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Preface 
 

Brain modeling is a fast-growing trend in neuroscience and medicine because it leads to much more 
accurate prediction of brain activity with several applications, such as deepening the knowledge of 
neuronal networks dynamics and defining ad-hoc treatment paving the way for personalized 
medicine. To implement a digital counterpart of the brain, a so-called brain digital twin, the inclusion 
of constraints from connectivity and functions represents a crucial point. Thus, the development of 
region-specific models has taken hold and it currently represents a challenge in neuroscience still far 
to be completed. Furthermore, brain is a multiscale system whose dynamics can be approached from 
microscale (i.e., neuron activity) to macroscale (i.e., cerebral network activity). In the perspective of 
building up a real brain digital twin, these domains should inform each other, integrating microscale 
biology grounded features in whole-brain dynamics simulators (bottom-up strategy) and using whole-
brain simulated activity to infer underlying neuronal states (top-down strategy).  

The present thesis introduces the first biology grounded model of the cerebellum that integrates a 
strong knowledge of its specific biological and physiological features. Mean field formalism, based 
on mean field approximation, was chosen to build up a mesoscale model of the cerebellum bridging 
the gap between micro and macroscale. This thesis aimed to provide a reliable model for a deep 
insight into cerebellar activity and enough flexible to be easily integrated into already validated 
whole-brain simulators improving the simulations of experimental large-scale recordings, such as 
electroencephalography and functional magnetic resonance imaging. 

The aim of this Preface is to provide a key to drive readers through the many introduced themes, in 
order to contextualize our mean field model of the cerebellum, which is intended to be part of the 
new generation region-specific models developed with a bottom-up approach. 

Chapter 1 provides an overview of the biology, anatomy, and functions of the cerebellum with a 
focus on its multi-layer organization addressed from the microscale domain, i.e., the specific neurons 
type, to the macroscale with the outline of the cerebro-cerebellar loops, also clarifying why an 
accurate model of the cerebellum must be included into a brain digital twin. The biological 
background is contextualized in the computational one, introducing modeling strategies from virtual 
neurons to virtual brains. Furthermore, Chapter 1 includes a mini review of the simulators with their 
technical specifics and simulation targets to explain how to address practically the multiscale complex 
issue of the construction of a brain digital twin. Mean field modeling strategy is mentioned as an 
advantageous approach to link microscale to macroscale, outlining the rationale of the choice of this 
reliable formalism to develop our multi-layer model of the cerebellum.  

This represents the introduction for Chapter 2 which addresses the complex mean field formalism, 
providing a description at-a-glance of the physics theory, and of some applications to tackle decision 
making challenges in very different domain, ranging from economy to analyze the trade markets, to 
the epidemiology to predict the evolution of the COVID-19 outbreak. Further, the focus is moved on 
the master equation of mean field approach, as explained in El Boustani and Destexhe, 2009, which 
provides an effective way to use mean field formalism for neural network simulations. Our work 
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relied on this formalism and took inspiration from the heuristic approach to the master equation 
explained by Zerlaut et al., 2016, 2018. The core of this formalism is the semi-analytic approach to 
compute a transfer function, which is a mathematical construct taking as input the presynaptic activity 
and providing in output the postsynaptic activity. This semi-analytic approach presents high 
complexity and cannot be analytically solvable. A heuristic approach explained in Zerlaut et al. 2018 
allows to translate microscale properties to the mean field domain in an effective way, as 
demonstrated by already implemented generical cortical mean field. We adopted this formalism as 
basis for the development of the multi-layer MF of the cerebellum to provide an accurate insight on 
cerebellar activity and a model that can be easily integrated in whole-brain dynamics simulators, 
replacing current generic mean field models with region-specific ones. 

Chapter 3 is the core of the work. The development of our MF model is detailed from 
conceptualization to implementation, towards to the first applications. It is to note that the master 
formalism and the heuristic approach were the starting points from which some changes were 
implemented to tailor the formalism on the specific characteristics of the cerebellum, such as the 
multi-layer structure of its cortex. Furthermore, our pipeline could be seen as a general framework 
that could be extended to cortical and subcortical regions whose activity can be simulated more 
accurately with a multi-layer network. 

Chapter 4 takes the stock of the entire work and points out the limits and the relevance of the multi-
layer cerebellar MF model. The impact of the cerebellum on whole-brain dynamics has been 
demonstrated in resting state functional networks, as presented in our previous work (Palesi F., 
Lorenzi R.M., Casellato C., et al., 2020)1 Furthermore, with an ongoing preliminary study we 
assessed that the cerebellum influences the activity of other brain regions during task performance, 
demonstrating to be a causal direct influence on generating brain-dynamics. Taking together these 
results, it is crystal clear the need of a model specific for the cerebellum into whole-brain dynamics 
simulator. In parallel, we are working on a “pathological cerebellum”, tailoring our model on 
pathological data to simulate altered activity with the perspective of tuning digital brain twin on 
specific pathologies to achieve real subject-specific treatments, making a definitive step ahead in 
personalized medicine. 
  

 

1Reference of our previous work: Palesi F., Lorenzi R.M., Casellato C., et al. (2020). The Importance of Cerebellar Connectivity on Simulated Brain 
Dynamics. Front. Cell. Neurosci. 14, 1–11. doi:10.3389/fncel.2020.00240.  
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Abstract 
 
Brain modeling constantly evolves to improve the accuracy of the simulated brain dynamics with the 
ambitious aim to build a digital twin of the brain. Specific models tuned on brain regions specific 
features empower the brain simulations introducing bottom-up physiology properties into data-driven 
simulators. Despite the cerebellum contains 80 % of the neurons and is deeply involved in a wide 
range of functions, from sensorimotor to cognitive ones, a specific cerebellar model is still missing. 
Furthermore, its quasi-crystalline multi-layer circuitry deeply differs from the cerebral cortical one, 
therefore is hard to imagine a unique general model suitable for the realistic simulation of both 
cerebellar and cerebral cortex.  
The present thesis tackles the challenge of developing a specific model for the cerebellum. 
Specifically, multi-neuron multi-layer mean field (MF) model of the cerebellar network, including 
Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells, was implemented, and 
validated against experimental data and the corresponding spiking neural network microcircuit 
model. The cerebellar MF model was built using a system of interdependent equations, where the 
single neuronal populations and topological parameters were captured by neuron-specific inter-
dependent Transfer Functions. The model time resolution was optimized using Local Field Potentials 
recorded experimentally with high-density multielectrode array from acute mouse cerebellar slices. 
The present MF model satisfactorily captured the average discharge of different microcircuit neuronal 
populations in response to various input patterns and was able to predict the changes in Purkinje Cells 
firing patterns occurring in specific behavioral conditions: cortical plasticity mapping, which drives 
learning in associative tasks, and Molecular Layer Interneurons feed-forward inhibition, which 
controls Purkinje Cells activity patterns.  
The cerebellar multi-layer MF model thus provides a computationally efficient tool that will allow to 
investigate the causal relationship between microscopic neuronal properties and ensemble brain 
activity in health and pathological conditions. Furthermore, preliminary attempts to simulate a 
pathological cerebellum were done in the perspective of introducing our multi-layer cerebellar MF 
model in whole-brain simulators to realize patient-specific treatments, moving ahead towards 
personalized medicine. Two preliminary works assessed the relevant impact of the cerebellum on 
whole-brain dynamics and its role in modulating complex responses in causal connected cerebral 
regions, confirming that a specific model is required to further investigate the cerebellum-on-
cerebrum influence. 
The framework presented in this thesis allows to develop a multi-layer MF model depicting the 
features of a specific brain region (e.g., cerebellum, basal ganglia), in order to define a general 
strategy to build up a pool of biology grounded MF models for computationally feasible simulations. 
Interconnected bottom-up MF models integrated in large-scale simulators would capture specific 
features of different brain regions, while the applications of a virtual brain would have a substantial 
impact on the reality ranging from the characterization of neurobiological processes, subject-specific 
preoperative plans, and development of neuro-prosthetic devices. 
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Chapter 1 

 

Multi-scale insight into the Cerebellum 
for a multi-scale brain dynamic 

simulation 
 

In humans the cerebral cortex represents 82% of total brain mass holding 16 billion neurons, while 
the cerebellum covers 10% of total brain mass holding 69 billion neurons (Herculano-Houzel, 2009). 
Thus, despite the volumetric preponderance of the cerebral cortex, 80% of all brain neurons in humans 
are in the cerebellum therefore the nickname “little brain” is broadly justified. Furthermore, the 
numerosity of neurons in the cerebral and cerebellar cortices varies proportionally, keeping a ratio of 
3-4 neurons in the cerebellum for every neuron in the cerebral cortex (Herculano-Houzel, 2010). 
Despite the nickname “little brain”, the anatomy of the cerebellum deeply differs from the cerebrum 
structures both in term of neuronal population and cortical circuitry. Moreover, the “little brain” and 
the brain are deeply interconnected in long-range cerebro-cerebellar loops to carry out sensorimotor 
and cognitive functions (Palesi et al., 2015, 2017, 2020; Castellazzi et al., 2018; Casiraghi et al., 
2019). 

1.1 The anatomy of the cerebellum and the cerebro-
cerebellar loop  
In this chapter, the anatomy of the cerebellum is described at different scales following a bottom-up 
approach, that is from micro- to macroscale: 

• neuron types (microscale) 
• cerebellar cortex circuitry (mesoscale) 
• cerebellar cortex anatomy and connectivity with cerebrum (macroscale). 

1.1.1 Neurons of the cerebellar cortex 
The main neurons constituting the cerebellar cortex are Granule Cells (GrC), Unipolar Brush Cells 
(UBC), Golgi Cells (GoC), Lugaro Cells (LC), Basket Cells (BC), Stellate Cells (SC), and Purkinje 
Cells (PC). Their main features are reported in Table 1.1. 
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Table 1. 1) Features of cerebellar neuronal populations 

Cerebellar cortex network Neurons type Soma diameter 
[μm] 

Autorhythmic 
[Hz] 

Synaptic 
connections 

 GrC 
D’Angelo 2011,  
Masoli et al., 2017, 
Palay and Chan-
Palay, 1974a 

5 - 8 -- mfs (e), UBC (e), 
GoC (i) 

UBC 
Kim et al., 2012;  
Mugnaini et al., 2011 

10 -- mf (e), BC (i) 

GoC 
Solinas et al., 2007; 
D’Angelo et al., 
2013, Palay and 
Chan-Palay, 1974c 

10 - 30 5 - 15 mfs (e), GrC (e), 
LC (e), GoC (i) 

LC 
Melik-Musyan and 
Fanardzhyan, 2011 

Ito, 2014, Palay and 
Chan-Palay, 1974d 

16 and 9 
(elliptic soma)  

5 - 15 BC (i) 

BC 
Galliano et al., 2013; 
Lennon et al., 2014, 
Palay and Chan-
Palay, 1974b 

10-15 7 - 10 GrC pfs (e), LC (e), 
BC (i) 

SC 
Galliano et al., 2013; 
Lennon et al., 2014, 
Palay and Chan-
Palay, 1974f 

5-10 7 - 10 GrC pfs (e), LC (e), 
SC (i) 

PC 
Lennon et al., 2014; 
Masoli and 
D’Angelo, 2017, 
Palay and Chan-
Palay, 1974e 

35 - 60 40 - 80 GrC (e), SC (i), BC 
(i) 

GrC	=	granule	cells	(red),	GoC	=	Golgi	cells	(blu),	BC	=	basket	cells	(yellow),	SC	=	stellate	cells	(orange),	PC	=	Purkinje	cells	(green),	UBC	=	

unipolar	brush	cells,	LC	=	lugaro	cells;	mfs	=	mossy	fibers	(black);	LC	and	UBC	are	not	shown	in	the	graphics.	pf	=	parallel	fibers	from	GrC	to	

the	other	cells	(see	Figure	1.1);	(e)	and	(i)	indicates	excitatory	and	inhibitory	connections	respectively.		
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GrCs are the smallest neurons (5–8 µm of soma diameter) and the most numerous cells in the brain 
(1010–1011 in humans) (Palay and Chan-Palay, 1974a; Ito, 2014). GrCs axons ascend perpendicularly 
to the cerebellar cortical surface (ascending axons) and bifurcate into parallel fibers. GrCs are 
excitatory neurons using glutamate as excitatory neurotransmitter and they don’t present 
autorhythmic (D’Angelo et al., 2001; Masoli et al., 2017).  

GoCs present a peculiar structure with apical and basal dendrites (Masoli et al., 2020b) and a soma 
of about 10 – 30 µm (Palay and Chan-Palay, 1974c). They are inhibitory neurons using both GABA 
and glycine as neurotransmitter (Galliano et al., 2010). The GoCs autorhythmic is 5-15 Hz (Solinas 
et al., 2007; D’Angelo et al., 2013). 

UBCs are named after a single dendrite forming a “brush” connected to mossy fibers with a soma of 
about 10 µm (Kim et al., 2012). They are excitatory neurons expressing calretinin that is a calcium 
driving protein involved in calcium signals (Mugnaini and Floris, 1994; Mugnaini et al., 2011).  

LCs have a cigar-shaped cell body with a elliptic soma with diameters of 16 µm and 9 µm (Palay and 
Chan-Palay, 1974d), and long dendrites, emerging from its poles (Lainé and Axelrad, 1998; Melik-
Musyan and Fanardzhyan, 2004). They co-localize GABA and glycine and represent the main target 
of the serotoninergic plexus in the cerebellar cortex. They discharge spikes regularly at 5–15 Hz (Ito, 
2014). 

SCs and BCs are GABAergic neurons, namely producing the inhibitory transmitter GABA. SCs soma 
diameter is about 5-10 µm (Palay and Chan-Palay, 1974f), while BCs 10-15 µm (Palay and Chan-
Palay, 1974b). Despite the morphological difference, they are functionally similar, therefore they are 
grouped together forming the Molecular Layer Interneurons (MLIs). MLIs have an autorhythmic of 
about 8 Hz (Galliano et al., 2013; Lennon et al., 2014). 

PCs are the largest cells of the central nervous system in vertebrate. The soma diameter is about 30 - 
40 µm, namely 4 - 8 times the GrC one (Palay and Chan-Palay, 1974e). Their dendrites are flat and 
lay in the cortex looking like a pressed leaf. They are inhibitory GABA neurons with an autorhythmic 
at high frequencies of 40 – 80 Hz and they carry out the activity from the cerebellar cortex to deep 
cerebellar nuclei (McKay and Turner, 2005; Molineux et al., 2006; Lennon et al., 2014; Masoli and 
D’Angelo, 2017). 

Neurons are interconnected constituting the multi-layer organization of the cerebellar cortex shown 
in Figure 1.1 and detailed in the next section. 

1.1.2 Multi-layer circuit of the cerebellar cortex 
The cerebellar cortex is characterized by a quasi-crystalline geometry with a multi-layer organization 
(D’Angelo et al., 2016; D’Angelo, 2018). Three layers are clearly identifiable as shown in Figure 
1.1A: Granular layer (1), Molecular layer (2), and Purkinje layer (3). These three layers are 
interconnected building up the cerebellar multi-layer circuit schematized in Figure 1.1B.  

1. Granular layer. Made up of GrCs, GoCs, UBCs and LCs, it is the input stage of the cerebellum. 
Granular layer acts as a spatial-temporal filter of sensory inputs thanks to GoCs and GrCs oscillatory 



Chapter 1 

 6 

and resonant dynamics (Solinas et al., 2010; Prestori and Person, 2013). GrCs and GoCs receive input 
signals coming from mossy fibers. UBCs act as a booster system for the mossy fiber input to the 
GrCs. Inhibitory input is provided to GrCs by GoCs, both in feedforward and feedback loop. GoCs 
self-inhibited each other through gap junctions (Simões de Souza and De Schutter, 2011; Szoboszlay 
et al., 2016). Their activity can be modulated by LCs that are mainly silent, but they are the main 
target of the serotoninergic plexus in the cerebellar cortex, thus in presence of serotonin they shape 
not only the activity of GoCs, but also MLIs and PCs as well (Prestori et al., 2019). GrCs axons 
ascend to the Purkinje layer and Molecular layer where they bifurcate into parallel fibers conveying 
the excitatory input from the Granular layer to Purkinje layer and Molecular layer. Both ascending 
axons and parallel fibers make synaptic contact with PCs while only parallel fibers intercept MLIs. 

2. Molecular layer. It is populated by SCs in the upper part and by BCs in the deepest part at the 
edge of Purkinje layer. MLIs (SCs and BCs) are connected each other in a self-inhibitory loop. MLIs 
make synapses also with PCs, inhibiting PCs activity as follows: axons of SCs terminate on a single 
PC dendrite while BCs axon forms an axonal basket surrounding the soma of a series of PCs 
(D’Angelo, 2018). 

3. Purkinje layer. It is the sole output channel of the cerebellar cortex projecting the activity towards 
the deep cerebellar nuclei and it is spatially located in the middle of the circuit, between granular and 
molecular layer. In addition to the excitatory connections from GrCs and inhibitory input carried by 
MLIs, PCs are connected to the inferior olive cells located in the brainstem through a single climbing 
fiber that makes excitatory synapsis climbing around the extended arborization of PC dendritic tree 
(D’Angelo, 2011). 
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Figure 1. 1) Multi-layer organization of the cerebellar cortex. A) Sagittal histological view of a mouse 
cerebellar slice (Lackey et al., 2018). Cell bodies in Granular Layer was labeled using a Nissl stain (blue-
violet) and Purkinje cells with calbindin immunohistochemistry (brown). The geometry of mouse and human 
cerebellar is the same. B) Multi-layer cerebellar circuit (Cerminara et al., 2015) . Schematic view of the multi-
layer cerebellar cortex circuitry and the connections with deep cerebellar nuclei and brainstem through inferior 
olive cells. UBC = Unipolar Brush Cell. 

1.1.3 Anatomical parcellation of the cerebellar cortex 
The cerebellum is part of the brain located in the posterior cranial fossa (Figure 1.2 A, B, C) and it is 
connected to the brainstem through three pairs of peduncles: inferior, middle, and superior peduncles 
(Figure 1.2 E, F).  
The cerebellum is organized with an outer layer of gray matter constituting the cerebellar cortex, 
overlying a dense core of white matter embedding four deep cerebellar nuclei (DCN), i.e., the 
fastigial, globose, emboliform, and dentate (Figure 1.2 F). Dorsal view (Figure 1.2 F) shows two large 
hemispheres united by the midline vermis and the paravermis. The cortex is highly convoluted, 
forming narrow ridges (folia), and intervening sulci and fissures (Figure 1.2 A, D). The fissures divide 
the cerebellum in ten lobules commonly labeled with Roman numbers (I-X Figure 1.3 A). Primary 
fissure and posterolateral fissure are deepest two fissures (Figure 1.2 D) which divide the cerebellum 
into three lobes: the anterior, the posterior, and the flocculonodular lobe.  
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Figure 1. 2) Cerebellar anatomy in a nutshell. Top: Brain T1-weighted image from randomly chosen subject 
of the Human Connectome Project (https://www.humanconnectome.org/). A = sagittal view, B = coronal view, 
C = axial view. Cerebellum is located in the posterior cranial fossa and indicated with the pink arrow. Bottom: 
Anatomic chart of the cerebellum adapted from (Kandel et al., 2013): D = midsagittal view schematizes the 
folia and the primary fissure. E = ventral view showing the posterolateral fissure separating the flocculonodular 
lobe. The cerebellar peduncles are shown located in the middle part. F = dorsal view showing the vermis in 
the midline that divides the cerebellum in left and right hemispheres. Deep cerebellar nuclei (dentate in brown, 
interposed in red and fastigial in yellow) are highlighted, showing the different morphologies. 

1.1.4 Functional parcellation of the cerebellar cortex 
For many years the cerebellum owes its fame to its motor function but considering only this role 
became a narrow view of its impact on brain functions. Even the motor functional parcellation cannot 
be overlook, a functional division including also sensorimotor and cognitive function should be 
consider for a complete overview of the cerebellar functions. The most part of the afferent 
connections, i.e., those coming from the cerebral cortex and from the spine, terminates in the 
cerebellar cortex and is made up of climbing fibers targeting PCs or mossy fibers connected with the 
granular layer. Hemispheres, vermis and paravermis receive different afferent projections, so that 
they are not only anatomical but also functionally different. Based on the segregation of the input, 
the cerebellum could be divided into three main different functional areas: the vestibulocerebellum, 
the spinocerebellum, and the cerebrocerebellum (Figure 1.3 B).  

The vestibulocerebellum (or archicerebellum) is the phylogenetically oldest part of the cerebellum 
and it corresponds to the flocculonodular lobe (Li et al., 2019). Vestibulocerebellum receives inputs 
from the vestibular nuclei of the brainstem and its main functions are related to balance maintenance, 
eyes movement control and coordination of head-eye movements (Barmack and Yakhnitsa, 2013).  

Vermis and paravermis constitute the spinocerebellum (or paleocerebellum) that controls the 
movement executions and the muscle tone. It receives input directly from the spinal cord through the 
spinocerebellar tract, but also from the head and face through the trigeminocerebellar tract (Roostaei 
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et al., 2014). These two tracts contact different cerebellar areas: the spinocerebellar tract contacts 
lobule VIII, and the trigeminocerebellar tract primarily projects to lobule V and VI (Stoodley, 2012).  

The cerebellar hemispheres constitute the cerebrocerebellum (or neocerebellum) involved in planning 
and sensory guidance of the movements. Inputs are sent by many different cerebral areas including 
the sensory-motor, premotor and parietal cortices via pontine nuclei by forming the so called 
corticopontine tract. 

 

 

Figure 1. 3) Cerebellar lobes, lobules, and functional regions. A) Unfolded view of the cerebellum with 
lobules labelled with romans numbers from I to X (D’Mello and Stoodley, 2015). Vermis in the midline divides 
the cerebellum into two hemispheres. Primary fissure separates anterior lobe (red) and posterior lobe (yellow). 
Flocculonodular lobe (violet) is separated by posterior (or posterolateral) fissure. B) Phylogenetic division of 
the cerebellum. Three main cerebellar regions are defined according to different functions and afferent 
pathways: vestibulocerebellum (flocculonodular lobe – dark pink) that receives vestibular input, 
spinocerebellum (vermis – gray, paravermis – light pink) that receives spinal, trigeminal, and vestibular inputs, 
cerebrocerebellum (lateral hemispheres – pink) that receives input carried by the corticopontine tract. Figure 
adapted from (Marsden, 2018). 

The division in vestibulocerebellum, spinocerebellum and cerebrocerebellum is not the sole 
functional parcellation of the cerebellum. Generally, sensory functions distribution can be 
schematized with a gradient map showing sensorimotor functions located mainly in the midline of 
the cerebellum and cognitive ones that become more prominent moving towards the lateral and 



Chapter 1 

 10 

posterior hemispheres (Figure 1.4 A). Specifically, considering the associative learning, which is the 
ability to learn how different events are related each other, the vermis is more involved in emotional 
processing while the hemispheres in cognition (Figure 1.4 B) (Klein et al., 2016). Thus, the 
cerebellum results involved in many non-motor functions like sensorial, emotional, and high-
cognitive tasks, such as action selection and behavioral switching. Functional Magnetic Resonance 
Imaging (fMRI) studies on the cognitive processes have unveiled cluster of activated cerebellar 
regions as lobules I-VI and Crus I-II (Castellazzi et al., 2018). Furthermore, lobule VI and Crus I-II 
resulted activated also in mirroring processes during action observation tasks (Casiraghi et al., 2019). 

 

Figure 1. 4) Multi-skilled Cerebellum. Unfolded maps of the functional parcellation (Klein et al., 2016) A) 
Map of sensorimotor-to-cognitive function distribution. For clarity, only right cerebellum is colored. 
Sensorimotor areas (lighter gray) are located mainly in the vermis, right hemisphere (lobules I, II-III, IV), 
while cognitive functions (dark gray) are distributed in the posterior lobe (lobule VIIa, Crus I, Crus II). Also 
the cerebellar nuclei present a functional gradient with fastigial and interposed (Emboliform + Globose) nuclei 
more involved in sensorimotor function, and dentate nuclei more involved in cognition. B) – Associative 
learning in the cerebellum. Vermis (medial part) acts as emotional processor, paravermis (intermediate part) 
in motor functions and hemispheres (lateral part) in cognition. 

On top of the afferent connections, also the efferent cerebellar pathways suggested a multifaceted 
role of the cerebellum. The output from the cerebellar cortex, are carried solely by the axons of 
cortical PCs that terminate into the deep cerebellar nuclei which project, in turn, directly towards 
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thalamus or towards red nucleus and then thalamus. The target of the cerebellar output is not only the 
motor and premotor cerebral area but also the prefrontal and associative regions. 

According to these physiological evidences, the cerebellum acts as a multi-skilled processor receiving 
input from different afferent pathways and sending output to many cortical regions. This role is made 
possible because the cerebellum results embedded into several loops with the cerebrum, playing an 
important role in whole-brain dynamics modulation. 

1.1.5 Cerebro-cerebellar loops 
In the past, the cerebellum was studied integrated in cerebro-cerebellar loops solely as a co-processor 
of the movement but over the years this narrow view has been gradually abandoned thanks to the 
evidence about the wide range of functions executed by the cerebellum (see section 1.1.4). Therefore, 
not only the motor loop is in the spotlight, but also emotional and cognitive loops have gained more 
and more popularity amongst the neuroscientists to investigate the cerebellar role in health and 
neurodegenerative pathologies (Rogers et al., 2011; Castellazzi et al., 2014; Palesi et al., 2015, 2020; 
Pizzarotti et al., 2020). The cerebro-cerebellar loops are detailed below to give a structural and 
functional overview of such long-range connections. 

Motor and somatosensory loop. Cerebellum projects both to motor and somatosensory cerebral 
areas. Cerebellar outputs project to the primary motor area passing through the ventrolateral thalamic 
nucleus, while outputs to the primary somatosensory area are conveyed through the intralaminar 
nuclei projecting to intragranular and superficial layers. Cerebellum impacts on motor cortex activity 
by assisting the cerebral cortex in transforming the sensory input into motor-oriented through the 
cerebello-thalamo-cortical projection (Luft et al., 2005). Furthermore the posterior cerebellum 
modulates the motor cortex excitability in response to emotional stimuli (Ferrari et al., 2021). In 
addition, embedded in this loop, cerebellum acts as a machine for the fast spatio-temporal integration 
of the inputs perceiving the reality continuously. It is interconnected with premotor and 
supplementary motor areas proving to be involved into motor planning as a forward controller 
(Rouiller et al., 1994; Dum and Strick, 2003). 

Oculomotor loop. Oculomotor regulation involves several cortical and subcortical areas 
participating in automatic and cognitive control processes. The cerebellum is involved in the control 
of saccadic (to search a static target) and smooth pursuit (to track moving targets) eye movements 
which are thought to be the outcomes of a single sensory-motor process to orient the visual axis. 
Lateral and posterior cerebellum and the vermis are involved in control of ocular saccades (Doron et 
al., 2010). Furthermore, the fastigial oculomotor region resulted to be deeply involved in both 
saccades and smooth pursuit eye movements. It has been recently demonstrated that the cerebellum 
is strongly connected with the precentral gyrus and the superior frontal gyrus which take part in motor 
and oculomotor processes as well as the processing of spatial working memory (du Boisgueheneuc 
et al., 2006). Hence, the cerebellum resulted to be deeply integrated in processes controlling both the 
motor and cognitive components of eye movements. 

Parietal loop. Embedded in the parietal loop, the cerebellum is involved in visuo-motor and visuo-
attentional control. It is closely connected to the parietal lobe, directly sending input to the inferior 
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parietal lobe through the dentate nucleus. Further, secondary cerebellar afferents to the anterior 
intraparietal area are sent by motor and premotor areas (Clower et al., 2005). The anterior intraparietal 
area becomes activated in response to the sight of an object, as well as in reach-to-grasp arm 
movements (Tunik et al., 2005), and in the creation of cross modal sensorial representations of objects 
(Grefkes et al., 2002). Cerebellum also targets the ventral lateral intraparietal area crucial for visual 
attentional control, and medial intraparietal area involved in visuo-motor coordinate transformation 
(Prevosto et al., 2010). Medial intraparietal area sends strong projections to parahippocampal regions 
and, together with the cerebellum, is also included in complex loops with subcortical areas as the 
thalamus and basal ganglia (Grefkes et al., 2004). 

Prefrontal loop. The cerebellum takes part in cognitive and working memory control and procedural 
learning. It is reciprocally connected through the thalamus (Middleton and Strick, 2001) with the 
medial prefrontal cortex, which is involved in saccades and cognitive control (Watson et al., 2009), 
and the dorsolateral prefrontal cortex that is responsible of working memory control, mental 
preparation of imminent actions (Pochon et al., 2001), and procedural learning (Kelly and Strick, 
2003). Furthermore, cerebellum is also connected to the anterior prefrontal cortex whose functions 
are not completely understood yet, but it might be involved in the integration of multiple distinct 
cognitive processes during goal-directed complex behaviors (Krienen and Buckner, 2009). 

Temporal loop. The connections between cerebellum and temporal areas, including the hippocampus 
and amygdala, are not still completely clarified. Negligible contribution to the corticopontine fiber 
tract has been found (Ramnani et al., 2006) suggesting that the cerebellum is unlikely to receive 
strong direct afferents from temporal areas. Nevertheless, cerebellar fastigial nuclei in monkeys and 
cats seem to project to several temporal areas, like the hippocampus and amygdala. A dynamic causal 
modeling proved a strong and bidirectional connection between the cerebellum and the lateral anterior 
temporal lobe during the execution of a cognitive task (Booth et al., 2007). More extensive studies 
are required to elucidate the pattern of connectivity, but it is reasonable to speculate on a functional 
interplay between cerebellum and temporal areas. 

Loops with basal ganglia and limbic system. The cerebellum has recently been shown to form 
bidirectional connections with the basal ganglia. The cerebellar efferent pathway starts from the 
dentate nucleus, goes through the thalamus, and reaches the striatum. Backward pathway starts from 
the subthalamic nucleus and ends in the cerebellar cortex, through the pontine nuclei (Bostan et al., 
2010). The cerebellar-limbic system loop is still under investigation. Evidence from anatomical 
studies suggests cerebellar connections with cortical and subcortical areas of the limbic system, i.e., 
amygdala, hippocampus, septal nuclei, and hypothalamus. Furthermore, meta-analytic studies on 
functional neuroimaging delineated distinct regions of the so-called “limbic” cerebellum, pointing at 
medial (vermis and para-vermis) and posterior lateral cerebellar portions (Crus I and Crus II – see 
Figure 3 A) as relevant parts activated during the emotional processing (Stoodley, 2012). 
Interestingly, cerebellar functional activation is not recorded only for the regulation of mood and 
emotion, but also in emotive information processing that is a mechanism required for appropriate 
behavioral responses (D’Angelo, 2019). 

Given all these considerations, the integration of the cerebellum in several loops deeply different in 
terms of functions supports that the view of the cerebellum as co-processor of movement is reductive. 
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Hence, it is limiting to think about brain activity without embedding the cerebro-cerebellar loop in 
brain network.  

1.2 The brain as a multiscale problem  
Studying the activity of the brain is an ongoing and remarkable challenge due to all the biological 
features that play a role in generating dynamics. These features can be described at different levels of 
detail: single cell features (e.g., membrane capacitance and membrane time constant) operate at 
microscale, synaptic connectivity parameters (e.g., synaptic time decay and synaptic convergence) 
refer to mesoscale, and long-range connectivity parameters (e.g., directionality and causality of 
connections) between different brain regions are defined at macroscale. Since the brain presents this 
multiscale organization, the challenge of studying the multifaceted brain dynamics should be 
addressed with a multiscale approach. The following sections provide a description of the main 
multiscale approaches, i.e., bottom-up and top-down ones (section 1.2.1), together with the models 
(section 1.2.2) developed and integrated with simulation software (section 1.2.3). 

1.2.1 Bottom-up and top-down approaches 
Bottom-up approaches start from physiological and biological knowledge of the elementary 
mechanisms that are responsible of a certain observation (e.g., from the knowledge of neuronal 
microcircuitry physiology to the overall brain activity), whereas top-down approaches are aimed at 
inferring the hidden causes starting from recorded data that characterize, structurally and/or 
functionally, the neural system (e.g., from fMRI recordings to underlying neuronal dynamics) (Figure 
1.5). At a first sight, bottom-up and top-down might seem dichotomic approaches because top-down 
approach is focused on the overall brain behavior, while the bottom-up on neural dynamics. However, 
their integration could lead to an effective brain dynamic simulation that would be achieve by 
combining the physiological knowledge about the neuronal microcircuit with whole-brain data in 
large-scale simulators, such as The Virtual Brain (TVB) and Dynamic Causal Modelling (DCM) (see 
section 1.2.3). An effective way to bring the bottom-up knowledge in top-down simulators could be 
the integration of biologically validated mesoscale models that provide a link between microscale 
and macroscale dynamics. This strategy merges knowledge of different scales by combining different 
approaches. For example, mean field (MF) models, which will be introduced in section 1.2.3 and 
formally described in section 2.1, are used in whole-brain simulators, and describe mesoscale brain 
activity by averaging microscopic structural and functional properties, hence partially bridging the 
gap between micro/mesoscale spiking dynamics and macroscale activity. Developing a biology 
grounded MF model with a bottom-up approach and plugging it into whole-brain dynamic simulators 
would permit to integrate bottom-up with top-down approaches. 

Constructing a reliable virtual brain trying to capture its polyhedric faces, is an active research field 
aimed at studying brain dynamics at different scales. To ensure the biological reliability of the digital 
dynamics, the underlying models should capture the physiological peculiarities of the target brain 
regions. In this context, first attempts to specify models for the subcortical structure have been 
implemented (van Albada and Robinson, 2009; van Wijk et al., 2018), but a MF model specifically 
tailored on the cerebellum is missing. Once the models are integrated in the simulators, they will 
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capture the peculiarities of the different brain regions and the applications of a digital brain would 
have a substantial impact on the reality ranging from the characterization of neurobiological 
processes, subject-specific preoperative plans, and development of neuro-prosthetic devices. 

 

Figure 1. 5) Multiscale Brain, bottom-up & top-down approaches. The bottom-up approach starts from the 
knowledge of the elementary causes (e.g., neuron dynamic) that are responsible of a certain observation (e.g., 
simulated whole-brain dynamic), whereas the top-down pathway aims to infer the hidden causes (e.g., 
underlying neuron dynamic) of the ensemble observation (e.g., whole-brain activity). Bringing the bottom-up 
knowledge in top-down simulators as TVB is of crucial importance for the simulation of an effective virtual 
brain, and MF models are an effective way to bridge the gap between micro and macroscale 

1.2.2 Modelling: the theory from virtual neurons to virtual brains 
Neurons are the unit of the brain, thus in the context of whole-brain dynamics simulation, neuron 
models represent the microscale. At this level of detail, the simulation of single neuron activity 
reproduces neurons dynamics and how the connections among neurons influence those dynamics. A 
fundamental aspect that cannot be neglected is that, as for a biological neuron, also a virtual neuron 
should account for the presynaptic influence, i.e., the presynaptic currents, since virtual neurons 
embedded in a network communicate through synapses as the biological ones (Figure 1.6). In biology, 
synapses enable the information exchange between two neuronal cells. Specifically, the axonal 
terminal of one cell is separated from the postsynaptic receptors by the synaptic cleft. According to 
receptors position, synapsis can be differently classified as axodentritic, axosomatic or axoaxonic 
synapses, in which postsynaptic receptors are localized on dendrites, on the cell body or on the axon, 
respectively. Despite this morphological distinction, the interneuronal communication is the same: 
the presynaptic terminal releases vesicles of neurotransmitters that cross the synaptic cleft and bind 
postsynaptic receptors, determining a current influx into the postsynaptic neuron. Consequently, the 
postsynaptic neuron voltage changes rely on the sum of synaptic currents, and it may reach the spiking 
voltage threshold determining the postsynaptic neuronal firing. Importantly, the synaptic activity can 
be described with mathematical models and, along with virtual neurons equations, they can be 
classified in current-based (CUBA) and conductance-based (COBA) models.  
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CUBA model describes a single synaptic current, while COBA is an advanced approach to compute 
the synaptic current using conductance equations that can be specific for each type of synaptic 
receptor, enabling to separate different contributions. Thus, the difference between CUBA and COBA 
models is in the definitions of the synaptic current Isyn.  

For CUBA, Isyn is proportional to the synaptic connection strength yielding (Cavallari et al., 2014): 

𝐼!"#(𝑡) = 	 𝐽!"#𝑠!"#(𝑡) 

( 1 ) 

With Jsyn = synaptic efficacy (pA), i.e., the strength of synaptic connection, and ssyn(t) = time-
dependent function of the synapsis activity. For COBA model, ssyn is still included to model the 
synapsis kinetics but Isyn expression is written in term of the driving force (Cavallari et al., 2014): 

𝐼!"#(𝑡) = 	𝑔!"#𝑠!"#(𝑡)(𝐸(𝑡) − 𝐸$%&) 

( 2 ) 

Where gsyn = conductance (nS), and E(t) – Erev = driving force (mV) of the synaptic current including 
E(t) = membrane potential and Erev = reversal potential of that synapsis.  

Generally, CUBA models are largely used thanks to the relative simplicity of their mathematical 
formulation that admits an analytical closed form. COBA models have a more complicated 
mathematical expression that is difficult to treat analytically, requiring an approximated analytical 
approach. On the other hands, COBA are more biophysically-grounded (Kuhn et al., 2004) since they 
can reproduce more complex dynamics that are similar to intracellular in-vivo recordings (Destexhe 
et al., 2003).(Destexhe et al., 2003). Which is the best choice between COBA and CUBA is a query 
without a unique answer because it is a design choice depending on the final goal of the simulation. 
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Figure 1. 6) Virtual and biological synapses. A) COBA and CUBA models representing virtual synapses. 
Isyn = synaptic current, ssyn(t) = synaptic kinetics function. CUBA: Isyn is proportional to the synaptic efficacy 
Jsyn (pA). COBA: Isyn is proportional to the conductance gsyn (nS) and to the driving force ΔE (mV). B) 
Biological synapsis (modified from (Kapalka, 2010)) . The synaptic clef is the gap that separates the axon 
terminal button of the presynaptic neuron from receptors of the postsynaptic neuron. The vesicles in the 
presynaptic button release the neurotransmitter that flows through the synaptic clef towards the postsynaptic 
receptors determining a current influx Isyn into the postsynaptic neuron.  

Over the years, many COBA and CUBA models have been developed considering the neuron at 
different level of granularity. The multicompartmental strategy includes specific morphological 
features of each compartment and endows biology grounded models with high complexity. On the 
other hand, monocompartimental strategy collapses the morphological characteristic in a unique 
single compartment simplifying the model. In 1952 the popular Hodgkin-Huxley model was 
developed by A. L. Hodgkin and A. F. Huxley to describe the action potential propagation along 
nerves with a very fine resolution. Starting from the recordings in an axon of a giant squid, they 
developed a model that separated the membrane current into three components: the sodium, the 
potassium and the calcium current, considering the respective ionic channels as different 
compartment with specific parameters (Hodgkin and Huxley, 1952). Furthermore, the model was 
developed as COBA, with one driving force for each ionic current, achieving a higher level of realism 
that made the Hodgkin-Huxley model widely used in neuroscience even seventy years after (Brown, 
2022; Giannari and Astolfi, 2022). Moving to a lower level of granularity, the neuron morphology 
considering only the soma and the axon can be simplified with the so-called ball and stick model 
(Pettersen et al., 2011; Aspart et al., 2016). This bi-compartmental approach reduced the number of 
equations and parameters resulting in a convenient model for the computational implementation but 
still making possible to separate specific parameters that account for the different morphology of the 
soma and the dendrites (e.g., the diameter). This bi-compartmental design can be specified both with 
Leaky Integrate and Fire (LIF) models, which are developed as COBA or CUBA (Cavallari et al., 
2014; Peterson et al., 2015), but also with non-linear models like the COBA Adaptive Exponential 
(AdEx) (Cakan and Obermayer, 2020a).  
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Losing any morphological reference, a neuron can be simplified with a single compartment. This 
design strategy is at the basis of single-point neuron models that, despite at first sight it might seem 
an oversimplification, provide effective simulations including physiological parameters (e.g., the 
quantal synapses conductance and the synaptic time decay). Furthermore, this strategy leads to a 
significant reduction of the computational load required to reconstruct a neurons network, resulting 
in an advantageous balance between physiological properties and computational time. As for the 
bicompartmental strategy, single point neurons can be specified as single-point AdEx (Brette and 
Gerstner, 2005; Depannemaecker et al., 2020) or LIF neurons (Nordlie et al., 2010) but also as 
Extended-Generalized Leaky Integrate and Fire (E-GLIF) neurons, with COBA synapses (see section 
3.2.1 (Neuron model) ) commonly used to model cerebellar neuron types (Geminiani et al., 2018, 
2019a).  

So far, an overview of the modeling strategies has been provided to underline that each strategy can 
be implemented with different models. Wondering which approach is the best it is an ill-posed 
problem because it depends on the level of details required by the specific study. As an example, 
multicompartmental neuron models are a powerful tool but if the goal is to simulate mesoscale 
dynamics of a spiking network (order of nm or mm) they might be not the best choice because the 
computational load might be unaffordable, thus point neurons represent a more convenient strategy. 
When the goal of the simulation is to provide whole-brain dynamics, the computational load increases 
due to the complexity of the system made up of interconnected networks. In this framework, spiking 
networks made of spiking neuron led to a still too high computational complexity. Additionally, the 
recorded brain signals with in vivo non-invasive techniques, like electroencephalography (EEG), 
magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), are time-
continuous series, therefore a formalism producing a signal in the same domain allows direct 
comparison with these recordings. On top of these considerations, the biophysical properties 
expressed by single neurons and spiking network models should be considered to construct effective 
virtual brains. From the need to link the microscale of the single neuron model to the macroscale of 
whole-brain dynamics, mean field strategy represents an effective mesoscale tool. The principle is to 
construct a brain network in which each node is represented with MF. This strategy finds its root in 
physics (see section 2.1) and it is widely used in brain dynamics because it permits to bridge the gap 
between micro/mesoscale spiking dynamics and macroscale activity. MFs, indeed, underpin the 
simulation of whole-brain dynamics after being optimized on the spiking network activity, plugging 
the information from higher-resolution models into macroscale simulators. 

1.2.3 Simulation of virtual neurons and virtual brains 
The computational models developed so far are specialized in reproducing the brain dynamics at a 
certain scale. At microscale the goal is to simulate the firing rate of a single neuron, for mesoscale 
the target is the activity of a network representing a microcircuit, and macroscale aims to reproduce 
brain signals such as the recordings from electroencephalograph or the Blood Oxygenation Level 
Dependent (BOLD) signal from fMRI. Due to the different scales of the signals target of the 
simulation, simulators integrating computational models at different levels of granularity have been 
developed to address the challenge of reproducing such a rich pool of dynamics (Table 1.2). 
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Microscale simulators. NEURON (Hines and Carnevale, 1997; Carnevale and Hines, 2006) is the 
premier simulator used since the 1990s in the neurocomputational sciences (Magkanaris et al., 2022). 
It reproduces the activity of a morphologically detailed multicompartment cell model, with the soma, 
the axon, and the dendrites (and their parts) modelled as different compartments with their ionic 
channels and membrane voltage dynamics. Through the years it has been extended with updates as 
CoreNeuron to exploit parallel computing and improve computational cost of simulations (Kumbhar 
et al., 2019). GENESIS (GEneral NEural SImulation System) (Bower and Beeman, 1998) is an 
object-oriented environment. It is “GEneral” because the user can extend the environment by adding 
a new “object” (class), i.e., a new neuron model. The simulations are constructed by building blocks 
(GENESIS elements) which communicates during the simulation. Each block contains its own 
variables and functions (methods) to perform computations. Although the programming strategy is 
different from NEURON, it is intended to reach the same level of resolution and an extension 
compatible with parallel computing (PGENESIS) was implemented. Recently, a new simulator for 
multi-compartmental models has been developed: ARBOR (Akar et al., 2019) provides an high level 
of morphological resolution as GENESIS and NEURON and it doesn’t required update for parallel 
computing. ARBOR is ready to be integrated with high-performing computing technologies to tackle 
the issue of the heavy computational load. 

Mesoscale simulators. Considering a lower level of resolution, NEST (NEural Simulation 
Technology Initiative) (Plesser et al., 2015) allows to reproduce the activity of one single neuron 
simplified as a mono-compartmental point neuron (e.g. AdEx, LIF; E-GLIF – see section 1.2.2) by 
solving a set of few ordinary differential equations, representing the membrane voltage dynamics and 
additional currents. The extension NEST 4G is developed to run NEST with parallel computing 
technology. BRIAN (Stimberg et al., 2019) is developed for fast prototyping. Compared to NEST, it 
has the same rich pool of pre-defined point models, but with the additional option to implement bi-
compartmental ball and stick neurons. Depending on the mathematical model and the mono or-
multicompartmental resolution required, the user has to specify cellular parameters such as the 
membrane capacitance, the membrane time decay constant, and the reversal potential. Additionally, 
these simulators permit to reproduce the activity of a neuronal network, combining different models 
of different type single cell by adding synaptic connectivity parameters (e.g., the mean synaptic 
convergence) to the neuronal ones. NEURON, for instance, combined morphological-detailed single 
cell models building up high resolution spiking circuits by defining connectivity parameters proper 
for axon-dendrite, axosomatic and axoaxonic synapses. NEST, instead, provides the option to define 
lower resolution networks made up of interconnected point neurons, by collapsing the different type 
of synapses (section 1.2.2) into a single connectivity parameter. An example of the usage of NEST 
to address a mesoscale simulation, is the reconstruction of a module of the cerebellar spiking network 
where the and GrC, GoC, MLI and PC were simulated with E-GLIF models (Geminiani et al., 2019b). 
To improve the placement of the neurons embedded in a spiking network, the Brain Scaffold Builder 
(BSB) (De Schepper et al., 2022) has been developed as a bottom-up open source framework. BSB 
is a tool that permits to construct a network topology (neuron position and connectivity) with ad-hoc 
algorithms by specifying rules ranging from simple random placement of neurons as particles, regular 
placement in grid, probabilistic connectivity to intersection of ultra-detailed cell morphologies (e.g. 
touch-detection algorithm). BSB interfaces with NEURON or NEST according to the required level 
of granularity of the simulation (Figure 1.7 A, B).  
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Macroscale simulators. Moving up to the macroscale, frameworks tailored on the simulation of 
subject-specific whole-brain dynamics have been implemented with the option to specify a large-
scale connectome, i.e., the long-range connections between all pairs of different brain regions. In this 
context, Dynamic Causal Modeling (DCM) and The Virtual Brain (TVB) are reliable tools to infer 
on subject-specific brain dynamics (Figure 1.7 C, D). 

DCM (Friston et al., 2003, 2019; Marreiros et al., 2008) is a Bayesian framework to investigate the 
effective connectivity, i.e., the direct mutual influence between brain regions embedded in a network 
either in resting-state or during a task execution. The source-data can be different types of in vivo 
recordings such as: rest fMRI (Friston et al., 2014), task fMRI (Havlicek et al., 2017; Rothkirch et 
al., 2018; Van Overwalle et al., 2020), or EEG (Murta et al., 2012). The concept behind DCM is 
independent from the source data: it is based on a generative model that aims to estimate parameters 
set representative of the effective connectivity and informed with prior knowledge from structural 
(anatomical) and functional connectivity. To achieve this purpose, it reproduces the network activity 
and generates the posterior effective connectome by maximizing the similarity between the predicted 
activity and the experimental recordings (Friston and Stephan, 2007; Friston et al., 2007). DCM 
provides an estimate of the effective connectivity accounting for the directionality of the connections, 
allowing to understand the causal influence of one region to another one. As a direct consequence, 
DCM enables an interpretation of the hierarchical organization of the brain understanding for instance 
which region is the driving source during a task execution and whether the information propagate in 
the network following backward or forward loop. DCM was developed as an inference method to 
compute effective connectivity assuming neural activity to be governed by the same model for all the 
brain (Friston et al., 2003), but recently new options allow to replace the standard neural dynamics 
approximation with region-specific models (Friston et al., 2019). This improvement endows more 
flexibility in DCM framework, enabling to perform Bayesian model comparison of physiologically 
plausible synaptic effects at the origins. As an example, DCM was used to infer the effective 
connectivity at the basis of altered oscillations recorded in Parkinson’s disease by specifying different 
models for basal ganglia and thalamus, deeply affected by the neurodegeneration (van Wijk et al., 
2018). Further, like DCM, TVB is a framework for simulating subject-specific brain dynamics 
starting from experimental recordings (Deco et al., 2013; Sanz Leon et al., 2013; Sanz-Leon et al., 
2015). Nevertheless, the target is no more the effective connectivity, but the resting-state functional 
connectome. Different brain regions are remapped onto nodes and a network is reconstructed through 
the subject-specific structural connectome extracted from Diffusion-Weighted MRI (Schirner et al., 
2015). Brain activity is reproduced through using mean field models (section 2.2.4) that reproduce 
excitatory and inhibitory oscillating activity in each node (Wong and Wang, 2006; Deco et al., 
2014b). The simulated activity is converted into a functional connectivity matrix that can then be 
compared with the empirical functional data to assess the predictive power of the model. The model 
inversion mechanism to achieve this goal is designed to maximize the similarity, assessed with the 
Pearson Correlation Coefficient (PCC) and/or with cost functions such as the Kolmogorov distance, 
between the predicted and experimental activity, by tuning biophysical parameters. 
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Table 1. 2) Simulators pool: technical specifics and targets 

 
Software First 

release 
Programming 

language 
Parallel 

computing 
Mathematical 

models 
Simulation 

target 

M
ic

ro
 

NEURON 
 

 
Hines and 

Carnevale, 1997 

1980 Core in 
FORTRAN, C, 

C++ with Python 
interface 

Extension: 
CoreNeuron 

Multicompartmental 
neurons with detailed 

synaptic models 

Subcellular mechanisms 
of single neuron 

(microscale with high 
level of resolution);  

 

Detailed neuronal 
networks activity 

(mesoscale with high 
level of resolution) 

GENESIS 

 
Bower and 

Beeman, 1998 

1990 Core in 
FORTRAN, C, 

C++ with Python 
interface 

Extension: 
PGENESIS 

ARBOR 

 
Akar et al., 

2019 

2019 Core in C++ with 
Python interface 

Integrated 

M
es

o 

BRIAN 

 
Stimberg et al., 

2019 

2016 Core in C++ 
with Python 

interface 

Integrated Mono/Bi-
compartmental with 
COBA and CUBA 

synapses 

Single point /ball and 
stick neuron 
(microscale); 

Spiking networks 
(mesoscale) 

NEST 
 

 
Plesser et al., 

2015 

1994 Core in C++ with 
Python interfaces 
(pyNEST, pyNN) 

Extension: 

NEST 4G 

Monocompartmental 
with COBA and 
CUBA synapses 

Single point /ball and 
stick neuron 
(microscale); 

Spiking networks 
activity (mesoscale) 

M
ac

ro
 

DCM 

 
Friston et al., 

2003 

2003 MATLAB 
SPM12 and 

Python 

Possible 
integration 
(MATLAB 
and Python 
libraries) 

Region specific MF 
model 

Large-scale networks 
activity 

TVB 

 
Sanz Leon et 

al., 2013 

2013 Python Possible 
integration 

(Python 
libraries) 

Generic MF model Large-scale networks 
and whole-brain activity 
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Figure 1. 7) Simulations at different scales. Mesoscale (A and B adapted form De Schepper et al., 2022) and 
macroscale simulations (C adapted from Palesi et al., 2020, and D). A) NEURON-based simulation. Mesoscale 
network built up with multicompartmental cells. B) NEST-based simulation. Mesoscale network as in A, with 
single point neurons. The dendritic compartments determined the differences in Peristimulus Time Histogram 
(PSTH) of A and B. C) TVB-based simulation. Whole-brain experimental and simulated functional 
connectivity matrices weighted by Pearson Correlation Coefficient (PCC). The similarity is assessed via global 
PCC. D) DCM-based simulation. Effective connectivity estimated with Bayesian inference in a visuomotor 
network. The estimate probability and its strength (positive=excitation, negative=inhibition) maximize the log-
likelihood between experimental and predicted BOLD.
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Chapter 2 

 

The polyhedric Mean Field formalism 
 

Mean field (MF) theory has its roots in physics and statistics (Kadanoff, 2009; Parr et al., 2020) but 
it is widely used in many other disciplines such as mathematics to explain macroeconomics with 
mean field games theory (Nourian and Caines, 2013; Barreiro-Gomez and Tembine, 2019; 
Cardaliaguet and Porretta, 2020; Carmona, 2021), artificial intelligence from the origins to the 
nowadays sophisticate deep learning algorithms (Gabrié, 2020), epidemiology with a large 
application to study COVID-19 outbreaks (Tembine, 2020; Gao et al., 2021; Lee et al., 2022; Olmez 
et al., 2022; Petrakova and Krivorotko, 2022), and neuroscience to model brain network activity 
(Destexhe and Sejnowski, 2009; El Boustani and Destexhe, 2009; Coombes and Byrne, 2019; Bick 
et al., 2020; Parr et al., 2020; Byrne et al., 2022). The present chapter reports the basics of MF theory 
(section 2.1), some examples of applications in different fields to underline the polyhedric attitude of 
this formalism (section 2.2), and an extensive overview of the formalism used in neuroscience to 
investigate neuronal activity (section 2.3). 

2.1 Mean field theory at-a-glance 
The rationale at the basis of MF theory is to simplify the dynamic of a complex system, which arises 
from the activities of several different elements, by assuming it equal to the mean activity of many 
particles. The practical advantage is the reduction of a so called many-body problem into a one-body 
problem by replacing the one-to-one interactions between the particles with an average interaction. 
The many-body problem is usually described with the Hamiltonian form: 

𝐻' =	-𝐹( +
1
𝑁

'

(

-𝑆( ∙ 𝑆)

'

(,)

 

( 3 ) 

With Fj = free energy of particles j, S = interactions force between particles j and k, and N = total 
number of particles in the system. In the MF approximation, the interaction of a certain particle j with 
each of the others k particles (with k = [1, N]) is replaced by the interaction with the mean field of 
forces generated by all the k particles ( 〈S〉 ).  
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Therefore, the MF theory neglects the microscopic details (i.e., the between-particles fluctuations) 
yielding the MF Hamiltonian (HMF): 

𝐻+, =	-𝐹(

'

(

+ 𝑆(〈𝑆〉 

( 4 ) 

2.1.1 The Ising Model 
Considering the particles as the molecules, and a ferromagnet as a complex system where the spins 
can interact in different configurations, MF theory could be used to describe the macroscopic states 
of ferromagnets, i.e., the magnetization, in relation to variation of temperature. Analogy between this 
state transitions and brain dynamics has been widely studied with a multidisciplinary approach both 
by physicist and neuroscientists (Tkacik et al., 2006). The Ising model relies on MF approximations 
and it has been already exploited to provide a statistical descriptions of spiking neural networks 
(Schaub and Schultz, 2012; Spreemann et al., 2018). Ferromagnets molecules, as the neuron in the 
brain, can interact each other, or being influenced by an external magnetic field. The Hamiltonian of 
the Ising model is: 

𝐻 = −
1
2 - 𝐽𝑆-𝑆( −-ℎ-𝑆-

'

-./

'

-0(./

 

( 5 ) 

With Si is the spin of the i-th molecule (e.g., Si = +1 for spin oriented upwards), J is a constant 
modeling the force and hi is the external magnetic field that acts on the molecule i. The first term 
considers the spin-spin interactions between different molecules while the second the interactions 
with the external magnetic field hi. It is worth notice that, due to the first term, it is not a one-body 
problem. Indeed, to study ferromagnet states, it is essential to understand how the microscopic 
phenomena as the spin-spin interactions result in a magnetization which can be observed at a 
macroscopic level. Spin-spin interactions leading to ferromagnet states changes can be considered 
analogue to the neuronal mechanisms that occurs at a microscale and impact onto the whole-brain 
dynamics recorded in vivo.  

Ferromagnets magnetization can be computed with a partition function. Considering a null external 
magnetic field for the sake of simplicity, the Hamiltonian is reduced to the spin-spin interaction term, 
and the partition function of the resulting Ising model at a certain temperature T is: 

𝑍 = 	-𝑒123(5)
5

 

( 6 ) 

Where 𝑒123(5) is the Boltzmann factor with 𝛽 = 	1 𝑘𝑇⁄ ( k = Boltzmann’ constant, T = Temperature) 
and H(C) is the Hamiltonian that depends on the spin configurations C. The index C indeed, includes 
all the possible configuration of the spin orientation (e.g., one spin up and the others down, two spin 
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up and the others down,….., all spin up,….all spin down – Figure 2.1), resulting in 2N number of 
configuration with N =  molecules number with an order of 1023 (as Avogadro number) or higher.  

 

Figure 2. 1) 1D Ising Model. Si is the spin of the molecule i which can be +1 or -1. All possible configurations 
with the interacting spins should be considered resulting in 2N possibilities with N = number of molecules. 
Ising model for magnetization, based on mean field approximation, consists in replacing spin-spin interactions 
with spin-mean field interactions. 

Therefore, it is very complicate to handle the partition function in equation (6) and using a MF 
approximation simplifies this problem. Under the MF approximation, the spin fluctuations around 
the mean are assumed to be negligible, resulting in the local mean magnetization: 

𝑚- = 〈𝑆-〉 =
1
𝑁-𝑆-

'

-

 

( 7 ) 

Under the MF hypothesis it is possible to replace the spin-spin interaction with the interaction 
between each spin and the mean of the magnetic field. Therefore, the Hamiltonian, considering the 
hypothesis of a null external magnetic field, can be written as: 

𝐻+, = −
1
2-𝐽@𝑆-〈𝑆-〉 + 𝑆(〈𝑆(〉A

'

-,(

 

( 8 ) 

This HMF is of one-body type and plugged into equation (6) allows to compute the mean total 
magnetization: 

𝑀 =	
1
𝑁	-𝑆-𝑒123!"(5)

5

 

( 9 ) 

MF approximation simplifies the computation of the macroscopic state changes (i.e., the 
magnetization) caused by microscopic mechanism (i.e., the (dis)alignment of the spins) with a 
mathematically and computationally advantageous strategy, by reducing the one-one interactions, to 
a one-vs-mean field interactions. Applied to brain networks, where the activity of each neuron is 
regulated by a differential equation in the simplified case of point neurons, MF approximation 
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replaces the neuron-neuron interaction, with neuron-mean field ones, making computationally 
feasible the simulations of large-scale brain dynamics (Ruffini and Deco, 2021). 

2.2 Mean field applications 
The Ising model to derive the magnetization of a ferromagnet has been explained in section 2.1 
pointing out the analogy between spin interactions in a ferromagnet and neuron interactions in the 
brain. However, MF theory has a widespread application in cross-cutting fields (Figure 2.2), 
whenever an effective approximation of a complex system is needed.  

2.2.1 MF game theory: macroeconomics 
Game theory is a mathematical framework that models a competition with the strategic interactions 
among many players whose influence on the overall system is neglectable. These players are 
indistinguishable in the system because they are identical meaning  that they compete with 
symmetrical payoffs (equal probabilities of win or lose)(Petrosjan and Zenkevich, 1996; Greif, 2010). 
Considering the players as the molecules of a ferromagnet, the analogy between MF and game theory 
results clear (section 2.1). Thus, MF has been integrated with game theory for studying the strategic 
decision making and used to tackle many issues in different topics (Achdou et al., 2012; Cardaliaguet 
and Porretta, 2020). As an example, MF integrated with game theory has found a widely spread 
application in economy to study markets and price evolution as well as in finance to address issues 
such as the systemic risk and bank runs (Carmona, 2021). Going into detail, MF game theory is 
suitable for study macroeconomics that deals with large-scale economy (e.g., the economy of an 
entire country). Firms are heterogenous characters but can be approximated as identical players within 
microstates in the global system represented by the world trading scenario. With this hypothesis, a 
MF game model can be constructed based on statistics that describe the evolution of a market 
fluctuation. Consequently, the world-wide trend of a specific market can be analyzed with MF game 
theory to predict for instance the risk of certain investments or the growth opportunities. 

2.2.2 MF in technology: smart approach to the artificial intelligence 
Artificial intelligence allows a computer to learn information from input data and to answer to a 
certain question, without an ad hoc program written for an ad hoc issue. Machine learning exploits 
the computational capability to address the so-called learning problems such as classification or 
object identification. The mathematical description of a learning query includes a lot of interacting 
random variables. This description of the learning variables recalls the one of the molecules (section 
2.1), thus MF strategies could extend to learning topics (Gabrié, 2020). Since MF is an approximation 
theory, learning procedures integrating MF assumptions requires a lower number of epoch with 
respect to techniques as the back propagation learning (Peterson and Hartman, 1989). Hence, MF 
have been conveniently applied to reinforcement learning to solve tracking problem of multi-agent 
interaction, by considering the average of the influences of the neighbors on the target agent (Zhou 
et al., 2021). Furthermore, MF-based training algorithms could be used to train shallow neural 
network (Wojtowytsch and E, 2021) and, going more into technical details, to analyze the dynamic 
behind the learning by approximating the Stochastic Gradient Descent2 with the mean field 

 

2 Stochastic Gradient Descent (SGD) is an optimization methods that replace the gradient descent with a stochastic 
approximation computed on a randomly chosen subset of data (Bottou, 2012).  
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distribution of neural network parameters (Mei et al., 2018). This approximation is insensitive to the 
number of hidden units (i.e., hidden neurons of a neural network) and considers the statistical 
distribution of the neural network parameters rather than their specific value, with the advantage of 
focusing on global aspect such as the global convergence (Mei et al., 2019). 

2.2.3 MF in epidemiology: the fight against COVID-19 
Corona Virus Disease 2019 (COVID-19) is a severe acute respiratory syndrome caused by the 
coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus). The pandemic 
affected not only people health but also the social rules and the habits of the entire world, forcing the 
authority to take prompt decisions about the healthcare but also the economy and the local migration 
(Petrakova and Krivorotko, 2022). In this difficult and uncertain context, modeling strategies 
represented an effective way to predict the outline of the complicated situation. Compartmental 
models have been suggested in literature to simplify the complexity of infectious diseases by 
assuming homogeneous populations and neglecting the characteristics of individual factors (Gao et 
al., 2021; Lee et al., 2021; Olmez et al., 2022). The homogeneity assumption makes the MF theory 
suitable and useful to build up effective models in short time to investigate different aspects of 
COVID-19. MF theory, indeed, was exploited to predict the evolution of COVID-19 adapting the 
formalism from physics and the evolution of particles state to the society and the factors that affect 
people decision. MF theory was integrated with game theory (section 2.2.1) transforming the 
evolving-states into payoffs for the decision-making concerning the security during the pandemic. 
(Tembine, 2020). The same strategy was applied to tackle the issue on vaccine distribution to 
optimize the transportation considering the cold-chain, the cost and the limited vaccine supply (Lee 
et al., 2022). 
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Figure 2. 2) MF applications in cross-cutting fields. Reality is built up by complex system that are suitable 
for the MF approximations. Data about the states transitions of the complex system of the reality could 
constitute an input base for MF model (e.g., Economics: interactions between orthopedic companies). The MF 
prediction (e.g., Economics: the trend of the planned surgeries) can be used in decision making processes (e.g., 
Economics: how many prostheses to be produced) that in turn influence the reality (e.g. Economics: the price 
of the orthopedic prostheses, influencing the interaction between orthopedic companies) and its complex 
system in a closed loop configurations.  

2.2.4 MF in neurosciences: simulate the brain 
The same approach linking molecules microscopic properties to the macroscopic states has been 
applied to neurosciences to derive a model based on single neuron activity and to plug it into whole-
brain dynamics simulator, bridging the gap between micro and macroscale. Moreover, experimental 
signals could be recorded with a mesoscale resolution ranging from nanometers to millimeters. Local 
field potential measured in mice specimens, for instance, are recorded using a multielectrode array, 
calcium imaging, voltage-sensitive dye signals that have a nanometric resolution, as well as the voxel 
(3D pixel) of a volumetric image obtained with MRI (Figure 2.3). The signal extracted from 
pixel/voxel of these imaging techniques represents the averaged activity over an ensemble of neurons, 
therefore a mesoscale model represents the most appropriate formalism to simulate that kind of 
signals avoiding slowing down the simulations with an extra-resolution that is not required by the 
nature of the experimental data. Thus, MF allows a direct comparison with studies based on different 
imaging techniques. Taken together the analogy between physics particles with neurons and the 
mesoscale resolution of many kinds of the experiments, MF models perfectly fit with the goal of 
simulate those signals, providing a powerful tool to investigate brain dynamics.  
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Figure 2. 3) Experimental recordings at mesoscale. Mean field models allow a direct comparison with 
signals recorded at mesoscale with different techniques. A) Local Field Potential (LFP) recorded with High 
Density Multielectrode array (HD-MEA) from acute cerebellar slice evoked with a stimulus on mossy fibers. 
B) Stimulus-induced calcium signals recorded with two-photon spatial light modulator microscopy (SLM-
2PM) from mice granular layer. C) Spatiotemporal map of the spontaneous neural activity recorded with 
Voltage sensitive-dye imaging (VSDI) in vivo from mice. D) BOLD signal acquired with fMRI in a human 
brain. Mean field predictions can be directly compared with the BOLD extracted from few voxels and different 
mean field modules can be connected to reproduce the activity of a large-scale network. 

Furthermore, MF as generative models have been already integrated into TVB and DCM frameworks 
(section 1.2.3), where a single module of the cortex is represented with a single MF, hence different 
cortical partitions, i.e., different MFs, are connected each other with long-range connections 
reproducing large-scale connectome. In practice, the regions considered in a certain simulation are 
schematized as network nodes behaving as coupled oscillators (Bick et al., 2020). It is worth 
mentioning that these large-scale simulations are computationally demanding, with computational 
load that increases proportionally to the level of resolution. MF approximation represents a 
convenient formalism because it describes the collective dynamics of neuronal populations embedded 
in oscillator network with only few collective variables. Although these variables take into account 
the single neuron biological features, the resulting equations are sufficiently simple to analyze brain 
dynamics without great computational effort (Bick et al., 2020). A widely used MF model integrated 
in TVB is the Wong-Wang model that simplifies a network of 7200 neurons into a two nodes network 
(one excitatory and one inhibitory) (Wong and Wang, 2006; Deco et al., 2014b). TVB with Wong-
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Wang as generative model was used to have an insight on physiological brain dynamics, assessing 
the importance of the cerebellar impact in cerebral activity of healthy volunteers, (Palesi et al., 2020) 
(see section 4.2.3 for an insight into the method), but also in pathological dynamics as for the 
investigation of limbic network changes in dementia (Zimmermann et al., 2018) or the 
excitation/inhibition profile in Alzheimer’s patients (Monteverdi et al., 2022). Furthermore, a MF 
model has been developed specifically to investigate epileptic seizures, based on bifurcations analysis 
and tuned on epilepsy features (Jirsa et al., 2017; Houssaini et al., 2020) confirming the high impact 
of modelling in personalized medicine. More sophisticate MF models have been embedded in TVB, 
to provide a clear link with neuronal spiking activity (Deco et al., 2008; Di Volo et al., 2019). As an 
example, the TVB-AdEx (Figure 2.4) uses a MF formalism whose functional reference is represented 
by Adaptive Exponential (AdEx) point neuron model explained in detail in section 2.3.3 and includes 
complex phenomena as the adaptation (Di Volo et al., 2019).  

 
Figure 2. 4) TVB-AdEx (Goldman et al., 2021). The nodes of the network were represented as MF modules 
(A) including an inhibitory fast spiking (FS in red) population and an excitatory regular spiking (RS in blue) 
whose activity is modulated by adaptation (W in orange). The connections between MF modules were set up 
based on the large-scale connectome. The number of fibers connecting different brain regions was extracted 
from tractography data and normalized on cortical gray matter region (B). To enrich the model with 
transmission, delay distribution has been inferred based on tract lengths between interconnected nodes (C).  

TVB-AdEx reproduced asynchronous irregular state seen experimentally in wakefulness as well as 
up-down states that characterize slow-wave sleep (Goldman et al., 2020, 2021). 

MF modeling approach used in the present thesis relies on the work of El Boustani and Destexhe 
which was developed for conductance-based networks to design a MF model by deriving a Master 
Equation for the activity of the network (El Boustani and Destexhe, 2009). As proof of the 
effectiveness of MF approximations applied to the brain, this formalism is not the only MF technique 
but many other MF formalisms have been developed with the same goal of simplifying the 
complexity of the brain with comparable reliability (Montbrió et al., 2015; Devalle et al., 2017; 
Coombes and Byrne, 2019). The present work is inspired by El Boustani and Destexhe 2009 for 
consistency with what has been already done for TVB-AdEx (Di Volo et al., 2019; Goldman et al., 
2020) in the perspective of creating a pool of region-specific MFs ready to be integrated in whole-
brain dynamics simulator. 
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MF approximation up to the second order is detailed in the following section, reporting the Master 
Equation formalism explained in El Boustani and Destexhe 2009, aiming at clarifying how the mean 
and the covariance of a system can provide a reliable description of the complex state resulting from 
Spiking Neural Network (SNN) built up with highly stochastic excitatory and inhibitory neurons 

2.3 Master Equation formalism 
A master equation is a mathematical formalism to describe the time evolution of a system. In this 
context, the master equation framework presented by El Boustani and Destexhe (El Boustani and 
Destexhe, 2009) is summarized to explain the mathematical ground used for the present thesis. The 
target of this kind of formalism is the evolution of a neuronal population dynamics, and the statistical 
approach of mean field theory aims to write a master equation to describe the time evolution of the 
neuronal activity expressed in terms of probability to spike. From master equation, a mean field model 
has been derived in term of second order differential equations modeling the time evolution of the 
mean activity of the network accounting for its standard deviation and autocorrelation (section 2.3.1). 
The core of the theory is the Transfer Function (TF), which is a mathematical construct to map the 
output firing rate of the neuron as a function of the presynaptic input rates with the advantage of a 
continuous description of the network activity related to the neurons spiking activity. Furthermore, a 
master equation is a flexible formalism applicable to any type of neurons with a mathematically 
characterizable TF. To proceed with the description of the master equation formalism, some 
assumptions should be clarified. The macroscopic dynamics is assumed to be Markovian, meaning 
that the state of the system at time t depend only on the state at time t-1, i.e., the system is memoryless 
(i). The firing rates of neurons belonging to a certain population are Gaussian-distributed (ii) and the 
system reaches the steady-state within a period T (adiabatic hypothesis in physics) (iii).  
Even though the flexibility of the master equation formalism reported here, some issues still exist. A 
still open challenge is the definition of a timing period T which should be either appropriate to 
simulate biological dynamic and to fulfill the assumptions (i) and (ii) (section 2.3.2). On top of that, 
the TF is a complex mathematical construct that is analytically known only for CUBA model (section 
1.2.2). Here a heuristic approach developed by Zerlaut and colleagues (Zerlaut et al., 2016, 2018) to 
determine an analytical TF with a semi-analytic framework is presented (section 2.3.3) as 
mathematical and computational ground for the multi-layer cerebellar model developed and presented 
in Chapter 3. 

2.3.1 From the master equation to the second order mean field 
The goal of the formalism developed by El Boustani and Destexhe is to write a master equation that 
provides a statistical summary of a spiking activity, assuming the network constituted by K 
homogeneous populations. Therefore, the first ingredient needed is an equation that models the 
behavior of a spiking population (i.e., the state of a population in the network):  

𝑚7(𝑡) = lim
∆9	→<

𝑛7(𝑡 − ∆𝑡, 𝑡)
∆𝑡𝑁7

 

( 10 ) 
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Where ɣ is one of the K population and ranges from 1 to K, m is the spiking activity of the population 
ɣ at time t, nɣ is the number of spikes in the time interval t-Δt, Nɣ is the number of neurons in 
population the ɣ. The spiking activity (equation 10) can be interpreted as the number of neurons that 
fire at least one time in a short period of fixed duration T. Therefore, T has to be large enough to 
guarantee at least one spike and shorter enough to avoid signal correlation in two adjacent time 
windows, i.e., the memoryless system. The probability of firing can be written as marginal probability 
given the network state in the time interval t-T. Assuming time invariance of the system, the 
conditional probability of firing depends only on T: 

𝑃@J𝑚7(𝑡)KLJ𝑚7
= (𝑡 − 𝑇)KA = 𝑃>@J𝑚7KLJ𝑚7

= KA 

( 11 ) 

Where PT is the probability of the system to be in a certain state m within a time window T, given the 
state in the precedent T. 

According to MF approximation the pairwise correlation could be neglected, therefore equation (11) 
can be split as the product of marginal probabilities describing each variable exclusively. 

𝑃>@{𝑚/}LJ𝑚7
= KA ∗ 𝑃>@{𝑚?}LJ𝑚7

= KA ∗ … ∗ 𝑃>@{𝑚@}LJ𝑚7
= KA 

( 12 ) 

The Markov transition (W) under the assumption of a memoryless system is defined as the rate of 
transition from 𝑚7 to 𝑚7

= , and using the conditional probability density in equation (12) results in: 

𝑊@J𝑚7KLJ𝑚7
= KA = lim

>→<

𝑃>@J𝑚7KLJ𝑚7
= KA

𝑇 = lim
>→<

∏ 𝑃>@{𝑚A}LJ𝑚7
= KA@

A./

𝑇 =
∏ 𝑃>({𝑚A}|{𝑚7

= })@
A./

𝑇  

( 13 ) 

With ⍺ index denotes a population and it ranges from 1 to K as ɣ. The computation of 𝑃>@{𝑚A}LJ𝑚7
= KA 

leads to a fully-specification of the model and, to achieve this goal, it was assumed the quasi-
stationary evolution of the network as for the adiabatic transformation in physics. This means that 
during the time interval T the system reaches a stationary state that is determined only by the previous 
state at a time T earlier. Therefore, T has to be small enough to satisfy the adiabatic approximation, 
but large enough to ensure the independency of signals in two adjacent time windows to split 
𝑃>@J𝑚7KLJ𝑚7

= KA into products of marginal probabilities. By merging equations (12) and (13), the 
master equation has been defined to describe the population activity describing its evolution with a 
differential equation modelling the firing probability distribution density: 

𝜕𝑡𝑃9@J𝑚7KA =VW 𝑑𝑚A
= (𝑃9@J𝑚7

= KA𝑊@J𝑚7KLJ𝑚7
= KA − 𝑃9@J𝑚7KA𝑊(J𝑚7

= K|J𝑚7K)	
/
>

<

@

A./

 

( 14 ) 
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The master equation is not exactly solvable, but it is possible to derive a description of equation 14 
through the mean, the variance, and the correlation of the network activity.  

The following second order differential equation system was yielded:  

! 𝜕𝑡〈𝑚𝛾〉 = 𝑎𝜇$%〈𝑚𝛾〉&'+
1
2𝜕𝜆𝜕𝜂𝑎𝜇$%〈𝑚𝛾〉&'𝑐𝜆𝜂

𝜕I𝑐𝜇𝜈 = 𝑎𝜇𝜈$%〈𝑚𝛾〉&'+ 𝜕𝜆𝑎𝜇$%〈𝑚𝛾〉&'𝑐𝜈𝜆 + 𝜕𝜆𝑎𝜇$%〈𝑚𝛾〉&'𝑐𝜇𝜆
 

( 15 ) 

Where:  
〈𝑚7〉 = mean population activity 
𝑐𝜇𝜈 = (𝑚7 − 〈𝑚7〉)(𝑚H − 〈𝑚H〉)	 = covariance of population activity (variance when μ=𝜈)	
𝑎I@J〈𝑚7〉KAand 𝑎𝜇𝜈$%〈𝑚𝛾〉&' = step moment functions for the population activity and for the 
interactions between populations respectively. They are defined as: 

𝑎I@J〈𝑚7〉KA = W 𝑑𝑚I
= @𝑚I

= − 〈𝑚I〉A
𝑃@𝑚I

= LJ〈𝑚7〉KA
𝑇

/
>

<
 

( 16 ) 

𝑎IH@J〈𝑚7〉KA = W 𝑑𝑚I
= W 𝑑𝑚H

=

/
>

<
@𝑚I

= − 〈𝑚I〉A(𝑚&
= − 〈𝑚&〉)

𝑃@𝑚I
= LJ〈𝑚7〉KA𝑃(𝑚H

= |{〈𝑚H〉})
𝑇

/
>

<
 

( 17 ) 

The second-order system (15) is completed by including the correlation (Corr), that for the steady 
state results:  

𝜕J𝐶𝑜𝑟𝑟IH(𝜏) = 𝜕K𝛼H@J〈𝑚7
!9L9〉KA𝐶𝑜𝑟𝑟IK(𝜏) 

( 18 ) 

With 𝛼H computed according to equation (16) and 〈𝑚7
!9L9〉 is the solution at the stationary state of the 

first equation of system (15). 

So far, the master equation (14) has been derived assuming a network with gaussian distributed firing 
rate of the embedded neurons, and Markov process (memoryless system) that reaches the quasi-steady 
state within T (adiabatic approximation). Then, thanks to these assumptions, the differential equations 
for the statistical moments have been derived (mean, and covariance in equation (15) and correlation 
in equation (18)). What is still missing is a specification of the transition operator W that is obtained 
by the definition of 𝑃>@{𝑚A}LJ𝑚7

= KA. Since W models the transition between two states of the 
neuronal network, it depends directly on the neuron properties. It is known that a neuron embedded 
in a network is exposed to a synaptic bombing from the other neuronal populations, therefore the 
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transition can be described by using a Transfer Function (TF)(Kuhn et al., 2004). This mathematical 
construct maps the neuron output activity taking in input the activity of the other presynaptic 
populations. As consequence of the adiabatic hypothesis and assuming to know the stationary TF of 
a population α, the probability of firing during a period T can be written as: 

𝑝A@J𝑚7
= KA ≅ 𝜈A@J𝑚7

= KA𝑇 ≤ 1 

( 19 ) 

Furthermore, since during the period T a neuron can fire only one time, the binomial distribution 
describes well the conditional probability. In the case of a very strong interneurons correlations, the 
binomial distribution is no more appropriate, therefore it should be chosen another function to model 
the conditional probability. The number of neurons in population ⍺	was assumed large enough to 
ensure the gaussian distribution of the firing rate. With these considerations, the moments step 
function and its differentials can be written as: 

𝑎I@J〈𝑚7〉KA =
1
𝑇 @𝜈I −

〈𝑚I〉A 

𝜕K𝑎I@J〈𝑚7〉KA =
1
𝑇 @𝜕K𝜈I − 𝛿IKA 

𝜕K𝜕M𝑎I@J〈𝑚7〉KA =
1
𝑇 𝜕K𝜕M𝜈I 

( 20 ) 

Where 𝜈I = 𝜈I@J〈𝑚7〉KA is the TF of the neuron in population μ which depends on the mean of the 
activity of each population (ɣ = [1, K])  

Equations of the system (20) provide a complete description of the master equation formalism, 
resulting in a set of differential equations that are the mean field system to describe the behavior of a 
spiking neural network in a continuous time domain: 

⎩
⎪
⎨

⎪
⎧ 𝑇𝜕9〈𝑚7〉 = @𝜈I − 〈𝑚7〉A +

1
2
𝜕K𝜕M𝜈I𝑐KM

𝑇𝜕𝑡𝑐IH = 𝛿IH𝐴𝜇𝜇−1@𝜈I − 〈𝑚7〉A(𝜈H − 〈𝑚H〉) + 𝜕K𝜈I𝑐HK + 𝜕K𝜈H𝑐IK − 2𝑐IH
𝑇𝜕J𝐶𝑜𝑟𝑟IH(𝜏) = @𝜕K𝜈H@J〈𝑚7

!9L9〉KA − 𝛿KHA𝐶𝑜𝑟𝑟IK(𝜏)

 

( 21 ) 

2.3.2: The choice of the time constant T: an open challenge 
A sensitive issue for this formalism is represented by the choice of the value T that in line of principle 
could be arbitrarily chose within the constrain of Markov hypothesis. For a memoryless system one 
neuron produces at most one spike in a time window of length T. With an increasing size of the 



2.3 Master Equation formalism 

 

 

35 

network, the time constant T can take smaller values because the temporal finite-size effect3 in the 
autocorrelation vanishes because of sparse connectivity (Brunel, 2000). The formalism described in 
section 2.3.1 addresses this issue for sparsely connected networks, that are large enough to avoid 
temporal correlation finite-size effects and, at the same time, small enough to require second-order 
statistics to describe its population dynamics. However, T value should be chosen considering that a 
too large value might lead to an underestimation of the firing rate in high activity regimes, while a 
too small value could overestimate the second-order statistics, i.e., the correlation between different 
population. 
It is crystal-clear that the choice of T is critical for the MF formalism. Based on literature T ranges 
from 5 to 20 ms (Zerlaut et al., 2018; Di Volo et al., 2019). The firing rate of one neuron is 1/T, 
therefore for a choice of T = 20 ms, the MF dynamic is not very fast with a maximum firing rate of 
50 Hz, resulting in a MF that addresses to slow dynamics as the cerebral ones. Hence, the choice of 
T is essential for the nature of this formalism, and it should also consider the speed that characterized 
the dynamics of the region(s) target for the simulation.  

2.3.3 Heuristic approach: AdEx mean field model 
The choice of an optimal value of T is not the only challenge of the master equation formalism 
explained in section 2.3. The limit of the master equation (14) is that TF is a function analytically 
known only for very simple systems like a network of leaky integrate and fire neurons with CUBA 
synapses (section 1.2.2). To overcome this drawback, a heuristic approach was developed by Zerlaut 
and colleagues (Zerlaut et al., 2016, 2018) making the formalism suitable also for more complex and 
conductance-based models. This formalism used a “semi-analytic” approach to get an analytic TF, 
which consists of computing a numerical template for the transfer function (i.e., a matrix) from other 
simulator tools as NEST or Brian and then fits the polynomial form on the numerical template 
(Zerlaut et al., 2016). As a result, a sort of analytical TF was obtained, even if its parameters were not 
general but specific to the neuron model used to compute the numerical template. Nevertheless, this 
approach allowed to get an analytically solvable simple system able to capture complex neuronal 
dynamics (Zerlaut et al., 2018; Di Volo et al., 2019; Carlu et al., 2020). Zerlaut and colleagues 
provided an effective pipeline (Figure 2.5) to build up a generic MF for the cortex. Specifically, the 
MF model built up following this heuristic approach was derived from a network of AdEx neurons 
as described in detail in the next sections. 

 

 

3 Finite size effects refer to a systematic error introduced by the approximations done to study system with many degrees 
of freedom 
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Figure 2. 5) Pipeline to design a generic cortical Mean Field model. A) The single neuron model is chosen 
(e.g., AdEx, LIF, E-GLIF) according to the single cell features of interest for the target region of the mean 
field. B) A spiking network is constructed with single neurons. The synaptic model regulates the connections 
between single neurons embedded in the network (e.g., alpha synaptic model, exponential synaptic model). C) 
The MF network is designed using the spiking network as functional reference. Here, a single layer recurrent 
MF network is shown, with one excitatory population (green), which receives external input, and one inhibitory 
population (red). 

AdEx model. AdEx is a point neuron conductance-based model which includes an exponential and 
an adaptive variable that improves the realism of the modelled activity, capturing a wide variety of 
intrinsic neural properties like regular spiking, bursting neurons and delayed firing. AdEx is an 
appropriate choice for simulating cerebral cortex dynamics because it reproduces excitatory regular 
spiking (RS) as well as inhibitory fast spiking (FS) that are commonly found in pyramidal neurons 
and inhibitory interneurons respectively (Zerlaut et al., 2018). The model is made up of two coupled 
equations (Brette and Gerstner, 2005): 

 

⎩
⎪
⎨

⎪
⎧ 𝑐N

𝑑𝑉
𝑑𝑡 = 𝑔O(𝐸O − 𝑉) + 𝑔O𝑘L𝑒

P1P#$%&
)' − 𝐼Q + 𝐼!"#

𝜏Q
𝑑𝐼Q
𝑑𝑡 = −𝐼Q + 𝑎(𝑉 − 𝐸O) + - 𝑏𝛿

9(∈S9()*+&T

(𝑡 − 𝑡!)
 

( 22 ) 

Where V = voltage of the AdEx neuron, Cm = membrane capacitance (pF), gL = leakage conductance 
(nS), EL= rest potential (mV), ka = spike sharpness (mV), Vthre = threshold potential (mV), Iw = 
adaptation current, which evolution is modelled in the second equation, Isyn = synaptic current, 𝜏w = 
adaptation time constant (ms), a = adaptation conductance (nS), b = adaptation current increment 
(pA), d = Dirac function. At time ts, V reaches Vthre+5ka and a spike is triggered. For the refractory 
period set at 5 ms ,V is set at the value of EL and Iw is incremented by b (Zerlaut et al., 2018). 

The AdEx equations (22) were used to design a mono-layer network as a very simple construct 
collapsing neuron types into two populations, one excitatory (RS) and one inhibitory (FS) (Figure 
3C). Although this network was a big simplification, without many physiological details specific for 
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a certain type of neurons, it accounted for the higher excitability of inhibitory neurons compared to 
the excitatory ones that is a relevant feature in brain cortical dynamics simulations. 

Spiking Network. A network with AdEx point neurons was built up to be employed as functional 
reference for the TF formalism. The synaptic model used to regulate the connections between neurons 
embedded in the network was the exponential model:  

𝐼!"#(𝑉, 𝑡) = - - 𝑄!(𝐸! − 𝑉)
9(∈S9()*+&T

e1
919(
J( ℋ(𝑡 − 𝑡!)

!∈{%.-}

 

( 23 ) 

Where s is the population index that can be e = excitatory (RS) or i = inhibitory (FS); Q = quantal 
synaptic conductance, E = reversal potential, 𝜏syn	= synaptic time decay and ℋ = Heaviside function. 
This equation models the synaptic trend with an exponential function and permits to specify different 
synaptic properties as Q and 𝜏syn	tailored on the different populations included in the network.	

MF model: Transfer Functional formalism. The mean field model implemented by Zerlaut and 
colleagues (Zerlaut et al., 2018) aiming at simulating the cortical activity by collapsing the different 
neurons type into two populations, one inhibitory and one excitatory (Figure 2.6). 

Therefore, two different TFs, one for an inhibitory FS neuron and the other for excitatory RS neuron, 
were implemented with the same procedure but accounting for the different nature of these two 
categories. The heuristic approach to the TF computation relies on the fitting of the TF expression, 
indicated for sake of simplicity with F in the equations, and reads (Zerlaut et al., 2016): 

𝜈XY9 = 𝐹Z(𝜈!) =
1
2𝜏P

𝑒𝑟𝑓𝑐 o
𝑉9[$%
%\\ − 𝜇P
√2𝜎P

s 

( 24 ) 

Where 𝜈XY9	 = output activity, i.e. the Transfer Function of a neuron embedded in the population p, 
and it is function of its presynaptic inputs; µV = average of membrane potential fluctuation, sV = 
standard deviation of membrane potential fluctuations, tV = autocorrelation time of membrane 
potential fluctuations; erfc = Gaussian error function; 𝑉9[$%

%\\ = phenomenological firing threshold 
modelling the single neuron non linearities, i.e., the deviation from its baseline behavior (Zerlaut et 
al., 2016). 
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Figure 2. 6) Mean Field Network (Zerlaut et al., 2018). Excitatory population (green square) and Inhibitory 
population (red square) with excitatory (green arrows) and inhibitory connections (red arrows). Parameters 
shown are: 𝜈s = population activity [Hz], Ks = mean synaptic convergence, Qs = quantal synaptic conductance 
[nS], Ns = number of neurons in population s. Index s indicated the population: s = [e, i]. External input is 
modeled as a constant input (𝜈drive [Hz]) and a time-evolving input (𝜈aff(t) [Hz]), targeting excitatory population.	

The statistical moments µV, sV, tV were computed integrating the contribution of the average 
population-specific conductance, which includes the connectivity parameters as the mean synaptic 
convergence, together with the quantal synaptic conductance and synaptic time decay (section 
Spiking Network). Therefore, the average population-specific conductance was computed for 
excitatory (𝜇]%) and inhibitory (𝜇]-) populations and used to define the total average population 
conductance (𝜇]) that also includes the leakage current (IL = gLEL): 

𝜇]%(𝜈% , 𝜈-) = 𝐾%𝜏%𝑄%𝜈% 

𝜇]-(𝜈% , 𝜈-) = 𝐾-𝜏-𝑄-𝜈- 

𝜇](𝜈% , 𝜈-) = 𝜇]% + 𝜇]- + 𝑔O𝐸O 

( 25 ) 

In addition to the synaptic parameters, the average population conductance 𝜇]  depends directly on 
the presynaptic inputs transferring the presynaptic activity into the computation of the statistics µV, 
sV, tV, that results: 

𝜇P(𝜈% , 𝜈-) =
𝜇]%𝐸% + 𝜇]-𝐸- + 𝑔O𝐸O

𝜇]
 

𝜎P(𝜈% , 𝜈-) = u- 𝐾!𝜈!
𝑈!𝜏!

2(𝜏N
%\\ + 𝜏!)!

 

𝜏P(𝜈% , 𝜈-) =
∑ 𝐾!𝜈!(𝑈!𝜏!)?!

∑ 𝐾!𝜈! 	(𝑈!𝜏!)? @𝜏! + 𝜏N
%\\A⁄!

 

( 26 ) 

With the effective membrane time constant defined as 𝜏N
%\\(𝜈% , 𝜈-) =

5,
I-

 and 𝑈! =	
^(
I-
	(𝐸! − 𝜇P). 
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So far, the statistics included in the TF expression are defined, while here 𝑉9[$%
%\\ must be defined to 

fully specify the TF equation. For the AdEx mean field described here, the 𝑉9[$%
%\\ expression reads 

(Zerlaut et al., 2018):  

𝑉9[$%
%\\@𝜇P,𝜎P,𝜏P , 𝜇],A = 

𝑃< + 𝑃I-𝑙𝑜𝑔 z
𝜇]
𝑔O
{ + - 𝑃_ o

𝑥 − 𝑥<

𝛿𝑥< s +
_∈{I.,`.,J.

0}

- 𝑃_" o
𝑥 − 𝑥<

𝛿𝑥< s × o
𝑦 − 𝑦<

𝛿𝑦< s
_,"∈{I.,`.,J.

0}1

 

( 27 ) 

Where P are the polynomial coefficients and the quantities μ0V, δμ0V, σ0V, δσ0V, 𝜏P', and 𝛿𝜏P' are 
constant rescaling factors of the μV, σV, and 𝜏P', which indicates the normalized autocorrelation time. 
A simplified expression without the bilinear term can be used to model Linear Integrate and Fire or 
Extended Generalized Integrate and Fire neurons (E-GLIF neuron – see Chapter 3). 

By inverting equation 24 an explicit expression of  𝑉9[$%
%\\ is:  

𝑉9[$%
%\\(𝜈XY9 , 𝜇P , 𝜎P , 𝜏P) = √2𝜎P 	𝑒𝑟𝑓𝑐1/(2	𝜏P	𝜈XY9) + 𝜇P 					∀𝜈XY9 > 0 

( 28 ) 

Where erfc-1 is the inverse of the error function. 

At this point all the ingredients to implement the fitting procedure of the TF have been defined. Thus, 
the fitting procedure is developed in two steps: 

1) Computation of 𝑉9[$%
%\\ using the activity of the spiking network as functional reference. In practice, 

spiking network simulations for different combinations of excitatory and inhibitory inputs are 
performed and the resulting 𝜈out values are collected in a matrix that represented a template for the 
output activity and it is formally called numerical TF (dots in Figure 2.7). Each value of the numerical 
TF is used as 𝜈out in equation (28) to compute 𝑉9[$%

%\\ in different stimulating conditions. 

2) Fitting of the polynomial coefficients of the TF using a non-linear least-squared algorithm that 
minimizes the difference between the computed values of 𝑉9[$%

%\\ (see step 1) and its polynomial 
expression in equation (27). Once the algorithm stops, the optimal P coefficients are identified and 
can be plugged into equation (28), yielding a polynomial expression of 𝑉9[$%

%\\ generalizing its trend 
for the different stimulus conditions. The fitted expression is plugged into the equation (28) resulting 
in an analytical expression of the TF (lines in Figure 2.7) that represents the core of the MF model. 
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Figure 2. 7) Analytical Transfer Function (Zerlaut et al.; 2018). Y-axis = Transfer Function (𝜈out) for 
excitatory RS (A) and inhibitory FS (B) populations. X-axis = excitatory input frequencies; Color bar = 
inhibitory input frequencies; Dots are the numerical Transfer Function computed with spiking network activity 
as functional reference; Lines are the result of the fitting procedure. 

Once the TF is fitted, it is plugged into the MF model equation yielding: 

⎩
⎪
⎨

⎪
⎧ T

𝑑𝜈I 	
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( 29 ) 

Where 𝜈 is the MF predicted activity and c is the covariance between populations; T is the MF model 
time constant; λ, η, μ denote the populations modelled, which are RS and FS in the present example; 
Nλ is the number of neurons in population λ and 𝛿 is the Dirac function that is 1 when λ= η.	This 
model is a single layer MF model predicting the activity of RS and FS population (Figure 2.8). 

 

Figure 2. 8) Mean Field vs. Spiking Network prediction (Zerlaut et al.; 2018). Mean field prediction 
overlapped to the interpolation of numerical network output.	

The heuristic approach to the TF computation summarized in this section represents a benchmark for 
the development of a more complex MF model including an extra equation to model adaptation (Di 
Volo et al, 2019). In the present work, the framework explained in this section was expanded to a 
multi-layer MF model that includes four different populations: Granule cells, Golgi cells, Molecular 
Layer Interneurons, and Purkinje cells (section 1.1.1) Spiking network was built up with E-GLIF 
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model instead of AdEx model, and for each population a specific transfer function was computed 
with the two-step procedure described above. Furthermore, all the synaptic connections were kept 
separated resulting in both bi-dimensional and tri-dimensional TF. Table 2.1 shows the main 
differences between the AdEx cortical MF (with and without adaptation) and the multi-layer 
cerebellar MF implemented in this work (Chapter 3), highlighting both the differences and the 
consistency of multi-layer cerebellar MF with adaptive cortical generic MF already included in TVB. 
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Table 2. 1) Multi-layer cerebellar MF model vs generic cortical MFs. Adaptive generic cortical MF is the 
MF currently integrate in TVB AdEx (see Figure 2.4).  

 

 Generic cortical MF  
(Zerlaut et al., 2018) 

Adaptive generic cortical MF 
(Di Volo et al., 2019) 

Multi-layer cerebellar MF 
(Chapter 3) 

Approach Bottom-up Bottom-up Bottom-up 

Neuron model 

AdEx single point neurons 
with parameters for a generic 

excitatory and a generic 
inhibitory neuron (E, I) 

AdEx single point neurons 
with parameters for a generic 

excitatory and a generic 
inhibitory neuron (E, I) 

E-GLIF single point neurons 
with parameters tuned on each 
neuron type (GrC, GoC, MLI, 

PC) 

Network design 

Mono-layer network, 
collapsing neurons into a 
generic excitatory and a 

generic inhibitory population 

Mono-layer network, 
collapsing neurons into a 
generic excitatory and a 

generic inhibitory population 

Multi-layer network 
including the four specific 
neuronal population of the 

cerebellar cortex 

Conductance 
model Exponential function Exponential function Alpha-shaped function 

TF formalism 

Semi-analytic TF 

2D TFs collapsing all 
excitatory and inhibitory 

presynaptic frequencies into 
two inputs 

Semi-analytic TF 

2D TFs with 2 inputs 
(excitatory and inhibitory), 
accounting for adaptation 

Semi-analytic TF, fitted on 
actual working frequencies 

2D or 3D TFs according to 
the number of presynaptic 

inputs 

Time constant 
5 ms. Set according to 

literature 
20 ms. Set according to 

literature 
3.5 ms. Optimized with 

experimental data 

Mean field 
model 

6 second-order differential 
equations 

7 second-order differential 
equations (6 for the activity + 

1 for adaptation) 

20 second-order differential 
equations 
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Chapter 3 

 

A multi-layer Mean Field model for the 
Cerebellum: design, validation, and 

prediction 
 

In this Chapter a detailed explanation on how the mean field formalism described in Chapter 2 was 
informed with the physiological knowledge described in Chapter 1 to develop a multi-layer mean 
field model (MF) for the cerebellum. This Chapter introduce the multi-layer MF of the cerebellum to 
study the dynamics of the cerebellar cortex but it also explains a pipeline to implement advanced 
multi-layer MF specified for other brain regions. 

Abstract 
Mean-field (MF) models can be used to summarize in a few statistical parameters the salient 
properties of an inter-wired neuronal network incorporating different types of neurons and synapses 
along with their topological organization. MF are crucial to efficiently implement the modules of 
large-scale brain models maintaining the specificity of local microcircuits. While MFs have been 
generated for the isocortex, they are still missing for other parts of the brain. Here we have designed 
and simulated a multi-layer MF of the cerebellar network (including Granule Cells, Golgi Cells, 
Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the 
corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using 
a system of equations, where properties of neuronal populations and topological parameters are 
embedded in inter-dependent transfer functions. The model time constant was optimised using local 
field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF 
satisfactorily reproduced the average dynamics of the different neuronal populations in response to 
various input patterns and predicted the modulation of Purkinje Cells firing depending on cortical 
plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The 
cerebellar MF provides a computationally efficient tool that will allow to investigate the causal 
relationship between microscopic neuronal properties and ensemble brain activity in virtual brain 
models addressing both physiological and pathological conditions.   

3.1 Introduction 
Brain modelling is opening new frontiers for experimental and clinical research toward personalised 
and precision medicine (Amunts et al., 2013; Schirner et al., 2015). Brain models can be developed 
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at different scale, ranging from microscopic properties of neurons and microcircuits to the ensemble 
behaviour of the whole brain. Arguably, a model spanning across scales would increase the fidelity 
in modelling single brain regions, improving the accuracy of whole-brain dynamics simulations 
(D’Angelo and Jirsa, 2022), but this clearly bears conceptual and practical drawbacks. At the 
microscale, Spiking Neural Networks (SNNs) reproduce neural circuits as a set of interconnected 
neurons (Plesser et al., 2015; Yavuz et al., 2016; Knight et al., 2021): the state of each neuron and 
synapse in the network is updated at each simulation step, allowing to investigate neural circuits 
functioning at a high level of granularity and biological plausibility. However, this degree of detail is 
hard to manage when simulating brain signals, like those derived from electroencephalography (EEG) 
or functional magnetic resonance imaging (fMRI). To manage the high complexity of brain signals, 
the dynamics of a neuronal population have been condensed into ensemble density models called 
neural masses. These provide a description of the expected values of neuronal activity states, under 
the assumption that the equilibrium density has a point mass (Wilson and Cowan, 1972; Jansen and 
Rit, 1995). Neural fields are obtained from neural mass models when considering spatial information: 
these can be used to model spatial propagation of activity throughout brain volumes (Deco et al., 
2008). Despite being computationally efficient and easy to fit on brain signals data, neural mass and 
neural field models lack a direct link to the microscopic scale, a fact that limits their applicability in 
investigating the neuronal bases of brain dynamics and the causal relationships between neural 
mechanisms at different scales. 

A different approach is based on the mean-field (MF) approximation. The MF theory provides a 
general formalism to approximate high-dimensional random models by averaging the original system 
properties over degrees of freedom, i.e., maintaining the first two statistical moments (mean and 
variance) of the system. In neuroscience, MFs have been used to provide a representation of neuronal 
population dynamics, by replacing multiple single-neuron input-output (I/O) relationship with one 
based on the MF of the interconnected populations. MFs thus summarize the neuronal and 
connectivity properties of an entire spiking microcircuit through ad-hoc transfer functions (TFs) 
(Amit and Brunel, 1997; Brunel and Sergi, 1998; Kumar et al., 2008) and capture the statistical 
properties of network activity by computing the probabilistic evolution of neuronal states at 
subsequent time intervals (Kuhn et al., 2004; El Boustani and Destexhe, 2009; Zerlaut et al., 2016). 

MFs can be used to investigate macroscale phenomena, such as brain rhythms and coherent 
oscillations (Cakan and Obermayer, 2020b), and are computationally advantageous, with increased 
computational speed and low memory requirements compared to SNNs. Among current limitations, 
MFs do not capture in full the complex properties of specific neuronal populations and are valid only 
in certain firing regimes, e.g., at low frequency (Carlu et al., 2020). 

Moreover, while a diversification of MFs for specific cortical regions has been proposed (Marreiros 
et al., 2008; Bastos et al., 2012; Deco et al., 2014; Auksztulewicz and Friston, 2015; Glomb et al., 
2017; El Houssaini et al., 2020; Naskar et al., 2021), few attempts to develop MFs for subcortical 
regions have been performed (Moran et al., 2011; Saggar et al., 2015; van Wijk et al., 2018; 
Levenstein et al., 2019), despite their fundamental role in controlling brain dynamics and behavior 
(Schutter and van Honk, 2006; Castellazzi et al., 2014, 2018; Casiraghi et al., 2019; Andersen et al., 
2020). In particular, the cerebellum has a dense connectivity with the cerebral cortex and remarkably 
impacts on whole-brain dynamics in resting-state and task-dependent fMRI (Casiraghi et al., 2019; 
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Palesi et al., 2020; Monteverdi et al., 2022) prompting for the development of specific MFs to be 
included  into whole-brain simulators.  

The cerebellar cortex receives inputs from mossy fibers and climbing fibers and sends outputs to the 
deep cerebellar nuclei. Granule Cells (GrC), Golgi Cells (GoC), Molecular Layer Interneuron (MLI) 
and Purkinje Cells (PC) constitute the backbone of the cerebellar cortex, which shows a peculiar 
anisotropic geometry implementing a forward architecture with limited lateral connectivity and 
recurrent excitation. These properties, along with the neuronal types, differ remarkably from those of 
the cerebral cortex prompting for the definition of a specific MF. This operation represents both a 
challenge and an opportunity. All the neuron types of the cerebellar cortex, following a careful 
characterization in electrophysiology experiments in rodents in vitro and in vivo (D’Angelo et al., 
2001; McKay and Turner, 2005; Molineux et al., 2006; Solinas et al., 2007; Lachamp et al., 2009), 
have been represented by detailed multicompartmental models (Masoli et al., 2015, 2020b, 2020a; 
Masoli and D’Angelo, 2017; Rizza et al., 2021), simplified into point-neuron models (Lennon et al., 
2014; Geminiani et al., 2018, 2019a), and embedded in network models of the cerebellar microcircuit 
(Solinas et al., 2007; Geminiani et al., 2019b, 2019a; Casali et al., 2020; De Schepper et al., 2022). 
Thus, the cerebellum provides an ideal substrate for generating a MF, in which the internal dynamics 
can be remapped onto a precise physiological counterpart and validated against a rich and informative 
dataset.  

In this work we have developed and validated a multi-layer MF of the cerebellar cortex, which 
maintains the salient properties of the inter-wired cerebellar neuronal populations. Indeed, the MF 
was derived from a biology-grounded model of the cerebellar microcircuit, which was used to define 
the topology and tune the parameters of the MF, and it was then validated against a rich set of SNN 
outputs. The perspective is to integrate the present mesoscopic cerebellar MF as a module of 
macroscale models, e.g. Dynamic Causal Modeling (DCM) (Friston et al., 2003, 2019; Parr et al., 
2020) or The Virtual Brain (TVB)(Sanz Leon et al., 2013), to simulate the cerebellar contribution to 
brain activity in physiological and pathological conditions. 
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3.2 Methods 
In this section we describe the development, tuning, validation, and application of a multi-layer MF 
of the cerebellar circuit (Figure 3.1). The MF formalism provides a statistical summary of a SNN 
activity through the first two statistical moments (i.e. average and variance) of the population firing 
rates (El Boustani and Destexhe, 2009) . Here the SNN bottom-up modelling approach is merged 
with the standard MF mathematical formalism to obtain a multi-layer MF of the cerebellar cortex. In 
order, we present the cerebellar SNN model used as the structural and functional reference of the MF 
(section 3.2.1), the design of the MF architecture based on cerebellar topology (section 3.2.3 -
Architecture), the implementation of the MF equations derived with an heuristic approach (section 
3.2.2 - TF computation and Multi-layer Equation) (Zerlaut et al., 2016, 2018; Carlu et al., 2020), 
the protocols used to optimise the MF time constant (section 3.2.2 - Timing optimisation) and to 
validate the MF (section 3.2.3), the applications of the MF to predict the activity modulation induced 
by different levels of synaptic plasticity and of inhibitory control (section 3.2.4). 
 

 

Figure 3. 1) Pipeline of the multi-layer cerebellar MF model. The workflow of the study is represented. 
MF was designed based on structural and functional parameters extracted from Spiking Neural Network (SNN) 
simulations. The time constant of the resulting MF was optimized against Local Field Potential (LFP) 
experimental data. The model was first validated against neural activity of SNN with different stimulation 
protocols and then used to reproduce the effect of synaptic plasticity in molecular layer interneurons. 

3.2.1 SNN model 
This cerebellar cortex model was built using the Brain Scaffold Builder (BSB) 
(https://bsb.readthedocs.io/en/latest/), a neuroinformatic framework allowing a detailed microcircuit 
reconstruction based on neuron morphologies and orientations and the incorporation of active 
neuronal and synaptic properties (De Schepper et al., 2022). The SNN was made of ~3x104 extended-
Generalised Leaky Integrate and Fire (E-GLIF) neurons (Geminiani et al., 2018, 2019a) and ~1.5x106 



3.2 Methods 

 

 

47 

alpha-shaped conductance-based synapses (Roth and van Rossum, 2013). The SNN simulations were 
performed using NEST (Plesser et al., 2015; Jordan et al., 2019) 

Table 3. 1)Neuron parameters 

Parameter Name unit GrC GoC MLI PC 

gL Leak conductance nS 0.29 3.30 1.60 7.10 

Cm Membrane capacitance pF 7.00 145.00 14.60 334.00 

𝜏ref	 Refractory time ns 1.50 2.00 1.59 0.50 

𝜏m Membrane time constant ns 24.15 44.00 9.12 47.00 

EL Resting potential mV -62.00 -62.00 -68.00 -59.00 

Vth Threshold potential mV -41.00 -55.00 -53.00 -43.00 

Vr Reset potential mV -70.00 -75.00 -78.00 -69.00 

kadap Adaptation constant MH-1 0.02 0.22 2.03 1.50 

k2 Adaptation constant ms-1 0.04 0.02 1.10 0.04 

k1 Decay rate ms-1 0.31 0.03 1.89 0.19 

A2 Update constant pA -0.94 170.01 5.86 172.62 

A1 Update constant pA 0.01 259.99 5.95 157.62 

Ie Endogenous current pA -0.89 16.21 4.45 891.04 

Parameters specific of the type of neurons included in the multi-layer MF populations. The parameters in the top part are chosen 
according to literature (Table 2 of Geminiani et al., 2019a), while the parameters at the bottom were extracted from spiking neural 
network simulating the cerebellar cortex spiking activity (Geminiani et al., 2018, 2019a). mf = mossy fibers, GrC = Granule Cells, 
GoC = Golgi Cells, MLI = Molecular Layer Interneurons (Basket cells and Stellate cells) 

Neuron model 
The E-GLIF formalism describes the time evolution of membrane potential (Vm) depending on two 
intrinsic currents to generate slow adaptation (Iadap) and fast depolarisation (Idep), using a the system 
of three ODEs (Geminiani et al., 2018) 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑑𝑉N(𝑡)
𝑑𝑡 = 	

1
𝐶N

(
𝐶N
𝜏N

(𝑉N(𝑡) − 𝐸$%&) − 𝐼LaLZ(𝑡) + 𝐼a%Z(𝑡) + 𝐼% + 𝐼!"#

𝑑𝐼LaLZ(𝑡)
𝑑𝑡 = 	𝑘LaLZ(𝑉N(𝑡) − 𝐸$%&) − 𝑘?𝐼a%Z(𝑡)

𝑑𝐼a%Z(𝑡)
𝑑𝑡 = 	𝑘/𝐼a%Z(𝑡)

 

( 30 ) 
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where Isyn = synaptic current (it models the synaptic stimulus, see section 2.1.2); Cm = membrane 
capacitance; τm = membrane time constant; Erev = reversal potential; Ie = endogenous current; kadap 
and k2 = adaptation constants; k1 = decay rate of Idep. When a spike occurs, state variables are updated 
as follows: 

𝑉N@𝑡!Z)b A = 𝑉$ 

𝐼LaLZ@𝑡!Z)b A = 	 𝐼LaLZ𝑡!Z) + 𝐴? 

𝐼a%Z@𝑡!Z)b A = 𝐴/ 

( 31 ) 

where 𝑡!Z)b  = time instant immediately following the spike time tspk ; Vr = reset potential; A2, A1 = 
model currents update constants. E-GLIF models were implemented using parameter sets specific for 
each neuronal population (Geminiani et al., 2019a) as shown in Table 3.1. 

Synaptic model 
Connections between neural populations were modelled as conductance-based synapses: 

𝐼!"#(𝑡) = 𝑔!"#(𝑡)(𝑉N(𝑡) − 𝐸$%&) 

( 32 ) 

When a spike occurs, the conductance gsyn changes according to an alpha function: 

𝑔!"#(𝑡) = 𝐺!"#
𝑡 − 𝑡!Z)
𝜏!"#

𝑒
/1

919()+
J(23  

( 33) 

where Gsyn is the maximum conductance change and τsyn the synaptic time constant. E-GLIF neuron 
models and conductance-based synaptic models used in SNN simulations provided the functional 
reference of cerebellar spiking activity for MF development. 

3.2.2 MF design 
The design of the cerebellar multi-layer MF was based on the extensive knowledge of cerebellar 
anatomy and physiology summarized in previous cerebellar cortex network models (Geminiani et al., 
2018, 2019c; De Schepper et al., 2021).  

Architecture 
The cerebellar MF included the main neuronal populations of the cerebellar cortex - GrC, GoC, MLI 
and PC (Figure 3.2) and the corresponding excitatory and inhibitory synapses. The MF network 
topology reproduced the multi-layer organisation of the cerebellar cortex. Granular layer at the 
cerebellar input stage includes GrC and GoC receiving external input (𝜈drive) from mossy fibers. GrC 
excite GoC, which, in turn, inhibit themselves and GrC forming recurrent loops. GrC represent the 
excitatory input for the molecular layer constituted by MLI and PC. MLI inhibit PC, which are the 
sole output of the cerebellar cortex and shape the deep cerebellar nuclei activity through inhibition. 
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Although other neurons have been reported to play a role in the cerebellar microcircuit (e.g. Lugaro 
cells (Melik-Musyan and Fanardzhyan, 2004), and unipolar brush cells (Mugnaini et al., 2011) for 
the sake of simplicity we have limited the present model to the canonical architecture that is thought 
to generate core network computations. 

To connect the nodes of the MF network, synaptic parameters were set according to those of the 
reference SNN (Table 3.2). The connection probability for each connection type (K) was derived 
from the convergence ratio in a cerebellar cortical volume (De Schepper et al., 2022). The quantal 
synaptic conductance and synaptic time decay (Q, 𝜏) was derived from the weights and time constants 
of the corresponding synapse models (Geminiani et al., 2019a). 
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Figure 3. 2) Multi-layer MF architecture and parameters. A: Spiking Neural Network model (SNN). The 
cerebellar cortical volume (length = 300, width = 200, height = 295 μm3) contained a total of 29230 neurons 
including 28615 GrC, 70 GoC, 446 MLI and 99 PC. B: Multi-layer MF architecture with neuronal populations 
connected according to anatomical knowledge. The main cerebellar neuron types are included: GrC and GoC, 
receiving input from mossy fibers, MLI and PC, which are the sole output of the cerebellar cortex. Each 
population receive excitatory and/or inhibitory input activity 𝜈 from presynaptic populations, depending on 
their specific conductance µ and on the synaptic properties of each connection (convergence, synaptic 
conductance, and time constant). 
 

Table 3. 2) Presynaptic parameters 

Presynaptic connection K Q [nS] 𝜏 [ms] Erev [V] 

mf-GrC 4.00 0.230 1.9 0 

GoC-GrC 3.50 0.240 4.5 -80 

mf-GoC 57.10 0.240 5.0 0 

GrC-GoC 501.98 0.437 1.25 0 

GoC-GoC 2592.00 0.007 5.0 -80 

GrC-MLI 243.96 0.154 0.64 0 

MLI-MLI 1418.69 0.005 2.0 -80 

GrC-PC 489.16 0.510 1.1 0 

MLI-PC 10.28 1.244 2.8 -80 

Parameters used to set up the inter-population connectivity of the multi-layer MF cerebellar network. The parameters were extracted 
from the spiking neural network simulating the cerebellar cortex spiking activity (Geminiani et al., 2019b). Mf = mossy fibers, GrC = 
Granule Cells, GoC = Golgi Cells, MLI = Molecular Layer Interneurons (Basket cells and Stellate cells).  K = pre-synaptic connectivity 
resulting by weighting the mean synaptic convergence with the number of synapses; Q = quantal synaptic conductance in nS; 𝜏 = 
synaptic decay time constant;	Erev = reversal potential that is 0 V for excitatory synaptic connections and -80 V for inhibitory synaptic 
connections.  
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TF Computation 
The TF is defined for each population as a mathematical construct that takes the activity of the 
presynaptic population (𝜈s) as input and provides an average population activity signal as output 
(𝜈XY9) (Kuhn et al., 2004).  

A purely analytic derivation of the TF (using approximations and stochastic calculus, e.g. Brunel & 
Amit, 1997) was not possible given the relative complexity of the neuronal (E-GLIF) and synaptic 
(alpha-waveform) models considered here. Therefore, the TFs presented here relied on a semi-
analytical approach that couples an approximate analytical estimate with an optimization step to 
capture the firing response of analytically intractable models (Zerlaut et al., 2016, see also Brunel & 
Sergi, 1998 for a similar approach). More details can be found in Zerlaut et al. (2016) but we 
summarize the approach below. 

The analytical template for the TF (indicated with F in the equations for sake of simplicity) of all 
neuron types is derived from the probability to be above threshold in the fluctuation-driven regime 
(Kuhn et al., 2004): 

𝜈XY9 = 𝐹Z(𝜈!) = 𝛼	
1
2𝜏P

𝑒𝑟𝑓𝑐(
𝑉9[$%
%\\ − 𝜇P
√2𝜎P

) 

( 34 )  

where erfc is the error function while µV, sV2 and tV are the average, variance and autocorrelation 
time respectively of the membrane potential fluctuations. Two phenomenological terms were 
introduced: 𝑉9[$%

%\\, an effective firing threshold to capture the impact of single cell non-linearities on 
firing response (Zerlaut et al., 2016) and a, a multiplicative factor to adapt the equations also to high 
input frequency regimes (Carlu et al., 2020). Those two terms were optimized for each neuron type 
(steps d and e respectively) from single neuron simulations of input-output transformation in terms 
of firing rate (i.e., the numerical TF, see step b). The TF depends on the statistical properties of the 
subthreshold membrane voltage dynamics (mean = µV, standard deviation = sV2 and autocorrelation 
time tV, calculated in step c). These in turns depend on the average population conductances that are 
computed with the biologically-grounded functional parameters derived from SNN models at single 
neuron resolution (step a), bringing the physiological properties into the MF mathematical 
construct.Errore. Il segnalibro non è definito. 

a) Equations of Population-specific conductance. For each neuronal population, the average 
conductance was defined as a function of the presynaptic inputs, according to the topology described 
in section 3.2.2 (Figure 3.2.):  

𝜇Z =.-𝐾!1Z𝜏!1Z𝑄!1Z𝜈!
!

 

( 35 ) 
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where, for each population p (p = GrC, GoC, MLI, PC), Ks-p, 𝜏s-p, Qs-p are the connection probabilities, 
synaptic decay times and quantal conductances of the connection for each presynaptic population s 
(e.g., for p = GrC, s-p is mossy fiber-GrC and GoC-GrC), ns is the presynaptic population activity in 
Hz computed as explained in (b). 

b) Numerical TF.  The reference functional target was the neuronal spiking activity obtained in SNN 
simulations (in vivo conditions) as described in section 3.2.1. The activity of GrC, GoC, MLI and PC 
embedded in the SNN was simulated for different input amplitudes (𝜈a$-&%) in the range 0-80 Hz, 
with input spikes generated from a Poisson distribution. For each 𝜈a$-&%, the simulation lasted 5 
seconds with a time resolution of 0.1 ms. The working frequencies of each population were extracted 
by averaging the spiking neuron firing rates. For each population, the outcome of numerical TF 
computation was a template of dimension equal to the number of presynaptic populations, resulting 
in 2D numerical TFs for GrC, MLI and PC and 3D numerical TF for GoC (Figure 3.3A). 

The 2D numerical TF of each population was computed as the population firing rate when receiving 
the firing rates of the presynaptic populations, given a certain 𝜈a$-&% : for example, for the numerical 
TF numerical template of PC, the average firing rates of MLI and GrC were computed for each 𝜈a$-&%  

in the range 0-80 Hz. Then, these quantities were used as presynaptic signals to stimulate PC and a 
numerical template was obtained from the resulting PC firing rate, for each combination of 
presynaptic activities). The 3D TF numerical template of GoC was computed following the same 
strategy but considering 3 presynaptic signals (GrC, GoC, mossy fibers). GrC excitation and GoC 
self-inhibition were extracted from SNN simulations and the mossy fibers excitation corresponded to 
𝜈a$-&%.  

c) Statistical moments of the MF. The statistical moments included in the MF are µV, sV and tV. 
Starting from the conductances of the presynaptic populations, the average conductance 𝜇]  of the 
target population reads:  

𝜇](𝜈!) =-𝜇]!
!

+ 𝑔O 

( 36 ) 

Where 𝜇]! is the presynaptic population conductance (equation (35)) and 𝑔O is the leak conductance 
of the target population (Table 3.1). Then, the effective membrane time constant of the target 
population is computed from 𝜇]  as: 

𝜏N
%\\(𝜈!) =

𝐶N
𝜇]

 

( 37 ) 

Where 𝐶N is the membrane capacitance (Table 3.1).  
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The first statistical moment, i.e., the average of membrane potential fluctuation 𝜇P reads: 

 

𝜇P(𝜈!) = 𝑒	
∑ 𝜇]!! 𝐸! + 𝑔O𝐸O

𝜇]
 

( 38 ) 

With Es = reversal potential of the presynaptic connection (0 mV for the presynaptic excitatory 
populations and -80 mV for the presynaptic inhibitory populations), EL = rest potential of the target 
population (Table 3.1). 

This expression is adapted from Zerlaut et al. 2018 to model the alpha synapses consistently with the 
models used in the SNN (equations (30), (31), and (32)). Consequently, the variance and the 
autocorrelation time of membrane fluctuations result in:  

𝜎P(𝜈!) = �- (2𝜏N
%\\ + 𝜏!1Z) �

𝑒𝑈!1Z𝜏!1Z
2(𝜏N

%\\ + 𝜏!1Z
�
?

𝐾!1Z𝜈!1Z
!

 

( 39 ) 

𝜏P(𝜈!) =
1
2

∑ 𝐾Z1!𝜈!(𝑒𝑈Z1!𝜏Z1!)?!

∑ (2𝜏N
%\\ + 𝜏Z1!) o

𝑒𝑈Z1!𝜏Z1!
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s
?

𝐾Z1!𝜈!!

 

( 40 ) 

With 𝑈! =	
^(4)
I-

	(𝐸! − 𝜇P). 

d) Phenomenological threshold. The ability of the analytical template (34) to capture different firing 
behavior is given by the introduction of 5 parameters in the phenomelogical threshold term. The 
phenomenological threshold is expressed as a linear combination of the Vm fluctuations properties 
whose coefficients are linearly fitted to the numerical TF data (Zerlaut et al., 2016): 

𝑉9[$%
%\\@𝜇P,𝜎P,𝜏PA = 𝑃< + 𝑃IP

𝜇P − 𝜇P<

𝜕𝜇P<
+ 𝑃 P

𝜎P − 𝜎P<

𝜕𝜎P<
+ 𝑃JP

𝜏P' − 𝜏P'<

𝜕𝜏P'<
+ 𝑃I]ln	(

𝜇]
𝑔O
) 

( 41 ) 

Where 𝜏P' is 𝜏P 	adjusted with the ratio between membrane capacitance and leak conductance (5,
c5

), 

and 𝜇P< , 𝜎P	< ,𝜏P'<, 𝜕𝜇P< , 𝜕𝜎P	< ,𝜕𝜏P'<	are rescaling constants to normalize the contribution of each term 
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(Zerlaut et al., 2018). P are the polynomial coefficients which are the target of the fitting procedure 
to compute the analytical TF as explained in e) (see Table 3.3). 

e) Analytical TF. The statistical moments in equations (38), (39), (40) and the phenomenological 
threshold in equation (41) were plugged into equation (44) and the phenomenological threshold is 
computed through a fitting procedure described in Zerlaut et al. 2016. The TFs specific for the 
cerebellar populations are reported in Figure 3.3B. 

The parameter alpha (equation (34)) was set to an optimal value for each population to fit both low 
and high frequencies (Carlu et al., 2020). The analytical TF, together with the statistical moments 
𝜇P , 𝜎P, and 𝜏P defined the cerebellar MF equations. 

Multi-layer equations 
The multi-layer MF was developed as a set of equations capturing the interdependence of the 
population-specific TFs, tailoring the isocortical MF described in (El Boustani and Destexhe, 2009) 
for excitatory-inhibitory networks to the cerebellar network. This formalism describes the network 
activity at a time resolution T which is set to ensure a Markovian dynamic of the network: T should 
be large enough to ensure memoryless activity (e.g., it cannot be much lower than the refractory 
period, which would introduce memory effects) and small enough so that each neuron fires 
statistically less than once per time-bin T. The choice of T is quite crucial and here it was tailored to 
account for cerebellar dynamics as explained in section Timing Optimization. 

The model describes the dynamics of the first and the second moments of the population activity for 
each population. The cerebellar network was build up with four interconnected populations (GrC, 
GoC, MLI, PC) receiving external input from mossy fibers (mf) (Figure 3.2), thus resulting in twenty 
differential equations: the four population activities (𝜈GrC(t), 𝜈GoC(t), 𝜈MLI(t), 𝜈PC(t)) and the driving 
input (𝜈mf (t) = 𝜈drive(t)), the four variances of the population activities (cGrC-GrC(t), cGoC-GoC(t), cMLI-

MLI(t), cPC-PC(t)) and the one of the driving input from mossy fibers (cmf-mf(t)), the six covariances 
among population activities (cGrC-GoC(t), cGrC-PC(t), cGrC-MLI(t), cGoC-MLI(t), cGoC-PC(t), cMLI-PC(t)) and 
the four covariances between population activities and the driving input (cGrC-mf(t), cGoC-mf(t), cMLI-

mf(t), cPC-mf(t)). Einstein’s notation was used to report the differential system in a concise form: 

⎩
⎪
⎨

⎪
⎧ T

𝑑𝜈I 	
𝑑𝑡 = 	 @𝐹I − 𝜈IA +	

1
2 𝑐KM

𝜕𝐹I
𝜕𝜈K𝜕𝜈M
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𝑑𝑡
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𝜕𝜈I
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𝜕𝜈I

𝑐KI − 2𝑐KM

 

( 42 ) 

Where 𝜈µ  is the activity of population µ; cλ𝜂	is the (co)variance between population λ and 𝜂; N is the 
number of cell included in population λ. According to Einstein’s notation, a repeated index in a 
product implies a summation over the whole range of values. TF dependencies on the firing rate of 
presynaptic populations are omitted yielding Fμ instead of Fμ(𝜈s) with μ = {GrC, GoC, MLI, PC} and 
s is the presynaptic population (e.g. 𝐹]X5 =	𝐹]X5	(𝜈a$-&% , 𝜈]$5 , 𝜈]X5)). The model equations (42) 
were numerically solved using forward Euler method with an integration step of 0.1 ms. 
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Timing Optimisation 
The MF time-constant T was optimised by comparing the model prediction with experimental data 
of the cerebellar Granular layer (Figure 3.4). The simulated average activity was interpolated with 
the experimental Local Field Potential (LFP) measured with high-density microelectrode arrays (HD-
MEA) in the granular layer of acute mouse cerebellar slices (Mapelli and D’Angelo, 2007)  

LFP data were recorded at 37 °C. The external stimulus consisted in a pulse train of 5 stimuli of 50 
Hz amplitude. This stimulation protocol was repeated nine times changing the HD-MEA recording 
channels across each experiment (Figure 3.4A). The LFP signals recorded were averaged across the 
nine experiments resulting in five values that represented the average of each pulse of the input trains. 
These average records were normalised on the amplitude of the signal recorded after the first stimulus. 

The cerebellar MF simulation protocol was configured with a 𝜈drive = 50 Hz for 100 ms, reproducing 
the experimental protocol (Figure 3.4B). A range of plausible T values was evaluated according to 
literature (El Boustani and Destexhe, 2009; Zerlaut et al., 2016, 2018; Carlu et al., 2020). MF 
simulations were performed with a systematic change of T value and the granular layer average 
activity was calculated by a weighted-mean of GrC and GoC activity. The weight of GrC and of GoC 
was computed as the ratio of the spiking surfaces (GoC/GrC) resulting in 0.13 (Mapelli and 
D’Angelo, 2007). The granular layer average activity was normalised on the maximum peak, and it 
was interpolated with LFP recordings (Figure 3.4C). For each simulation the mean absolute error was 
computed to select the T value that minimised the discrepancy with the LFP signals. Since the 
granular layer is the driving layer of the network, the optimal T value was extended to the molecular 
and Purkinje layers. 

3.2.3 Constructive and Functional validity 
For constructive and functional validity, the cerebellar MF was tested using stimulation protocols 
designed to assess its ability in reproducing proper cerebellar dynamics and stimulus-response 
patterns.  

Four different stimulation protocols were defined, each lasting 500 ms: 

i) 𝜈a$-&% = Step function. A square wave with steps of amplitude 50 Hz, and lasting 250 ms to 
reproduce a conditioned stimulus (e.g., a sound) 

ii) 𝜈a$-&% = Theta-band sinusoid. A sinusoidal input with rate amplitude set at 20 Hz and frequency 
at 6Hz (theta band) to simulate the whisker movements experimental conditions. 

iii) 𝜈a$-&% = Combination of alpha, theta, and gamma band sinusoid. A combination of 3 sinusoidal 
inputs, with fixed rate amplitude at 40 Hz and frequency at 1Hz, 15Hz and 30Hz respectively 
reproducing a EEG-like pattern.  

iv) 𝜈a$-&% = Step function plus multi-band sinusoid. Summation of the step function described in (i) 
with amplitude of 20 Hz and sinusoidal function including alpha, theta and gamma band with the 
same frequency of (iii) and amplitude of 7.5 Hz to simulate a more complex input like a conditioned 
stimulus overlapped to a realistic basal activity 
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Population activities predicted by the MF were overlayed to the Peristimulus Time Histogram (PSTH) 
with bin = 15 ms, computed from spiking activities of the SNN in NEST simulations of the same 
stimulation protocols. Then, the PC activity, i.e., the output of the cerebellar cortex, was quantified 
as mean ± standard deviation of the firing rate for both MF and SNN simulation. Boxplots were 
shown to quantitively compare MF and SNN outcomes, and the computational efficiency of each 
model was measured as computational time in seconds required for each simulation performed with 
MF and with NEST. 

3.2.4 Predictive Validity 
For predictive validity, MF parameters were tuned to explore the MF sensitivity to modifications of 
local mechanisms. These modifications were derived from experimental studies on neural correlates 
of behavior in functional or dysfunctional conditions, focusing on inhibitory control and long term 
plasticity on PCs (Wulff et al., 2009; ten Brinke et al., 2015) 

 MLI feed forward inhibition modulation 
Feedforward inhibition from molecular layer interneurons regulates adaptation of PCs. Impact of 
MLI-PC conductance on PC activity was explored by defining different values of MLI-PC synaptic 
strength wMLI-PC = [5, 30, 100, 150, 200, 250] %, where wMLI-PC = 100% represents the standard 
condition, rates lower than 100% model disinhibited activity, while rates higher than 100% extra- 
inhibition. 

wMLI-PC was added to the Analytical TFPC as a modulatory parameter of the presynaptic input 𝜈MLI, 
resulting in a modulation of MLI contribution in PC population conductance (35) defined as follows 

𝜇d5 = 𝐾+Oe1d5𝑄+Oe1d5𝜏+Oe1d5𝜈+Oe𝑤+Oe1d5 + 𝐾]$51d5𝑄]$51d5𝜏]$51d5𝜈]$5  

( 43 ) 

Each simulation lasted 500 ms with a 50Hz driving input of 250 ms after 125 ms of resting.  

The Area Under Curve (AUC) of PC activity, PC peak and the depth of the pause were computed as 
quantitative scores for each wMLI-PC value AUCs and PC peaks were normalised on the respective 
values corresponding to the standard condition defined as wMLI-PC = 100%. 

PC Learning 
Long term potentiation and depression (LTP and LTD) are forms of synaptic plasticity at the basis of 
brain learning processes (Bliss and Cooke, 2011). In the cerebellum, motor learning is driven by PC 
activity modulation, regulated by the plasticity of the synapses between parallel fibers (pfs – from 
GrC) and PC, resulting in a reduction of PC activity due to LTD and in an increase of PC activity due 
to LTP (Mittmann and Häusser, 2007; Prestori et al., 2013). To simulate pf-PC plasticity, the 
following synaptic strengths (wpf-PC) were explored to investigate the consequent PC modulation: [5, 
20, 35, 50, 65, 80, 100, 120, 135, 150, 165, 180, 200, 235, 250, 265] % where 65% corresponds to 
the decrease of pf-PC strength during motor learning according to animal experiments value (ten 
Brinke et al., 2015), and the others were defined to capture the trend of pf-PC plasticity mechanism. 
The values minor than 100% means LTD occurred, while the values higher than 100% represent LTP 
occurrence. The strategy applied was analogous to equation (43). 
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PC AUC and PC peak were computed for each wpf-PC value as quantitative score to correlate the 
amount of LTD and LTP with the output activity of the cerebellar cortex. 

3.2.5 Hardware and software 
The SNN was built with the BSB release 3.0 (https://bsb.readthedocs.io/en/v3-last) and the numerical 
simulations were performed with NEST version 2.18 (https://zenodo.org/record/2605422).  

The MF design, the timing optimisation, the MF validation, and the MF predictive simulations were 
implemented in Python 3.8. Functions packages written for the present work are available on 
https://github.com/RobertaMLo/CRBL_MF_Model. 

All optimisation procedures and simulations were run on a Desktop PC provided with AMD Ryzen 
7 2700X CPU @ 2.16GHz with 32 GB RAM in Ubuntu 16.04.7 LTS (OS). 

3.3 Results 
3.3.1 The cerebellar MF 
The workflow for reconstructing the cerebellar MF is shown in Figure 3.1 leading to a condensed 
representation using 4 neuronal populations for GrC, GoC, PC, MLI neurons (Figure 3.2). The MF 
was designed based on structural and functional parameters extracted from SNN simulations and the 
time constant was optimized LFP experimental data. The MF working frequencies were extracted 
from NEST simulations of the cerebellar SNN exploring multiple 𝜈drive from 4 to 80 Hz. Then these 
frequency ranges were used to set different plausible presynaptic signals in defining the Numerical 
TFs of each population (Figure 3.3A). The ranges were [0.42, 24.17] Hz for GrCs, [3.63, 183.15] Hz 
for GoCs, and [3.27, 41.66] Hz for MLIs. Note that PC working frequencies were not computed since 
PC activity is only projected forward to the cerebral cortex, therefore PCs never play the role of 
presynaptic population in this cortical cerebellar microcircuit. The a parameters that maximised the 
fitting performance for each population were a GrC = 2, a GoC = 1.3,  a MLI = 5 and a PC = 5. The fitted 
coefficients P are reported in Table 3.3  

2D Analytical TFs show a sigmoidal trend in relation with excitatory inputs (Figure 3.3B). GoC 
inhibition strongly affects the GrC Analytical TF; for 𝜈GoC	higher than 100 Hz, GrC Analytical TF is 
almost 0 Hz. For low inhibition, e.g., 𝜈GoC= 13 Hz, GrC Analytical TF is almost linear. MLI Analytical 
TF presents a well-defined sigmoidal trend depending on 𝜈GrC and modulated by the auto-inhibition, 
with resulting activity frequency spanning from 0 Hz up to 200 Hz. PC Analytical TF presents an 
increasing trend ranging from 0 to 100 Hz in relation to 𝜈GrC	from 0 to 25 Hz, with the modulation 
due to the inhibitory control from MLIs. 3D Analytical TF of GoC shows a linear trend both for low 
and high 𝜈drive. 

The cerebellar MF resulted in a set of 20 second order differential equations including the specific 
population TFs, where 4 equations described the time variation of population activity, and the 
remaining 16 equations modelled the covariances of the interconnected populations. Figure 3.4 shows 
the result of T optimisation: for T = 3.5 ms the average granular layer activity (purple line) 
interpolates the experimental LFPs (red dots) with a mean absolute error of 3%. 
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Figure 3. 3) Numerical TFs and the corresponding Analytical fitting. The simulation used to compute the 
numerical TFs last 5 seconds, with a time step = 0.1 ms. A) A 2D numerical TF template is reported for GrC, 
MLI and PC, which receive inputs from two presynaptic populations. A 3D numerical TF template is reported 
for GoC, which receive input from 3 presynaptic sources, i.e., mossy fibers, GrC and GoC. From the 3D 
domain of frequencies combination, only the physiological working frequencies of GrC and GoC are 
considered for mossy fibers inputs from 0 Hz to 80 Hz, as obtained in corresponding spiking neural network 
simulations and 3D numerical TF for GoC which receive three presynaptic inputs. B) The numerical TFs are 
used to fit the corresponding analytical TF. For each neuronal population, the average activity obtained in 
spiking neural network simulations is represented in color code, for each combination of input activity levels. 
The 2D analytical TF presents a non-linear trend, while the GoC Analytical TF shape is almost linear both for 
lower 𝜈drive = 20 Hz and higher	𝜈drive = 80 Hz. 
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Table 3. 3) Fitted coefficients of the Analytical TFs 

 

Phenomenological threshold 

𝑉9[$%
%\\@𝜇P,𝜎P,𝜏PA

= 𝑃< + 𝑃IP
𝜇P − 𝜇P<
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+ 𝑃 P

𝜎P − 𝜎P<

𝜕𝜎P<
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𝜕𝜏P'<

+ 𝑃I]ln	(
𝜇]
𝑔O
) 

 

 

Fitted coefficient P [V] 

 P0 PµV	 P𝜎V P𝜏V PµG 

GrC -0.426 0.007 0.023   0.482  0.216 

GoC -0.144   0.003   0.011   0.031   0.011 

MLI -0.128  -0.001   0.012  -0.093 -0.063 

PC -0.080   0.009     0.004 0.006  0.014 

 

P coefficients computed with the fitting procedure explained in Zerlaut et al., 2016 and extended to E-GLIF neurons. 
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Figure 3. 4) The mean-field time constant. A) Experimental acquisition of LFP. LFP signals were acquired 
in the cerebellar granular layer of acute mice cerebellar para-sagittal slices using HD-MEA in response to five 
stimulation pulse trains of 50 Hz (Unpublished data, courtesy of Lisa Mapelli and Anita Monteverdi). B) MF 
simulation. The activity of the granular layer was simulated with the cerebellar MF using a stimulation protocol 
emulating experimental LFP recordings. C) Interpolation of LFP and MF. The weighted average of the 
predicted Granular Layer activity (𝜈GRL, violet line) interpolates the LFP data (mean ± SD; dots and bars). The 
relative weights of GoC and GrC are 13% and 87%, respectively. The optimal T value is 3.5 ms ± 5%, (mean 
± mean absolute error between 𝜈GRL and LFP). 

  



3.3 Results 

 

 

61 

3.3.2 Constructive and functional validity 
The validation of the cerebellar MF was obtained generating neuronal population dynamics with 
different stimulation protocols and comparing them with the corresponding SNN simulations (Figure. 
3.5). For all the protocols, the simulation lasted 500 ms and was performed with the hardware and 
software specified in section 3.2.5. 

Step function (i). The MF was tested with a 250 ms@50 Hz step function on the mossy fibers, 
simulating a conditioned stimulus (Figure 3.5A) (Jirenhed and Hesslow, 2011). GrC activity rapidly 
raised at the beginning of the step input, then strongly decreased due to inhibitory GoC activity. GoCs, 
after an initial small peak due to both the direct incoming input and the GrC excitation, maintained a 
steady-state activity for all the step duration. The dynamics of GrC-GoC interplay faithfully 
reproduced the feedback loop between GoCs and GrCs. GrC was the excitatory input for the 
molecular layer, and both MLI and PC activity arose in correspondence of the GrC initial peak. Thus, 
exploiting network di-synaptic delays, MLIs reduced PC activity soon after its maximum, generating 
the typical burst-pause pattern of these neurons. The PC pause is due to both the single neuron 
parameters and to inhibitory local connectivity in the microcircuit. After this rapid transient, the 
activity of MLIs and PCs reached a steady-state. In the MF, fast dynamics at the input step onset and 
at the steady-state matched SNN simulations for all neuronal populations. 

Theta band sinusoid (ii). Simulated dynamics of all cerebellar populations showed oscillations driven 
by the input reproducing whisker movements (Figure 3.5B) (Popa et al., 2013). GrC activity projected 
to the molecular layer a sinusoidal-shaped signal at 0.05-5Hz, contributing to an oscillatory behaviour 
in GoCs, and causing an oscillation in MLI between at 23-41 Hz, and in PC activity at 42-69 Hz. 
Oscillations had comparable amplitude in MF and SNN simulations and occurred in the same 
frequency ranges (except for MLI activity that was slightly higher in MF that SNN).  

Alpha, gamma and theta band sinusoid (iii).  Combination of alpha, gamma and theta sinusoids (with 
EEG-like frequency (Del Percio et al., 2017) of 1 Hz, 15 Hz, 30 Hz, respectively) caused an irregular 
oscillation in the input carried by mossy fibers (2-47 Hz range) (Figure 3.5C) Oscillations had 
comparable amplitude in MF and SNN simulations and occurred in the same frequency ranges. 

Step function plus multi-band sinusoid (iv). The summation of repeated step function (i) and multi-
band sinusoid (iii) resulted in an irregular input (Figure 3.5D) depicting in-vivo noisy baseline activity 
with a conditioned stimulus superimposed. GrC activity faithfully transmitted the driving input, with 
peaks at ~21 Hz. In correspondence with the GrC excitatory peak, MLIs peaked at ~130 Hz and PCs 
at ~100 Hz.  

The responses had comparable dynamics and amplitude in MF and SNN simulations. 
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Figure 3. 5) Constructive and functional validity. Comparison of SNN and MF activity in cerebellar cortical 
populations in response to different driving input (𝜈drive) patterns, lasting 500 ms with time resolution = 0.1 
ms. A) step function (Conditioned stimulus-like); B) sinusoidal input in the theta band (whisker-like); C) multi-
frequency sinusoidal function (EEG-like); D) combined stimulus summing (A) step function and (C) multi-
frequency sinusoidal. The trace of MF activity is overlayed to the spiking activity, which is represented as a 
PSTH (time bins of 15ms). In all cases, MF activity is within physiological ranges, capturing also fast changes 
of activity due to instantaneous input changes in step-function input protocols. The boxplots of PC simulated 
activity with SNN and MF, shows that the MF is able to respond to the different stimulation patterns within 
the same frequency ranges of SNN. 
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3.3.3 Predictive validity 
The PC response to a 50Hz step-stimulus was described by a peak at 97 Hz followed by a pause down 
to 68 Hz; then a steady-state of 78 Hz was attained. MLI-PC and pf-PC modulation (Figure 3.6) 
perturbed this reference condition. 

MLI-PC feed forward inhibition 
Inhibitory interneurons control the generation of burst-pause patterns in PC, which is fundamental 
for shaping the cerebellar output during motor learning (Casali et al., 2019; Kim and Augustine, 
2021). For instance, knock-out of MLI inhibition on PC impacts on vestibulo-ocular reflex adaptation 
(Wulff et al., 2009). Here in MF simulations, when the MLI-PC conductance was reduced to 5% of 
the reference condition, the burst-pause dynamics of PC was lost, so that the PC firing settled directly 
back to baseline (which was elevated due to lack of inhibitory control). Conversely, when PCs were 
over-inhibited by the MLIs (MLI-PC conductance increased to 250% of reference condition), the 
pause was deeper. The PC overall activity (AUC), and PC Peak reveal an exponential trend that 
decays for higher MLI-PC conductances. The PC pause shows a decreasing sigmoidal trend for higher 
MLI-PC conductances (Figure 3.6A). 

PC plasticity 
Long Term Depression (LTD) and Long Term Potentiation (LTP) at pf-PC synapses are though to 
drive cerebellar adaptation and learning. The overall activity and the peak of PCs showed a linear and 
a sigmoidal trend, respectively, with the increase of pf-PC weight. With decreased pf-PC strength, 
the peak was reduced or disappeared, and the steady-state activity reached lower levels. With 
increased pf-PC strength, both the peak and steady-state values were increased (Figure 3.6B). During 
a typical cerebellum-driven behaviour, the eyeblink classical conditioning (EBCC), a level of 
suppression of about 15% has been reported and correlated with a stable generation of associative 
blink responses at the end of the learning process (ten Brinke et al., 2015). SNN simulation got the 
same result by setting AMPA-mediated pf-PC synapses = 35% (De Schepper et al., 2022). In MF 
simulations, for wpf-PC = 65%, which corresponded to a reduction of pf-PC conductance of 35%, PC 
activity presented a 22% reduction of the peak and a 10% reduction of the AUC, falling into the 
experimental range of PC suppression (ten Brinke et al., 2015). 
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Figure 3. 6) Predictive validity. MF simulations using different strengths at PC connections. Simulations last 
500 ms with a time resolution of 0.1 ms and 𝜈drive is a step at 50 Hz lasting 250 ms starting at 125 ms. 
Quantitative score normalized to baseline (w = 100% in blue). A) MLI-PC feed forward inhibition. The 
change of total activity (measured as AUC) and the initial peak amplitude decrease exponentially with the 
MLI-PC strength. The amplitude of the pause after the peak response decreases with MLI-PC strength 
following an inverse sigmoidal function. B) PC Learning with different GrC-PC plasticity conditions (LTP 
and LTD). AUC linearly increases with the GrC-PC strength, matching the experimental values in 
experimental learning protocols. The initial peak caused by the step stimulus onset increases with GrC-PC 
until saturation, following a sigmoidal function. 

3.4. Discussion 
This work shows, for the first time, a MF of cerebellar cortex. According to its bottom-up nature, the 
MF transfers the microscopic properties of neurons (including GrC, GoC, MLI, and PC) and synapses 
of the cerebellar cortex into a condensed representation of neural activity through its two main 
statistical moments, mean and variance. The construction and validations strategies adopted here 
make the present MF an effective representation of the main physiological properties of a canonical 
cerebellar module (D‘Angelo and Casali, 2013) 

3.4.1 MF design and validation  
The cerebellar network and TF formalism 
The cerebellar cortex MF was based on the same general formalism previously developed for the 
isocortex MFs (Moran et al., 2013; Di Volo et al., 2019; Carlu et al., 2020; Huang and Lin, 2021). 
However, the cerebellar cortex MF benefitted of a previously validated SNN to precisely remap 
cellular and synaptic biophysical properties and network topology. Moreover, the 
electrophysiological properties of neurons were represented using non-linear EGLIF models and the 
synapses with alpha-based conductance functions. This resulted in three main advantages. 
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First, the parameters of population specific TFs were validated against biophysically detailed models 
of neurons and the connectome was derived from precise scaffold model reconstructions providing a 
direct link to the biological microcircuit (De Schepper et al., 2022). 

Secondly, the equations of μV, 𝜎V and 𝜏V included in the TF formalism were adapted to model the 
alpha-shaped synapses and to maintain rise-times in synaptic dynamics. For comparison, previous 
MFs (Zerlaut et al., 2016, 2018) used exponential synapses, which provide a less realistic 
approximation due to their instantaneous rise time (Brette and Gerstner, 2005).  

Finally, MF included 4 different species of neurons that were modelled using either 2D or 3D TFs to 
account for the multiplicity of their inputs (Figure 3.3). It is worth noting that the analysis of both 2D 
TFs of GrC, MLI and PC, and 3D TF of GoC were fitted considering only physiological input 
combinations computed from single-neuron computational models. In the fitting procedures, indeed, 
fine-tuned parameters were included to maintain a strong physiological correspondence. The 3D 
dimension of the GoC TF avoided to merge the excitatory input from GrC and mossy fibers (𝜈GrC	and 
𝜈drive, respectively), enabling us to investigate distinct excitatory input contributions to granular layer 
dynamics and to the whole cerebellar MF. By fixing the excitatory mossy fibers driving input, we 
assessed the power of the Analytical TF in simulating spiking network activity for inputs at both low 
and high frequency (e.g., see Figure 3.4 with 𝜈drive= 20 Hz and = 𝜈drive= 80 Hz). 

A technical issue incurred while fitting the numerical TF. The TF formalism models the difference 
between phenomenological threshold (𝑉9[$%

%\\) and population average responses (μV) through the 
complementary error function (erfc in equation (34)), providing an immediate interpretation of how 
single neuron activity was related with statistics of population dynamics (μV, 𝜎V, 𝜏V). Since erfc is stiff 
and limited between -1 and 1, it may not accurately follow the numerical TF distribution at the 
boundaries, losing precision at high frequencies. This problem was circumvented by tuning the 
parameter alpha (Carlu et al., 2020), making the TF analytical expression reliable over the whole 
range of input working frequencies. 

MF tuning  
The inclusion of precise structural and functional parameters in the design of cerebellar MF (see 
Figure 3.2 and 3.3) generated a biology grounded model that could be validated at a higher scale with 
the prediction of cerebellar dynamics (multi-layer equation 42). The dynamics of the cerebellar cortex 
are several times faster compared to those of the cerebral cortex (D’Angelo, 2011), so that the MF 
time constant, T, must be optimized accordingly. The MF time constant was optimized using 
experimental LFP recordings from the cerebellar granular layer acquired on the same spatial scale of 
the MF. The best fitting was obtained by accounting for the smaller contribution of GoC than GrC 
activity (13% vs. 87% (Dieudonné, 1998; D’Angelo et al., 1999)) to LFPs (Mapelli and D’Angelo, 
2007) , revealing that the MF time constant of the cerebellar cortex is T=3.5 ms with mean absolute 
error of 3% (Figure 3.4). T is definitely smaller than in cerebral cortex MFs, which range up to 20 ms 
(Zerlaut et al., 2018; Di Volo et al., 2019; Carlu et al., 2020), and captures the peculiar high speed of 
cerebellar dynamics (D’Angelo, 2011). This result further confirms the need of a MF specifically 
tailored on the cerebellum functional and topological parameters. 
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The optimal T value was plugged into equation 42 resulting in a second order differential equation 
system of interdependent TFs capturing the dynamics of multiple cerebellar populations and their 
covariances. This rich pool of equations allowed our cerebellar MF to reproduce a variety of 
cerebellar dynamics in response to different inputs (see section 3.2.3 and shown in Figure 3.5) which, 
by comparison with the equivalent SNN output, provided the benchmark for constructive and 
functional validity. A rapidly changing input like a step function reproduced a conditioned stimulus 
(Jirenhed and Hesslow, 2011) carried by the peripherical mossy fibers, causing rich dynamics in the 
cerebellar cortex including the typical PC burst-and-pause responses (Herzfeld et al., 2015). Adding 
a multi-sinusoidal input to the conditioned stimulus replicated a more physiological condition 
accounting for background activity. This resulted in rich PC dynamics, which still maintained burst-
and-pause responses. A sinusoidal input was meant to emulate more complex experimental 
conditions, like those determined by whisker movement (Popa et al., 2013; Yamazaki and Igarashi, 
2013; Antonietti et al., 2017; Masoli et al., 2020a; Gagliano et al., 2021, 2022). In particular, a multi-
sinusoidal waveform (comprised of frequencies in the EEG spectrum) was used to emulate composite 
inputs from the cerebral cortex (Del Percio et al., 2017; Tzvi et al., 2022).  

The cerebellar MF reproduced the known aspects of circuit physiology revealed experimentally. 
Indeed, GrCs respond to impulsive inputs with bursts curtailed by GoCs and are also able to follow 
slower input fluctuations (D’Angelo and De Zeeuw, 2009). The PCs generate burst-pause responses 
that are accentuated by MLIs (Masoli and D’Angelo, 2017; Rizza et al., 2021). The cerebellar MF 
quantitatively reproduced these patterns matching the corresponding SNN simulations, with the only 
exception of the maximal GoC responses, which did not increase as expected with rapidly changing 
inputs like the step function. This is a consequence of the lack of GoC heterogeneity in MF, in which 
all GoC are collapsed in a homogeneous population despite their biological heterogeneity (Galliano 
et al., 2010). Except for this, MF predicted with good approximation the SNN cerebellar output, i.e., 
the PC activity (Boxplot in Figure 3.5). The inclusion of probabilistic kernels addressing parameter 
heterogeneity could also help improving the MF fitness (Di Volo and Destexhe, 2021).  

3.4.2 MF predictions  
A critical step in model validation is to demonstrate its ability to predict functional states not used for 
model construction. The cerebellum is well known for the ability to change its network functioning 
because of synaptic and non-synaptic plasticity. However, different from SNN, the MF did not 
include plasticity mechanisms. Thus, we directly tested the MF ability to predict the effects of 
plasticity expression by mapping a set of precomputed synaptic changes on the MF itself.  MF 
reproduced the impact of MLI-PC conductance confirming that, also in the cerebellar MF, the 
complex burst-pause behaviour of PC is tuned through the MLI-PC connectivity.  

The cerebellar MF reproduced the experimental recordings in EBCC experiments on behaving mice 
(ten Brinke et al., 2015) pointed out a PC LTD of 10% in terms of overall activity and 22% for the 
peak (Figure 3.6 wpf-PC = 65%). This protocol corresponds to a reduction of 35% of AMPA-mediated 
pf-PC in SNN simulation, therefore our MF capability of capturing synaptic mechanism is further 
validated against in-vivo recordings.  

In aggregate, the cerebellar MF, despite a lower level of detail than SNN, was able to reproduce 
complex physiological mechanisms and predict the activity changes caused by synaptic modulation 
(ten Brinke et al., 2015; De Schepper et al., 2022). Therefore, this MF is a flexible tool that can be 
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used to investigate advanced physiological or pathological properties by tuning the input of TF on a 
target population (TFPC in these simulations), without complicating neither the TF fitting procedure 
nor the model equations. The procedure of parameters tuning might pave the way for further 
manipulation to remap physiological and/or pathological features onto the MF. Identifying and 
extracting biophysical meaningful features from subject-specific data, like diffusion weighted 
imaging or spectroscopy, might allow the MF tailoring onto subject-specific characteristics and to 
combine functional simulations with (micro)structural information. 

3.4.3 Performance vs. realism  
The MF approximated a complex SNN of ~3x104 neurons and ~1x106 synapses (section 3.2.1) with 
20 equations reducing the computational time by 60% with lower memory requirements. 
Nevertheless, TFs fitting could be improved replacing the procedure in section 3.2.2 - TF 
computation with a lookup table-based algorithm, which might yield to a gain in computational time 
up to an order of magnitude. This will represent a definite advantage when performing long-lasting 
simulations reflecting the acquisition time of in vivo recordings like EEG and fMRI or when 
simulating learning processes in closed-loop controllers. On the other hand, thanks to its bottom-up 
nature it was possible to maintain the biological realism in responses to various stimuli, including 
simulations of learning-induced firing rate changes and pathological conditions at the neuronal 
population level, obtaining a good balance between computational load and biological plausibility. 
This will allow to make predictions on the underlying neural bases of ensemble brain signals and to 
identify the elementary causes of signal alterations in pathology.  

3.4.4 Conclusions and perspectives 
In aggregate, the cerebellar cortex MF enforces a bottom-up approach tailored to the specific 
structural and functional interactions of the local neuronal populations and has a substantial 
constructive and functional validity. By accounting for a variety of representative patterns of 
discharge in cerebellar cortical neurons, the present MF can be considered as an effective proxy of 
the biological network. The internal model parameters inform about the average properties and 
variance of fundamental mechanisms in the circuit, namely intrinsic and synaptic excitation, and can 
therefore be used to remap biological properties onto the MF (Naskar et al., 2021). In future 
applications, this will allow to tune the MF toward specific functional or dysfunctional states that 
affect the cerebellum. Among these it is worth mentioning ataxias (Pedroso et al., 2019; Rosenthal, 
2022), paroxysmal dyskinesia (Mendonça and Alves da Silva, 2021; Ekmen et al., 2022), dystonia 
(Mahajan et al., 2021; Morigaki et al., 2021), autistic spectrum disorders (Bruchhage et al., 2018; 
Kelly et al., 2020) as well as other pathologies like and multiple sclerosis (Tornes et al., 2014; Schreck 
et al., 2018), dementia (Monteverdi et al., 2022) and Parkinson disease (Wu and Hallett, 2013; Shen 
et al., 2020), in which a cerebellum involvement has been reported. The cerebellar MF could be 
applied to whole-brain simulators using TVB and DCM, as much as it has been done before for the 
isocortical MF in TVB (Pinotsis et al., 2012; Goldman et al., 2019; Sadeghi et al., 2020; Ruffini and 
Deco, 2021). Considering the specificity of signal processing in different brain regions, this approach 
represents a definite step ahead compared to the classical one adopting generic neural masses for all 
brain regions. This is a promising active field in theoretical neuroscience and clinics, indeed 
applications of specific MF to Parkinson disease have been already implemented by reconstructing a 
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model specifically tailored on basal-ganglia and connected with thalamocortical circuit (BGTCS 
MF), accurately reproducing parkinsonian state (van Albada and Robinson, 2009; van Wijk et al., 
2018). Integrating BGTCS and cerebellar MF, and in general MF specifics of brain regions embedded 
into the motor circuit, would remarkably improve the simulation of brain dynamics, allowing to 
compare dysfunctional oscillations with physiological activity.   

On the theoretical side, TVB simulations using classical neural masses (Wong and Wang, 2006) for 
all brain nodes (Palesi et al., 2020; Monteverdi et al., 2022) can now be compared to those using the 
cerebellum MF. At the other extreme of the spectrum, TVB with embedded cerebellar MF can be 
compared to TVB-NEST co-simulations (Meier et al., 2022), in which spiking  neurons are 
represented explicitly (Geminiani et al., 2018, 2019b, 2019a; De Schepper et al., 2022). These 
comparisons will inform us about the impact of populations, neurons, and spikes on ensemble brain 
dynamics and whole brain computations (D’Angelo and Jirsa, 2022). 

In conclusion, the cerebellar MF represents the first step toward a new generation of models capable 
of bearing biological properties into virtual brains that will allow to simulate the healthy and 
pathological brain towards the overarching aim of a personalized brain representation and ultimately 
personalized medicine and the technology of brain digital twins (Amunts et al., 2022).  
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Chapter 4 

 
Take the stock: possible improvements 

and future perspectives 
 

Mean Field theory presented in Chapter 2 is a reliable formalism for direct simulation of mesoscale 
data as LFPs, and calcium imaging but also macroscale recordings such as BOLD signal by using 
interconnected MFs integrated into whole-brain simulators. The MF approach has been already tested 
to reproduce mesoscale cerebral cortical data and it has been extended to achieve an improved 
biological reliability (Di Volo et al., 2019). Nevertheless, this formalism presents some limitations 
that the extension to a more complex multi-layer network doesn’t overcome. The aim of this chapter 
is to take the stock of the present thesis, discussing potential limits and improvements (section 4.1). 
Furthermore, it provides an overview of ongoing works and future developments of the multi-layer 
cerebellar model in the perspective of its integration in brain dynamic simulators (section 4.2). 

4.1 Limits and model improvements 
MF is an approximation of the real physiological context of neural circuits and even if the multi-layer 
network design depicts the biological structure of the cerebellar cortex, some simplifications have 
been performed. As an example, to define the average membrane potential µV only the leakage current 
(ELgL) was considered while the dynamics of other currents, such as the sodium one, were neglected. 
This assumption is generally acceptable but when the neuron firing rate increases, e.g., due to a high 
external stimulus, this could become a poor assumption (Carlu et al., 2020). Furthermore, the present 
multi-layer cerebellar MF doesn’t include an equation to model complex phenomena such as 
adaptation, whose contribution would significantly improve the predicted activity for GoC and PC. 
As mentioned in section 2.3.2, the choice of T is a crucial part of the formalism. In the multi-layer 
cerebellar MF presented here T was optimized on neuronal and microcircuital experimental 
recordings, strictly linking the multi-layer cerebellar MF to biological data. However, these 
experimental data were available only for the granular layer, therefore T was optimized only for this 
layer and then assumed to be equal also for molecular and Purkinje layer. The granular layer is known 
to be the driving part of the circuit so it was plausible to extend the optimal T also to the other layers, 
however it is not possible to exclude that the integration of data from molecular and/or Purkinje layer 
would modify the optimal T value. Furthermore, the optimization was performed interpolating the 
granular layer MF activity with the mean of LFP signals amplitude recorded from different channels, 
but it would be incredibly interesting to generate LFP data directly form the MF model and compare 
them with the experimental ones, to obtain a stronger validation of T. 
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The SNN of the cerebellar cortex is build up with 29230 neurons. Each neurons dynamics is 
reproduced with three EGLIF equations, along with other equations for the alpha synaptic 
conductances (section 3.2.1), resulting in more than 90000 equations. Although the MF presented 
here reduced the SNN complexity to 20 differential equations (section 3.4.3), its computational 
efficiency could be further improved. Two step fitting procedure of TFs (section 3.2.2) yielded to a 
population-specific TF analytical expressions that captures the different activity of each neuronal 
population, such as linear behavior of GoC and almost sigmoidal trend of GrC TFs (section 3.3.1). 
On the other hand, the error function computation embedded into the analytical TF expression could 
be time-consuming. TVB already integrated an efficient lookup-table based formalism, thus in the 
perspective of integrating the cerebellar MF into TVB and connecting it with other cortical MFs, 
replacing the two-step fitting procedure with the lookup-table would significantly speed up the 
computational time of simulation. 

4.2 Ongoing studies and future perspective 
The work presented in this thesis could trigger future studies focusing on different aspects such as 
investigating the impact of cerebellar on cortical dynamics to predicting functional and dysfunctional 
mesoscale mechanisms. The role of the cerebellum in brain dynamics was investigated both in resting 
condition with TVB and during complex task performance with DCM (section 4.2.1). Our results 
demonstrated that its inclusion in resting state dynamics simulation improved the accuracy of 
simulated functional dynamics, and its activity modulated the complex response in cortical areas 
recorded by fMRI. Moreover, an explorative study to assess whether the model can reproduce also 
pathological and altered pattern is ongoing with promising outcomes to further explore the possibility 
to tune the cerebellar MF on parameters specific to model pathologies (section 4.2.2). These results 
are promising thanks to a sophisticate and deeply biology grounded network which can be further 
improve by adding more components (i.e., layers) such as the Deep Cerebellar Nuclei (section 4.2.3)  

4.2.1 Why multi-layer cerebellar MF should be integrated in whole-brain 
dynamics simulators? 
One might wonder whether the integration of the multi-layer cerebellar MF in TVB and DCM is a 
merely theoretical exercise or could improve the accuracy of whole-brain dynamics simulation, 
representing a tangible step ahead in personalized medicine. The present section aims to provide an 
answer to this query by presenting two studies that investigate the role of the cerebellum in whole-
brain dynamics. 

Firstly, we published a study that is pioneering in including cerebellar nodes for simulating whole-
brain dynamics (Palesi et al., 2020): 
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TVB takes in input experimental recordings such as EEG or fMRI specific of several distinct brain 
regions (i.e. nodes) and provides as output the simulated functional activity for all nodes, from which 
functional connectivity between pairs of nodes is derived. The best simulations are obtained by 
optimizing model parameters through an iterative procedure that maximize a similarity measure 
between simulated and empirical functional connectivity (section 1.2.3). To perform this study, fMRI 
experimental recordings from the free available Human Connectome Project database 
(https://db.humanconnectome.org/) were provided as input to TVB. The brain cortex was parcellated 
into 93 regions and 33 cerebellar nodes were added. The structural connectome was defined based on 
whole-brain tractography and corrected for the cerebro-cerebellar connections explored in a previous 
work (Palesi et al., 2017). The empirical functional connectivity was computed by extracting the 
average time-course of the BOLD signal per node, and Pearson correlation coefficient (PCC) of the 
BOLD was computed between pairs of nodes. 

To assess the impact of cerebellum on cerebral dynamics, three different networks were considered: 
1. Whole-brain network with 126 nodes (cerebral and cerebellar regions together) 
(Figure 4.1 A- red). 
2. Cerebral subnetwork with only the 93 cerebral nodes (Figure 4.1 A - light blue). 
3. Embedded cerebro-cerebellar subnetwork, evaluating the simulated functional connectivity 
as discrepancy between the simulated functional connectivity computed in 1 and 2 (Figure 4.1 
A – orange) 

The functional connectivity was simulated for each of the three networks and correlated with the 
empirical functional connectivity. 

Our findings revealed an improvement in simulated functional dynamics of the cerebral cortex when 
the cerebellar nodes were included, thus the simulation protocol described in 3. maximized the 
similarity between empirical and simulated functional connectivity (Figure 4.1 B). These promising 
outcomes demonstrated that the impact of the cerebellum on cerebral cortex dynamics couldn’t be 
neglected anymore to achieve an increasing realism in large-scale functional simulations. 
Furthermore, the accuracy of the cerebellar impact on whole-brain dynamics can be improved by 
replacing general MF models with a cerebellar specific MF model. 
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Figure 4. 1) TVB study: The impact of the Cerebellum on whole-brain dynamics. A) Functional networks. 
Three functional networks were defined: Whole-brain network (red), Cerebral subnetwork (light blue), 
Embedded cerebro-cerebellar subnetwork (orange). B) Statistical analysis. Simulated functional connectivity 
(FC) was correlated with the empirical FC through PCC, considering three different structural connectivity 
(SC) extracted from tractography: basic = SC with spurious cerebro-cerebellar tracts; plusCRBL= SC with 
only contralateral cerebro-cerebellar tracts; dirCRBL = SC with directional contralateral cerebro-cerebellar 
tracts. Embedded cerebro-cerebellar subnetwork shows a significant higher PCC with respect to whole-brain 
network in basic, plusCRBL and dirCRBL cases. Adapted from Palesi et al., 2020. 

 

 

In addition to this work (Palesi et al., 2020), we performed a DCM-based study (section 1.2.3) to 
investigate whether the cerebellum acts both as a predictor and a modulator of the activity of cortical 
regions. Specifically, the modulation of complex BOLD response in cortical regions during action 
execution was investigated. Below the pipeline and the outcomes of the DCM analysis are presented. 
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Introduction. Dynamic Causal Modelling (DCM) is a framework stablishing causal relationships 
between interconnected brain regions by estimating the direct influences (effective connectivity) and 
the hierarchical activations of different brain regions (Friston et al., 2003). DCM relies on Bayesian 
inference that estimates the connectivity parameters combining priors with the observed Blood 
Oxygenation Level Dependent (BOLD) signals. Here, DCM was used to investigate the causal 
influence of the cerebellum onto the cerebral regions embedded in a cerebro-cerebellar loop activated 
by a visuomotor task. 

Material and Methods. High-resolution anatomical T13D and fMRI images of twenty-three right-
handed healthy volunteers were analyzed. Subjects performed with their right hand a dynamic power 
grip task, using a squeeze-ball, controlled by a visual cue (Alahmadi et al., 2016; Casiraghi et al., 
2019) A standard fMRI pre-processing steps were applied to optimize the experimental data. The 
visuomotor network included the right cerebellum, bilateral primary visual cortex, left primary motor 
cortex, left supplementary motor area, left premotor cortex, left cingulate cortex, and left superior 
parietal lobule. Different DCM models were specified and estimated to assess with which cerebral 
regions the cerebellum is connected and how it modulates cortical activity. 

Results. The winning model, i.e., the model that maximized the likelihood with BOLD, demonstrated 
that the cerebellum linearly modulated the primary motor cortex, while a quadratic modulation was 
found with supplementary motor area, both results with a probability higher than 90%. 

Discussion and conclusion. For the first time the cerebellum was included in a visuomotor network, 
and it was not consider as merely connected with the other cerebral regions, but it was supposed to 
have a strong influence on responses recorded in the cerebral regions. Our findings showed that the 
cerebellum was not only effectively connected with cerebral motor area as expected, but it also 
modulated the complex activation in supplementary motor area, suggesting that the cerebellum 
activates before than this cortical area during action prediction (Figure 4.2). Further investigations 
could explore whether the cerebellum modulates the activity also of cingulate cortex and superior 
parietal lobule, which are involved in action selection and visual attention respectively (Serences, 
2008; Bueichekú et al., 2020). Needless to say, this overview on the hierarchical activation of cerebro-
cerebellar functional links could be of great interest for understanding BOLD variation in 
neurological diseases involving these regions. To further improve these results and to achieve a 
framework enough reliable both for research and for clinics, specific model tailored on specific 
regions should be included. Compared to novel promising techniques to quantify the effective 
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connectivity, (Gilson et al., 2019; Hahn et al., 2019; Prando et al., 2020), DCM provides reliable 
results for a limited number of regions. On the other hand, first attempts to include model specific for 
subcortical cerebral structure as the thalamus and basal ganglia have been done to investigate altered 
effective connectivity in Parkinson disease but a cerebellar-specific model is still missing, limiting 
the specificity of the outcomes for pathologies that deeply affect the cerebellum. For this reason, the 
multi-layer cerebellar MF presented here would be a promising tool to improve DCM power in 
studying the effective connectivity and consequently the hierarchy within cerebro-cerebellar loops. 

 

Figure 4. 2) DCM study: Cerebellum as a modulator of a visuomotor network. Visuomotor network with 
effective connectivity. For each subject, Bayesian model inversion quantified the posterior value for each 
connection, then the values of the effective connectivity were averaged to get group-wise effective 
connectivity. Cerebellum (CRBL - pink) modulates the activity of the primary motor cortex (M1 - salmon) 
with a linear relation (e.g., CRBL activity increases and then also M1 activity increases), and the activity of 
the supplementary motor area and of the premotor cortex (SMA-PMC - violet), demonstrating to act as a 
predictor both for action execution (CRBL-to-M1) and action planning (CRBL-to-SMA PMC). BIL= Bilateral, 
R = Right, L = Left., V1 = primary visual cortex (driving region), SPL = superior parietal lobule, CC = 
cingulate cortex. 

 

 

4.2.2 Pathological MF: the dystonic cerebellum 
One of the most relevant applications of the multi-layer cerebellar MF might be the simulation of 
altered activity due to pathologies that deeply involve the cerebellum, such as cerebellar ataxia, 
autism, and dystonia. In this context, a preliminary investigation to test whether the multi-layer 
cerebellar MF can reproduce an altered pattern without modifying its own parameters was carried 
out. A dystonic input was simulated with the same protocol already used to validate SNN of the 
cerebellar cortex, which was used here as functional reference. This perspective study is presented in 
the abstract below, showing the preliminary results and underlining future developments. 
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Multi-layer cerebellar mean-field model reproduces altered dystonia-like patterns of activity 
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Introduction. Dystonia is a disorder characterized by sustained or intermittent muscle contractions 
causing abnormal movements, postures, or both. Traditionally, dystonia related to basal ganglia 
dysfunction but recent evidence found also cerebellar abnormalities correlated with dystonia (Pizoli 
et al., 2002; Fremont et al., 2017; Washburn et al., 2019). PC burst-firing with excessive and repetitive 
complex spike firing was observed in cerebellum-specific IP3R1 knock-out dystonic mice, which 
also exhibited increased Inferior Olive (IO) activity (LeDoux and Lorden, 2002). A recent study of 
spiking cerebellar cortex suggested that only certain types of alteration in olivocerebellar input are 
compatible with changes observed in dystonia, indicating that some cerebellar lesions can have a 
causative role in the pathogenesis of symptoms (Geminiani et al., 2022). Thus, in this work the power 
of the cerebellar MF model was tested in reproducing pathological pattern of activity by modelling a 
dystonic lesion. 

Material and Methods.  The stimulation protocol was implemented to provide the typical stimuli of 
Eye-Blink Classical Conditioning (EBCC), where a spiking cerebellar cortex was used to simulate 
dystonia during EBCC. The conditioned stimulus (CS), e.g., a sound, was simulated as a non-
recurrent 40-Hz spike train conveyed by mossy fibers lasting 280 ms. In the MF simulation, the CS 
and US input were similarly implemented. The unconditioned stimulus (US), e.g., an Air-Puff, was 
carried by the climbing fibers from the IO to the PC and in the MF model was introduced in TFPC as 
an extra excitatory contribution summed to the 𝜈GrC	to model the IO-PC synaptic convergence from 
the spiking neural network (SNN). TFPC dependencies resulted: 

𝑇𝐹d5(𝜈]$5 + 𝑈𝑆 ∙ 𝐾-X1d5 , 𝜈+Oe) 

The US pattern was simulated as a 500-Hz burst lasting 30 ms and co-terminating with the CS. One 
CS-US repetition was simulated, followed by a 620 ms baseline period as physiological reference. 
This was reproduced as a 20-ms spike train with 40 ms pauses in IO neurons (Geminiani et al., 2022). 
Dystonic stimulus was simulated with the same protocol with an additionally 20-ms spike train with 
40 ms pauses in IO neurons (Geminiani et al., 2022) pathological input. PC activity was plotted both 
for physiological and pathological protocol. 

Results. Cerebellar MF model predictions for EBCC-like stimulation showed the physiological case 
with 𝜈drive implemented as the CS+US In physiological conditions, PC emitted a burst following the 
US with an increase in the activity up to 300 Hz (Figure 4.3A). Dystonia-like simulation showed the 
dystonic burst-firing pattern of PC induced by dysfunctional IO-bursting (Figure 4.3B). With the 
inclusion of altered patterns, multi-layer MF simulated an increased PC activity (bursts) also during 
baseline and CS intervals, The activity of GrC, GoC and MLI (not reported in 4.3) didn’t change 
between control case and dystonic protocol because the lesion concerned signals impinging only on 
PC. 
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Discussion and Conclusion. Cerebellum involvement in several brain pathologies, such as ataxia, 
autism and dystonia has been extensively demonstrated (Pizoli et al., 2002; D’Angelo and Casali, 
2012; Geminiani et al., 2022). Aberrant burst-firing pattern from IO cells provoked an altered PC 
activity observed in mouse models of dystonia (LeDoux and Lorden, 2002; Hisatsune et al., 2013; 
Fremont et al., 2017; Washburn et al., 2019) and simulated with a spiking cerebellar cortex model 
showing a PC burst-firing characterized by an excessive and repetitive increase of PC firing rate as 
observed in experiments (LeDoux and Lorden, 2002) and in Spiking Neural Network Simulation 
(Geminiani et al., 2022). Figure 4.3 shows the activity simulated with a first attempt of dystonic 
cerebellar MF model, which is in line with the outcomes of the spiking cerebellar cortex, showing 
patterns of repetitive increased activity up to 300 Hz. The alteration was induced by adding a further 
excitatory contribution to the excitatory input of TFPC, enabling us to simulate an altered dynamics 
without performing again the entire fitting procedure (section 3.2.2 “Transfer Function 
Computation”). 
This preliminary exploration assessed that multi-layer MF can reproduce pathological patterns by 
modulating the TF of the affected population(s), and this would impact on the plasticity mechanisms 
once embedded. 
It would be interesting to simulate also dystonic pattern as aberrant PC firing rate provoked by an 
altered PC endogenous current (Ie, see Table 3.1 for the complete parameters list). A dystonic TFPC 
would be recomputed to consider this alteration at single cell level, and it would be interesting to 
compare the physiological TFPC with a dystonic TFPC to study how single cell alterations are modeled 
by the TF formalism. Although altered patterns were properly reproduced, dystonic learning curves 
couldn’t be simulated with our MF model without the inclusion of deep cerebellar nuclei and long-
term plasticity rules. However, the fact that our MF properly simulated altered dynamics paves the 
way for the integration of these alterations at the level of connectivity parameters, to fit the model on 
pathological parameters configurations, empowering the study of the cerebellar causal role in 
dystonia. Importantly, this approach will allow us to feed our multi-layer cerebellar MF with patient-
specific pathological features acquired with non-invasive in vivo techniques, as fMRI and EEG, 
enabling to simulate a patient-specific pathologic cerebellum, opening new frontiers in personalized 
medicine (D’Angelo and Jirsa, 2022). 
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Figure 4. 3) Simulation of altered activity: Dystonia case. A) Physiological simulated response of Purkinje 
cells (PC) with an Eye Blink Conditioned Control (EBCC) protocol. Simulation length: 1000 ms, Conditioned 
stimulus (CS): 40 Hz for 280 ms, Unconditioned stimulus (US): 500 Hz for 30 ms. B) Dystonia-like simulated 
response of PCs. Aberrant activity of Inferior Olive (IO) cells modelled as a step function representing a non-
recurrent 40-Hz spike train. Mean field simulated PC activity shows patterns of repetitive increased activity 
up to 300 Hz 
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4.2.3 Expanding the layers to Deep Cerebellar Nuclei 
The multi-layer cerebellar MF relies on a modular design where the layers are stack up like Lego 
bricks ensuring flexibility of construction. Indeed, this design not only reproduces the multi-layer 
quasi crystalline organization of the cerebellar cortex but achieves to investigate separately the 
specific activity of each layer. As an example, MLI-PC feed-forward inhibition was investigated by 
modifying the strength of the inhibitory conductance only between MLI and PC to simulate extra 
inhibition (i.e., assumption of inhibitory drugs) as well as disinhibited situations (e.g., in drunken or 
anesthetized state). The same strategy was used to investigate long term potentiation (LTP), and long 
term depression (LTD) mechanisms recorded in PC activity, where only the granular layer brick was 
changed by modifying the strength between GrC-PC excitatory synapses. GrC represents the 
excitatory input for all the other layers, but the modular Lego bricks design allows to change the GrC-
PC synaptic strength without affecting neither the parameters that regulate granular layer connectivity 
(GrC-GoC synaptic parameters) nor the MLI-GrC connections.  

The modular design can be exploited also for adding Deep Cerebellar Nuclei (DCN) as new brick 
(i.e., layer) and, if a feedback loop is not included, without re-fitting the Transfer Functions. The 
expansion of the multi-layer cerebellar MF by including subcortical cerebellar structures will improve 
the biological realism of the network because it will be possible to integrate further excitatory and 
inhibitory mechanisms through mossy fibers-DCN excitation and PC-DCN inhibition connections, 
enriching the dynamics of the multi-layer cerebellar MF. Furthermore, DCN are important not only 
to bring information to the cerebellum but also to vehicle the cerebellar output towards the cerebral 
cortex. Therefore, the integration of DCN parameters with their specific TF could represent a 
definitive step ahead in the perspective of the integration into a whole-brain dynamics simulator. 

This evidence discussed so far highlights the crucial role played by the cerebellum in whole-brain 
dynamics. Indeed, the inclusion of the cerebellum in a whole-brain network led to an improvement 
in the correlation between experimental and simulated functional dynamics (Palesi et al., 2020). 
Embedded in a visuomotor network, it demonstrated to exert a direct causal influence on the complex 
activity recorded in cerebral cortical areas activated in motor planning. Given the relevance of these 
outcomes and the specific structural and functional organization of the cerebellum, the lack of a 
specific cerebellar model clearly emerges in simulators that pretend to be reliable tools for both 
research and clinics. Furthermore, the involvement of the cerebellum has been indeed confirmed at 
multi-scale level in several neurodegenerative pathologies, like ataxia (Marchese et al., 2021), 
dementia (Monteverdi et al., 2022) and the distonia (Geminiani et al., 2022), thus a specific cerebellar 
model could improve the accuracy of simulated brain activity, representing a concrete step ahead 
towards reliable personalized medicine. For this reason, our multi-layer cerebellar MF model was 
developed as a flexible framework not only in terms of adding new layers (section 5.2.1) but also in 
the computationally perspective to be integrated into whole-brain dynamics simulators with different 
purposes such as the DCM and the TVB. 

4.2.4 Cerebellar MF will get social: integration into brain dynamics simulators 
Cerebellar MF presented in Chapter 3 would be part of a pool of new generation models developed 
accounting for region-specific structural and functional features. Attempts to develop specific model 
of the cortical regions have been developed over the past years confirming the need of region-specific 
models to improve brain dynamics simulation. These models have been integrated into DCM to 
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investigate the between-regions direct causal influences linking the hemodynamic macroscale 
recordings to underlying microscale neuronal properties specific for the regions considered. Model 
of basal ganglia-thalamocortical circuit is already part of this framework and it is already used to 
quantify the differences of cerebral effective connectivity in Parkinson disease with respect to healthy 
controls. Furthermore, a MF specific for basal ganglia-thalamocortical system is currently under 
development following the same MF approximation adopted for the cerebellar MF presented here, 
potentially providing a region-specific pool of models consistently developed and ready to be 
integrated in TVB. Cerebellar MF could be integrated in this framework (Figure 4.4), expanding the 
brain network involved in Parkinson disease and in general to all the neurodegenerative disease 
affecting the motor circuit such as dystonia and ataxia.  

 

Figure 4. 4) Next step: Cerebellar mean-field integration into whole-brain simulation. Conceptualization 
of cerebellar mean-field integration in a whole-brain network for whole-brain dynamics simulations. Different 
modules of cerebellar MF should be considered (violet panel) and connected each other (violet arrows) 
introducing functional and structural intra-cerebellar coupling parameters. Additionally, the connection with 
cortical MFs (gray panel and gray bold arrows) could be set considering structural parameters extracted from 
large-scale connectome (e.g. tract length) and functional parameters related to the speed of signal propagation 
(e.g. the myelin thickness computed with quantitative score like g-ratio).  
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Conclusions 
 
Studying the activity of the brain is an ongoing and remarkable challenge due to its multiscale 
organization. Its multifaceted dynamics could be addressed with bottom-up and/or top-down 
approaches, with different models integrated in different simulators. Which approach is the best is an 
ill-posed quest because it depends on the target of simulation, which can range from a single neuron 
to brain network activity. Therefore, the focus shouldn’t be finding out the best approach and the best 
model ever but integrating biology grounded bottom-up models into top-down whole-brain dynamics 
simulators to link macroscale predictions to physiological microscale properties. In this context, MF 
models represent an effective mesoscale formalism to bridge the gap between micro and macroscale.  
The rationale of MF formalism is to approximate the interactions between the elements of the system 
with the interactions between an element and the average activity of the others included in the system. 
Therefore, MF theory has a widespread application in cross-cutting fields, whenever an effective 
approximation of a complex system is needed. It is used to predict the evolution of financial markets 
as well as the evolution of COVID-19 outbreaks. Applied to neuroscience, MF modelling allows to 
reproduce the dynamics of a mesoscale network of spiking neurons as a continuous signal in the same 
time domain of the experimental recordings, as local field potentials. 
A heuristic approach to the master equation describing the time evolution of the neuronal activity 
expressed in terms of probability to spike endows a simple definition of MF model through the fitting 
of a transfer function, which is a mathematical construct linking single cell properties to the statistical 
moments (mean, standard deviation, and autocorrelation) of the network activity. Generally, this 
approach demonstrated to be effective to model a generic cortical MF model of one excitatory and 
one inhibitory population. For the first time, here this formalism was extended to implement a multi-
layer MF model of the cerebellum including the main neuronal population of the cerebellar cortex 
(Granule cells, Golgi cells, Molecular Layer Interneurons, and Purkinje cells), resulting in biology 
grounded mesoscale model implemented with a bottom-up approach. 
The implementation of a multi-layer cerebellar MF model finds its roots in the need of a model 
specifically tailored on the cerebellum to provide a deep insight into its functions. On top of that, a 
framework to develop an advanced MF with a multi-layer modular structure is presented. This 
framework can be tuned on parameters of a specific brain regions that require a multi-layer design 
without collapsing the neurons features in an excitatory and inhibitory population. Maintaining the 
physiological salient features of each type of neuron is one of the strength points of this formalism 
and the reason why it can define it “biology grounded”.  
Models tuned for a specific region and the link between model parameters and physiological features 
are essential aspects in the perspective to build up reliable virtual brains. In a reality where the word 
metaverse and the concept associated has become of common use, opening to new virtual 
experiences, like buy NFT (non-fungible token) art or travel around the world with more and more 
realistic simulators, the ambitious project to build up subject-specific virtual brain - a digital twin - 
starts to take a hold. Digital brain twin can be implemented as the simulation of subject-specific brain 
dynamics representing a real step ahead in both research and clinics. Indeed, it can be used to compare 
subject-specific features to shed light on unveiling aspects of the brain dynamics and it can be also 
used to tailored pharmacological treatment making them more effective. It is clear that to achieve this 
ambitious goal, increasingly accurate models of the brain regions are required in order to link neurons 
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underlying activity with recorded brain signals. MF models tuned on single cell specific features can 
provide an effective way of modeling brain regions bridging the gap between spiking neurons and 
whole-brain dynamics. Multi-layer cerebellar MF enriches the pool of region-specific models, 
playing a main role for the implementation of a digital twin. It allows to virtualize subject specific 
physiological dynamic as well as pathological activity, enabling to build up a meta-brain with a strong 
impact on the real-world challenges such as an accessible ultimately personalized medicine. 
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Appendix A 

Extended generalized leaky integrate-
and-fire model: an insight into the MF 

functional reference 
 

This section provides an insight into the extended generalized leaky integrate-and-fire (E-GLIF) 
neuron model detailed in previously published works (Geminiani et al., 2018, 2019a), aiming at 
clarifying the reason why E-GLIF was chosen as functional reference for the cerebellar MF. 

E-GLIF is a point neuron model derived from the leaky-integrate-and-fire model family (LIF), 
maintaining the limited computational load typical of a linear low-dimensional system and admitting 
analytical solutions. E-GLIF computes the membrane potential dynamic with a set of three 
interconnected equations (section 3.3.1 equation 30), explicitly accounting for the time evolution of 
adaptation and depolarization currents. E-GLIF model was developed integrating conductance-base 
synapses, reproducing the synaptic dynamic with a higher level of realism than current-based models 
(Cavallari et al., 2014) (section 1.2.2). Furthermore, the synaptic activation of interconnected neurons 
were modeled with alpha function (section 3.3.1 equation 31) (Roth and van Rossum, 2013) which 
accounts for a short transient before the decay (Figure A1), increasing the realism of synaptic 
mechanisms respect to the instantaneous decay of the exponential synapses. 

 

Figure A. 1) Alpha-based synaptic conductance. Example for a granule cell. Simulation last 500 ms. 
Inhibitory conductance is shown in blue while excitatory in red. In the gray panel, a zoom on alpha-
conductance trend was reported to highlight the transient typical of the alpha-function.  
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Moreover, E-GLIF equations were designed and specifically optimized for the neurons of the 
cerebellar cortex (GrC, GoC, MLI and PC, section 1.1.1), in order to account for the rich variety of 
electroresponsive properties of cerebellar neural populations which have a crucial role in cerebellar 
functioning and processing (D’Angelo et al., 2016) (section 1.1.4). These microscale properties, thus, 
impact considerably on the meso and macroscale, contributing to shape the cerebellar activity and the 
dynamics of the cerebro-cerebellar loop (section 1.1.5). E-GLIF equations demonstrated to capture 
the single neuron specific feature and their predictive power was tested reproducing GoC behavior 
(Geminiani et al., 2018), and then, extended to the other neurons of cerebellar cortex (GrC, MLI, and 
PC) (Geminiani et al., 2019a). For each neuron type, E-GLIF neurophysiological parameters such as 
membrane conductance, membrane time constant, reversal potential, refractory time constant, 
threshold potential and reset potential, were derived from in in vitro experiments (D’Angelo et al., 
1999; Solinas et al., 2007; Lennon et al., 2014). The remaining parameters, which don’t directly 
represent a physiological quantity but model functional properties, were derived through an 
optimization procedure based on a desired input-output relationship, targeting the electroresponsive 
phenotype of the neural population. Specifically, the optimization procedure was designed 
considering four different current steps (excitatory (exc) current Istim = exc1 < exc2 < exc3 and 
inhibitory (inh) current) as the input and spike times as the output (Geminiani et al., 2018). Gradient-
descent algorithm was used to optimize the spike times in sub-intervals (Δt1, Δt2, Δtss) of the exc 
current-step stimulation protocol (Istim= (i) = [0, exc1, exc2, exc3] pA) and in the interval following 
the inhibition phase, to reproduce electrophysiological input-output patterns. The target cost function 
was defined as:  
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With error(i) computed as the error for each current step value ([0, exc1, exc2, exc3]), considering each 
one of the three sub-intervals (Δt1 = time to the first spike, Δt2 = time between first and second spike, 
ΔtSS= time between two steady-state spikes); error(inh) defined as the error in first two sub-intervals 
(Δt1, Δt2) of a Istim = 0 phase, following a hyperpolarizing Istim. This latter expression was written in 
order to evaluate the neuronal complex properties of rebound bursting in the optimization protocol. 

Combining prior knowledge based on literature and optimization techniques provided a set of 
physiological and functional parameters specific for each neuron type of the cerebellar cortex. The 
parameters value are reported in Table 3.1. 

As a result, a whole set of dynamic properties were reproduced, namely pacemaking, adaptation, 
bursting, post-inhibitory rebound excitation, subthreshold oscillations, resonance, capturing the 
whole set of electroresponsive patterns in cerebellar neurons (Figure A2). 



4.2 Ongoing studies and future perspective 
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Figure A. 2) E-GLIF simulations for the cerebellar cortex neuron. Left column: GoC. Membrane 
potential (black), spike events (black lines in the upper part), and the input current (red). (A) Autorhythmic 
phase with zero-stimulation current; (B) Depolarization-induced excitation and spike-frequency. 
Depolarization current (Idep) is faster and contributes to bursting mechanisms, while adaptation current (Iadap - 
with lower update rate) generates spike-frequency adaptation reaching its steady-state value after the first 2 
spikes following depolarization have already occurred. (C) Rebound doublet after an inhibitory current step 
followed by a short quiescent period before returning to tonic firing. Right column: GrC, MLI, PC: responses 
to zero-input current (D) and following a hyperpolarizing current step (E). Zero-current inputs cause 
subthreshold oscillation in GrC, and autorhythmic in the others. Post-inhibitory rebound excitation (burst or 
spike) is present in PC (blue circle) 

E-GLIF point-neuron models integrated into cerebellar SNN demonstrated to be an effective tool to 
evaluate the impact of microscale complex properties at the mesoscale circuits, up to macroscale 
network with TVB co-simulation to evaluate the effects of deep brain stimulations (Meier et al., 
2022). Compared to the generic cortical MF (Zerlaut et al., 2018; Di Volo et al., 2019), which relied 
on Adaptive Exponential (AdEx) point neurons, the cerebellar MF adopted E-GLIF equations which 
are linear and were specifically tailored and tuned on each cerebellar cortex neuron type, translating 
microscale physiological and functional characteristics into the MF formalism. Furthermore, 
compared to LIF version of cerebellar neurons, E-GLIF SNN demonstrated to model rich population 
dynamics such as the burst-pause response of Purkinje cells as recorded in vivo (Geminiani et al., 
2019b). 
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In the present work, E-GLIF model has a ground role to translate microscale in vivo properties into 
mesoscale approximations (Figure. A3). A cerebellar spiking cortex module, built up as a E-GLIF 
SNN, constituted the functional reference used to extract the actual working frequencies for each 
cerebellar neuronal population, by averaging the point neurons firing rate. The population firing rate 
was used as input to compute the Transfer Function (TF) numerical template of the interconnected 
neuronal population (e.g., population working frequencies of GrC and MLI were used to as input to 
compute TFPC). The same SNN demonstrated also the constructive, functional and predictive validity 
of the cerebellar MF, proving that the choice of EGLIF as functional reference endowed a real biology 
grounded MF tailored ad-hoc on features specifics for the cerebellar cortex neurons. 

 

Figure A. 3) E-GLIF embedded into the mean-field pipeline. The block schema shows the cross-cutting 
scale the pipeline. E-GLIF equations bridge the gap between microscale parameters extracted from in-vivo 
single cell experiments and mesoscale network. SNN collects about 30000 interconnected single point neurons, 
resulting in about 1 million equations. The structural and functional parameters extracted from SNN to build 
up MF convey the in-vivo recorded information form single neuron. Furthermore, MF considers also LFP data 
to optimize the model time constant, including also mesoscale in-vivo recordings.  
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