main contributions. Firstly, we have applied a recently
presented graphical model inference methodology LoGo in the investigation of U.S. Banks
stock returns to understand the network structure and its evolution from 2003 to 2017. Thanks
to the LoGo computational efficiency we could estimate a separate graphical model for each
market day and generate several time series of bank related measures computed from the
network structure. Secondly, we have presented a way to leverage the graphical model infor-
mation comparing the measures derived from its structure with well known financial stress
indexes and performed a causality analysis among them. To perform the causality analysis
we resorted to the partial Granger causality method to take in consideration different control
variables.

The inferred graphical models and the bank related measures extracted from them have
shown to be an interesting tool for monitoring the U.S. bank system evolution. The bank
related measures extracted from the network in fact, have shown correlation with several
financial stress indexes and to be linked in Granger causality terms to some of them acting as
causing variables in the different time frames.

Considering further research on this topic, it would be interesting to use other publicly
available information on banks as well, like for example, bonds issued by banks or banks
CDS. Bonds and CDS may capture different risk information more related to the bank default
risk. In this case it would be necessary to handle different maturities in a proper way in order
to obtain comparable variables. Finally it would be possible to merge the different networks
obtained in a multilayer network model that could potentially capture different aspects of the
bank risk.
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Chapter 5

Assessing news contagion in finance

5.1 Summary

The analysis of news in the financial context has gained a prominent interest in the last years.
This is because of the possible predictive power of such content especially in terms of topics,
topics proportions and associated sentiment. In this chapter, we focus on a specific aspect
of financial news analysis: how the covered topics modify according to country and time
dimensions. To this purpose, we apply a modified version of the LDA Topic Model, the
so-called Structural Topic Model (STM), that takes into account numerical and categorical
covariates as well. Our aim is to study the possible evolution of topics extracted from two
well known news archive (Reuters and Bloomberg) and to investigate a causal effect in the
diffusion of the news by means of a Granger causality test. Our results show that both the
temporal dynamics and the spatial differentiation matter in the news contagion.

5.2 Introduction

With the rapid growth of online information, text analysis and categorization have become
core topics in many different disciplines ranging from politics to finance and social sciences
in general. Text analytics techniques are an essential part of text mining and are used to
classify documents (of any kind) and to find interesting information therein.

The interpretation of text by machines, the task of natural language processing (NLP), is
complex due to the richness of human language, as well as the ambiguity present at many
levels, including the syntactic and semantic ones. From a computational point of view, pro-
cessing language means dealing with sequential, highly variable and sparse symbolic data,
with surface forms that cover the deeper structures of meaning. Despite these difficulties,
there are several methods able to extract part of the information content present in collec-
tions of texts. Some of these rely on handcrafted features, while others that are data driven
exploit statistical regularities in language and often rely on word representations. Class based
models, for example, learn classes of similar words based on distributional information, such
as Brown clustering [Brown et al. 1992] and Exchange clustering [Martin et al. 1998, Clark
2003]. Soft clustering methods, such as Latent Semantic Analysis (LSA) [Landauer et al.
1998] and Latent Dirichlet Allocation [Blei et al. 2003], associate words to topics through
a distribution over words of how likely each word is in each cluster/topic. In the last years,
many contributions employ neural networks and semantic vector representations [Hochreiter
and Schmidhuber 1997,Mikolov et al. 2013,Pennignton et al. 2014,Cho et al. 2014] to model
complex and non-local relationships in the sequential input [Socher et al. 2011, Socher et al.
2013,Collobert et al. 2011,Kalchbrenner et al. 2014]. If we focus specifically on the finance
related research area, we can list several papers that take advantage of text analytics per se
or as an additional source of information to be used. Central banks themselves have been
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recently starting to recognize the utility of text data in financial risk analytics [Bholat et al.
2015, Hokkanen et al. 2015].

In this chapter, we follow a stream of research based on official news and we deepen a
particular aspect: improving information elicitation to enhance the model with contextual in-
formation (metadata and covariates) related to the characteristics and environment in which
the entities of interest are operating to discover and analyze contagion patterns in the in-
formation flow. Indeed, the introduction of contextual information in the models is not a
straightforward process but requires a careful choice of the additional information provided
in order not to introduce additional noise. The addition of metadata aims at increasing the
potential value of text as a source in data analysis [Soo 2013]. More in detail, we choose
as covariates temporal and spatial variables, so to help the understanding of possible evo-
lution pattern or contagion effects in the information flows. In this respect, we employ a
modified version of the well-known Latent Dirichlet Allocation topic model called Structural
Topic Model (STM) proposed by [Roberts et al. 2016] that explicitly includes covariates in
the model fitting. To our knowledge, this is the first attempt to assess the contagion effect
through news in finance. In particular, we propose to analyze banks’ related news and corre-
late the news topics with the banks’ nationality and the news time stamp aggregated at either
monthly and weekly basis.

This recent rise of interest around the integration of text-based computational methods
for the assessment of financial risk is fuelling a rapidly growing literature that can be divided
in two main streams according to the type of textual source: social media blogs and platform
(namely Twitter, Facebook, and Google Trends) or official news archive (above all, Reuters
and Blomberg).

In the first case, the constant production of detailed online information streaming from
social networking and micro-blogging platforms, is increasingly attracting the attention of
researchers and practitioners especially for the detection and monitoring of sentiments and
opinions. Indeed, social media contents may constitute a relevant asset for financial institu-
tions to gain useful insights about the clients’ needs and perceptions in real time. Insofar,
extracting sentiments from Twitter has been already employed for several purposes: to pre-
dict the trends of Dow Jones Index [Bollen et al. 2011]; to check the effects of sentiments
on stock price and volume in the Dow Jones Index [Ranco et al. 2015]; to predict market
prices in the Italian financial market [Cerchiello and Giudici 2015]; or to estimate Italian
banks systemic risk like in Chapter 3. There are many other papers in this field leveraging
Twitter for financial analysis and prediction [Sprenger and Welpe 2010, Brown 2012, Mittal
and Goel 2012, Rao and Srivastava 2012, Nann et al. 2013, Oliveira et al. 2013]. Another
strand of literature uses social media as an alternative way to release information, thus reduc-
ing information asymmetry and improving stock liquidity, attracting more investors. Other
papers, such as [Chawla et al. 2016] or [Giannini et al. 2013], use Twitter data dynamically
to investigate how information diffusion affects trading and how tracks changes in investor
disagreement.

On the other hand, if we consider official news as source of information, not only senti-
ment but also content analysis is crucial, since the resulting outcomes are used for assessing
correlation with events of interest (typically stress events). Many of the proposed approaches
have been based on hand-crafted dictionaries that, despite requiring work to be adapted to
single tasks, can guarantee good results due to the direct link to human emotions and the
capability of generalizing well through different datasets [Nyman et al. 2015, Soo 2013].
The first analyzes sentiment trends in news narratives in terms of excitement/anxiety and find
increased consensus to reflect pre-crisis market exuberance, while the second correlates the
sentiment in news with the housing market. Despite the good results, there are applications
where it could be preferable to avoid dictionaries in favour of more data driven methods,
which have the advantage of higher data coverage and capability of going beyond single
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word sentiment expression [Malo et al. 2014]. provide an example of a more sophisticated
supervised corpus-based approach, in which they apply a framework modelling financial
sentiment expressions by a custom dataset of annotated phrases. In the last years, different
papers, embracing the data driven approach, have used the deep learning models to analyze
textual data. They have shown good results in predicting distress events of financial institu-
tions like [Rönnqvist and Sarlin 2017] and the following Chapter 7 and in predicting S&P500
stocks [Ding et al. 2015].

This work continues pursuing this line of research by applying a fully unsupervised data
driven model based on topic modelling, supervised only by a posterior interpretation of the
discovered topics.

The rest of the chapter is organized as follows: in Section 5.3, we illustrate the applied
model; in Section 5.4, we describe the data and the preprocessing steps; in Section 5.5, the re-
sults are presented; in Section 5.6, conclusions of the work with hints on future developments
are discussed.

5.3 Methodology

Text analysis is a complex task that poses several different issues ranging from the problem
of polysems (multiple senses for given words) and synonyms (same meaning for different
words) to the computational effort and allocation of largely sparse data matrices. One of the
first effective models able to solve some of those issues is represented by Latent Semantic
Analysis (LSA) [Deerwester et al. 1990]. The basic idea of LSA is to work at semantic
level by reducing the vector space through Singular Value Decomposition (SVD), producing
occurrence tables that are not sparse and that help in discovering associations between docu-
ments. To establish a solid theoretical statistical framework in this context, [Hofmann 1999]
proposed a probabilistic version of LSA (pLSA). Such model, also known as the aspect
model, is rooted in the family of latent class models and is based on a mixture of condi-
tionally independent multinomial distributions for modeling the words-documents pair. The
intention from the introduction of pLSA was to offer a formal statistical framework, helping
the parameter interpretation issue as well. The goal was achieved only partially, because the
multinomial mixtures, whose components can be interpreted as topics, offer a probabilistic
justification at words but not at documents level. In fact, the latter are represented merely as
a list of mixing proportions derived from mixture components. Moreover, the multinomial
distribution presents as many values as there are in the training documents and therefore it
learns topic mixture on those trained documents. The extension to previously unseen docu-
ments is not appropriate since there can be new topics. To overcome the asymmetry between
words and documents and to provide a fully generative model, [Blei et al. 2003] proposed
the LDA (Latent Dirichlet Allocation) model. LDA is still based on the “bag of words” as-
sumption that neglects the word order in the text is a fully generative model since it posits a
Dirichlet distribution over documents in the corpus, while each topic is drawn from a Multi-
nomial distribution over words. However, note that [Girolami and Kaban 2003] have shown
that LDA and pLSA are equivalent if the latter is under a uniform Dirichlet prior distribution.
LDA does not solve all the challenges of involved in topic modelling and the main restric-
tion embedded in its approach (due to the Dirichlet distribution) refers to the assumption
of independence among topics. To tackle this issue Correlated Topic Model (CTM), have
been proposed in [Blei and Lafferty 2006]. CTMs introduce correlations among topics by
replacing the Dirichlet random variable with the logistic normal distribution. Unlike LDA,
CTM presents a clear complication in terms of inference and parameter estimation since the
logistic normal distribution and the Multinomial are not conjugate. To bypass the problem,
the most recent alternative is represented by the Independent Factor Topic Models (IFTM)
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introduced in [Putthividhya et al. 2009]. Such proposal makes use of a latent variable model
approach to detect hidden correlations among topics. The choice to explore the latent model
world allows to choose among several alternatives ranging from the type of relation, linear
or not linear, to the type of prior to be specified for the latent source.

In this chapter, we focus on one of the most recent extensions of the LDA model proposed
by [Roberts et al. 2016]. This model, called Structural Topic Model (STM), considers the
explicit inclusion of covariates that can help in describing and interpreting the topics along
the corpus. More specifically, STM allows for covariates to influence two elements of the
model: the topic prevalence and the topical content. With the former, the authors refer to the
proportion of a document devoted to a topic, while the latter describes the word rates used in
discussing a topic. The authors take advantage of the Generalized Linear Models framework
to accommodate for general covariate information (or metadata) into topics model thanks
also to two previous papers from [Mimno and McCallum 2008] and [Eisenstein et al. 2011].

Since STM depends upon LDA, we first summarize the latter and then we move to the
former. [Blei et al. 2003] defines the model as follows:

θi ∼ Dir(α) (5.1)

φk ∼ Dir(β ) (5.2)

zi j|(θi) ∼Multinomial(θi) (5.3)

xi j|zi j ∼Multinomial(φzi j) (5.4)

where di for i = 1, . . . ,N is collection of N documents and words {xi j}Ji
j=1 within each

document di listed in a common vocabulary containing V words, with N the number of doc-
uments and Ji the number of words in the document di. Assuming that we have k topics
for k = 1, . . . ,K, θi is the length-K per document topic distribution for document di, φk is
the length-V per topic word distribution for the k-th topic and zi j is the topic for the j-th
word in d j. Finally, α and β are hyperparameters that influences respectively the documents
distributions over topics and the topics distributions over words.

Coming to the Structural Topic Model, [Roberts et al. 2016] defines it as follows:

θi|(Ciγ ,Σ) ∼ LogisticNorm(Ciγ ,Σ) (5.5)

φik ∝ exp(m+ kk + kci + kkci
) (5.6)

zi j|(θi) ∼Multinomial(θi) (5.7)

xi j|zi j ∼Multinomial(φizi j) (5.8)

where w = 1, . . . ,W , k = 1, . . . ,K, Ci is the covariates matrix, γ is the coefficient vector,
Σ is the covariance matrix, φik is the word distribution for document di and k-th topic, m
is a reference log-word distribution while kk, kgi and kkgi

represent the deviations from the
baseline due, respectively, to the topics, the covariates and their interaction effect.

The strength of the model relies on its three different components clearly represented in
Equations 5.5-5.8: the topic prevalence is modelled by Equation 5.5 through a logistic normal
distribution which mean is not constant but it depends on the covariates. The topical content
is represented by Equation 5.6 according to which the word occurrences are modelled in
terms of log-transformed rate deviations from a corpus based distribution m. The parameters
kk, kgi , kkgi

represent the specific deviations: respectively for the topic, for the covariates and
for the interaction topic-covariates. Finally, Equations 5.7 and 5.8 comprise the central part
of the model reporting the distribution of topics zi j and of words xi j both sampled from a
Multinomial distributions. LDA and STM are similar in the core language of the model that
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is the sampling mechanism of the topics and of the words as appear from Equations 5.3, 5.4,
5.7 and 5.8. The main difference is in the parameters of the Multinomials that, for the STM
model, depend upon covariates.

Since our research hypothesis aims at analyzing a contagion effect and its patterns in the
diffusion of topics among countries according to a temporal dimension, we need a method
to assess such effect. In the following paragraph, we introduce the Granger causality test, a
well-known econometric test useful when causality is the object of interest.

Granger causality entails the statistical notion of causality based on the relative forecast
power of two time series. Time series j is said to “Granger-cause” time series i if past
values of j contain information that helps in predicting i above and beyond the information
contained in past values of i alone.

In a well known paper [Granger 1969], Granger has proposed a useful test based on the
following principle: if lagged values of time series Xt contribute to foresee current values
of time series Yt in a forecast achieved with lagged values of both Xt and Yt , then we say Xt

Granger causes Yt . As was first shown in [Sims 1972], the Granger causality corresponds
to the concept of exogeneity and it is therefore necessary to have a unidirectional causal-
ity in order to guarantee consistent estimation of distributed lag models. The mathematical
formulation of this test is based on linear regressions of Xt+1 on Xt and Yt

In our research framework, we propose to calculate the Granger causality test on pairs of
times series defined as follows:

• Rkq
t : given a topic k, the vector of document counts showing a topic prevalence θ k

i
larger than a specified threshold with regards to country q at time t.

• Rkp
t : given a topic k, the vector of document counts showing a topic prevalence θ k

i
larger than a specified threshold with regards to country p at time t.

To ease the notation, we refer to Rq
t given the topic k and country q (similar to country

p).
Thus, applying the test for a given pair of count vectors for topic k and countries q − p,

we result in fitting the following equations:

Rq
t+i = β

q
0 Rq

t +β
qp
1 Rp

t + eq
t+i (5.9)

Rp
t+i = β

p
0 Rp

t +β
pq
1 Rq

t + ep
t+i (5.10)

Our null hypothesis is therefore: H0 : β
qp
1 = β

pq
1 = 0. Taking into account that we are

dealing with monthly time series and weekly time series, in our tests, we have considered up
to two lags as plausible windows of analysis.

5.4 Data

The data analyzed are contained in two public financial news dataset extracted by Reuters
News and Bloomberg News containing respectively 106,521 and 447,145 documents1. The
data span a period from October 2006 to November 2013. Such time frame is very inter-
esting from a financial perspective since it comprehends the sub-prime crisis started in 2007
and its following evolution with modest recovery and the beginning of the sovereign debt
crisis. Moreover, beside these major topics, there have been many spot hot topics which have

1The datasets are available on the Github of Philippe Remy at https://github.com/
philipperemy/financial-news-dataset and have been retrieved and appropriately collected using
Python.

https://github.com/philipperemy/financial-news-dataset
https://github.com/philipperemy/financial-news-dataset
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periodically grabbed the attention of the media like, for example, the Madoff fraud, Barclays
and Deutsche bank Libor manipulation investigation and UBS tax evasion controversy.

The datasets contain a broad variety of articles ranging from analysts’ recommendations
to earning announcements to legal investigation news. All the news report the timestamp of
the corresponding day. The datasets need to be carefully inspected and cleaned up according
to the purpose of the analysis. In our case, the analysis focuses on the SIFIs banks (Systemi-
cally Important Financial Institution according to Basel Committee definition) listed in Table
5.1 and thus we cleaned the dataset to reduce as much as possible the non-bank related news.
Then, we have tokenized each document into sentences and kept only those containing SIFI
labels (see Table 5.1). We have developed a dictionary of bank names to be matched with
the available sentences and we do not include bank tags and tickers due to their possible am-
biguity with other entities (for example City Group ticker C and Santander SAN can easily
refer to other non-related arguments). In addition, to associate a phrase to a single bank and
to avoid multiple imputation, we have kept sentences referring only to one bank. Finally,
since many of these institutions are very active in the investment banking sector and often
release reports on other companies, we have dropped the sentences containing keywords as-
sociated with this kind of news, such as “analyst”, “analysts”, “said”, “note”, “report”, and
“rating”. These words have been easily detected by looking at the wordclouds referred to
such news. This selection procedure is somehow restrictive, but it is necessary to deal with a
clean dataset focused only on banks related news. The phrases remaining after this filtering
are 136,419 and cover many of the SIFI with the proportions reported in Table 5.1.
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Bank # of Sentences Country

Bank of America 19,203 USA
Goldman Sachs 16,258 USA

Citigroup 15,446 USA
UBS 13,414 Switzerland

Barclays 11,434 UK
Morgan Stanley 11,162 USA

HSBC 8,693 UK
Deutsche Bank 7,471 Germany
Credit Suisse 6,385 Switzerland
Wells Fargo 4,876 USA

Bank of China 3,416 China
Societe Generale 2,463 France

BNP Paribas 2,012 France
Royal Bank of Scotland 1,943 UK

Standard Chartered 1,813 UK
Commerzbank 1,512 Germany
BNY Mellon 1,427 USA

Credit Agricole 1,195 France
Banco Santander 1,023 Spain

State Street 926 USA
Sumitomo Mitsui 900 Japan

JP Morgan 755 USA
Industrial and Commercial Bank of China 732 China

BBVA 718 Spain
Lloyds Bank 648 UK

China Construction Bank 387 China
ING Bank 110 Netherlands
Unicredit 94 Italy

Dexia Group 2 Belgium

Total 136,418

TABLE 5.1: List of considered SIFI Banks.

In Table 5.2, we report the number of sentences grouped by country. It clearly appears
that the distribution of the sentences across the country is heterogeneous and this has an im-
pact on the comparability of results across banks and countries. Thus countries, not showing
enough news have been excluded from the analysis according to criteria we explain below.

To fit the STM model, we need to choose appropriate covariates that we consider rele-
vant in the description of the topics. To this purpose, we have considered a temporal variable
reporting the month or the week in which the news have been released. For sake of compa-
rability and robustness, the analysis has been carried out with two different versions of the
Reuters-Bloomberg dataset with regards to the temporal dimension. Thus, the time covariate
has been considered according to two different aggregation periods:

• Monthly-based: The time stamp of each news has been grouped on a monthly basis,
obtaining 85 months starting with October 2006 (Month 1) and ending with November
2013 (Month 85).
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• Weekly-based: The time stamp of each news has been grouped on a weekly basis,
obtaining 370 weeks starting with 23rd October 2006 (Week 1) and ending with 19th
November 2013 (Week 370).

This allowed us to fit and compare two different configurations of the STM: the first
one assuming a monthly contagion effect, the second one, indeed more realistic, a weekly
contagion transmission. However, aggregating the news at week level has a important impact
on the list of SIFI banks that can be reliably evaluated: we do not have enough news on a
weekly basis for all banks, thus we must consider only the ones most covered by the media.
As a result, in the monthly based analysis, we include with 25 banks, that are those having at
least 10 mentioning sentences per month on average or at least 1,000 mentioning sentences
during the considered period. In the weekly based analysis we consider 10 banks, that are
those having at least 10 mentioning sentences per week on average during the considered
period.

Country # of Sentences

USA 70,053
UK 24,531

Switzerland 19,799
Germany 8,983
France 5,670
China 4,535
Spain 1,741
Japan 900

Netherlands 110
Italy 94

Belgium 2

Total 136,418

TABLE 5.2: Distribution of documents per country.

Along with the temporal variable, we have considered a spatial information mapping each
SIFI banks onto the corresponding country (namely the country in which the headquarters is
based). Then, we have introduced as many dummy variables as the involved countries: five
in the monthly based case (France, Germany, Switzerland, UK and USA) and four in the
weekly based case (Germany, Switzerland, UK and USA).

The rationale behind the inclusion of temporal and spatial covariates is the following:
while the formers help us in monitoring the evolution of news along the time horizon, the
latter is useful in disentangling the country/institution effect.

5.5 Results

To select a model with a good interpretability, we have tested different topic numbers and
manually inspected the results. To evaluate the clarity of the resulting topics, we have con-
sidered the top 20 words associated to each topic according to the highest probability measure
and to the frequency measure "FREX". In [Roberts et al. 2016b], the FREX metric has been
proposed to measure exclusivity in a way that balances word frequency. The FREX is the
weighted harmonic mean of the word’s rank in terms of exclusivity and frequency within the
topic.

We tested six different configurations for the monthly based analysis with 5, 10, 12, 15,
25, and 35 topics (simulation time in Table 5.3), and we concluded that results with 10, 12
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and 15 topics are stable and consistent with each other in terms of identified arguments (see
Table 5.4). We also tested different configurations for the weekly based analysis with 10,
15 and 25 topics (with simulation times analogous to the monthly case), and we concluded
that results with 15 topics are consistent with the monthly case with 15 topics in terms of
identified arguments.

# of Topics Time (s)

5 371
10 522
12 685
15 543
25 1,155
35 6,667

TABLE 5.3: Simulation time of the different STM configurations.

Monthly Aggregation Weekly Aggregation

Topic Title 10 Topics 12 Topics 15 Topics 15 Topics

UBS tax fraud scandal Y Y Y Y
Market performance Y Y Y Y
Stock recommendation Y Y Y Y
Chinese companies news Y Y Y -
Hedge Funds, Private Equity and Inv. Banking Y Y Y Y
Press comments and PR Y Y Y Y
Citigroup bailout Y Y Y Y
Advisory - - Y -
Morgan Stanley Investment Banking Y Y Y Y
Euro area banks Y Y Y -
Madoff scandal - - Y Y
Barclays and Deutsche B. LIBOR manipulation Y Y Y Y
Bond, Equity,and CDS markets - - Y Y
Mortgage crisis - Y Y Y
Spanish banks - - Y -
General view on the economy - Y - -
Insider trading investigation - - - Y
Wells Fargo-Wachovia acquisition - - - Y
Bank management changes - - - Y
US banks stocks performance - - - Y

TABLE 5.4: STM configurations comparison on monthly and weekly aggre-
gated data.

For comparability and reproducibility, in each simulation run, we applied the same data
cleaning process removing English stopwords, keeping only the words with length between
4 and 15 letters appearing in more than 30 and less than 45,000 documents. We kept also
the STM model parameter in R set to an Expectation Maximization improvement tolerance
equal to 1 × 10−5 (as suggested by the package developers and by empirical evidence). In
the following paragraphs, we describe the 15 topics model configuration since it shows well
defined and interpretable topics. Moreover, as emerges from Table 5.4, it is fully comparable
to other configurations such as 10 or 12 topics, but with an increased level of clarity and
definition and with the addition of relevant topics such as “Madoff scandal” and “Spanish
banks news”.

Our findings show that the identified topics represent some of the most discussed financial
events that took place between 2007 and 2013, in particular:
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“UBS tax fraud” (Topic 1), “Market performance” (Topic 2), “Stock recommendation”
(Topic 3), “Chinese companies news” (Topic 4), “Hedge Funds, Private Equity and Invest-
ment Banking” (Topic 5), “Press comments and PR” (Topic 6), “Citigroup bailout” (Topic 7),
“Advisory” (Topic 8), “Morgan Stanley Investment Banking” (Topic 9), “Euro area banks”
(Topic 10), “Madoff fraud scandal” (Topic 11), “Barclays and Deutsche Bank LIBOR manip-
ulation” (Topic 12), “Bond, Equity and CDS markets” (Topic 13), “Mortgage crisis” (Topic
14), and “Spanish banks” (Topic 15). For completeness, we report in Table 5.5 the complete
list of words associated to each topic according to the FREX measure that accounts for both
their overall frequency and exclusivity to the specific topic.

The wordcloud in Figure 5.1 reports the most relevant words along the whole analyzed
corpus and it clearly highlights some words specifically connected to the 15 topics such as
Citigroup, Barclays, Morgan, mortgage, etc.

FIGURE 5.1: Wordcloud of the 15 topics analysis.
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Topic Words

Topic 1 FREX: charg, justic, guilti, account, ubsn, evas, plead, prosecut, crimin, hide,
depart, evad, client, indict, california, avoid, wealthi, adoboli, involv, ubsnvx

Topic 2 FREX: gain, percent, cent, cmci, lost, ralli, advanc, drop, materi, sinc,
jump, return, slip, tumbl, climb, slid, compil, rose, close, bloomberg

Topic 3 FREX: sumitomo, mitsui, suiss, csgn, scotland, neutral, credit, lloy, spectron, neutral,
rbsl, royal, icap, mizuho, csgnvx, maker, suisse , outperform, baer

Topic 4 FREX: elec, cosco, sino, comm, lung, chem, pharm, fook, sang, shougang,
yuexiu, sinotran, picc, swire, people , intl, emperor, shui, citic, hang

Topic 5 FREX: sach, goldman, groupinc, blankfein, sachs , gupta, rajaratnam, sachsgroup, corzin, paulson,
vice, wall, rajat, tourr, presid, warren, buffett, obama, hathaway, gambl

Topic 6 FREX: spokesman, comment, charlott, spokeswoman, immedi, carolina-bas, tocom, bacn, countrywid, north,
avail, lewi, moynihan, confirm, carolina, declin, respond, corp, repres, america

Topic 7 FREX: bailout, citigroup, pandit, sharehold, prefer, receiv, vikram, troubl, citigroup, announc,
rescu, common, taxpay, worth, subprim, crisi, dividend, loss, plan, shed

Topic 8 FREX: advis, hire, head, team, familiar, privat, wealth, manag, appoint, deal,
equiti, arrang, advisori, co-head, counsel, person, barclay, financ, dbkgnde, advic

Topic 9 FREX: stanley, morgan, stanley , smith, barney, gorman, mack, ventur, facebook, estat,
bear, fuel, brokerag, underwrit, real, stearn, crude, commod, brent, healthcar

Topic 10 FREX: societ, pariba, commerzbank, euro, estim, profit, quarter, french, general, forecast,
itali, greek, half, predict, germany , technic, germani, greec, socgen, incom

Topic 11 FREX: case, mellon, truste, southern, district, york, suit, bankruptci, mortgage-back, claim,
stempel, oblig, collater, file, madoff, lehman, picard, jonathan, rakoff, manhattan

Topic 12 FREX: libor, manipul, diamond, regul, scandal, told, wrote, think, confer, fine, ubss, gruebel,
respons, lawmak, event, england, polici, hsbcs, complianc

Topic 13 FREX: basi, point, markit, itraxx, percentag, yield, basispoint, swap, spread, preliminari,
manufactur, extra, read, managers , tokyo, demand, releas, bond, econom, narrow

Topic 14 FREX: fargo, charter, chase, well, standard, jpmorgan, jpmn, home, wfcn, build, korea, portfolio,
loan, francisco-bas, origin, size, mutual, small, fargo , india

Topic 15 FREX: banco, santand, bbva, bilbao, peso, spain , argentaria, spanish, chile, vizcaya,
brazil, latin, mexico, spain, brasil, follow, mover, brazilian, mexican

TABLE 5.5: List of 15 topics obtained from monthly aggregated data. The
associated words are ordered by FREX measure (words are weighted by their

overall frequency and how exclusive they are to the topic).

To further evaluate topics’ relevance, we report in Figure 5.2 the 15 topics sorted accord-
ing to their prevalence, which represents the proportion of documents devoted to each topic.
Market performance, Barclays and Deutsche Bank Libor manipulation and City group bailout
represent the most relevant and covered topics showing a prevalence greater than 0.08.

The results obtained from weekly based STM with 15 topics appear quite consistent with
those obtained from the monthly level analysis, easing the comparability of the final results.
The additional topics highlighted by this analysis are: “Insider trading investigation” (Topic
17), “Wells Fargo-Wachovia acquisition” (Topic 18), “Bank management changes” (Topic
19) and “US banks stocks performance” (Topic weekly 20) in Table 5.4.
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FIGURE 5.2: Topic prevalence the 15 topics analysis.

In Figures 5.3–5.11, we show how the two introduced covariates impact on the different
topics in the two proposed scenarios (monthly and weekly based analysis).

Insofar, we can analyze either separately or in combination how the topics evolve through
countries and time. In Table 5.6, we represent the topic proportions of the different topic in
the different countries. Such analysis allows highlighting the specific country dependence of
some topics such as the “UBS tax fraud scandal” upon Switzerland, the “Chinese companies
news” upon China or the “Mortgage crisis” upon USA and UK. On the other hand, we can
see topics more equally spread among the countries revealing a possible contagion/diffusion
effect such as for “Madoff fraud scandal”, “Barclays and Deutsche Bank Libor manipulation”
and “Citigroup bailout”.

Topic China France Germany Spain Switzerland UK USA

UBS tax fraud scandal 0.01 0.03 0.04 0.01 0.13 0.03 0.03
Market performance 0.17 0.11 0.11 0.12 0.12 0.10 0.13
Stock recommend. 0.01 0.05 0.03 0.01 0.15 0.06 0.01
Chinese company news 0.43 0.01 0.01 0.01 0.01 0.03 0.01
H. Funds, Pr. Eq. and Inv. Bank. 0.01 0.01 0.01 0.01 0.01 0.01 0.12
Press comments and PR 0.02 0.02 0.03 0.02 0.03 0.02 0.09
Citigroup bailout 0.07 0.04 0.04 0.02 0.07 0.05 0.13
Advisory 0.03 0.07 0.20 0.03 0.10 0.14 0.06
Morgan St. Inv. Banking 0.00 0.01 0.01 0.00 0.01 0.01 0.07
Euro area banks 0.07 0.40 0.24 0.08 0.08 0.07 0.05
Madoff scandal 0.02 0.03 0.06 0.02 0.06 0.06 0.08
Barclays and DB LIBOR manip. 0.07 0.09 0.11 0.03 0.13 0.18 0.06
Bond, Equity and CDS markets 0.05 0.08 0.07 0.06 0.03 0.15 0.06
Mortgage crisis 0.04 0.03 0.04 0.02 0.03 0.07 0.08
Spanish banks 0.02 0.02 0.02 0.57 0.02 0.02 0.02

TABLE 5.6: Topic prevalence by country.

To consider jointly the temporal and spatial effect, we focus specifically on some inter-
esting topics such as Topic 12 “Barclays and Deutsche Bank Libor manipulation”, Topic 10
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“Euro area banks”, Topic 11 “Madoff fraud scandal” and Topic 14 “Mortgage crisis” that
appear to be more diffused among the analyzed countries.

From Figures 5.3–5.6, we can gather insights regarding the topic proportions evolutions
in monthly aggregated data over the different countries. For example in Figure 5.3, i.e.,
Topic 12 about “Libor manipulation”, a misalignment of the topic proportion peaks appearing
for UK, Switzerland and Germany, suggests to further investigate through inferential tools.
Similar considerations can be drawn for the other plots, for example, in Figure 5.5 for Topic
11 “Madoff scandal”, where the misalignment is evident for USA, Switzerland, Germany
and France.

In Figures 5.7–5.11, we report the same plot analysis referred to the same topics now
obtained through STM applied on weekly data. However, when performing the analysis at
week level, we are left with four countries instead of five due to exclusion of some banks
for the higher sparsity of the news data. Once again, we can observe different dynamics in
the evolution of topics, particularly evident for “Madoff scandal” (Figure 5.8) and “UBS tax
fraud” (Figure 5.11). At the same time, in Figure 5.7, regarding “Libor manipulation”, we
can observe a different pattern compared to Figure 5.3: the whole topic depends more upon
UK with particular turbulence during the weeks between March 2011 and March 2013.

LIBOR Manipulation

FIGURE 5.3: Topic prevalence evolution by country with respect to monthly
based analysis.

Euro area banks

FIGURE 5.4: Topic prevalence evolution by country with respect to monthly
based analysis.
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Madoff fraud scandal

FIGURE 5.5: Topic prevalence evolution by country with respect to monthly
based analysis.

Mortgage crisis

FIGURE 5.6: Topic prevalence evolution by country with respect to monthly
based analysis.

LIBOR manipulation

FIGURE 5.7: Topic prevalence evolution by country with respect to weekly
based analysis.
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Madoff fraud scandal

FIGURE 5.8: Topic prevalence evolution by country with respect to weekly
based analysis.

Mortgage crisis

FIGURE 5.9: Topic prevalence evolution by country with respect to weekly
based analysis.

Citigroup bailout

FIGURE 5.10: Topic prevalence evolution by country with respect to weekly
based analysis.
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UBS tax fraud

FIGURE 5.11: Topic prevalence evolution by country with respect to weekly
based analysis.

Beyond the usefulness of a graphical inspection, we need an inferential tool, namely
the Granger causality test, to possibly confirm our main research hypothesis: a given topic
prevalent at time t in country c is also prevalent at time t + 1 in country p according to a
Granger causation influence.

Among the 15 discovered topics in the two analysis, we focus specifically on six ar-
guments that we consider more important from a contagion point of view: “UBS fraud
scandal (Topic 1)”, “Citigroup bailout (Topic 7)”, “Euro area banks (Topic 10)”, “Madoff
fraud scandal (Topic 11)”, “Barclays and Deutsche Bank Libor Manipulation (Topic 12)”
and “Mortgage crisis (Topic 14)”. In Table 5.7, we include Granger causality results statis-
tically significant at 5% for the topics listed above in the monthly based analysis, where 1L
stands for one-month lag and similarly 2L for two-months lag. We can observe that there
are several significant Granger causalities both at one and two-months lag. As one would
expect, the Granger causation is present both within European countries and between USA
and European countries, stressing the strict interconnection among countries from a financial
perspective. We have excluded China and Japan from this analysis due to a limited number
of available documents that can bias results (see Table 5.2).
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UBS Tax Fraud Significant Lag Citigroup Bailout Significant Lag

FR→ USA 1L, 2L FR→ USA 1L, 2L
FR→ UK 1L, 2L CH→ UK 1L, 2L
UK→ DE 2L FR→ UK 1L
UK→ FR 2L USA→ CH 1L, 2L

Euro Area Banks Significant Lag Madoff Scandal Significant Lag

CH→ USA 1L, 2L UK→ USA 1L, 2L
FR→ USA 1L, 2L CH→ USA 1L, 2L
USA→ UK 1L,2L DE→ UK 2L
CH→ UK 1L,2L DE→ CH 2L
FR→ UK 1L,2L FRA→ CH 2L
FR→ CH 1L,2L - -
FR→ DE 1L,2L - -

Libor Manipulation Significant Lag Mortgage Crisis Significant Lag

CH→ USA 2L CH→ USA 2L
CH→ DE 1L FR→ UK 2L
- - USA→ CH 1L, 2L
- - FR→ CH 2L
- - USA→ FR 1L, 2L
- - USA→ DE 1L

TABLE 5.7: Results from Granger causality test for Topics 1, 7, 10, 11, 12
and 14 obtained from STM applied on monthly based data.

As examples, let us focus on results for Topic 11 (Madoff scandal) and Topic 14 (Mort-
gage crisis). Regarding the former, we can see that the influencing countries at one- and
two-month lag are UK and CH whose banks had a high exposition towards the fraud, in par-
ticular HSBC, RBS and UBS. The importance of these two countries in the topic is justified
from the fact that we are considering only banks’ related news focusing primarily on the re-
lation between banks and the fraud, and thus on the most exposed banks. In the Mortgage
crisis, we can see how the information contagion is transmitted from USA to some European
countries at one-month lag, namely FR, DE and CH (CH and FR also at two-months lag),
and this is a plausible result as this specific financial crisis had origin in the United States. It
is also interesting to give attention to Topic 10 regarding Euro area banks. All the interac-
tions are significant at both one and two-month lag, and France seems to play a key role in
spreading the topic among all the other European countries and USA.

Similarly, in Table 5.8, we include the Granger causality results statistically significant
at 5% for the topics analysis based on weekly data, where 1L stands for one-week lag and
similarly 2L for two-weeks lag.
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UBS Tax Fraud Significant Lag Citigroup Bailout Significant Lag

UK→ USA 1L,2L USA→ UK 1L
USA→ CH 1L,2L USA→ CH 1L, 2L
USA→ DE 1L,2L DE→ UK 1L
UK→ DE 2L UK→ USA 2L
- - DE→ USA 2L

Mortgage Crisis Significant Lag Madoff Scandal Significant Lag

UK→ CH 1L, 2L CH→ USA 1L, 2L
CH→ UK 1L, 2L UK→ CH 1L, 2L
USA→ CH 2L USA→ DE 1L
- - UK→ USA 2L
- - DE→ USA 2L
- - UK→ DE 2L

Libor Manipulation Significant Lag

CH→ USA 1L - -
USA→ UK 2L - -
CH→ UK 2L - -

TABLE 5.8: Results from Granger causality test for Topics 1, 7, 14, 11 and
12 from STM applied on weekly based data.

Once again, we can see several significant results, rather similar to those in Table 5.7,
although with some differences due to the different granularity of the data. If we look at
“Madoff scandal”, we can confirm the influence of UK and CH onto USA at both one and
two-weeks lag and we further see a prominent role of UK in diffusing the topic. For the
“Mortgage crisis”, we have less evidence but we can confirm the contagion from USA to CH
and the mutual causality between CH and UK. From Table 5.8, we can infer that even on
more granular weekly data, although considering less countries because of news sparsity, we
obtain several signs of causality for the most important and influential topics.

5.6 Conclusions

In this work, we have presented a fully data-driven methodology for the evaluation of news
contagion through country and time dimension. We focused on SIFIs related news taken from
two public dataset from Reuters News and Bloomberg News containing in total 553,666 doc-
uments spanning a period from October 2006 to November 2013. The aim of this study is to
propose an approach for assessing the spread of news among countries along the considered
time horizon. To this purpose, we have applied a model for topic modelling, called STM,
able to fit the best topic distribution also on the basis of useful covariates that can be chosen
by the analyst. The introduction of time and country specific variables has allowed us to add
temporal and spatial dimensions to the analysis. This information have been exploited to
investigate the dynamic of news spread among countries.

In particular, we have used the Granger causality test to demonstrate a contagion/causation
dynamic in the diffusion of the news employing topic proportion timeseries extrapolated from
the STM approach. Such analysis has been conducted considering two different data gran-
ularities: news aggregated on a monthly basis or on a weekly basis. According to the two
different time references, it is necessary to reduce the list of considered banks (and associated
countries) to have enough data coverage for fitting reliably the STM model. Whilst we have
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analyzed weekly data, for some country/bank combinations, we are left with a insufficient
data coverage, possibly producing a bias in the results that should be taken into account while
comparing them with the monthly based analysis.

In both cases results are promising, we have found several significant causal relations in
the diffusion of the news, stimulating further development in a future work. In particular,
we shall investigate a correlation structure in the news diffusion taking into account country
or bank level with correlation network models. Moreover, the analysis should be conducted
with a more populated dataset, ideally the full Reuters and Bloomberg corpus from to 2007
to 2015 to increase the list of considered banks, and thus producing even more detailed and
insightful results.
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Chapter 6

Twitter Sentiment and Banks’
Financial Ratios: Is There Any
Causal Link?

6.1 Summary

In this chapter we study the relationships between Twitter sentiment and various financial in-
dicators (e.g. stock returns or trading volume) of some of the major Italian banks. Moreover,
we test the current technology for analyzing and evaluating the sentiment of short web-text
messages written in Italian, such as those published on the Twitter micro-blogging platform.

In fact, gauging the sentiment among financial investors is of paramount importance for
both market participants and regulation authorities. Behavioural finance posits that stock
market investors define their purchasing strategies considering arbitrage bounds and collec-
tive sentiments. Regulation and market authorities can address critical situations by collect-
ing and analyzing the sentiment mood inferred from investors’ actions on social media.

Here our goal is to establish a statistical framework to measure the causal links between
sentiment extracted from Twitter and financial market variables even in presence of no sta-
tionarity and cointegration in the data.

A quantitative evaluation of the impact of sentiment on financial indicators is relevant to
increase the timely awareness of regulators with respect to potentially critical microeconomic
conditions.

6.2 Introduction

The sheer amount of detailed on-line information streaming from social networking and
micro-blogging platforms such as Twitter, is increasingly attracting the attention of researchers
and practitioners from many different fields. The linguistic analysis of social media con-
tents has become a hot topic even for applied research in different languages. Detection of
sentiments and opinions in social media is now a critical tool for monitoring social media
platforms.

As a matter of fact, social media contents constitute a relevant asset for private firms
and public institutions to tap into the customers’ needs and preferences in real time. Insofar,
pulling out sentiments from Twitter has been already employed for several purposes: to mon-
itor political sentiment [Tumasjann et al. 2010], to extract critical information during times
of mass emergency [Tumasjann et al. 2012], to check the effects of sentiments on stock price
and volume in the Dow Jones Index [Ranco et al. 2015] or on market share in the Italian
financial market [Cerchiello and Giudici 2015].

Indeed, in April 2013 the Securities and Exchange Commission (SEC) issued a report
that allowed companies to use social media outlets like Facebook and Twitter to announce
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key information in compliance with Regulation Fair Disclosure as long as investors had been
notified about which social media platform would have been used to disseminate such infor-
mation.

Today the use of micro-blogging platform like Twitter has gained a sound position for
both the US and the UK markets [Mao et al. 2015]. Even in Italy the use of Twitter among
financial practitioners has grown steadily in the last five years.1

Although Twitter has already gained a solid reputation as information source in the
United States, the situation is still unclear for Italy and other European countries in general.
In fact the level of empirical correlation between financial time series and Twitter-derived
sentiment has not been deeply investigated yet. We believe that a similar task for Italian lan-
guage and the development of a standard sentiment corpus will foster a better understanding
of how sentiment is conveyed in tweets. Training and testing automatic systems obviously
require the availability of several resources that may consist in large datasets of annotated
posts or even in lexical databases where affective words are associated with polarity values.

In this chapter, we focus on tweets written in Italian and obtained from Twitter related
to some of the most important Italian banks: Intesa San Paolo (ISP), Monte dei Paschi di
Siena (BMPS) and Unicredit (UCG). The share of these banks in total market capitalization
amounts to around 70%, while in terms of total assets accounts for around 80% of the Italian
listed banks. For robustness purposes we also analyze Deutsche Bank (DBK).

The main task concerns the evaluation of sentiment polarity classification at the tweet
message-level. Successively, these message-level measures are aggregated on a daily basis.
Sentiment expressed in tweets is usually classified as i) positive, ii) negative, or iii) neu-
tral. However a message can contain parts expressing both positive and negative sentiments
(therefore a mixed sentiment), a feature that should be somehow tackled.

Considering that the availability of pre-labelled text for Italian is currently very lim-
ited [Basile and Nissim 2013, Bosco et al. 2013], we try to extract the sentiment through a
dictionary-based approach that maps preassigned lists of positive and negative words onto
the collected tweets. The final score is then given as an appropriate function of positive and
negative counts. Specifically we have investigated the library TextWiller written in R2. Such
library is developed for unsupervised sentiment analysis and presents a list of specific words
in Italian with both positive and negative polarities. Thus, the sentiment classifier is based
on those words and accounts for the relative quotas of positive and negative words in each
Twitter message.

This work contributes to the recent burgeoning literature on social media and financial
markets. There is already a number of papers that use Twitter data to generate new sentiment
measures and correlate them with financial figures [Sprenger and Welpe 2010, Bollen et al.
2011,Mittal and Goel 2012,Rao and Srivastava 2012,Nann et al. 2013,Oliveira et al. 2013].
There is another strand of literature that uses social media as an alternative way to release
information, thus reducing information asymmetry and improving stock liquidity, attracting
more investors. Other papers such as [Chawla et al. 2016, Giannini et al. 2013] use Twitter
data dynamically to see how information diffusion affects trading and how track changes in
investor disagreement. It also connects to a large literature on retail trader’ attention [Barber
and Odean 2008].

1According to http://www.internetlivestats.com/internet-users/italy/ internet users in Italy in
2016 were around 39 millions, i.e. around 66% of the total population. According to
https://www.statista.com/statistics/260721/number-of-social-network-users-in-italy/ the number of social net-
work users in Italy in 2014 was 21.6 millions. According to http://www.digitalnewsreport.org/survey/2015/italy-
2015/ the popularity of Twitter in Italy is still marginal as that of Google+ when compared to Facebook, which is
the dominant social network platform around the globe. In fact, for example only 10% of the Italians use Twitter
weekly for searching news and we can find similar statistics for the UK or the US.

2see https://www.r-project.org/
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The rest of chapter is organized as follows. After the introduction, in section 6.3 we
present the basic theoretical concepts behind the text-mining and sentiment analysis tech-
niques we have adopted and about Granger causality text. Section 6.4 describes how the
data has been collected, cleaned and prepared for the analysis. Section 6.5 reports our main
findings in terms of significance of the several causality tests applied to data at hand. Finally
section 6.6 provides some discussion and concluding remarks.

6.3 Methodology

The approach proposed in this chapter is an appropriate combination of a number of methods
necessary for cleaning up the corpus, extracting reliable sentiment from it and for finally
employing such sentiment to prove its possible causal effect onto standard financial figures.
We suggest such strategy as a kind of protocol for tagging Italian text, specifically Italian
tweets, with regards to the expressed sentiment and then using such information for assessing
a causal link to banks’ financial ratios.

6.3.1 Sentiment Analysis

Quantitative analysis of human languages allows to discover common features of spoken or
written text. In particular the analysis of short text messages like those appearing on micro-
blogging platform presents a number of challenges. Some of these are, the tweets length limit
initially forced by the social media platform to 140 characters and later relaxed till 280, the
informal conversation (e.g. slang words, repeated letters, emoticons) and the level of implied
knowledge necessary to understand the tweets. Moreover, it is important to consider the high
level of noise contained in the tweets, witnessed by the fact that only a small fraction of them
with respect to the total number available is employed in our sentiment analysis.

This selection has been carried out in two steps. The first step consists of an exploratory
analysis for understanding the dataset while the second step selects the tweets on a keywords
basis. For the exploratory part we considered an unsupervised clustering procedure based on
a combination of text vectorization, Latent Semantic Analysis (LSA) and k-means clustering.
We have applied a Bag of Word (BoW) approach, where a text is represented as an unordered
collection of words, considering only their counts in each tweet. The word and document
vectorization has been carried out by collecting all the word frequencies in a Term Docu-
ment Matrix (TDM). Afterwards such matrix has been weighted by employing the popular
TF-IDF (Term Frequency Inverse Document Frequency) algorithm. LSA [Deerwester et al.
1990] is a methodology which applies Singular Value Decomposition (SVD) to the TDM.
The following step consists in picking a threshold below which all the singular values are
replaced by zero. In this way we can reduce the dimensionality of the vector space where
documents are embedded. This space is equipped with an Euclidean measure which allows
us to evaluate the distance among documents. Finally, to group together similar documents,
we applied k-means clustering on this lower-dimensional space. The subsequent document
inspection by sampling (casual or according to distance from the centroid) can be very in-
sightful in understanding documents topics and in identifying which clusters contain relevant
and irrelevant documents.

In addition to these methodologies, Latent Dirichlet Allocation LDA, [Blei et al. 2003],
has been used to investigate the main topics of discussion for each bank in different periods
and see how the different topics prevalence changes over time. For this task, LDA is very
useful since it allows to inspect the topics both within each specific cluster and within the
entire collection of tweets. The characteristics of topics emerging from LDA, in terms of dif-
ferentiation among each others, provides also a feedback on the number of clusters employed
in the k-means algorithm. In Figures 6.1 and 6.2 it is possible to see the time-evolution of
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FIGURE 6.1: BMPS absolute topic prevalence

topic prevalence for MPS measured respectively in terms of number of tweets and percentage
of tweets. From the LDA is possible to identify 5 topics of discussion covering the market
sentiment about the bank, the private rescue plan of MPS trough the Atlante fund, the gov-
ernment backed rescue plan, the fatal accident occurred to a member of the management and
a more general topic about bank stress.

In the second step, in order to select only the relevant tweets we have applied a keyword
based approach, restricting the keywords on the results of the previous analysis, after ex-
cluding the retweets. Due to the high number of tweets scraped (for both keyword selection
and retweets exclusion), a time consuming manual inspection can be applied only on few
documents and automated methods like LSA and LDA are necessary both in the collection
(scraping) and the selection of relevant tweets. Through such analysis, we are able to identify
which tweets are relevant or not to our problem and we can then proceed with the analysis.

The most critical part of the analysis relies on the sentiment classification. In general,
two different approaches can be used:

• Score dictionary based: the sentiment score is based on the number of matches between
pre-defined list of positive and negative words and terms contained in each text source
(a tweet, a sentence, a whole paragraph);

• Score classifier based: a proper statistical classifier is trained on a large enough dataset
of pre-labeled examples and then used to predict the sentiment class of a new example.

However, the second option is rarely feasible for less widespread languages like Italian,
because in order to fit a good classifier, a large amount of pre-classified examples is needed.
This represents a particularly complicated task when dealing with short and extremely non
conventional text like tweets. Insofar, we decided to focus on a dictionary based approach,
building appropriate lists of positive and negative words relevant for financial topics in Italian
language. The basic vocabulary is based on that available within R package TextWiller. The
positive list comprises 980 stems (root of a word) and the negative one 2277. However such
lists are non content specific, thus we have enriched them by adding some relevant words as
follows:



6.3. Methodology 79

FIGURE 6.2: BMPS relative topic prevalence

• New negative words = tonfo, calo, sofferente, tracollo, rimettere, rosso, scendere, min-
imo, massone, caduta, mafia, ciclone, picco, dilapidare

• New positive words= salire, profitti, rialzo

According to the number of matches between the terms contained along the tweets and
the above defined list of positive/negative words, the Twitter Sentiment Index (hereafter T SI)
is calculated as follows:

T SI =
#PW −#NW
#PW + #NW

(6.1)

where #PW represents the number of positive words matched and similarly #NW the
number of negative words matched. Therefore, the index T SI is calculated as the ratio be-
tween the excesses of positive words with regards to negative words and the total number of
positive and negative words. The denominator is useful not only to obtain a relative number
but also to control for possible biases due to the different length of the tweets (remember
that since November 2017, Twitter increased the maximum number of characters from 140
to 280).

Thanks to this approach we were able to classify the polarity of ca. 325,000 tweets
(without considering re-tweets). As a result, we get a T SI ranging from -1 to +1 for each
and every available tweet. Then, an appropriate merging strategy has been used to get a final
score associated to each bank-day combination. First, the daily twitter volume TweetVoli has
been computed by counting the number of tweets in each day, obtaining a timeseries for each
bank with the daily tweet volume.

Then a timeseries with the average T SI of the day (Senttsi) has been also computed for
each bank. The result is a timeseries recording the day-by-day evolution of the daily average
T SI. The measure is computed as follows, dividing the sum of the all the T SI of one day by
the Tweet volume of that day (TweetVoli):
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DailyT SIi =
∑ j=i T SI j

TweetVoli
(6.2)

where i is the considered day and the equation is reported for a single bank.
In addition, we propose a simple Twitter sentiment measure that takes into account also

the daily tweet volume combining the two information together. We will refer to it in the
rest of the chapter as "Twitter sentiment weighted" (SentWe). The new quantity, is obtained
simply by taking the sum of all the T SI in one day and dividing it by the average daily tweet
volume over the entire observation period for each bank. In practice this allows to weight
more days with high spikes of tweets polarized in a certain direction as it happens often in
proximity of important events and news disclosures. Dividing by the average TweetVol over
the observation period is done for normalization purpose.

SentWei =
∑ j=i T SI j

TweetVol
(6.3)

where i is the considered day, TweetVol is the average daily tweet volume over the ob-
servation period and the equation is reported for a single bank.

6.3.2 Granger Causality

In order to evaluate the size and the direction of the possible causal relationships between our
financial variables (such as stock return, traded volume, etc.) on one side and the sentiment
indicator on the other side, we firstly test the stationarity of each time series and then we
apply the Granger causality test [Granger 1969]. The stationarity of each time series has to
be tested by applying the following Augmented Dickey-Fuller regressions:

∆(yt) = (ρ−1) · yt−1 +
p

∑
i=1

βi ·∆(yt−i)+ ε
1
t−1 (6.4)

∆(yt) =Cnst +(ρ−1) · yt−1 +
p

∑
i=1

βi ·∆(yt−i)+ ε
2
t−1 (6.5)

∆(yt) =Cnst + γ · trndt +(ρ−1) ∗ yt−1 +
p

∑
i=1

βi ·∆(yt−i)+ ε
3
t−1 (6.6)

where: yt is the series being tested for stationarity; ∆(yt) = (yt−yt−1) is the time first differ-
ence. The three forms represent, respectively: a random walk (Equation 6.4), a random walk
with drift (Equation 6.5) and finally a random walk with drift and a linear trend (Equation
6.6).

In all of the three previous equations the null hypothesis (H0) subject to test is the nullity
of the coefficient (ρ−1) and the test statistic is given by the t-statistics on such coefficient.
When this coefficient is close to zero we cannot reject the null hypothesis of independence3.

Lack of stationarity in the set of variables being tested for Granger’s causality would
cause misspecification in the tests (see [Granger 1988] for further details). We performed
an Augmented Dickey-Fuller (ADF) tests for twitter derived timeseries and for the financial
variables timeseries (e.g. stock return, CDS and Bond spreads, etc.). For example, from the
results of the Augmented Dickey Fuller tests we reject the hypothesis of the presence of a unit
root in time series of the Twitter Sentiment Index and the stock return for the bank BMPS.
Given the results of the ADF tests and the stationarity of the time series involved, there is
no need to run cointegration tests. The same ADF tests have been carried out on the other

3Independence is lack of Granger causality in either direction.
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timeseries for all the banks under investigation: Intesa San Paolo (ISP), Unicredit (UCG),
Monte dei Paschi di Siena (BMPS) and Deutsche Bank (DBK).

The Econometrica Granger’s paper ’Investigating Causal relationship’ [Granger 1969]
has sparkled a huge literature on the micro as well as macro econometric models. The
Granger causality principle is straightforward: if lagged values of Xt contribute to foresee
current values of Yt in a forecast achieved with lagged values of both Xt and Yt then we say
X Granger causes Yt . As was first shown by Sims [Sims 1972], the Granger causality cor-
responds to the concept of exogeneity and it is therefore necessary to have a unidirectional
causality in order to guarantee consistent estimation of distributed lag models.

In our empirical experiment we have considered the following equation:

yt+i = β0yt +β
y
1 xt + et+i (6.7)

xt+i = β0xt +β
x
1 yt + et+i (6.8)

where we want to test whether xt Granger causes yt and vice versa. Our null hypothesis is
therefore: H0 : β

y
1 = β x

1 = 0. Taking into account that we are dealing with daily time series,
in our tests we have considered up to five lags to take into account the effect of a business
week.

Table 6.2 shows the final results of the Granger causality tests for the four banks included
in our sample (BMPS, ISP, UCG, and DBK) when both a constant and trend are included.
In Table 6.2 the Daily Twitter sentiment score (DailyT SI) is computed as the simple average
of the sentiment computed as explained in the previous section. For each bank we com-
pute the Granger causality test for six financial variable: i) stock returns (rt), ii) volume of
stocks traded (VVt), iii) Volatility (Volt) computed as the daily range, iv) senior CDS spreads
(CDSSen

t ), v) subordinated CDS spreads (CDSSub
t ), and vi) an average subordinated bond

spreads (BondSub
t ).

6.4 Data

Using the public API (Application Programming Interface) provided by Twitter, we collected
all tweets and retweets in Italian from all the active Twitter accounts which contain either
the name, the hashtag or the ticker of a restricted set of Italian banks. In particular, we
collected all the tweets and retweets for i) Monte dei Paschi di Siena (ticker: BMPS), ii)
Unicredit (ticker: UCG) and iii) Intesa San Paolo (ticker: ISP). We also collected the tweets
and retweets for the German bank Deutsche Bank (ticker: DBK) to check the robustness of
our results with a non-Italian bank which was heavily cited in the news in the investigated
period. We have been tracking such Twitter activity about Italian Banks and DBK for more
than 28 months from August 2015 through January 2018. The relevant descriptive statistics
about these tweets are summarized in Table 6.3 where we report the bank name, the ticker,
the number of total tweets downloaded, the number of retweets, the number of tweets in
Italian, the number of tweets used in our analysis, the average daily number of used tweets.
We can notice that by far the highest number of total tweets was downloaded for DBK but
this just because both English and Italian tweets were collected. In fact, if we restrict the
study only to the Italian ones, we end up with around 79,000 tweets for DBK and it emerges
clearly that the most covered bank is BMPS (around 606,000). However, this extremely high
number of tweets is not entirely related to the recent problems faced by the oldest bank in the
world that ended up with a precautionary recapitalization in December 2016. In fact, tweets
related to BMPS were searched including the keywords "MPS" or "Banca Monte dei Paschi".
However, we noticed that the former keyword resulted in a lot of English tweets related to
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the UK ‘Members of Parliament’ whose acronym is indeed ’MPs’. Actually, the Twitter API
does not differentiate between lower and upper case and therefore 70% of tweets for BMPS
ended up being tweets related to the Brexit discussion by the MPs of the British Parliament.
The methodology adopted in the tweet pre-screening based on BOW, LSA and clustering has
been very helpful in identifying these phenomena. Furthermore, still from Table 6.3 we can
notice that 55% of the Italian tweets are just retweets by other Twitter users. In the end, for 28
months we downloaded around 780,000 tweets in Italian and after a typical cleaning we were
left with around 260,000 tweets for BMPS, with an average of 341 tweets per day. For the
other banks in our sample, we did not face similar problems with the keywords. For example,
for UCG we downloaded around 27,000 tweets, 23,000 of those in Italian with around 4,000
retweets. The final number of tweets used for UCG was about 18,000, i.e. around 25 per day.
For ISP we downloaded just 14,000 tweets that were mostly in Italian (12,000) with a daily
average of 16.

All financial variables were downloaded from Bloomberg. Figures 6.3 to 6.6 depict the
time series of the number of daily tweets in Italian regarding that bank, the simple daily
average sentiment (Sentts) on those tweets and the Twitter sentiment weighted (Sentwe) on the
same tweets. The latter could also be interpreted (in alternative to Equation 6.3) as the simple
daily average sentiment (Sentts) weighted by the ratio between the number of tweets about
that bank on each day and the daily average number of tweets over the observation period.
As we can notice, for BMPS the simple average of Twitter Sentiment varies between -1
(negative) and 1 (positive), while the weighted average Twitter sentiment has some negative
spikes that go beyond -1 in those days in which there is a lot of activity on the Twitter social
platform. It is to note that for the two banks that faced more discussions in the news and
reputational issues among the sample (i.e. BMPS and DBK) there have been higher negative
spikes in the Twitter sentiment weighted (Sentwe). These spikes are due to those days where a
particular negative news was heavily tweeted and thus the number of negative polarized daily
tweets was higher than the daily over the observation period. For the other banks this does
not seem to be the case and we can notice more positive spikes. In the end the effect of the
weighted average sentiment is to give more importance to those days when a lot (compared
to the average daily number of tweets over the observation period) of positive or negative
tweets have been posted.

Figures 6.4, 6.6, 6.8 and 6.10 show the time series of the six financial variables we are
analyzing for the four banks of our sample. Each bank in our sample has its own features due
to the particular events and news that were spread during our sample period. The correspond-
ing time series of each financial variable have also daily frequency and behave accordingly
to what previously described for the Twitter timeseries.

6.5 Results

We include the main findings from our analysis in Table 6.2 and 6.4. On the left panel
Table of 6.2 we test causality from financial variables to Sentts on that bank, while on the
right panel we test causality from Sentts to the financial variable in each row. The Twitter
sentiment Sentts is computed as the simple average of sentiment on that bank. The stars *,
**, and *** indicate rejection of the null hypothesis of no Granger causality at 5%, 1%, and
0.1%, respectively. All tests in both directions are computed from 1 to 5 lags to take into
account the effects within an entire business week.

As we can notice, for BMPS, ISP and DBK we accept the null hypothesis of no Granger
causality from Twitter Sentiment to all the financial variables. This means that the daily
average Twitter sentiment alone does not Granger cause the financial variables for these banks
from lags 1 to 5. Only for UCG we reject the null hypothesis of no Granger causality from
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the daily average Twitter Sentiment to the Subordinated CDS for lags 4 and 5. In the left
panel we can also see that there is some Granger causality from financial variable to Twitter
sentiment which seems to point in the direction of suggesting that financial variables drive
the mood of the discussion on Twitter. If there are some news or events which are particularly
important to a bank, these should spread out on the web and social platform causing some
chattering among the web users and inspiring some form of agreement or disagreement which
would be reflected on Twitter. We can find this for some variables (especially volume, CDS
spreads and subordinated bond spread) and across all banks in our sample. In Table 6.4 the
Twitter sentiment weighted Sentwe is computed for each bank as the sum of tweets sentiment
in each day divided by the average tweets volume over the observation period (as shown in
Equation 6.3). Here we can notice that we do find a much higher number of variables which
are Granger-caused by the Twitter sentiment weighted, suggesting that the tweets volume
plays a relevant role. For BMPS, the stock return, volume and CDSsub at all lags, and CDSsen

for all lags except for the second and the third are Granger caused by the Twitter sentiment
weighted. For ISP the subordinated Bonds at all lags show Granger causality from the Twitter
sentiment. The Twitter sentiment weighted seem also to Granger cause volatility and CDS
spreads for UCG. For DBK, the returns at all lags and traded volume at lags 3 - 4 - 5, and the
subordinated bond spread at lag 5. We also find several Granger causalities in the opposite
direction (from financial variables to the Twitter sentiment weighted) for all the four banks.
In particular for: the subordinated bond spread of BMPS; returns, volume, volatility and
subordinated CDS spreads of ISP; the CDS spreads and subordinated bond spread of UCG;
the CDS spreads of DBK.

All the results presented so far indicate a clear rejection for some financial variables and
some banks of the null hypotheses in both directions. On one hand, we reject the null that the
Twitter sentiment weighted does not Granger cause the financial variables at some lags. On
the other hand, we reject the null hypothesis that the financial variable does not Granger cause
the Twitter sentiment (weighted and not) at some lags. Therefore, we find some statistical
evidence that we have a closed-loop feedback relationship between the two sets of variables.

6.6 Conclusions

In this chapter we have analyzed how a sentiment measure computed using data from so-
cial media platforms such as Twitter affects some financial variables (stock returns, volume,
volatility, senior and subordinated CDS spreads, subordinated bond spreads) related to Italian
banks.

In particular, starting from tweets written in Italian, we have shown how to extract a proxy
for the sentiment conveyed by the short text messages present in the Twitter micro-blogging
platform.4

We have also investigated how the volume of tweets can affect the same financial vari-
ables. We have first tested for the stationarity of the variables and then we proceeded with
the Granger causality test to disentangle whether financial variables affects Twitter sentiment
or vice versa. From our Granger causality results it seems that sentiment does Granger cause
some financial variables for some Italian banks, while it is more often the case that financial
variables do Granger cause sentiment on Twitter.

Our results show that both Twitter sentiment and Twitter volume do significantly affect
some financial variables (such as stock returns, volatilities, volume or CDS spreads) for some
of the banks in our sample. In particular, they affect several financial variables of BMPS and

4By taking advantage of some packages available on the CRAN (Comprehensive R Archive Network,
https://cran-r-project.org repository), we have written some R procedures implementing different algorithms for
text mining and sentiment analysis.
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DBK which have recently experienced many episodes of high volatility and negative news
and UCG.

We improve upon the previous literature by checking the correlation of more financial
variables with respect to Twitter sentiment and volume. So far in the literature most of the
papers have focused on stock returns posing less attention to different markets such as the
credit or bond market of the investigated security.

We believe that our results are important for testing economic and finance theories and
for policy purposes.
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FIGURE 6.3: BMPS
Twitter data

Notes: The figure depicts the number of tweets in
Italian for bank BMPS on the top panel. The medium
panel depicts the average sentiment of tweets on bank
BMPS computed without any weightings on positive
and negative tweets. The bottom panel depicts the
weighted average sentiment of tweets on bank BMPS
where the weight is given by the daily number of tweets
divided by the average number of tweets in the whole
sample.

FIGURE 6.4: BMPS fi-
nancial data

Notes: The figure depicts for bank BMPS from upper
left panel to lower right panel: 1) stock returns, 2) vol-
ume of stocks traded, 3) volatility of stock returns, com-
puted as the daily range (i.e. the difference between the
highest and lowest price within each day), 4) the spread
on the 5-year senior CDS, 5) the spread on the 5-year
subordinated CDS, 6) the average spread on a selection
of subordinated bonds issued by the bank.

FIGURE 6.5: UCG
Twitter data

Notes: The figure depicts the number of tweets in
Italian for bank UCG on the top panel. The medium
panel depicts the average sentiment of tweets on bank
UCG computed without any weightings on positive and
negative tweets. The bottom panel depicts the weighted
average sentiment of tweets on bank UCG where the
weight is given by the daily number of tweets divided
by the average number of tweets in the whole sample.

FIGURE 6.6: UCG fi-
nancial data

Notes: The figure depicts for bank UCG from upper left
panel to lower right panel: 1) stock returns, 2) volume
of stocks traded, 3) volatility of stock returns, computed
as the daily range (i.e. the difference between the high-
est and lowest price within each day), 4) the spread on
the 5-year senior CDS, 5) the spread on the 5-year sub-
ordinated CDS, 6) the average spread on a selection of
subordinated bonds issued by the bank.
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Bank Ticker Keywords

Monte dei Paschi di Siena BMPS ‘MPS’, ‘Banca Monte dei Paschi di Siena
Unicredit UCG ‘Unicredit’
Intesa San Paolo ISP ‘Intesa San Paolo’, ‘Banca Intesa’
Deutsche Bank DBK ‘Deutsche Bank’

TABLE 6.1: Keywords used to download the tweets for each bank from
Twitter

Bank Variable→ Twitter Sentiment Variable← Twitter Sentiment

Lags 1 2 3 4 5 1 2 3 4 5

BMPS
rt - - - - - - - - - -
VVt - - - - - - - - - -
Volt - - - - - - - - - -
CDSSen

t * - - - - - - - - -
CDSSub

t - - - - - - - - - -
BondSub

t - - - - - - - - - -
ISP

rt - - - - - - - - - -
VVt - - * * - - - - - -
Volt - - - - - - - - - -
CDSSen

t - - - - - - - - - -
CDSSub

t - - - - - - - - - -
BondSub

t - - - - - - - - - -
UCG

rt - - - - - - - - - -
VVt * * - - - - - - - -
Volt - - - - - - - - - -
CDSSen

t - - - - - - - - - -
CDSSub

t - - - - - - - - * *
BondSub

t - * - - - - - - - -
DBK

rt - - - - - - - - - -
VVt * - - - - - - - - -
Volt - - - - - - - - - -
CDSSen

t * - - - - - - - - -
CDSSub

t * - - - - - - - - -
BondSub

t * * - - - - - - - -

TABLE 6.2: Granger Causality Tests for Sentts
Notes: The table depicts the Granger causality test results for the five banks included in our sample (BMPS, ISP, UCG, and
DBK). For each bank we compute the test for the following financial indicators: i) stock returns (rt ), ii) volume (VVt ), iii)
Volatility (Volt ) computed as the daily range, iv) senior CDS spreads (CDSSen

t ), v) subordinated CDS spreads (CDSSub
t ), and

vi) an average subordinated bond spread (BondSub
t ). On the left panel we test causality from financial variables to Twitter

sentiment on that bank, while on the right panel we test causality from Twitter sentiment to the financial variable in each row.
The Twitter sentiment T SI is computed as the simple average of sentiment on that bank. *, **, and *** indicate rejection of
the null hypothesis of no Granger causality at 10%, 5%, and 1%, respectively.
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FIGURE 6.7: ISP Twit-
ter data

Notes: The figure depicts the number of tweets in
Italian for bank ISP on the top panel. The medium
panel depicts the average sentiment of tweets on bank
BMPS computed without any weightings on positive
and negative tweets. The bottom panel depicts the
weighted average sentiment of tweets on bank ISP
where the weight is given by the daily number of tweets
divided by the average number of tweets in the whole
sample.

FIGURE 6.8: ISP finan-
cial data

Notes: The figure depicts for bank ISP from upper left
panel to lower right panel: 1) stock returns, 2) volume
of stocks traded, 3) volatility of stock returns, computed
as the daily range (i.e. the difference between the high-
est and lowest price within each day), 4) the spread on
the 5-year senior CDS, 5) the spread on the 5-year sub-
ordinated CDS, 6) the average spread on a selection of
subordinated bonds issued by the bank.

FIGURE 6.9: DBK
Twitter data

Notes: The figure depicts the number of tweets in
Italian for bank DBK on the top panel. The medium
panel depicts the average sentiment of tweets on bank
UCG computed without any weightings on positive and
negative tweets. The bottom panel depicts the weighted
average sentiment of tweets on bank DBK where the
weight is given by the daily number of tweets divided
by the average number of tweets in the whole sample.

FIGURE 6.10: DBK fi-
nancial data

Notes: The figure depicts for bank DBK from upper left
panel to lower right panel: 1) stock returns, 2) volume
of stocks traded, 3) volatility of stock returns, computed
as the daily range (i.e. the difference between the high-
est and lowest price within each day), 4) the spread on
the 5-year senior CDS, 5) the spread on the 5-year sub-
ordinated CDS, 6) the average spread on a selection of
subordinated bonds issued by the bank.
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Bank Ticker Number of Number of tweets Number of retweets Number of tweets Average daily
total tweets in Italian in Italian used # of tweets

MPS bank BMPS 783,150 606,006 345,510 260,496 341
Unicredit UCG 27,435 23,400 4,407 18,993 25
Intesa S.Paolo ISP 14,249 12,708 807 11,901 16
Deutsche Bank DBK 2,422,559 79,593 45,394 34,199 45

TABLE 6.3: Descriptive statistics of tweets

Bank Variable→ Twitter Sentiment Variable← Twitter Sentiment

Lags 1 2 3 4 5 1 2 3 4 5

BMPS
rt - - - - - *** *** *** *** ***
VVt - - - - - *** *** *** *** ***
Volt - - - - - - - - - -
CDSSen

t - - - - - * - - * **
CDSSub

t - - - - - *** *** *** *** ***
BondSub

t - - * ** ** - - - - -
ISP

rt - - - * * - - - - -
VVt * * * * * - - - - -
Volt * ** ** * * - - - - -
CDSSen

t - - - - - - - - - -
CDSSub

t - - - * - - - - - -
BondSub

t - - - - - ** ** ** ** *
UCG

rt - - - - - - - - - -
VVt - - - - - - - - - -
Volt - - - - - - - * * *
CDSSen

t * ** ** ** ** - ** ** * *
CDSSub

t ** ** ** ** ** - * ** *** ***
BondSub

t * ** ** ** ** - - - - -
DBK

rt - - - - - * ** ** *** ***
VVt - - - - - - - *** *** ***
Volt - - - - - - - - - -
CDSSen

t * * - * * - - - - -
CDSSub

t * * - * - - - - - -
BondSub

t - - - - - - - - - ***

TABLE 6.4: Granger Causality Tests for Sentwe
Notes: The table depicts the Granger causality test results for the five banks included in our sample (BMPS, ISP, UCG and
DBK). For each bank we compute the test for the following financial indicators: i) stock returns (rt ), ii) volume (VVt ), iii)
Volatility (Volt ) computed as the daily range, iv) senior CDS spreads (CDSSen

t ), v) subordinated CDS spreads (CDSSub
t ), and vi)

an average subordinated bond spread (BondSub
t ). On the left panel we test causality from financial variables to Twitter sentiment

on that bank, while on the right panel we test causality from Twitter sentiment to the financial variable in each row. The Twitter
sentiment T SI_we is computed as the weighted average of sentiment where the weights are the ratio between the number of
tweets on that bank divided by the average number of daily tweets in the sample. *, **, and *** indicate rejection of the null
hypothesis of no Granger causality at 10%, 5%, and 1%, respectively.
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Chapter 7

Assessing banks’ distress from news
and numerical financial data

7.1 Summary

In this chapter we focus our attention on leveraging the information contained in financial
news to enhance the performance of a bank distress classifier. The news information should
be analyzed and inserted into the predictive model in the most efficient way and this task deals
with the issues related to Natural Language interpretation and to the analysis of news media.
Among the different models proposed for such purpose, we investigate a deep learning ap-
proach. The methodology is based on a distributed representation of textual data obtained
from a model (Doc2Vec) that maps the documents and the words contained within a text
onto a reduced latent semantic space. Afterwards, a second supervised feed forward fully
connected neural network is trained combining news data distributed representations with
standard financial figures in input. The goal of the model is to classify the corresponding
banks in distressed or tranquil state. The final aim is to comprehend both the improvement
of the predictive performance of the classifier and to assess the importance of news data in
the classification process. This to understand if news data really bring useful information not
contained in standard financial variables.

7.2 Introduction

Natural Language Processing (NLP), the interpretation of text by machines, is a complex
task due to the richness of human language, its highly unstructured form and the ambiguity
present at many levels, including the syntactic and semantic ones. From a computational
point of view, processing language means dealing with sequential, highly variable and sparse
symbolic data, with surface forms that cover the deeper structures of meaning.

Despite these difficulties, there are several methods available today that allow for the
extraction of part of the information content present in texts. Some of these rely on hand
crafted features, while others are highly data-driven and exploit statistical regularities in lan-
guage. Moreover, once the textual information has been extracted, it is possible to enhance it
with contextual information related to other sources different from text. The introduction of
contextual information in the models is not always a straightforward process but requires a
careful choice of the additional information provided in order to not increase noise by using
irrelevant features. To accomplish such purpose, there are several methods of variable selec-
tion [Guyon and Elisseeff 2003] that can guide in the choice of the additional features for the
model. The recent advancements in text analytics and the addition of contextual information
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aim at increasing the potential value of text as a source in data analysis with a special empha-
sis on financial applications (see for example [Nyman et al. 2015]). In this work, we focus
on the issues of understanding and predicting banks distress, a research area where text data
hold promising potential due to the frequency and information richness of financial news.
Indeed, central banks are starting to recognize the usefulness of textual data in financial risk
analytics [Bholat et al. 2015, Hokkanen et al. 2015].

If we focus only on the elicitation of information from textual data, we can find that
among the statistical methods, many rely on word representations. Class based models, for
example, learn classes of similar words based on distributional information, like Brown clus-
tering [Brown et al. 1992] and Exchange clustering [Martin et al. 1998, Clark 2003]. Soft
clustering methods, like Latent Semantic Analysis (LSA) [Landauer et al. 1998] and Latent
Dirichlet Allocation [Blei et al. 2003], associate words to topics through a distribution over
words of how likely each word is in each cluster. In the last years many contributions employ
machine learning and semantic vector representations [Mikolov et al. 2013,Pennignton et al.
2014], lately using Long Short-Term Memory (LSTM) networks [Hochreiter and Schmidhu-
ber 1997, Socher et al. 2013, Cho et al. 2014] to model complex and non-local relationships
in the sequential symbolic input. Recursive Neural Tensor Networks (RNTN) for semantic
compositionality [Socher et al. 2011, Socher et al. 2013] and also convolutional networks
(CNN) for both sentiment analysis [Collobert et al. 2011] and sentence modelling [Kalch-
brenner et al. 2014]. In this vein, [Mikolov 2012, Mikolov et al. 2013] and [Pennignton et
al. 2014] have introduced unsupervised learning methods to create a dense multidimensional
space where words are represented by vectors. The position of such vectors is related to their
semantic meaning, further developing the work on word embeddings [Bengio et al. 2003]
which grounds on the idea of distributed representations for symbols [Hinton et al. 1986].
The word embeddings are widely used in modern NLP since they allow for a dimensionality
reduction compared to a traditional sparse vector space model. In [Le and Mikolov 2014],
expanding the previous work on word embeddings, is presented a model capable of repre-
senting also sentences in a dense multidimensional space. Also in this case sentences are
represented by vectors whose position is related to the semantic content of the sentence. In
such a space sentences with similar semantic will be represented by vectors that are close to
each other.

This recent rise of interest around text-based computational methods for measuring fi-
nancial risk and distress is fuelling a rapidly growing literature. The most covered area is
sentiment analysis to be correlated with events of interest. Many of the previous approaches
have been based on hand-crafted dictionaries that despite requiring work to be adapted to
single tasks can guarantee good results due to the direct link to human emotions and the ca-
pability of generalizing well through different datasets. Examples of this kind are the papers
of [Nyman et al. 2015] and [Soo 2013]. The first analyses sentiment trends in news narra-
tives in terms of excitement/anxiety and find increased consensus to reflect pre-crisis market
exuberance, while the second correlates the sentiment extracted from news with the housing
market. Despite the good results, there are applications where it could be preferable to avoid
dictionaries in favour of more data driven methods, which have the advantage of higher data
coverage and capability of going beyond single word sentiment expression. [Malo et al. 2014]
provide an example of a more sophisticated supervised corpus-based approach, in which they
apply a framework modelling financial sentiment expressions by a custom data set of anno-
tated phrases.

Our contribution aims at demonstrating the feasibility and usefulness of the integration of
textual and numerical data in a machine learning framework for financial predictions. Thus,
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the goal of the predictive model is to correctly classify stressed banks from both financial
news and financial numerical data.

The rest of the chapter is organized as follows: in Section 7.3 we describe the machine
learning framework, in Section 7.4 we illustrate the data and the predictive task, in Section
7.5 we present the experimental results with a sensitivity analysis on the network parameters
and in Section 7.6 we discuss the conclusions of the work with hints on future developments.

7.3 Methodology

Machine learning systems benefit from their ability to learn abstract representations of data,
inferring feature representations directly from data instead of relying on manual feature en-
gineering. This capability is particularly exploited in deep learning models, which provides
flexibility and potentially better performance [Schmidhuber 2015]. These characteristics are
crucial in Natural Language Processing tasks where the ability to generalize across lan-
guages, domains and tasks enhances the applicability and robustness of text analysis. The
framework applied in this chapter is an extension of the one developed in [Rönnqvist and
Sarlin 2017] with the aim of predicting banks’ distress from textual data. Their approach
infers banks distress conditions from textual news using a machine learning system based on
two steps:

• The first step comprises an unsupervised algorithm to compute the semantic vectors
associated to a specific news text. Dense vector representations of sentences mention-
ing target banks are learned using the Distributed Memory Model of Paragraph Vectors
(PV-DM) by [Le and Mikolov 2014] (here referred to as Doc2Vec). This algorithm rep-
resents each document by a dense vector which is trained to predict words appearing
in the document. The semantic space obtained through algorithm has a lower dimen-
sionality (600 in this case) compared to a Bag of Words representation and encodes
the word semantics. In this representations in fact, words are represented by vectors
whose distances reflect statistical properties of the language like synonymy, gender,
verb tenses and many others. From this new space is easier to perform the classifica-
tion task due to the reduced dimensionality and the wise positioning of the vectors that
takes into account their semantic meaning.

• The second step of the framework performs a classification over the semantic vectors
of sentences mentioning target banks through a supervised algorithm. The sentence
representations are fed into a neural network classifier that is trained with distress event
labels. The neural network architecture is constituted by an input layer with the same
dimensionality of the semantic vectors (600 nodes), one hidden layer (50 nodes) and
one output layer (2 nodes with stress prediction e ∈ {0,1}) that returns the tranquil or
distressed status prediction.

In this work we modify the previous model of [Rönnqvist and Sarlin 2017] to integrate
the financial numerical data and evaluate the performance gain obtained by their combination
with news data. The financial data that we integrate contain information about bank account-
ing data, banking sector data and country macroeconomic data. In modifying the approach
we kept the two-step structure of the previous framework. Thus, also in our case we pre-
viously compute the semantic representations of the textual data and then in a second step
classify the bank status. Anyway, between the two steps we combine the semantic vectors
with the numerical financial variables vectors. In this way, the classification performed in the
second step takes into account both the information contained in the financial news and in
the financial variables.
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The approach used to learn the semantic vectors is a Distributed Memory Model Para-
graph Vector [Le and Mikolov 2014]. In this model the semantic vector representation is
learned by training a feed forward neural network to predict the words contained in a doc-
ument by their word context (previous n and following n words) and a randomly initialized
semantic vector (sentence ID). The word contexts, used as features to predict the target words
are fixed-length and sampled from a sliding window over the sentence. While training the
network, the semantic vector gets updated by the training algorithm so that its representation
positively contributes in predicting the next word and thus works as a semantic representation
of the entire sentence (or text sequence). In this way the sentence vector works as a memory
for the model that once trained captures the semantics of continuous sequences. The sentence
ID, in fact, can be thought of as an extra word representing the sentence as a global context
on which the prediction of the next word is conditioned. Despite the random initialization of
the semantic vectors, they gradually improve the capability of capturing the semantic of the
sentence during the training. The training is performed by stochastic gradient descent with
the gradients computed by the backpropagation algorithm. Formally, the training procedure
seeks to maximize the average log probability:

1
t + n

t−n

∑
i=1

logp(wi+n+1|s,wi, ...,wi+n) (7.1)

over the sequence of training words w1,w2, ...,wt in sentence s with word context of size
n.

After being trained, the semantic vectors can be used as features for representing the sen-
tence information content (e.g., in place of its Bag of Words representation). These features
can be feed directly to conventional machine learning techniques such as logistic regression,
support vector machines, neural networks or K-means clustering.

The algorithm can be used both to compute the semantic vectors of the sentences on
which is trained and also to infer the semantic vectors of new unseen sentences. In the first
case the model learns the semantic vectors along with the word vectors from the training
via backpropagation and gradient descent by minimizing the word prediction error on the
training corpus. In the second case the semantic vectors are calculated by gradient descent
and backpropagation while keeping the word vectors and the other model parameters fixed.

As first step we compute the semantic representations of the sentences mentioning banks
in our corpus. To obtain valid sentence representations for specific domains it’s important
to train the model on large enough corpora that also contain task-specific texts. In our case
we would like our model to capture both the the general properties of the English language
and the context specific terms and expressions related to banks. To do so, we run the model
on the entire corpus of ca. 262,000 articles that we have disabling the sentence ID vector
for those sentences that don’t contain any bank occurrences. In this way the word represen-
tations that the model internally builds can take advantage of a larger quantity of text. The
dimensionality of the semantic vectors (600) and the word context size of the algorithm (5)
have been optimized by cross-validation.

The second step performs the classification task on the combination of the financial news
and financial numerical information. It receives in input the news textual data on the banks,
in form of sentence level semantic vectors Vs, and the vector of numerical financial data Fs for
the corresponding bank in corresponding period. The classification model is a three layers
fully connected feed forward neural network. The neural network has an input layer with
612 nodes, 600 input nodes for the semantic vector Vs and 12 input nodes for the numeri-
cal data Fs. After the input layer it has a 50 nodes hidden layer and a 2 nodes output layer
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with softmax activations e ∈ {0,1} to encode the distress or tranquil status (see Figure 7.1).
The network is trained by Nesterov’s Accelerated Gradient Descent [Nesterov 1983] to min-
imize the cross-entropy loss function. Hence, the objective is to maximize the average log
probability:

1
|S|∑s∈S

logp(es|Vs,Fs) (7.2)

In the trained network, the posterior probability p (es = 1|Vs,Fs) reflects the relevance of
sentence s and the corresponding financial variables to the modelled event type.

FIGURE 7.1: Structure of the model

7.4 Data

As described in the previous section, we leverage two types of data. We rely on textual and
numerical data, aligned together by time and entities (banks), to classify bank distressed or
tranquil conditions. The distress events dataset contains information on dates and names
of the involved entities, relating to the specific type of distress event to be modelled. The
textual and financial numerical datasets accordingly contain respectively bank related articles
and financial figures. The textual and numerical data are aligned and linked to a particular
event matching the date and occurrences of the entity name within the sentence. For the
financial numerical data with quarterly frequency the date of the event is matched with the
corresponding quarter. The model is then trained in a supervised framework to associate
specific language and financial figures with the target bank status for that period (tranquil or
distressed).

7.4.1 Textual and numerical data

The textual data object of the study are part of a news articles database from Reuters on-
line archive spanning the years from 2007-Q1 to 2014-Q3. The original data set includes
6.6M articles, for a total of ca. 3.4B words. In order to select only articles related to the
considered banks, we have looked at bank names occurrences and selected only those articles
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with at least one occurrence. Bank name occurrences are located using a set of patterns
defined as regular expressions that cover common spelling variations and abbreviations of
the bank names. The regular expressions have been iteratively developed on the data to
increase accuracy, with a particular attention on avoiding false positives. As a result from
the entire corpus we retrieve ca. 262,000 articles mentioning any of the 101 target banks.
Successively the articles are split into sentences and only the sentences with bank name
occurrences are kept. We integrate financial contextual information through a database of
distress related indicators for banks. The numerical dataset is composed of 12 variables for
101 banks over the period 2007-2014 with quarterly frequency. In Table 7.1 we list the
considered numerical variables: among them there are information on bank-level balance
sheet and income statement data, as well as country-level banking sector and macro-financial
data.

The three bank-specific variables are the ratio of tangible equity to total assets, the ratio
of interest expenses to total liabilities and the NPL reserves to total assets ratio. The three
banking-sector features are the mortgages to loans ratio (4-months change), the ratio of issued
debt securities to total liabilities (4-months change) and the ratio of financial assets to GDP.
The six Macro financial level features are the House price gap (Deviation from trend of the
real residential property price index filtered with the Hodrick-Prescott Filter [Hodrick and
Prescott 1980] with a smoothing parameter λ of 1600), the international investment position
from the ECB Macroeconomic Imbalance Procedure (MIP) Scoreboard, the country private
debt, the government bond yield (4-months change), the credit to GDP ratio and the credit to
GDP 1-yr change.

Bank Level Bank Sector Level Macro Level
Capital to asset Mortgages to loans House price gap (Deviation from trend of the real residential property price index)
Interest to liabilities Securities to liabilities d4 Macroeconomic Imbalance Procedure (MIP), international investment position
Reserves to asset Financial assets to gdp Private debt
- - Government bond yield
- - Credit to gdp
- - Credit to gdp delta over 12 months

TABLE 7.1: List of available numerical variables.

In Table 7.2 we report summary statistics of the analyzed numerical variables.

Variable Mean Variance Standard Deviation Kurtosis
Capital to asset 2.5 10.2 3.2 21.5

Reserves to asset 4.2 8.5 2.9 4.3
Interest to liab 3.4 8.5 2.9 104.6

Financial assets to gdp 385.0 134,365.2 366.6 33.2
Mortgages to loans d4 0.2 1.7 1.3 0.1
Securities to liab d4 -12.0 1,342,234.9 1,158.5 105.7

Credit to gdp 140.2 2,623.4 51.2 0.0
Credit to gdp d12 13.7 479.1 21.9 0.5

House Price Index rt16 gap -2.5 33.7 5.8 6.8
International Investment Position -21.0 2,967.7 54.5 0.0

Private Debt 188.2 4938.7 70.3 0.1
Gov Bold Yield d4 0.0 11.4 3.4 23.5

TABLE 7.2: Summary statistics of available numerical variables.

Then, we match the distress events with the available textual news data. The events com-
prehends bankruptcies, direct defaults, government aid and distressed mergers as presented
in [Betz et al. 2003]. The distress events in this dataset are of three types. The first type of
events include bankruptcies, liquidations and defaults, with the aim of capturing direct bank
failures. The second type of events comprises the use of state support to identify banks in
distress. The third type of events consists of forced mergers, which capture private sector
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solutions to bank distress. The inclusion of state interventions and forced mergers is impor-
tant to better represent bank distress since there have been few European direct bank failures
in the considered period. Bankruptcies occur if a bank net worth falls below the country-
specific guidelines, whereas liquidations occur if a bank is sold and the shareholders do not
receive full payment for their ownership. Defaults occur if a bank failed to pay interest or
principal on at least one financial obligation beyond any grace period specified by the terms
or if a bank completes a distressed exchange. The distress events are formally considered to
start when a failure is announced and end at the time of the ’de facto’ failure.

A capital injection by the state or participation in asset relief programs (i.e., asset protec-
tion or asset guarantees) is an indication of bank distress. From this ’indicator’ are excluded
liquidity support and guarantees on banks’ liabilities since they are not used for defining dis-
tressed banks. The starting dates of the events refer to the announcement of the state aid and
the end date to the execution of the state support program. Distressed mergers are defined
to occur if (i) a parent receives state aid within 12 months after a merger or (ii) if a merged
entity exhibits a negative coverage ratio within 12 months before the merger. The dates for
these two types of distress events are defined as follows, respectively: (i) the starting date
is when the merger occurs and the end date when the parent bank receives state aid, and (ii)
the start date is when the coverage ratio falls below 0 (within 12 months before the merger)
and the end date when the merger occurs. Thus far, data at hand assign a unique label for the
stress events, not allowing a more detailed descriptive summary of the three event types.

7.4.2 Data Integration

The following step in the data preparation has been the addition of numerical financial data
to the text news database. The numerical data were aligned with the set of sentences in which
bank names occurred. The purpose was to match each and every mention of a bank with the
corresponding numerical financial data aligned according to the same time horizon. Since
the news and the financial data have different frequency, in particular, news have higher fre-
quency while financial data are reported quarterly, the latter are replicated several times to
match with the former. For each news regarding a bank within a given quarter, financial data
are replicated and appended to the semantic vector of the news. The alignment between nu-
merical and textual data resulted in the removal of some banks from the dataset due to missing
data, causing a reduction from 101 to 62 target institutes (Table 7.3) and from about 601,000
to 380,000 news sentences. After cleaning the dataset, numerical data have been normal-
ized with a standard approach by subtracting the mean value from each numerical variable of
the dataset and dividing it by the standard deviation. The resulting input vector for the 612
dimensional input layer of the neural classifier receives in input a 612 dimensional vector
obtained from the concatenation of the 600-dimensional semantic vector coming from the
unsupervised modelling, described in Section 7.3, with the 12-dimensional numerical finan-
cial data vector. The dataset is then split into five folds, three for training, one for validation
and one for testing according to a cross-validation scheme. The folds are created so that all
the data regarding a given bank are in the same fold. The framework we apply is composed of
an unsupervised algorithm and a supervised neural network classifier. To train the classifier
a label indicating the distressed or tranquil status of the bank is provided. The dataset has
been labelled according to the bank status with 0 indicating tranquil and 1 distressed. The
proportions of the two classes are highly unbalanced: 93% of the data-points are associated
to a tranquil status and only the remaining 7% are associated to distress events. Such imbal-
ance of the classes has a significant impact both on the training and on the evaluation of the
model. Regarding the training, it is important that the model is able to generalize also from
the few distress examples, while for the evaluation it could be useful to include other per-
formance measures that the accuracy. A trivial model that always predicts the tranquil status



96 Chapter 7. Assessing banks’ distress from news and numerical financial data

would achieve a 93% accuracy, thus it would be interesting to measure the improvements
against this baseline. Moreover the user is likely interested in weighting differently first er-
ror and second error types, especially if we consider potential early warning applications of
this model. The usefulness measure, introduced in [Sarlin 2013], satisfies these requirements.

Financial Institution Country Financial Institution Country Financial Institution Country
Aareal Bank DE Carnegie Investment Bank SE Kommunalkredit AT
ABN Amro NL Commerzbank DE LBBW DE

Agricultural Bank of Greece GR Credit Mutuel FR Lloyds TSB UK
Allied Irish Banks IE Credito Valtellinese IT Max Bank DK

Alpha Bank GR Cyprus Popular CY Monte dei Paschi di Siena IT
Amagerbanken DK Danske Bank DK National Bank of Greece GR

ATE Bank GR Dexia FR Nordea SE
Attica Bank GR EBH DK NordLB DE

Banca Popolare di Milano IT EFG Eurobank GR Nova ljubljanska banka Group (NLB) SI
Banco Popolare IT Erste Bank HU OTP Bank Nyrt HU

Bank of Cyprus Public Co Ltd CY Fionia (Nova Bank) DK Piraeus Bank GR, CY
Bank of Ireland IE Fortis Bank LU, NL, BE Pronton Bank GR

Banque Populaire FR HBOS UK RBS UK
Bawag AT Hellenic GR Roskilde Bank DK

BayernLB DE HSH Nordbank DE Societe Generale FR
BBK ES Hypo Real Estate DE Swedbank SE

BNP Paribas FR Hypo Tirol Bank AT T-Bank GR
BPCE FR IKB DE UNNIM ES

Caixa General de Depositos PT ING NL Vestjysk DK
Caja Castilla-La Mancha ES Irish Nationwide Building Society IE

CAM ES KBC BE

TABLE 7.3: List of considered financial institutions

7.5 Results

The experimental results confirm that the integration of numerical and textual data amplifies
the prediction capability of the model compared to the inclusion of only textual data. The
distress events in the database represent only 7% of the cases, resulting in very skewed train-
ing classes as explained earlier. Moreover, given the nature of the problem, the identification
of distress situations, it could be useful to weight differently false positives and false nega-
tives. In an early warning application, a sensitive system is often preferable since a further
investigation phase follows the detection of a warning. These peculiarities have to be taken
into account during the evaluation of the model.

7.5.1 Evaluation and experimental results

For the evaluation of our model we resort to the relative usefulness as measure of perfor-
mance. The relative usefulness (Ur), introduced in [Sarlin 2013] is a measure that allows to
set the error type preference (µ) and to measure the relative performance gain of the model
over the baseline compared to the performance gain over the baseline of a perfect model.
The index is computed starting from the probabilities of the true positive (T P), false positive
(FP), true negative (T N) and false negative (FN). With these we can define the model loss Lm

(Equation 7.4) and a baseline loss Lb set to be the best guess according to prior probabilities
p(obs) and error preferences µ (Equation 7.3).

Lb = min
{

µ ∗ p(obs = 1)
(1−µ) ∗ p(obs = 0)

(7.3)

Lm = µ ∗ p(FN)+ (1−µ) ∗ p(FP) (7.4)

The absolute Usefulness (Ua) and the relative Usefulness (Ur) are directly derived from
the loss functions:
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Ur =
Ua

Lb
=

Lb−Lm

Lb
(7.5)

The absolute Usefulness Ua of a model corresponds to the loss "generated" by the model
subtracted from the loss of ignoring it Lb. From Equation 7.5 we can see that the relative
usefulness is equal to 1 when the model loss (Lm) is equal to 0, thus when the model is a per-
fect classifier. As a consequence, the relative usefulness measures the gain over the baseline
compared to the gain that an ideal model would achieve. Ur reports Ua as a percentage of the
Usefulness that one would gain with a perfectly performing model. This measure highlights
the fact that achieving well-performing, useful models on highly imbalanced data is a difficult
task. To compute the relative usefulness (Ur) we have set the error type preference (µ) equal
to 0.9 in accordance with the indications of previous studies like [Betz et al. 2003] and [Con-
stantin et al. 2016] on the importance of signalling every possible crisis at cost of some false
positive (FP) (setting µ = 0.9 we are implying that missing a crisis is about 9 times worse
than falsely signalling one). This is especially true if following the warning signal, a further
investigation action is triggered. To evaluate distress condition of a bank over a period, the
predictions are aggregated on a monthly basis by bank entity. This is done by averaging the
predictions at the single sentence level by month for each different bank. This has been done
to take into account the textual information available over the past month period. As a result
of this procedure, the classification task can be summarized as understanding which banks
are in distress status month by month based on the news sentences and numerical data avail-
able over the previous month.

To evaluate the model on this classification task, we have trained it fifty times on the same
dataset, recording the relative usefulness (Ur) result after each run and then averaging them.
For each of the fifty trainings, the folds are resampled and the neural net is randomly initial-
ized. To quantify the gain obtained from merging numerical and textual data we have done
three different experiments, training the model respectively with textual data only (Figure
7.2, left), numerical data only (Figure 7.2, center) and numerical and textual data together
(Figure 7.2, right). As it is possible to see from Figure 7.2 the case with textual data alone
achieves an average relative usefulness of 13.0%, while the case with numerical data alone
shows an average relative usefulness of 31.1%. The combination of these two dataset and
their exploitation in the model grants an average relative usefulness of 43.2%, thus it posi-
tively enhances the prediction capability of the model. From these results we can also un-
derstand that, as expected, the financial numerical data hold the majority of the informative
potential necessary for the labelling task but that the addition of textual information provides
a non-negligible 12.1% improvement to the relative usefulness of the model.

7.5.2 Classifier tuning

We have run a sensitivity analysis exploring different neural network configurations while
training it with the Nesterov Accelerated Gradient Descent algorithm from [Nesterov 1983].
We have tested different hidden layers sizes, numbers of layers, learning rates, regulariza-
tion parameters and dropout fractions [Hinton et al. 2012]. For choosing the final network
configuration, we applied the Occam’s razor principle always preferring the simpler structure
able to achieve a given performance. Thus, where performance is not reduced excessively,
we try to select the network structure with fewer layers and fewer hidden nodes; this also
helps to have better generalization and reduce overfitting. In terms of hidden layers number,
the network with one hidden layer (three layers in total including input and output) performs
slightly better than those with more layers. We tested up to three hidden layers (5 layers in
total, including input and output layers) and verified that the performance was monotonically
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FIGURE 7.2: Comparison of the relative usefulness obtained with the tex-
tual financial data (left), numerical financial dataset (center) and with their

combination (right)

decreasing. Regarding the number of hidden nodes, the network configuration that achieved
the best relative Usefulness had 50 hidden nodes with a learning rate α of 5e-4 combined
with an L1 regularization parameter λ of 1e-5. The parameter that mostly affects the results
is the number of nodes in the hidden layer. The results of the sensitivity analysis on the hid-
den nodes number (with regards to one hidden layer network configuration) are reported in
Figures 7.3, 7.4, 7.5 respectively for the case including textual data alone, financial numerical
data alone and the combination of the two. The range of hidden nodes in the three sensitiv-
ities is different because the input vectors in the three cases have very different dimensions,
600 input nodes when considering only textual data, 12 input nodes when considering only
numerical data and 612 input nodes when including both numerical and textual data. We do
not investigate extensively the textual data case which has already been studied in [Rönnqvist
and Sarlin 2017]. Regarding the numerical based case, we can notice that we have a range
of hidden layer size comprised between 10 and 20 nodes where performances are stable and
the relative Usefulness is around 30%. For the combined input (Numerical and Textual) we
expected the right number of hidden nodes to be similar to the Textual data case since the
input dimensionality is similar (600 and 612). In fact, we can see that there is a range around
50-60 hidden nodes where performance is stable around a relative Usefulness of 40%.

7.6 Conclusions

In this chapter we have presented an approach for the integration of financial numerical data
and financial news data into a single machine learning framework. The aim is to improve
performances of bank distress conditions identification through the combination of these two
data sources. The implemented model processes textual data through an unsupervised neural
network model, Doc2Vec, converting the documents sentences into sentence vectors. The
derived sentence vectors are then concatenated with the financial numerical data to form a
single input vector. Each of these vectors becomes the input to a supervised classifier, a three
layers fully connected neural network.
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FIGURE 7.3: Textual data - sensitivity analysis on the number of nodes of
the hidden layer

FIGURE 7.4: Numerical data - sensitivity analysis on the number of nodes
of the hidden layer

FIGURE 7.5: Numerical and Textual data - sensitivity analysis on the num-
ber of nodes of the hidden layer
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The classification task was characterized by a high data imbalance among the classes which
poses concerns for both the model training and evaluation. The implemented model has
shown to be able to learn the combinations of banks’ financial conditions and news semantic
content that are more frequently associated with distress conditions. This is reflected in the
improved performance obtained when including both news data and financial numerical data
as input to the model. In this case in fact, the model achieves an average relative usefulness
of 43.2%, compared to 31.1% when using only numerical data and 13.0% when utilizing
only textual data. The sensitivity analysis performed on the model supports these results
indicating stability within a certain range of architectures.

Some limitations of this model reside in the way the news are processed and converted
into vectors and how they are fed to the network to classify the distress. Methods like
Doc2Vec with Distributed Memory approach in fact, while not using a pure bag of word
approach, still ignore important text information to truly understand a sentence and not only
its topic or its average sentiment. For example, long range dependencies in the text are not
considered and polysemous words and mixed word polarities can also affect the performance
of this algorithm. Moreover, Doc2Vec performs significantly better when trained on a large
quantity of text similar to the application domain. This quantity of texts was available in
our study but could pose a limit to applications in niche specific domains or its extension to
less widespread languages. In the last years there have been many improvements in the NLP
field that can help overcome these limitations. A particularly interesting class of models are
the so-called Sequence to Sequence RNNs, that recently have become very popular. These
models are composed of two RNNs (one encoder and a decoder) that are trained in an un-
supervised setting to reconstruct their own input text. Sequence to Sequence architectures
pre-trained on financial and bank related text could be used as a substitute for the Doc2Vec
representation in our approach. Differently from Doc2Vec these models consider explicitly
the word order and long range dependencies over the entire text input sequence. As a result
they can provide more accurate text vector representations. Furthermore, it is possible to
augment the model capability providing few additional manually engineered features like a
gazette of words with positive/negative polarity from a financial stability point of view.

An additional future work direction that could improve this framework as an early warn-
ing tool would be considering the news dynamic evolution. In this work, news are aggregated
at monthly level, thus sub-monthly dynamics are lost. Using a RNN as distress classifier, it
would be possible to sequentially feed the news vectors into the network. In this way consid-
ering daily or weekly news aggregation it would be possible to take into account also these
dynamic effects (e.g. overall negative sentiment but with a positive trend in the last weeks).

The methodology here applied is general and extensible to other problems were the in-
tegration of text and numerical covariates can improve classification and early warning per-
formances. Similarly interesting results are to be expected in areas where textual data hold
information with higher granularity and frequency, directly influencing the data to be pre-
dicted in the short run like in the case of financial markets.
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Chapter 8

SentITA a python sentiment analysis
tool for Italian

8.1 Summary

This chapter describes the SentITA system a sentiment analysis tool for Italian. The system,
based on Deep Learning, is focused on general domain sentiment analysis at sentence level.
The underlying model is a Bidirectional Long Short Term Memory network with attention
that exploits word embeddings and sentiment specific polarity embeddings. The model has
been trained with a custom dataset of sentence polarities in Italian. The dataset has been
created by combining together labelled sentences from different sources. In particular, two
Italian sentiment analysis challenges (Sentipolc2016 and Absita2018) and manually labelled
sentences, for a total of ca. 14,000 labelled sentences. The model also leverages grammatical
information from POS tagging and NER tagging. The system participated in both the Aspect
Category Detection (ACD) and Aspect Category Polarity (ACP) tasks of the ABSITA2018
challenge achieving the 5th place in the ACD task and the 2nd in the ACD task. In an attempt
to reduce the gap between sentiment analysis tools in English and in Italian, and ease future
researches that leverage sentiment analysis, a python package implementing the model and
the relative code has been publicly released and a brief guide on its installation is included in
the chapter.

8.2 Introduction

Sentiment analysis is a task of Natural Language Processing (NLP) that investigates people’s
opinions towards different matters: products, events, organisations [Bing 2012]. Sentiment
analysis adoption has been growing constantly in the last years with the rapid and wide dif-
fusion of social networks, microblogging applications and forums. This media in fact, have
made possible to gather a huge volume of user opinions, sentiments, emotions, appraisals,
and attitudes towards entities such as products, services, organizations, individuals, issues,
events, topics, and their attributes. Mining the shear amount of opinions and informations
passing through these services, if carefully done, can be of both social and commercial in-
terest. Opinions in fact, are central to many human activities and are key influencers of our
behaviours. Our beliefs and the choices we make are often conditioned upon how others see
and evaluate the world. In fact, in many decision both individuals and organizations seek
out the others’ opinions. Lately many researches have given evidences that by analysing
sentiment of social-media content it might be possible to predict some economic and social
phenomena like the size of the markets [Bollen et al. 2011] or unemployment rates over
time [Antenucci et al. 2014] or events like movies’ box office performance and general elec-
tions [Heredia et al. 2016].
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Sentiment analysis is far from being a solved problem of NLP and it has many factors
that make it difficult compared, for example, to text topic classification.

We could try initially to identify the polarity of opinions by using a set of keywords; this
is a simple but already effective approach in topic classification. Unfortunately, the results
of an early study [Pang et al. 2002] on movie reviews show that identifying the right set of
keywords is not so easy and doesn’t achieve the best performances. In their study in fact,
the use of the subjects’ lists of keywords achieves only about 60% accuracy when employed
within a straightforward classification policy. Word lists of the same size but chosen based
on examination of the corpus’ statistics perform significantly better, achieving almost 70%
accuracy.

Data-driven approaches like machine learning techniques based on unigram models can
achieve still better accuracies, over 80% [Pang et al. 2002], much higher than the perfor-
mance based on hand-picked keywords. However, this level of accuracy is generally lower
than the performance one would expect in typical topic-based binary classification. In fact,
compared to topics, sentiment it is often expressed in a more subtle manner, making it diffi-
cult to be identified by any sentence or document’s terms when considered in isolation. Even
strong opinions are not always easy to recognize because in many cases is not possible to
identify them from specific keywords or phrases in the sentence but rather from a combina-
tion of words given a certain context.

Moreover, even if the general notion of positive and negative opinions is fairly consistent
across different domains, sentiment and subjectivity are quite context-sensitive and domain
dependent. The same expression can be associated with opposite sentiment in different do-
mains. For example, “go read the book” indicates positive sentiment for book reviews, but
negative sentiment in the context of movie reviews.

Furthermore, it has great importance also modelling the discourse structure. While the
overall topic of a document can be guessed by the text content regardless of the order in
which different subjects are presented (e.g. Bag of Words representation), for opinions dif-
ferent orders can result in a completely opposite overall sentiment polarity. For sentiment
analysis order effects can completely overwhelm frequency effects and in general, modelling
sequential information and discourse structure is more crucial than for topic-based text cate-
gorization [Pang et al. 2008]

In the struggle to overcome these challenges researchers has developed numerous tech-
niques for various sentiment analysis tasks. These techniques include both unsupervised and
supervised methods. Among the unsupervised methods many exploit sentiment lexicons,
grammatical analysis and syntactic patterns. In the supervised setting, most of the supervised
machine learning methods have been tested (Support Vector Machines (SVMs), Logistic Re-
gression, Maximum Entropy, Naïve Bayes, etc.) with different feature combinations [Liu
2015].

Recently in the last ten years, deep learning has emerged as a powerful machine learning
technique achieving state-of-the-art results in many application domains, ranging from com-
puter vision to speech recognition to NLP. Sentiment analysis makes no exception and also
in this task the application of deep learning has pushed forward the state of the art. Among
the deep learning frameworks applied to sentiment analysis, many employ a combination of
semantic vector representations [Mikolov et al. 2013, Pennignton et al. 2014] and different
deep learning architectures. Long Short-Term Memory (LSTM) networks [Hochreiter and
Schmidhuber 1997,Socher et al. 2013,Cho et al. 2014] have been applied to model complex
and long term non-local relationships in both word level and character level text sequences.
Recursive Neural Tensor Networks (RNTN) have shown great results for semantic compo-
sitionality [Socher et al. 2011, Socher et al. 2013] and also Convolutional Neural Networks
(CNNs) for both sentiment analysis [Collobert et al. 2011] and sentence modelling [Kalch-
brenner et al. 2014] have performed better than previous state of the art methodologies. All
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these methods in most of the applications receive in input a vector representation of words
called word embeddings. [Mikolov 2012, Mikolov et al. 2013] and [Pennignton et al. 2014],
further expanding the work on word embeddings from [Bengio et al. 2003], that grounds
on the idea of distributed representations for symbols [Hinton et al. 1986], have introduced
unsupervised learning methods to create dense multidimensional spaces where words are
represented by vectors. The position of such vectors is related to their semantic meaning
and grammatical properties. [Le and Mikolov 2014] continuing on this research direction,
develops also a model capable of representing sentences and documents in a dense multi-
dimensional space. In this case too, sentences are represented by vectors whose position
is related to their semantic content. Also in this space representation similar sentences are
represented by vectors that are close to each other.

Word embeddings currently are widely used in most of the NLP tasks. They allow for
a dimensionality reduction compared to traditional sparse Vectors Space Models (VSMs)
[Salton 1975] and they are often used as pre-trained initialization for the first embedding
layers of the neural networks in NLP tasks. In fact, word embeddings have been the core
methodology for transfer learning for most of NLP tasks in the last years. They allow to
relieve the network from the burden of learning the word semantics and how words relate
to each other in text. Normally, in transfer learning applications, the first embedding layer
of the NLP neural networks is initialized with a word embeddings weight matrix that is
pre-trained with unsupervised methods on huge corpora. In this way the model, instead of
being initialized randomly, has already learned (by transfer) a wiser word representation that
encodes part of the language statistical regularities like word semantic, gender, plurality, verb
tenses and many others.

Recently in 2017-2018 there has been a lot of interest around unsupervised or semi-
supervised transfer learning methodologies for NLP that try to improve on word embed-
dings. The research is focused on algorithms that provide more than just pre-trained vectors
of words, providing pre-trained vectors for sentences or blocks of sentences. Two methods
have obtained promising results [kiros et al. 2015] and [Howard et al. 2018]. The first
proposes an unsupervised learning of a generic, distributed sentence encoder. Using the con-
tinuity of text from books, the authors train an encoder-decoder model that tries to reconstruct
the surrounding sentences of an encoded passage. Sentences that share semantic and syntac-
tic properties are thus mapped to similar vector representations (in analogy with the word
vectors). In the second, the authors propose a transfer learning method, based on a Univer-
sal Language Model Fine-tuning (ULMFiT), that can be applied to different NLP tasks, and
they also introduce several key techniques for language models fine-tuning. This method too,
produces a vector representation of sentences or text sequences in general. These approaches
allow to transfer from one NLP task to another also the capability of modelling the discourse
structure learnt by the model. In this way the network is relieved not only from the burden
of learning word representations but also from that of learning to model the language trough
sentence representations. Like word embeddings these methodologies are very interesting
because they are unsupervised and can be trained on extremely vast unlabelled corpora. This
allows to reduce the amount of supervised training required and to develop models with a
limited number of labelled examples. This is of paramount importance since it makes many
NLP tasks practical also for languages with fewer labelled resources available like Italian.
These techniques excel in long text sequences because they take advantage of long term de-
pendencies of text (what has been said in the previous sentences), specially ULMfiT, and
thus are particularly suitable for topic classification and sentiment analysis of longer texts
(like the IMDB dataset).

When working with isolated and short sentences, often with a specific writing style, like
tweets or phrases extracted from internet reviews many long term text dependencies are lost
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and not exploitable. In this situation it is important that the model learns both to pay atten-
tion to specific words that have key roles in determining the sentence polarity like negations,
magnifiers, adjectives and to model the discourse but with less focus on long term dependen-
cies (due to the text brevity). For this reason, deep learning word embedding based models
augmented with task specific gazettes (dictionaries) and features, represent a solid baseline
when working with these kind of datasets [Nakov et al. 2016, Attardi et al. 2016, Castellucci
et al. 2016, Cimino et al. 2016, Deriu et al. 2016].

In this chapter we present a word embedding based model, augmented with several addi-
tional features, for sentiment analysis on short Italian sentences and reviews. In the system in
fact, a polarity dictionary for Italian has been included as input feature to the model. More-
over, every sentence during preprocessing is augmented with its NER tags and POS tags
which then are fed as input to the model. Thanks to the inclusion of these relevant features in
combination with word embeddings and an attentional bidirectional LSTM recurrent neural
network architecture, the model already achieves useful results with some thousands labelled
examples.

The remainder of the chapter presents the model, the experiments on the ABSITA 2018
task and the SentITA package installation and usage guide. In Section 8.3 the model archi-
tecture is described; in Section 8.4 we explore the data used to train the model; in Section
8.5 the model training and its performances are discussed along with a brief guide on the
installation and usage of SentITA in Subsection 8.5.3; finally in Section 8.6 the conclusions
of this work with the next improvement steps of the system are discussed.

8.3 Methodology

The implemented model is an Attentional Bidirectional Recurrent Neural Network with
LSTM cells. It operates at words level and therefore each input sentence is represented
as a sequence of words representations in the form of vectors. These vectors are sequentially
fed to the model one after another until the sentence word sequence has been entirely used
up. In this setup, one sentence sequence matched with its polarity scores represent a single
labelled data point for the model. 1

The input to the model are sentences up to 35 words of length, with shorter sentences
left-padded with zero values to this length and longer sentences cut to this length. However,
it is possible to apply the model also to longer texts by splitting them in sentences, calculating
each sentence polarity separately and then aggregating the results at document or paragraph
level. Each word of the input sentence sequence is represented by five vectors corresponding
to 5 different features that are: high dimensional word embeddings, word polarity, word NER
tag, word POS tag, custom low dimensional word embeddings. The high dimensional word
embeddings are the pre-trained Fastext embeddings for Italian [Grave et al. 2018]. They are
300-dimensional vectors computed using the skip-gram model described in [Bojanowski et
al. 2016] with default parameters. The word polarity is obtained from the OpeNER Senti-
ment Lexicon Italian [Russo et al. 2016]. This freely available Italian Sentiment Lexicon
contains a total of 24,293 lexical entries annotated for positive/negative/neutral polarity. It
was semi-automatically developed using a propagation algorithm starting from a list of seed
keywords and manually reviewing the most frequent ones. The NER and POS tags are ob-
tained from the Spacy 2 library Tagger model for Italian. The tagger model is run on the
sentence word sequence and returns the corresponding NER/POS tags sequence. The custom

1The model is implemented in Python 3.6 based on the Keras (keras-gpu 2.1.6 - https://keras.
io/) library with the Tensorflow open-source deep learning framework (tensorflow 1.8.0 - https://www.
tensorflow.org/) as backend.

2Spacy 2.0.11 - https://spacy.io/

https://keras.io/
https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://spacy.io/
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FIGURE 8.1: SentITA model architecture
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low dimensional word embeddings are generated by random initialization and are included
to provide an embedding representation of the words that are missing from the Fastext em-
beddings, which otherwise would all be represented by the same Out Of Vocabulary token
(OOV token). Moreover, it could be possible to train and fine-tune these custom embeddings
on specific datasets to let the model learn the words usage in specific contexts. The infor-
mation extracted from the OpeNER Sentiment Lexicon Italian are the word polarity with its
confidence and they are concatenated in a vector of length 2 that is one of the input to the first
layer of the network. The NER tags and POS tags instead are mapped to randomly initial-
ized embeddings of dimensionality respectively 2 and 4 that are not trained during the model
training for the ABSITA 2018 task submission. With more data available probably it would
be beneficial to train all the NER, POS and custom embeddings but for this specific dataset
the results were comparable and slightly better when not training the embeddings.

The model, whose architecture is schematized in Figure 8.1, performs in its initial layer
a dimensionality reduction of the Fastext embeddings and then concatenates them with the
rest of the embeddings (polarity, NER tag, POS tag, and custom word embeddings) for each
each timestep (word) of the sentence sequence. The tensor resulting from the concatenation
of the embeddings is fed in a sequence of two bidirectional recurrent layers with LSTM
cells. The result of these recurrent layers is passed to the attention mechanism presented
in [Raffel et al. 2016]. The attention mechanism in this formulation, produces a fixed-length
embedding of the input sequence by computing an adaptive weighted average of the sequence
of states (normally denoted as "h") of the RNN. This form of integration is similar to the
"global temporal pooling" described in [Sander 2014], which is based on the "global average
pooling" technique of [Min et al. 2014]. Finally the output of the attention mechanism goes
to the dense output layer (or layers) of the network. The output structure of the network varies
depending on the task to which the model is applied. For the ABSITA 2018 challenge they
are the aspect detection and aspect polarity signals, while the model included in the SentITA
package provides only a sentence sentiment polarity signal. The non linear activations used in
the model are Rectified Linear Units (ReLU) for the internal dense layers, hyperbolic tangent
(tanh) in the recurrent layers and sigmoid activations in the output dense layer. In order
to contrast overfitting the dropout mechanism has been used after the Fastext embedding
dimensionality reduction with rate 0.5, in both the recurrent layers between each sequence
timestep with rate 0.5 and on the output of the recurrent layers with rate 0.3.

The model has 61,368 trainable parameters and a total of 45,233,366 parameters, the
majority of them representing the Fastext embedding matrix (45,000,300). Compared to
many NLP models used today the number of trainable parameters is quite small to reduce the
possibility of overfitting the training dataset and also because is compensated by the addition
of engineered features like polarity dictionary, NER tag and POS tag that help in classifying
the examples.

8.4 Data

The data available to train the model are given by a combination of datasets for Italian sen-
timent analysis. They come from two sources SENTIPOLC 2016 (SENTIment POLarity
Classification) and ABSITA 2018 (Aspect-based Sentiment Analysis at EVALITA). They are
both subtask of EVALITA, a periodic evaluation campaign of Natural Language Process-
ing and speech tools for the Italian language. The aim of EVALITA is to provide a shared
framework where different systems and approaches can be evaluated in a consistent manner.

The main goal of SENTIPOLC 2016 is sentiment classification at message level on Italian
tweets. The data we are interested in here, come from the polarity task, that requires, given
a message, to predict whether the message is positive, negative, neutral or contains mixed
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sentiment (i.e. conveying both a positive and negative sentiment). The SENTIPOLC 2016
training dataset contains 7,396 labelled examples.

ABSITA 2018 is an evolution of SENTIPOLC 2016 that aims at capturing the aspect-
level opinions expressed in natural language texts in Italian reviews coming from the "Book-
ing.com" website. In this challenge, given the review text, the goal is to identify the "aspect
categories" evoked in a sentence and to assign polarity labels to each of the aspect category.
The original ABSITA 2018 training set consists of 6,338 hand-labelled sentences while the
test set consists of 2,718 sentences. The challenge comprises two closely connected subtask:
Aspect Category Detection (ACD) and Aspect Category Polarity (ACP).

In the ACD task one or more "aspect categories" evoked in a review sentence are iden-
tified (e.g. the "cleanliness" and "staff" categories). In the Aspect Category Polarity (ACP)
task, the polarity of each expressed category is recognized (e.g. a positive category polar-
ity could be expressed concerning the "cleanliness" category while it could be negative if
considering the staff category).

In the evaluation framework, the set of aspect categories is known and given to the partic-
ipants, so the ACD task can be seen as a multi-class, non-exclusive classification task where
each input text has to be classified as evoking or not each aspect category. The participating
systems have to return a binary vector where each dimension corresponds to an aspect cate-
gory and the values 0 (false) and 1 (true) indicate whether each aspect has been detected or
not in the text.

For the ACP task, the input is the review text paired with the set of aspects identified in
the text by the ACD subtask, and the goal is to assign polarity labels to each of the aspect
category. Two binary polarity labels are expected for each aspect: POS an NEG, indicating
a positive and negative sentiment expressed towards a specific aspect, respectively. The two
labels are not mutually exclusive: in addition to the annotation of positive aspects (POS:true,
NEG:false) and negative aspects (POS:false, NEG:true), there can be aspects with no polarity,
or neutral polarity (POS:false, NEG:false). Finally, the polarity of an aspect can also be
mixed (POS:true, NEG:true) in cases where both sentiments are expressed towards a certain
aspect in a text.

When the system has participated in the ABSITA 2018 challenge the model has been
trained only with the dataset made available from the task organizers [Basile et al. 2018].
The model performance related to the ABSITA 2018 task, thus are representative of a train-
ing over 6,338 sentences [Nicola 2018]. In this case no further processing of the dataset is
necessary.

For developing the SentITA python package instead the system has been trained on both
the SENTIPOLC 2016 and ABSITA 2018 data to leverage a higher number of labelled exam-
ples. In order to combine the two dataset together it is necessary to align them accordingly.
In fact, while the ABSITA task is similar to SENTIPOLC, its dataset structure is different
because it has a polarity label for each aspect category. Since we are interested in detecting
whether the sentence expresses positive or negative polarity in general towards any kind of
entity, we can neglect the aspect related information of the dataset. In this case we just want
to assign a positive/negative polarity label or both to sentences regardless of what aspect class
was the subject. For this, we reformulate the dataset label assigning a positive polarity to the
sentence if any of evoked aspects polarities is positive and a negative one if any of the evoked
aspect polarities is negative. If two different aspects are mentioned one with positive polarity
and one with negative polarity we assign both positive and negative labels to the sentence.
With this modification the ABSITA dataset structure can be aligned with the SENTIPOLC
dataset. Combining the ABSITA train set, with the SENTIPOLC train and test set we ob-
tain a dataset with 13,747 labelled examples. In addition, 50 hand labelled sentences have
been added in order to provide more examples with negations and particular Italian idiomatic
expression.
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8.5 Results

The only preprocessing applied to the text is the conversion of each character to its lower case
form. Then, the vocabulary of the model is limited to the first 150,000 words of the Fastext
embeddings trough a cap on the max number of embeddings, due to memory constraints
of the GPU used for training the model. The Fastext embeddings are sorted by descending
frequency of appearance in their training corpus, thus the terms contained in the vocabulary
coincide approximately with the 150,000 most frequent Italian words. The other words that
are left out from this selection are represented in the model high dimensional embeddings
(Fastext embeddings) by an out of vocabulary token. However, all the training set words are
anyhow included in the custom low dimensional word embeddings; this is done since both
our training text and general users text could be quite different from the one on which Fastext
embeddings are trained (specially when working with reviews, tweets and social network
platforms). In addition the NER-tagging and POS-tagging models for Italian included in
the Spacy library are applied to the text to compute the additional NER-tags and POS-tags
features for each word of the sentence sequences.

Like for the datasets, there are some slight differences in the model training for participat-
ing into the ABSITA 2018 challenge compared to the model training of the SentITA python
package. In the two following subsections we expose the two different training setups.

8.5.1 Training for ABSITA 2018 Challenge

To train the model and generate the challenge submission a k-fold cross validation strategy
has been applied. The dataset has been divided in 5 folds and 5 different instantiations of the
same model (with the same architecture) have been trained selecting each time a different
fold as validation set (20%) and the remaining 4 folds as training set (80%). The number of
training epochs is defined with the early stopping technique with patience parameter equal
to 7. Once the training epochs are completed, the model snapshot that achieved the best
validation loss is loaded. At the end of the training phase, the 5 different models have been
applied in inference on the test set and their predictions have been averaged together and
thresholded at 0.5. The training of five different instantiations of the same model and the
averaging of their predictions overcomes the fact that in each kth-fold the model selection
based on the best validation loss is biased on the validation fold itself.

Each of the five models is trained minimizing the crossentropy loss on the different
classes with the Nesterov Adam (Nadam) optimizer [Dozat 2016] with default parameters
(λ = 0.002, β1 = 0.9, β2 = 0.999, schedule_decay = 0.004). The Nesterov Adam optimizer
is similar to the Adam optimizer [Kingma and Ba 2014] but the momentum is replaced by
the Nesterov momentum [Nesterov 1983]. The Adam optimizer combines two algorithms
known to work well for different reasons: momentum, which points the model in a better
direction in parameter optimization space, and RMSProp, which adapts how far the model
goes in that direction on a per-parameter basis. However, Nesterov momentum which can be
viewed as a simple modification of the former, increases stability, and can sometimes provide
a distinct improvement in performance, superior to momentum [Sutskever et al. 2013].

This system took part to the ABSITA 2018 Challenge under the name "UNIPV" and ob-
tained the 5th place in the ACD task and the 2nd place in the ACP task as reported respectively
in Table 8.1 and 8.2. In these tables the performances of the systems participating to the chal-
lenge have been ranked by F1-score from the task organizers. In particular, it is interesting
the second place in the ACP since the model is more oriented towards polarity classification,
for which it has specific dictionaries, more than aspect detection. This is confirmed also from
the high precision score obtained from the model in the ACP task, the 2nd highest among the
participating systems.
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Ranking Micro-Precision Micro-Recall Micro-F1-score
1 0.8397 0.7837 0.8108
2 0.8713 0.7504 0.8063
3 0.8697 0.7481 0.8043
4 0.8626 0.7519 0.8035
5 0.8819 0.7378 0.8035
6 0.898 0.6937 0.7827
7 0.8658 0.697 0.7723
8 0.7902 0.7181 0.7524
9 0.6232 0.6093 0.6162
10 0.6164 0.6134 0.6149
11 0.5443 0.5418 0.5431
12 0.6213 0.433 0.5104
baseline 0.4111 0.2866 0.3377

TABLE 8.1: Task ACD (Aspect Category Detection) ranking. This system
score is reported between dashed lines

Ranking Micro-Precision Micro-Recall Micro-F1-score
1 0.8264 0.7161 0.7673
2 0.8612 0.6562 0.7449
3 0.7472 0.7186 0.7326
4 0.7387 0.7206 0.7295
5 0.8735 0.5649 0.6861
6 0.6869 0.5409 0.6052
7 0.4123 0.3125 0.3555
8 0.5452 0.2511 0.3439
baseline 0.2451 0.1681 0.1994

TABLE 8.2: Task ACP (Aspect Category Polarity) ranking. This system
score is reported between dashed lines
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FIGURE 8.2: Model Loss (Categorical Cross Entropy) evolution on train
(blue) and test (orange) set across the training epochs

FIGURE 8.3: Model accuracy evolution on train (blue) and test (orange) set
across the training epochs

8.5.2 Training of SentITA

When training the model for the SentITA python package implementation, bot the ABSITA
and SENTIPOLC datasets are used. For the training of the model, the dataset is split in a train
set (85% - 11,727 examples) and a test set (15% - 2,070 examples) after a random shuffling.
Then, the model is trained for 67 epochs using early stopping (with patience = 6) to reduce
overfitting. Finally, the model with the lowest (best) test loss is chosen. In Figure 8.2 and
Figure 8.3 is possible to see the evolution of the loss and the accuracy during the training. At
the end of the training the lower test loss is 0.389 corresponding to a test accuracy of 82%.
We can see that the early stopping is necessary since it halts the training when the two losses
start to diverge considerably and the test loss reaches a plateau.

In Table 8.3 we report for inspection some example sentences with the polarity scores
computed from the model. As we can see, the model correctly associates the highest scores
to the correct polarity. It also correctly handles negations and adverbs like "molto" (very),
"grande" (great), "poco" (not much) in connection with adjectives. When the polarity of the
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N. Sentence Positive Negative
1 il divano era molto comodo 0.999 0.004
2 il divano non era per niente comodo 0.046 0.982
3 il letto era molto comodo 0.998 0.004
4 il cibo era davvero superbo 0.820 0.454
5 il cibo era davvero buono 0.990 0.024
6 la pasta è cattiva 0.008 0.994
7 il posto era davvero accogliente, i camerieri simpatici e

il servizio ottimo, consigliato!
0.999 0.008

8 non è un buon ristorante 0.195 0.923
9 non è stata una cena gradevole 0.191 0.925
10 non è stata una cena per niente gradevole 0.044 0.978
11 sono abbastanza soddisfatto delle prestazioni ma non

della batteria
0.767 0.452

12 sono abbastanza soddisfatto delle prestazioni ma non
della batteria, dura veramente poco

0.700 0.566

13 sono abbastanza soddisfatto delle prestazioni ma non
della batteria, dura veramente poco e scalda un sacco

0.570 0.784

14 è la migliore pasta che abbia mai mangiato 0.806 0.375
15 disastro per i bancari a piazza affari, lasciano 5 punti

percentuali sul terreno
0.041 0.499

16 performance positiva dei bancari che centrano il rim-
balzo

0.964 0.034

17 domani buone occasioni per gli acquisti grazie ai ribassi
dei prezzi per i saldi

0.911 0.024

18 è una canzone con grande musicalità 0.996 0.007
19 è una canzone con poca musicalità 0.173 0.930
20 è un libro avvincente 0.961 0.049
21 è un libro che si fa fatica a leggere 0.081 0.821

TABLE 8.3: SentITA sentiment polarity scores examples

sentence is mixed, the model raises two different signals which in general are also correct in
their respective magnitude. The performance can still be improved, for example on polysemy.
In fact, it has some difficulty on sentence 4 which is correctly recognized as positive but
ideally the positive score should be higher than the one in sentence 5 and the negative one
lower. This is due to polysemic words like "superbo" (it can mean superb or also arrogant)
that referred to food, it’s very positive while referred to a person is considered negative.
Also, the model is not perfectly accurate on specific domains like the case of sentence 15
where, while the negative score is definitely larger than the positive one, it is not as high as
the positive score in sentence 16. Overall the results of the model are very promising and
interesting considering the amount of data used for training and the possibility of further
expanding the training set.

8.5.3 SentITA installation and usage

The SentITA package is still in development and there is currently a version made available to
the public for local installation. The download is available via Google Drive at the following
link3 and weights approximately 350 Mb. The installation and usage instructions reported in

3https://drive.google.com/file/d/1s1BW3T_BysAhVZPai-3AUXpb68aYjQTS/view?
usp=sharing

https://drive.google.com/file/d/1s1BW3T_BysAhVZPai-3AUXpb68aYjQTS/view?usp=sharing
https://drive.google.com/file/d/1s1BW3T_BysAhVZPai-3AUXpb68aYjQTS/view?usp=sharing
https://drive.google.com/file/d/1s1BW3T_BysAhVZPai-3AUXpb68aYjQTS/view?usp=sharing
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this brief guide are included also within the package archive in the readme file.

How to install SentITA

1. Unzip the downloaded archive

2. cd into the unzipped folder from the console

3. type "pip install ." in the console to install the package locally

How to use SentITA to estimate the polarities of a list of sentences

1. Import the function to calculate the polarity scores with the following code:

from sentita import calculate_polarity

2. define your sentences as a list. e.g.:

sentences = ["il viaggio è stato molto interessante",
"E’ la barca a vela più bella che abbia visto",
"La casa è molto spaziosa e accogliente"]

3. estimate the sentence polarity by running:

results, polarities = calculate_polarity(sentences)

"results" is a list of text with the sentence, the positive polarity score and the negative
polarity scores. "polarities" is a list of list with the positive and negative polarity score
for each sentence, e.g.:
"polarities[0][0]" contains the positive polarity score of the 1st sentence
"polarities[2][0]" contains the positive polarity score of the 3rd sentence
"polarities[2][1]" contains the negative polarity score of the 3rd sentence

8.6 Conclusions

In this chapter the SentITA tool for sentiment analysis in Italian has been presented. The
one that has been described is the first iteration of the SentITA python package for gen-
eral sentiment analysis in Italian. The proposed Bidirectional Attentional LSTM model has
been trained on 13,797 examples taken from two publicly available Italian sentiment polarity
datasets. The system makes use of different input features that is easy to obtain also through
other models like POS and NER tags, polarity embeddings and word embeddings. For this
reason, the human effort in the data preprocessing is very limited. The system consistently
handles grammar constructions like negations and magnifiers. On the test dataset the model
achieves 82% accuracy on the polarity prediction task. Moreover, the results obtained on the
ABSITA 2018 challenge are promising, as the system placed 2nd in the ACP and 5th in the
ACD task and not very far from the 1st in terms of F1-score.

The model in general shows a high precision but in general a lower recall compared to
the other systems. Considering these aspects, the next steps to improve the model perfor-
mances are mainly in two directions: i) providing more labelled examples to the model and
ii) exploiting unsupervised learning. The first can be achieved either hand labelling exam-
ples, discovering other available datasets, translating foreign datasets to Italian or identifying
sources of text with limited polarity like Wikipedia articles for additional neutral examples.
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The second improvement direction would consist in integrating in the model features based
on language models or encoder decoder networks. Both additional labels and unsupervised
learning would improve the model generalization due to the larger quantity of text available
during the training phase. Indeed, covering more topics and lexical content of the Italian
language would improve the model recall.

Finally SentITA has been made available through a freely downloadable python package
along with a brief guide on its application with the aim of easing future researches that would
leverage sentiment analysis in Italian.
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Chapter 9

Conclusions

This thesis work investigated the combined use of structured and unstructured (textual) data
for systemic risk and bank supervision. Several problems related to these domains have
been tackled with different methodologies. In the last chapter, it has also been developed a
sentiment polarity classification tool for Italian to ease the analysis of Italian texts in future
researches. The investigated models belong to three families: Graphical Gaussian Models,
Topic Models and Deep Learning models. All these models have proven to be a valid choice
for leveraging numerical (structured) and textual (unstructured) data. Each of them has been
applied for solving different problems with different approaches. Graphical Gaussian Models
and Topic models have been adopted for inspection and descriptive tasks while deep learn-
ing has been applied more for predictive (classification) problems. Throughout the different
works presented, the integration of textual (unstructured) and numerical (structured) informa-
tion has proven useful for systemic risk and bank supervision related analysis. Depending on
the task, the integration of textual data has brought either to higher predictive performances
or enhanced capability of explaining phenomena and correlating them to other events. In fact,
both systemic risk and bank supervision are heavily influenced by the opinions and beliefs
that the public and the financial operators form by reading the news.

The valuable information contained in news and other text sources can be challenging to
exploit due to dataset specific characteristics, like varying frequency (e.g. tweets) and relia-
bility, and to the intrinsic difficulties in processing natural language. To tackle these difficul-
ties, different strategies have been explored to combine textual and financial data depending
on the specific problem. From this cross-section of methodologies and datasets presented in
the analysis we can distil some conclusions.

Graphical Gaussian models have proven effective in investigating networks of agents fo-
cusing on their connections and mutual correlations. The systemic view that they offer is very
useful for systemic risk analysis. In fact, it allows to quantify and consider network effects
without requiring too many assumptions on the network structure which often is unknown.

Topic models are very useful for inspecting large text corpora and tracking thematics
across time and space dimensions. They are a key tool to understand the composition and
characteristics of documents, especially when the corpora are so large that manual inspection
is not feasible. In fact, they allow to quickly retrieve the main discussion topics and how they
are distributed across the documents. They also allow to group similar documents in clusters
and hierarchically organize a collection of texts. Moreover, structural topic models allow to
directly take into account additional categorical and continuous variable in the topic recovery
process further expanding the possibilities of slicing and dicing the data. For example, adding
a time, space or company dimension allows to follow how the discussion topics evolve over
time or across different countries and companies.

Deep learning models have given very good results in natural language processing and
for classification over high dimensional input space. Their expressive power coupled with
the multitude of different architectures available, allows to cover many types of problems.
In this work they have been applied for document vector representation, sentiment analysis
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and classification. When the data availability allows their use, they are a sound choice for
handling textual data. In fact, their good performances on high dimensional input spaces
like text where each word of the vocabulary can be considered as a variable and they highly
non-linear nature allows to model the complexity of natural language.

It’s interesting to discuss also the information content of the analyzed types of datasets
regarding systemic risk and bank supervision. While each problem is characterized by dif-
ferent data needs, we can draw some useful conclusion on the broad information content of
the different data sources and the technical challenges involved in their exploitation.

We examined stocks, macroeconomics and balance sheets data among the structured ones
while news articles and micro-blogging texts (Twitter) among the unstructured ones. The re-
search evidences that these data sources hold useful information for systemic risk and bank
supervision even if used separately and that their combination has shown to improve perfor-
mances and problem understanding.

Stock data resulted very helpful for analysis that primarily ground on raw market sen-
timent towards financial institutions. This has been the case both when investigating corre-
lations and network effects among the different institutions and when exploring the relation
among market and crowd sentiment. They can be regarded as one of the main building blocks
of systemic risk and bank supervision related analysis given the markets’ efficiency and ef-
fectiveness in representing companies market values. They allow to perform analysis with an
ample timespan dating back far in time for many institutions.

Macroeconomic and balance sheets data allow to include a structural point of view into
the analysis. They have proven useful by carrying statistics on the financial institutions’
fundamentals and on the environment in which they operate (e.g. country, economic con-
juncture). Their information content complements both market and news data offering a
different perspective of the same actors. Many aspects of bank supervision depend on and
reflect themselves directly on banks balance sheets structures and indirectly on macroeco-
nomic conditions. From a technical point of view when integrating them with other data
types there is to consider the lower frequency (e.g. compared to stock data) and the possible
discrepancies among different time periods, geographies and institutions. It is especially true
for balance sheet data where differences in accounting regulations or practices can create
misalignments in the data. Despite all these technical complications to overcome, the com-
bination of these information with other types of data like news has shown very promising
results.

News data in general hold an information content that it’s complementary to financial
structured datasets. As the word says, they regard new events and recent changes that, es-
pecially in economics, can act as market drivers. This is true also for systemic risk and
bank supervision, where rumours and news regarding financial institutions and the economy
impact the financial system stability. They are very interesting for their timeliness and fre-
quency which virtually allows to capture information as soon as it’s generated for the public
or while it’s still propagating. Not only, it’s also appealing from a supervisory point of view
to track the thematics around which the financial discussions gravitate. This in fact, allows
to reconstruct a picture of the relevant topics across time, geographies or other variables that
can evidence elements of contagion and network effects.

Twitter data share many characteristics with news data and they could be considered in
some sense a subset of them. From a technical point of view, tweets provide both advan-
tages and disadvantages compared to classic news. On one side they consist of shorter and
simpler texts focusing only on one argument (for the majority). On the other side the twit-
ter jargon is more difficult to interpret due to slang, abbreviations and implied context. A
fascinating aspect of twitter is that it captures a multitude of opinions from every user that
interacts on a certain discussion topic. While this plurality can introduce some noise, it al-
lows also to weight the different opinions and sentiment of the crowd towards an argument.
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Regarding contagion and systemic risk this can be particularly useful to gauge the sentiment
of the crowd and of the economic operators towards financial institutions and themes that can
impact financial stability.

Another aspect to be taken in consideration when analysing twitter data, and other tex-
tual data sources, is the language plurality. Both tweets and news regarding a topic can be of
mixed languages, each one of with its own specificities and required models. In the economic
domain, thanks to its internationality, this aspect is mitigated and most of the relevant events
are covered also in English by the news providers. Anyway, local and national related events
often are better covered and more extensively discussed in the local language. Considering
this, an additional barrier to the interpretation of textual data is the dataset and resources
availability for the different languages. Widely spoken languages like English, Spanish and
Chinese have an advantage over the others in these terms. In fact, in addition to the fact that
the interpretation of natural language from machines is an open research field, languages with
fewer and smaller labelled dataset available are disadvantaged due to the higher difficulty in
training models. For this reason, since many of the works presented in this manuscript make
use of sentiment analysis, in the last chapter it has been developed a sentiment classification
tool for Italian. Sentiment has been used to interpret and add structure to the textual data
(in terms of positive and negative sentiment towards a subject) thus, it is of relevant impor-
tance having a model that reliably performs this classification. For this task the use of deep
learning models based on word vectors representation has shown very good results. With
the application of deep learning in the last years there have been great developments in the
natural language processing field, still the interpretation of unstructured text is an unsolved
problem. Looking ahead an important role will be played by unsupervised learning models
that leverage unlabelled datasets. These models in fact, help reducing the gap between lan-
guages with many labelled datasets available and those without and hold promising results
for the future. This aspect it’s even more relevant for studies that combine textual data with
other data types in specific domains, like finance. In these cases, in fact, it’s even more rare
to have access to large labelled textual dataset on the specific domain.

The investigation of the aforementioned models in combination with the considered data
sources has allowed to develop different useful methodologies within the domains of sys-
temic risk and bank supervision. The combination of market and tweet data in graphical
models in Chapter 3 has enabled to develop a systemic risk estimation model that has been
applied to the Italian banking system. The use of a fast inference algorithm for graphi-
cal models in Chapter 4 has brought to a framework for relating information theory mea-
sures derived from graphical models to financial stress indexes. The application of Structural
Topic Models to a dataset of financial news in Chapter 5 enabled to the track the evolution
of thematics over time and follow their spreading among countries. The Granger Causal-
ity analysis performed in Chapter 6 between banks market data and tweets sentiment data
has shed light on the mutual influence between the two where still market data seem to be
prevalent. The combination of news data with bank, sector and macroeconomic level data in
Chapter 7 allowed to improve bank distress prediction performance. Finally, the sentiment
analysis model develop in Chapter 8 could be a tool to ease similar researches where Italian
sentiment analysis is used.

To conclude, we had many positive evidences on the benefits of integrating different
types of data, in particular from the inclusion of textual data sources. The complexity of
today economic interactions is such that the phenomena are better explained when consid-
ered from multiple points of view. Selecting complementary data sources and integrating
them in the analysis allows to benefit from this plurality. We believe that the integration of
different data types will be an important area of research and applications for the economic
domain (also in the general field of machine learning research) in the years to come. The
increasing availability of data and computational methods will allow to better exploit the
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complementary information contained in multiple data types. Considering our specific case,
many improvements can still be achieved in the interpretation of text. In this regard, the pro-
gresses achieved during the last years in the NLP field and the speed at which new ideas are
developed are extremely encouraging to further pursue and expand this research direction.
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