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ABSTRACT
A new noise, based on vortex structures in 2D (point vortices) and 3D (vortex filaments), is introduced. It is defined as the scaling limit of a
jump process, which explores vortex structures, and it can be defined in any domain, also with boundary. The link with fractional Gaussian
fields and Kraichnan noise is discussed. The vortex noise is finally shown to be suitable for the investigation of the eddy dissipation produced
by small scale turbulence.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0128120

I. INTRODUCTION
The theory of Stochastic Partial Differential Equations (SPDEs) is nowadays very well developed (see, for instance, Refs. 8, 20, 29, and 31,

with many contributions on fluid dynamics models, like).3,7,11,12,24,33 However, with the exception of the literature making use of Kraichnan
noise, which is motivated in fluid dynamics by its invariance and scaling properties, in most cases, there is no discussion about the origin of
noise and its form, in connection with the fact that it is part of a fluid dynamic model. The purpose of this work is to introduce an example
of noise based on vortex structures, both in 2D (point vortices) and 3D (vortex filaments). We discuss its motivations and interest for the
understanding of fluid properties.

Some preliminary forms in 2D have been introduced in Refs. 13 and 19, but the noise defined here is different and goes much beyond, in
particular, because we treat the 3D case on the basis of the theory of random vortex filaments (see Sec. III B).

Usually, in general or theoretical works on SPDEs, the noise is either specified by means of its covariance operator or by means of a finite
or countable sum of space-functions multiplied by independent Brownian motions. Here, we start from a different viewpoint. Motivated
by the emergence of vortex structures in turbulent fluids, we idealize their production/emergence process by means of a sequence of vortex
impulses, mathematically structured using a jump process taking values in a set of vortex structures. This is described in Sec. II. A suitable
scaling limit of this jump process gives rise to a Gaussian noise in a suitable Hilbert space. Different examples of such noise depend on different
choices of the vortex structures and their statistics, at the level of the jump process. A heuristic picture then emerges of a process that fluctuates
very rapidly between the elements of a family of vortex structures. The realizations of this noise are made of vortex structures, which idealize
those observed in turbulent fluids—point vortices in 2D and vortex filaments in 3D.

This noise is motivated by turbulent fluids. In the physical literature, the most common noises related to turbulence are the Fractional
Gaussian Field (FGF) and Kraichnan noise (see, for instance, Refs. 1, 5, 9, 10, 21–23, and 26). In Sec. IV, we show that on a torus in two
and three dimensions, the vortex noise covers FGF and Kraichnan noise by a special choice of the statistical properties of the regulariza-
tion parameter and the vortex intensity. The vortex noise is thus a flexible ensemble—it may cover also multifractal formalisms (see also
Ref. 14)—and its realizations are the limit, as described in Secs. II and III, of localized-in-space vortex structures similar to those observed in
turbulent fluids.

Finally, another main motivation for this investigation has been the recent results on eddy dissipation, showing that a transport type
noise depending in a suitable way on a scaling parameter, in a transport-diffusion equation, in the scaling limit gives rise to an additional
diffusion operator.13,17 These results require that the covariance function of the noise, computed along the diagonal, Q(x, x), is large, but the
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operator norm of the covariance is small. We check when the vortex noise satisfies these conditions. Heuristically speaking, they are satisfied
when, in the scaling limit, the vortex structures defining the noise are more and more concentrated at small scales. This confirms the belief
that eddy diffusion is a consequence of turbulence but only when it is suitably small scale.

II. JUMP NOISE AND ITS GAUSSIAN LIMIT
A. Why jump vortex noise in fluid modeling

When a fluid moves through the small obstacles of a boundary (hills, trees, and houses for the lower surface wind, mountains for the
lower atmospheric layer, coast irregularities for the sea, and vegetation for a river) or it moves through small obstacles in the middle of the
domain (like islands in the sea), vortices are created by these obstacles, sometimes with a regular rhythm (von Kármán vortices) or sometimes
more irregularly. In principle, these vortices are the deterministic consequence of the dynamical interaction between the fluid and structure,
but in very many applications, we never write the details of those obstacles when a larger scale investigation is done. Hence, it is reasonable to
re-introduce the appearance of these vortices, so important for turbulence, in the form of an external perturbation of the equations of motion.

Assume that the velocity field at time t is u(t, x). We may idealize the modification of u(t, x) due to the emergence of a new vortex near
an obstacle as an event occuring in a very short time around time t so that we have a jump,

u(t+, x) = u(t−, x) + σ(x),

where σ(x) is presumably localized in space and corresponds to a vortex structure. Continuum mechanics does not make jumps; we idealize
a fast change due to an instability as a jump for a cleaner mathematical description.

We may develop the previous idea in two directions. The simplest one is suitable for investigations, such as the effect of turbulence on
passive scalars,5 where a simple model of random velocity field is chosen: we consider a stepwise constant velocity field with jumps such as
those described above; later on, we shall take a suitable scaling limit and get a Gaussian velocity field, delta correlated in time, with space
correlation of very flexible form. A more elaborate proposal is to consider the Navier–Stokes equations with an impulsive force given by a
process with jumps,

∂tu + u ⋅ ∇u +∇p = νΔu +∑
k∈K
∑

i
δ(t − tk

i )σk.

Here, K is an index set, and for each k ∈ K, we denote by tk
1 < tk

2 < ⋅ ⋅ ⋅ the sequence of jump times of class k and by σk the vortex structure
(described at the level of velocity field) arisen at time tk

i . This way the fluid moves according to the free Navier–Stokes equations between two
consecutive jumps times. In Sec. II B, we formalize the noise∑k∈K ∑i δ(t − tk

i )σk, or more precisely, similarly to what it is done for white noise
and Brownian motion, we formalize the time integral of this distributional process,

W0
t (x) =∑

k∈K
∑

i
1{t ≥ tk

i }σk. (1)

In this first heuristic formulation, it is natural to introduce an index set K, but below, we shall avoid this.

B. Jump vortex noise
Given an open domain D ⊂ Rd, d = 2, 3, denote by C∞c,sol(D,Rd

) the space of smooth solenoidal vector fields with compact support in D
and denote by H the closure of C∞c,sol(D,Rd

) in L2
(D,Rd

). One can prove, under some regularity of the boundary, that u ∈ H is an L2
(D,Rd

)-
vector field, with distributional divergence equal to zero, tangent to the boundary.32 The norm ∥u∥H is given by ∥u∥2

H = ∫D ∣u(x)∣
2dx.

The following scheme is taken from th work of Métivier,28 first three chapters. The main tightness and convergence results for
martingales, as described in Ref. 28, are due to Rebolledo.30

Let P be a Borel probability measure on H. Assume that

∫
H
φ(∥h∥H)P(dh) <∞ (2)

for some nondecreasing φ : R+ → R+ that grows faster than quadratic, i.e.,

lim
n→∞

φ(n)
n2 =∞. (3)

Denote by QP the trace class covariance operator defined as

QP = ∫
H

h⊗ hP(dh).
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Assume that P has zero average,
mP = ∫

H
hP(dh) = 0. (4)

We may also define, a.s. in x, y ∈ D, the covariance (matrix-valued) function,

QP(x, y) = ∫
H

h(x)⊗ h(y)P(dh).

Indeed, ∫H ∣h(x)∣
2P(dh) <∞ for almost every x ∈ D, thanks to Fubini–Tonelli theorem, since ∫H(∫D ∣h(x)∣

2dx)P(dh) <∞.
Consider the continuous time jump Markov process in H with law of jumps,

p(v, v + A) =
1
τ

P(A)

[v ∈ H, A ∈ B(H)], namely, with the infinitesimal generator,

(LF)(v) =
1
τ∫H
(F(v + h) − F(v))P(dh),

for all bounded continuous functions F : H → R. Here, τ > 0 is the average interarrival between jumps. Denote by W0
t the corresponding

Markov process with the initial condition W0
0 = 0. The Dynkin formula

F(W0
t ) − F(0) = ∫

t

0
(LF)(W0

s )ds +MF
t

gives us the decomposition in a finite variation plus a martingale term. Consider first the case when F1(v) = v (here we do not write down
classical details, namely, that the computation should be done for a continuous bounded cutoff of each component ⟨v, ei⟩, where (ei) is a
complete orthonormal system; see Ref. 28, p. 14). One has

(LF1)(v) =
1
τ∫H
(v + h − v)P(dh) = 0

because mP = 0. Hence, W0
t =MF1

t , namely, the process W0
t is a martingale. Let us compute its Hilbert-space-valued Meyer process ⟨⟨W0

⟩⟩
t
.

We use the function F2(v) = v ⊗ v (again one has to do the computation first for a cutoff of the functions ⟨v, ei⟩⟨v, e j⟩),

(LF2)(v) =
1
τ∫H
((v + h)⊗ (v + h) − v ⊗ v)P(dh)

=
1
τ∫H
(v ⊗ h + h⊗ v + h⊗ h)P(dh)

=
1
τ

QP.

Therefore, W0
t ⊗W0

t =
t
τQP +MF2

t . The Meyer process ⟨⟨W0
⟩⟩

t
is thus (see the definition in Ref. 28, pp. 8–12)

⟨⟨W⟩⟩t =
t
τ

QP.

C. Convergence of the rescaled process to a Brownian motion
Let us now parameterize and rescale the previous process. We take average interarrival between jumps given by

τN =
1

N2 ,

and we reduce by 1
N the size of jumps by considering a probability measure PN on H with zero average mP = ∫H hPN(dh) = 0 and covariance

QPN given by

QPN =
1

N2 QP.

Consider the associated process WN
t , a martingale with the Meyer process

⟨⟨WN
⟩⟩

t
=

t
τN

QPN = tQP.
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Definition 1. Given QP, denote by (Wt)t≥0 a Brownian motion on H with incremental covariance QP.

Theorem 2. The process (WN
t )t≥0

converges in law to (Wt)t≥0, uniformly on every compact set of time, as processes with values in H.

Proof. Using the classical theorem of tightness for martingales [cf. Ref. 28 (Chap. 2) and Ref. 30], we have that the family of laws of the
processes (WN

)
N

is tight in the Skorohod space (because the family of laws of ⟨⟨WN
⟩⟩ is tight), and every convergent subsequence has limit

given by the law of a martingale Wt with W0 = 0 and Meyer process,

⟨⟨W⟩⟩t = tQP.

If we establish that W has continuous paths, then it is a Brownian motion with incremental covariance QP. One can prove that

lim
N→∞

P
⎛

⎝
sup

s∈[0,T]
∥ΔsWN

∥
H
> ϵ
⎞

⎠
= 0, (5)

where ∥ΔsWN
∥

H
is the size of the jump (if any) at time s (WN is càdlàg). Since the set {sups∈[0,T]∥Δsw

N
∥

H
> ϵ} is open in the Skorohod

topology, from the Portmanteau theorem, we get

P
⎛

⎝
sup

s∈[0,T]
∥ΔsW∥H > ϵ

⎞

⎠
= 0

for every ϵ > 0, and hence, W is continuous. To show (5), denote by {si}
NT
i=0 ⊂ [0, T] the Poisson (τ−1

N ) arrival times, and then, we have that

P
⎛

⎝
sup

s∈[0,T]
∥ΔsWN

∥
H
> ϵ
⎞

⎠
= 1 − P

⎛

⎝
⋂

{si}⊂[0,T]
{∥Δsi W

N
∥

H
≤ ϵ}
⎞

⎠

= 1 − E
⎡
⎢
⎢
⎢
⎢
⎣

∏
{si}⊂[0,T]

P(∥Δsi W
N
∥

H
≤ ϵ ∣ {si}

NT
i=0 )

⎤
⎥
⎥
⎥
⎥
⎦

= 1 − E[[1 − P(∥ΔWN
∥

H
> ϵ)]

NT
],

where we used that given the Poisson arrival times, the laws of each jump size ∥Δsi W
N
∥

H
is independent of it, and identically distributed as

what we simply denote by ∥ΔWN
∥

H
. By the elementary inequality (1 − y)n

≥ 1 − ny, for any y ∈ [0, 1] and n ∈ N and Markov’s inequality, we
have that

P
⎛

⎝
sup

s∈[0,T]
∥ΔsWN

∥
H
> ϵ
⎞

⎠
≤ E[NT]P(∥ΔWN

∥
H
> ϵ)

≤
TN2

φ(Nϵ)
E[φ(∥ΔW∥H)]

=
TN2

φ(Nϵ)∫H
φ(∥h∥H)P(dh),

which is finite by (2) and converges to zero as N →∞ by (3). ■

D. Reformulation as a PPP
This is a side section, which, however, may help the intuition [see also (1)]: we reformulate the jump process W0

t as a Poisson Point
Process (PPP). On a probability space (Ω, F ,P), let P be a PPP on [0,∞) ×H with intensity measure λLeb⊗ P, where λLeb is Lebesgue
measure scaled by λ > 0 and P is the probability measure introduced in Subsections II A–II C. Heuristically,

P(dt, du) =∑
i
δ(ti ,σi)(dt, du)

where (ti, σi) is an i.i.d. sequence with ti “uniformly distributed on [0,∞),” σi distributed according to P, and ti and σi independent of each
other. Define the vector valued random field, defined on (Ω, F ,P),

W0
t (x) =∑

ti≤t
σi(x) =∑

i
σi(x)1{ti ≤ t}.
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Compared to (2), we may think that K in that formula was a finite set, and we have simply reordered the jump times (tk
i ) in a single sequence

(ti) and we have renamed the jump velocity fields. This definition is slightly heuristic because it makes use of the representation as infinite
sum, which is true only in a suitable limit sense; a rigorous definition of W(t, x) is

W0
t (x) = ∫[0,∞)×H

u(x)1{t′ ≤ t}P(dt′, du).

However, in the sequel, for the sake of interpretability, we shall always use the heuristic expressions.
The intuition is that eddies σi(x) are chosen at random with distribution P, with exponential inter-arrival times of rate λ. Condition (4)

asks, heuristically speaking, that both an eddy and its opposite are equally likely to be chosen.
Rescale W0

t (x) as

WN
t (x) =

1
N∑i

σi(x)1{ti ≤ N2t}.

Let us compute the expectation and the covariance function of this process. One has [E denotes the Mathematical expectation on (Ω, F ,P)]

E[WN
t (x)] = 0

from the independences and condition (4). Moreover,

E[WN
t (x)⊗WN

t (y)] =
1

N2∑
i
E[σi(x)⊗ σi(y)1{ti ≤ N2t}],

having used the independence when i ≠ j and property (4) again; hence,

=
QP(x, y)

N2 ∑
i
P(ti ≤ N2t).

Proposition 3.

∑
i
P(ti ≤ N2t) = N2λt.

Hence,
E[WN

t (x)⊗WN
t (y)] = λtQP(x, y).

Proof. We note that

∑
i
P(ti ≤ N2t) = E[∑

i
1{ti ≤ N2t}] = E[ηλ(N2t)] = N2λt,

where ηλ(⋅) denotes a Poisson process on R+ with intensity λ.
This is another way of seeing the link between the noise with jumps and the covariance of the limit Brownian motion. ■

III. EXAMPLES IN 2D AND 3D
The mathematical object discussed in Sec. II B and C, although initially motivated by vortex structures, was completely general: given

any probability measure P on H with covariance QP, the previous construction and results apply and defines a Brownian motion Wt in H
with covariance operator QP. Note that P is not necessarily Gaussian: P and W1 have both covariance QP, but only W1 needs to be Gaussian.
In a sense, we “realize” approximately samples of the Brownian motion Wt by means of samples of a possibly “nonlinear” (non-Gaussian)
process WN

t .
In this section, we give our two main examples of the measure P, highly non Gaussian. It is inspired by vortex structures.
Common to both descriptions are a few objects. First, given δ > 0, we define

Dδ ∶= {x ∈ D : dist(x,Dc
) > δ}.

Second, we have a filtered probability space (Ω, F , F t ,P) and several F0-measurable r.v.’s: (a) X0 with law p0(dx) supported on Dδ , which
will play the role of the center of the vortex in 2D and the initial position of the vortex filament in 3D; (b) Γ, real valued, with the physical
meaning of circulation, with

J. Math. Phys. 64, 053101 (2023); doi: 10.1063/5.0128120 64, 053101-5

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jm

p/article-pdf/doi/10.1063/5.0128120/17435666/053101_1_5.0128120.pdf

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

E[Γ] = 0, E[∣Γ∣p] <∞ for some p > 2,

σ2
∶= E[Γ2

];

(c) L, positive valued, randomizing the size of the mollification, with the property

P(L ∈ (0, δ/2)) = 1;

(d) U, positive valued, randomizing the length of the vortex filament. Moreover, in 3D, we also have (e) a Brownian motion on (Ω, F , F t ,P)
with values in R3. In the 2D case, we just take F = F0 and do not need the filtration.

For sake of simplicity of exposition, we shall always assume that X0, Γ, L, and U are independent, but most of the results can be extended
to more general cases.

The last common element of the theory is a smooth symmetric probability density θ supported in the ball B(0, 1) and its rescaled
mollifiers,

θℓ(x) = ℓ−dθ(ℓ−1x), (6)

with support in B(0, ℓ).

A. Point vortices and definition of P in the 2D case
In 2D, by a point vortex, we mean a vorticity field of delta Dirac type, δx0 ; its use in 2D fluid mechanics is manifold (see, for instance,

Ref. 27). If the vorticity is assumed distributional and equal to δx0 , with x0 in the interior of D, then the so-called stream function ψD,x0 is given
by the solution of

−ΔψD,x0 = δx0 inD,
ψD,x0 ∣∂D = 0,

and the associated velocity vector field is given by
uD,x0(x) = ∇

�ψD,x0(x),

where∇� f = (∂2 f ,−∂1 f ). One has

ψD,x0(x) =
1

2π
log

1
∣x − x0∣

+ hD,x0(x),

where hD,x0 is a smooth function, solution of the problem

−ΔxhD,x0 = 0 inD,

hD,x0(x) =
1

2π
log∣x − x0∣ for x ∈ ∂D.

In the sequel, as it is customary, we shall denote uD,x0(x) simply by K(x, x0). Hence,

K(x, x0) = −
1

2π
(x − x0)

�

∣x − x0∣
2 +∇

�hD,x0(x), (7)

where x� = (x2,−x1).
Recall that θℓ (6), as ℓ→ 0 is an approximation of the Dirac delta function. Expressions of the form θℓ(x − x0) are idealized smoothed

point vortices, at the vorticity level, and the associated velocity field is

Kℓ(x, x0) ∶= ∫
D

K(x, y)θℓ(y − x0)dy.

With these preliminaries, let us define P.

Definition 4. In the 2D case, the probability measure P on the space H is the law of the H-valued r.v.,

ΓKL(x, X0) = Γ∫
D

K(x, y)θL(y − X0)dy. (8)

For future reference, the spatial covariance matrix of the vortex noise in 2D is given by

Qvortex(x, x′) = E[ΓKL(x, X0)⊗ ΓKL(x′, X0)], x, x′ ∈ D. (9)

J. Math. Phys. 64, 053101 (2023); doi: 10.1063/5.0128120 64, 053101-6

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jm

p/article-pdf/doi/10.1063/5.0128120/17435666/053101_1_5.0128120.pdf

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Proposition 5. The random vector field of Definition 4 takes values in H. If

E(∣Γ∣pL−p
) <∞,

for some p > 2, then it satisfies (2) and (3). Moreover, it satisfies (4).

Proof. Fixing any p > 2, we compute by independence between X0, Γ, and Hölder’s inequality [with p1 = p/2, p2 = p/(p − 2) such that
1/p1 + 1/p2 = 1]

∫
H
∥h∥p

HP(dh) = E[(∫
D
∣ΓKL(x, X0)∣

2dx)
p/2
]

= E(∣Γ∣2∫
D
∣∫

D
KL(x, y)θL(y − X0)dy∣

2
dx)

p/2

≤ E[∣Γ∣p]∣D∣
p
2−1E∫

D
∣∫

D
KL(x, y)θL(y − X0)dy∣

p
dx,

where recall that

K(x, y) =
1

2π
(x − y)�

∣x − y∣2
+ hD,y(x).

Per fixed x ∈ D, we perform the following analysis. Since X0 ∈ Dδ and ∣y − X0∣ ≤ L < δ/2 for any y contributing to the above integral, we have
y ∈ Dδ/2. Therefore, the part∇�x hD,y(x) of the kernel K(x, y) is smooth as a function of x ∈ D for every y ∈ Dδ/2. Due to continuous dependence
of hD,y(x) on boundary conditions, hence on the variable y, the following constant is finite:

C(D, δ) ∶= sup
y∈Dδ/2

sup
x∈D
∣∇
�
x hD,y(x)∣.

The contribution of∇�x hD,y(x) to the above integral hence is finite, i.e.,

E∣∫
D
∇
�
x hD,y(x)θL(y − X0)dy∣

p
dx

≤ E(∫
D
∣∇
�
x hD,y(x)∣θL(y − X0)dy)

p

≤ C(D, δ)pE(∫
D
θL(y − X0)dy)

p
≤ C(D, δ)p,

where we used that ∫DθL(y − X0)dy = 1 for any realization of X0. It suffices now to focus on the other part of the kernel (2π)−1 (x−y)�
∣x−y∣2 . We

have that

E∣∫
D

(x − y)�

∣x − y∣2
θL(y − X0)dy∣

p

≤ E(∫
D

1
∣x − y∣

θL(y − X0)dy)
p

y′=L−1y
= E(∫

D

L−1

∣L−1x − y′∣
θ(y′ − L−1X0)dy′)

p

≤ ∥θ∥p
∞E(L−1

∫
B(L−1X0 ,1)

1
∣L−1x − y′∣

dy′)
p

≤ ∥θ∥p
∞E(L−1

∫
B(L−1(x−X0),1)

1
∣y′′∣

dy′′)
p

≤ ∥θ∥p
∞E(L−1

∫
B(0,1)

1
∣y′′∣

dy′′)
p

≤ Cp,θE[L−p
],
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where we use the fact that the integral of ∣y′′∣−1 over a unit ball centered anywhere in R2 is maximized when the center is the origin, and
nonrandom constant Cp,θ is independent of x. Hence, we get that

∫
H
∥h∥p

HP(dh) ≤ Cp,θ∣D∣
p
2 E(∣Γ∣pL−p

).

Finally, it satisfies (4),

E[Γ∫
D

K(⋅, y)θL(y − X0)dy] = E[Γ]E[∫
D

K(⋅, y)θL(y − X0)dy] = 0

because the second expectation is finite and the first one is equal to zero, by assumption. ■
The case when L = 0 is outside the previous definition and result. The velocity field K(x, x0) is not of class H. Nevertheless, it is of class

Lp
(D,R2

) for p < 2 or of class H−s
(D,R2

) for s > 0. Therefore, we may consider the random field,

ΓK(x, X0),

taking values in these spaces and call P its law. We shall see below that it satisfies certain special properties.

B. Vortex filaments and the definition of P in the 3D case
In 3D, by vortex filament we mean a distributional vector valued field (a “current,” in the language of Calculus of Variations18), given by

∫

U∧τ

0
δXt dXt ,

where Xt is a function or a process such that the previous expression is well defined. We have already introduced a possibly relevant stopping
time τ because it may help to cope with the presence of a boundary. Stochastic currents have been introduced and investigated in some
works.2,4,15,16 We do not need, strictly speaking, that theory here since we shall always deal with mollified objects, except in one section where
we explain what is necessary. In this work, we shall always assume that (Xt) has the law of a Brownian motion, but it is interesting to investigate
also other processes, for instance, directed polymers, such as in Ref. 25.

The following construction of a vortex filament in 3D is due to Ref. 14 (which we slightly modify). Let (Γ, U, ℓ) ∈ R3
+ be a triple whose

joint distribution is given by some probability measure ν(dγ, du, dℓ) (assumed to be a product measure for simplicity). Let (Xt)t≥0 denote a
3D Brownian motion starting with X0 distributed with a probability density p0(x) supported in Dδ , where p0(x) ∈ [pmin, pmax] ⊂ (0,∞). We
call W its law, which we assume to be independent of ν(⋅). Define the first exit time from Dδ of (Xt) by

τ = τDδ ∶= inf{t ≥ 0 : Xt ∈ Dc
δ} ∈ [0,∞).

We consider random vorticity fields defined as

∫

U∧τ

0
(θ ∗ δXt)(x)dXt = ∫

U∧τ

0
θ(x − Xt)dXt.

Let A(x) be the vector potential defined path by path by the solution of the equation

−ΔA(x) = ∫
U∧τ

0
θ(x − Xt)dXt inD,

A∣∂D = 0

and extend A = 0 outside of D, when necessary. Then, the associated velocity is given by

u(x) = curl A(x).

Concerning the Biot–Savart kernel, here we have

ψD,x0(x) =
1

4π
1

∣x − x0∣
+ hD,x0(x),

where hD,x0 is a smooth function, solution of the problem

−ΔxhD,x0 = 0 inD,

hD,x0(x) = −
1

4π
1

∣x − x0∣
for x ∈ ∂D.
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As usual, we shall denote curlψD,x0(x) simply by K(x, x0), which now is vector valued and its action on a generic vector v is given by

K(x, x0) × v ∶= −
1

4π
(x − x0) × v

∣x − x0∣
3 +∇xhD,x0(x) × v. (10)

Definition 6. In the 3D case, the probability measure P on the space H is the law of the H-valued r.v.,

ΓKL(x, X⋅) ∶= Γ∫
D

K(x, y) × (∫
U∧τ

0
θL(y − Xt)dXt)dy. (11)

Remark 7. We use the killed BM, not the normally reflected BM, in the definition of the filament because the latter is not a local martingale,
only a semimartingale due to the boundary push term, which leads to difficulties in integration against dXt .

For future reference, the spatial covariance matrix of the vortex noise in 3D is given by

Qvortex(x, x′) = E[ΓKL(x, X⋅)⊗ ΓKL(x′, X⋅)], x, x′ ∈ D. (12)

Proposition 8. The random vector field of Definition 4 takes values in H. If

E(∣Γ∣pU
p
2 L−2p

) <∞,

for some p > 2, then it satisfies (2) and (3). Moreover, it satisfies (4).

Proof. Fix any p > 2, then we compute

∫
H
∥h∥p

HP(dh) = E[(∫
D
∣Γu(x)∣2dx)

p/2
].

Fixing any realization of (Γ, U, L) according to measure ν, we take expectation with respect to the Wiener measure W first. By Hölder’s
inequality and p/2 > 1 and Burkholder–Davis–Gundy inequality, we compute

W[(∫
D
∣u(x)∣2dx)

p/2
]

=W
⎡
⎢
⎢
⎢
⎢
⎣

(∫
D
∣∫

U∧τ

0
∫

Dδ

K(x, y)θL(y − Xt)dy × dXt∣
2
dx)

p/2⎤
⎥
⎥
⎥
⎥
⎦

≤ ∣D∣
p
2−1W[∫

D
∣∫

U∧τ

0
∫

Dδ

K(x, y)θL(y − Xt)dy × dXt∣
p
dx]

= ∣D∣
p
2−1
∫

D
dx W[∣∫

U∧τ

0
∫

Dδ

K(x, y)θL(y − Xt)dy × dXt∣
p
]

≤ ∣D∣
p
2−1
∫

D
dx W

⎡
⎢
⎢
⎢
⎢
⎣

∣∫

U∧τ

0
2∣∫

Dδ

K(x, y)θL(y − Xt)dy∣
2
dt∣

p/2⎤
⎥
⎥
⎥
⎥
⎦

.

Since Xt∧τ ∈ Dδ , we have that any y that contributes to the above integral is supported in y ∈ Dδ/2; hence,∇xhD,y(x) part of the kernel K(x, y)
is uniformly bounded, i.e.,

sup
y∈Dδ/2

sup
x∈D
∣∇xhD,y(x)∣ ≤ C(D, δ).

Hence, its contribution in the above integral can be computed, as for any x ∈ D,

W
⎡
⎢
⎢
⎢
⎢
⎣

∣∫

U∧τ

0
∣∫

D
∇xhD,y(x)θL(y − Xt)dy∣

2
dt∣

p/2⎤
⎥
⎥
⎥
⎥
⎦

≤ U
p
2−1
∫

U

0
dt W[∣∫

D
∇xhD,y(x)θL(y − Xt)dy∣

p
1{t≤τ}]
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≤ U
p
2−1C(D, δ)p

∫

U

0
dt W[∣∫

D
θL(y − Xt)dy∣

p
1{t≤τ}]

≤ U
p
2 C(D, δ)p

using that ∫ θL(y − Xt)dy = 1 for every possible realization of Xt∧τ ∈ Dδ .
It suffices to focus on the other part of the kernel (4π)−1 x−y

∣x−y∣3 . We can do an explicit calculation: by Hölder’s inequality and then a change
of variables, we have that for any x ∈ D,

W
⎡
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRR
∫

U∧τ

0
∣∫

D

x − y
∣x − y∣3

θL(y − Xt)dy∣
2

dt
RRRRRRRRRRR

p/2⎤
⎥
⎥
⎥
⎥
⎦

≤ U
p
2−1
∫

U

0
dt W[∣∫

D

x − y
∣x − y∣3

θL(y − Xt)dy∣
p

1{t≤τ}]

y′=L−1y
= U

p
2−1
∫

U

0
dt W[∣∫

L−1D

L−2
(L−1x − y′)
∣L−1x − y′∣3

θ(y′ − L−1Xt)dy′∣
p

1{t≤τ}]

≤ U
p
2−1L−2p

∥θ∥p
∞∫

U

0
dt W[∣∫

B(L−1Xt ,1)
1

∣L−1x − y′∣2
dy′∣

p

1{t≤τ}]

= U
p
2−1L−2p

∥θ∥p
∞∫

U

0
dt W[∣∫

B(L−1(x−Xt),1)
1
∣y′′∣2

dy′′∣
p

]

≤ U
p
2 L−2p

∥θ∥p
∞ W[∣∫

B(0,1)
1
∣y′′∣2

dy′′∣
p

]

≤ Cp,θU
p
2 L−2p,

where Cp,θ is a non-random constant independent of x. Indeed, we used the geometric fact that the integral of the function ∣y′′∣−2 over a unit
ball centered at anywhere in R3 is maximized when the center is the origin.

Thus, we can conclude that

E[(∫
D
∣Γu(x)∣2dx)

p/2
] ≤ Cp,θ∣D∣

p
2 E(∣Γ∣pU

p
2 L−2p

)

with the finiteness of the RHS providing a sufficient condition.
Finally, it satisfies (4),

E[Γ∫
D

K(⋅, y) × (∫
U∧τ

0
θL(y − Xt)dXt)dy]

= E[Γ]E[∫
D

K(⋅, y) × (∫
U∧τ

0
θL(y − Xt)dXt)dy] = 0

because the second expectation is finite and the first one is equal to zero, by assumption. ■

IV. VORTEX NOISES REPRODUCE FRACTIONAL GAUSSIAN FIELDS AND KRAICHNAN NOISE
In this section, we analyze the covariance operators of our vortex noises constructed above in 2D and 3D and show that our vortex noises

are instances of Fractional Gaussian Fields,26 which is a broad class of Gaussian generalized random fields that includes Gaussian Free Field
(GFF) and Kraichnan noise. We show that by choosing the statistical parameters of our model suitably, we can reproduce a large class of FGF.
It may also reproduce multifractal vector fields, which was the main motivation of study in Ref. 14.

For simplicity, our fields are defined on the torus Td, d = 2, 3.
In the scalar case and on the torus Td

= Rd
/Zd, the classical d-dimensional FGF of index s ∈ R is the Gaussian field with covariance

(−Δ)−s, where Δ is the Laplacian in on Td (see Ref. 26). The case s = 1 is called Gaussian Free Field (GFF). Similarly, let us introduce a
Gaussian measure on solenoidal vector fields. Let H be the space of mean zero periodic L2 solenoidal vector fields. The Stokes operator is
defined as

A : D(A) ⊂ H → H,

D(A) = H2
(Td,Rd

),

Av = Δv
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(no projection of L2
(Td,Rd

) to H is needed here, opposite to the case of a bounded domain with Dirichlet boundary conditions). The Lapla-
cian Δv is computed componentwise. The operator A is invertible in H (see Ref. 32). With these definitions at hand, we call Solenoidal
Fractional Gaussian Field (SFGF) of index s ∈ R the Gaussian measure with covariance (−A)−s. The case s = 1 will be called Solenoidal
Gaussian Free Field (SGFF).

A. Covariance of 2D vortex noise
Let us first consider the 2D case, and recall the definition of the noise based on point vortices (8).
The covariance operator of our noise is given by

⟨Qv,w⟩ = E[Γ2
∫

T2
KL(x, X0) ⋅ v(x)dx∫

T2
KL(x′, X0) ⋅w(x′)dx′].

Call Qvortex(x, x′) its covariance function (matrix-valued) such that

⟨Qv,w⟩ = ∫
T2∫T2

v(x)TQvortex(x, x′)w(x′)dxdx′.

It is clear (and proved below) that it is homogeneous,

Qvortex(x, x′) = Qvortex(x − x′)

for a matrix function Qvortex(x). In the sequel, we denote by Zd
0 the set Zd

/{0}.

Proposition 9. Assume θ symmetric and X0 independent of (Γ, L) and uniformly distributed. Then,

Qvortex(x) = ∑
k∈Z2

0

E[Γ2
∣̂θ(Lk)∣

2
]

1
∣k∣2

Pkeik⋅x. (13)

Proof. We may rewrite

∫
T2

KL(x, X0) ⋅ v(x)dx = ∫
T2∫T2

K(x, y) ⋅ v(x)θL(y − X0)dydx

= (θL ∗K ∗ v)(X0).

Therefore,

⟨Qv,w⟩ = E[Γ2
(θL ∗K ∗ v)(X0)(θL ∗K ∗w)(X0)]

= E[Γ2
∫

T2
(θL ∗K ∗ v)(x)(θL ∗K ∗w)(x)dx].

By the Parseval theorem,

⟨Qv,w⟩ = E[Γ2
∑

k

̂θL ∗K ∗ v(k) ̂θL ∗K ∗w(k)]

= ∑
k∈Z2

0

E[Γ2
∣θ̂T

L (k)∣
2
]

1
∣k∣2
⟨Pkv̂(k), ŵ(k)⟩,

recalling that

K̂(k) = i
k�

∣k∣2

and calling Pk = I − k⊗k
∣k∣2 is the projection on the orthogonal to k. Therefore,

Qvortex(x) = ∑
k∈Z2

0

E[Γ2
∣θ̂L (k)∣

2
]

1
∣k∣2

Pkeik⋅x.

Since θ̂ℓ(k) = θ̂(ℓk), we get the result. ■
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Corollary 10. In addition, assume θ is a smooth function with θ̂(k) = θ̂(∣k∣), let fL be the probability density of L, and assume Γ is a
function of L: Γ = γ(L). Assume

γ2
(r) fL(r) = Crα

for some C > 0 and
α > −1.

Call
D ∶= ∫

∞

0
∣̂θ(r)∣

2
γ2
(r) f L(r)dr,

which is a finite constant. Then,

Qvortex(x) = D∑
k∈Z2

0

1
∣k∣3+α

Pkeik⋅x.

This is the covariance function of a SFGF of index,

s =
3 + α

2
.

Proof. Since θ is smooth, θ̂(r) has a fast decay, which makes θ̂(r)rα integrable at infinity for every α; it is also integrable at zero because
α > −1. From the assumptions,

E[Γ2
∣̂θ(Lk)∣

2
] = E[γ2

(L)∣̂θ(∣Lk∣)∣
2
]

= ∫

∞

0
γ2
(ℓ)∣̂θ(ℓ∣k∣)∣

2
f L(ℓ)dℓ

= ∣k∣−1
∫

∞

0
∣̂θ(r)∣

2
γ2
(∣k∣−1r) f L(∣k∣−1r)dr

= ∣k∣−1−αD.

Note that α > −1 corresponds to ■

s > 1,

so the SGFF (s = 1) is a (just excluded) limit case.
Recall that the solenoidal Kraichnan model with scaling parameter ζ is defined, on the torus Td, by the covariance function

QKraichnan(x) = D∑
k∈Zd

0

1
∣k∣d+ζ

Pkeik⋅x.

We see thus that the vortex noise, in dimension d = 2 (see Sec. IV B for d = 3), covers the Kraichnan model with scaling parameter,

ζ = 1 + α > 0

(any positive ζ is covered).
The space-scale ℓ of the vortices is free in the previous results. If we restrict ourselves to small vortices, namely, we take f L(r) = 0 for

r > k−1
0 , we get the following corollary:

Corollary 11. Under the same assumptions of the previous corollary except for

γ2
(r) f L(r) = Crα1{r≤k−1

0 }

for some C, k0 > 0 and α > −1, we get

Qvortex(x) =
1

k3+α
0
∑
∣k∣>k0

D(∣k∣/k0)

(∣k∣/k0)
3+α Pkeik⋅x

+ Rk0(x),

where
lim
κ→∞D(κ) = D,

∥Rk0(x)∥ ≤
C′

α + 1
log k0

k1+α
0
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for some constant C′ > 0.

Proof. As above,
E[Γ2
∣̂θ(Lk)∣

2
] = ∣k∣−1−αD(∣k∣/k0).

The first limit property is obvious. Moreover (using also ∥̂θ∥∞ ≤ 1),

D(κ) ≤ C
κα+1

α + 1
,

and hence,
1

k3+α
0
∑
∣k∣≤k0

D(∣k∣/k0)

(∣k∣/k0)
3+α ≤

C
α + 1

1
k1+α

0
∑
∣k∣≤k0

∣k∣−2
≤

C′

α + 1
1

k1+α
0

log k0.

■
We thus see that, up to lower order terms, the vortex model with cutoff corresponds to the Kraichnan model with infrared cutoff k0

[cf. Ref. 10, Eq. (2.3)].
Finally, we remark that the model has the flexibility of multifractality. To explain it in the simplest possible case, assume

γ2
(r) f (r) =

N

∑
i=1

Cirαi

Di ∶= ∫

∞

0
∣̂θ(r)∣

2
Cirαi dr.

Then, we get

Qvortex(x) =
N

∑
i=1

Di∑
k

1
∣k∣3+αi

Pkeik⋅x.

Clearly, one can do the same with a continuously distributed multifractality in place of the finite sum (we void to introduce additional
notations to explain this point).

Remark 12. An intriguing but extremely difficult question (we thank an anonymous referee for it) is whether we may infer the value of the
scaling exponent ζ of the Kraichnan model, or a multifractal version of it, from the similarity with the vortex noise. It was the main aim of the
outstanding book,6 which—as admitted by the author—remained open at the time of the book and it is still open now. Two examples of attempts
in this direction have been Refs. 14 and 25; in the latter work, a multifractal formalism based on vortex filaments was developed. However, it
must be stressed that no one of these works deduced K41 or other scalings from vortex models; they could only reproduce scalings chosen a priori.

B. Covariance of 3D vortex noise
Next, we turn to the 3D case, and recall the definition of the noise based on vortex filaments (11). The covariance of the noise is given by

⟨Qv,w⟩ = E[Γ2
∫

T3
KL(x, X⋅) ⋅ v(x)dx∫

T3
KL(x′, X⋅) ⋅w(x′)dx′],

where

∫
T3

KL(x, X⋅) ⋅ v(x)dx = ∫
T3∫T3

v(x) ⋅ K(x, y) × ∫
U

0
θL(y − Xt) dXt dxdy.

For simplicity, we set from now on the time-horizon U = 1, and assume that the 3D Brownian motion (Xt) starts from uniform distribution
on T3, and hence, for any time t > 0, the distribution of Xt remains uniform. (Xt) is also independent of (Γ, L). Using vector identity, we may
rewrite

∫
T3

KL(x, X⋅) ⋅ v(x)dx = ∫
T3∫T3∫

1

0
θL(y − Xt)v(x) × K(x, y) ⋅ dXtdxdy

= ∫

1

0
[θT

L ∗ (∫
T3
v(x) × K(x − ⋅)dx)](Xt) ⋅ dXt.

For the 3D kernel K (10), we still have the property that K(x, a) = K(x − a) = −K(a − x).
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Our first result is that in 3D, the vortex noise has the same covariance structure as in the 2D case.

Proposition 13. Assume θ symmetric and (Xt) independent of (Γ, L) and starts from uniform distribution on T3. Then,

Qvortex(x) = ∑
k∈Z3

0

E[Γ2
∣̂θ(Lk)∣

2
]

1
∣k∣2

Pkeik⋅x.

Proof.

⟨Qv,w⟩ = E[Γ2
∫

1

0
[θL ∗ (∫

T3
v(x) × K(x − ⋅)dx)](Xt) ⋅ dXt

∫

1

0
[θL ∗ (∫

T3
w(x′) × K(x′ − ⋅)dx′)](Xt) ⋅ dXt]

= E[Γ2
∫

1

0
[θL ∗ (∫

T3
v(x) × K(x − ⋅)dx)](Xt) ⋅ [θL ∗ (∫

T3
w(x′) × K(x′ − ⋅)dx′)](Xt) dt]

= E[Γ2
∫

T3
[θL ∗ (∫

T3
v(x) × K(x − ⋅)dx)](z) ⋅ [θL ∗ (∫

T3
w(x′) × K(x′ − ⋅)dx′)](z) dz],

where we take conditional expectation with respect to (Xt) first using its time-stationarity and uniform distribution, whereas the randomness
of (Γ, L) remains.

By Parseval theorem and vector identities, we may rewrite

⟨Qv,w⟩ = E
⎡
⎢
⎢
⎢
⎢
⎣

Γ2
∑
k∈Z3

0

θ̂L(k)(∫
T3
v(x) × K(x − ⋅)dx)

∧
(k) ⋅ θ̂L(k)(∫

T3
w(x) × K(x − ⋅)dx)

∧
(k)
⎤
⎥
⎥
⎥
⎥
⎦

= ∑
k∈Z3

0

E[Γ2
∣θ̂L (k)∣

2
(v̂(k) × K̂(k)) ⋅ (ŵ(k) × K̂(k))]

= ∑
k∈Z3

0

E[Γ2
∣θ̂L (k)∣

2
ŵ(k) ⋅ (K̂(k) × (v̂(k) × K̂(k)))].

By properties of the triple cross product, we have that

K̂(k) × (v̂(k) × K̂(k)) = v̂(k)(K̂(k) ⋅ K̂(k)) − K̂(k)(K̂(k) ⋅ v̂(k)),

and hence,

ŵ(k) ⋅ (K̂(k) × (v̂(k) × K̂(k)))

= ∣K̂ (k)∣2(v̂(k) ⋅ ŵ(k)) − (ŵ(k) ⋅ K̂(k))(K̂(k) ⋅ v̂(k))

= ∣K̂ (k)∣2(v̂(k) ⋅ ŵ(k)) − ŵ (k)T
(K̂(k)⊗ K̂(k))v̂(k)

=
1
∣k∣2
(v̂(k) ⋅ ŵ(k)) − ŵ (k)T

(
k
∣k∣2
⊗

k
∣k∣2
)v̂(k)

=
1
∣k∣2
⟨(I −

k
∣k∣
⊗

k
∣k∣
)v̂(k), ŵ(k)⟩,

recalling that in 3D,

K̂(k) = i
k
∣k∣2

.

Thus, we may conclude that

⟨Qv,w⟩ = ∑
k∈Z3

0

E[Γ2
∣θ̂L (k)∣

2
]

1
∣k∣2
⟨Pkv̂(k), ŵ(k)⟩,

where Pk = I − k
∣k∣ ⊗

k
∣k∣ is the projector on the orthogonal to k. This yields, in turn, that the covariance matrix of the noise is given by ■

Qvortex(x, x′) = ∑
k∈Z3

0

E[Γ2
∣θ̂L (k)∣

2
]

1
∣k∣2

Pkeik⋅(x−x′).
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This formula agrees with formula (13) obtained for 2D; hence, Corollary 10 applies in 3D without change (except for summation over
k ∈ Z3

0).
Our result in 3D covers Kraichnan noise with parameter

ζ = α > −1.

We can also restrict the vortices to small scales by introducing a cutoff k0, as in Corollary 11. Here, we need to restrict to α > 0 in its statement
so that the remainder Rk0(x) is of lower order,

∥Rk0(x)∥ ≤
C′

α + 1
1
kα0

.

V. THE EFFECT OF VORTEX STRUCTURE NOISE ON PASSIVE SCALARS
A. Introduction

Regarding eddy diffusion enhancement in domains with boundary, we recall the following theorem proved in Ref. 13 (Theorems 1.1 and
1.3). Here, we have a passive scalar θ driven by the white-in-time, correlated-in-space noise ∂tW produced by our vortex structures, where
W(t, x) is the limit Gaussian process obtained via the invariance principle in Theorem 2,

∂tθ + ∂tW ○ ∇θ = κΔθ,

○ denotes Stratonovich integration, and scalar κ > 0. We denote the smallest eigenvalue of the matrix Q(x, x) by

q(x, x) ∶= min
0≠ξ∈Rd

ξTQ(x, x)ξ
ξTξ

and the squared operator norm ∥Q1/2
∥

2
L2(D)→L2(D) by

ϵQ ∶= sup
0≠v∈H

∫D∫Dv
T
(x)Q(x, y)v(y)dxdy

∫Dv(x)
Tv(x)dx

.

Theorem 14 (Ref. 13, Theorems 1.1 and 1.3).

(a) For any θ0 ∈ H measurable and any t ≥ 0, we have that

E[(∫
D
∣θ(t, x)∣dx)

2
] ≤ (

ϵQ

κ
+ 2∣D∣e−2tλD,κ,Q)E[∥θ0∥

2
L2],

where λD,κ,Q is the first eigenvalue of the elliptic operator −AQ for

AQ ∶= κΔ +
1
2

div(Q(x, x)∇⋅).

(b) There exists a constant CD,d > 0 such that

λD,κ,Q ≥ CD,d min (σ2, κ/δ)

for every Q such that

inf
x∈Dδ

q(x, x) ≥ σ2.

In view of this theorem, our aim is to show that the noises based on vortex structures in 2D and 3D that we constructed in Sec. III,
for small L, enjoy the property that they have small ϵQ and large q(x, x), simultaneously, once the other parameters of the model are tuned
properly. Here, we assume that Γ, U, L, X⋅ are independent.

For technical reasons, we demonstrate this only for the torus D = Td, d = 2, 3, in this section. The same conclusions should be true for
any regular domains D, but the corrector part of the Green function is difficult to handle; hence, we prefer to state in the simple case of torus.
Note in this case, we do not have a boundary, and hence, Dδ = D, δ = 0, and we can put the stopping time τ =∞ in the 3D case.
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B. The 2D case
The following theorem applies to any realization ℓ of L. For fixed ℓ > 0, we shall use [recall (8)]

Qℓ(x, y) = E[Γ2Kℓ(x, X0)⊗ Kℓ(y, X0)].

Therefore, for ξ ∈ R2, we have

ξTQℓ(x, x)ξ = E[Γ2
∣Kℓ(x, X0) ⋅ ξ∣2],

while for v ∈ H,

⟨Qℓv, v⟩ = ∫
T2∫T2

v(x)TQℓ(x, y)v(y)dxdy = E[Γ2
(∫

T2
v(x) ⋅ Kℓ(x, X0)dx)

2
].

In the next statement, we set σ2
= E(Γ2

).

Theorem 15. (i) There exists a finite constant C such that for every v ∈ H and ℓ ∈ (0, 1),

⟨Qℓv, v⟩
∥v∥2

H
≤ Cσ2.

(ii) For every x ∈ T2, let qℓ(x) ≥ 0 be the largest number such that for any v ∈ R2 and ℓ ∈ (0, 1),

vTQℓ(x, x)v
∣v∣2

≥ qℓ(x).

Then, there exists some positive constant c such that

inf
x∈T2

qℓ(x) ≥ c σ2
∣ log ℓ∣.

Remark 16. We can choose σ2
= E(Γ2

) to be small and then choose ℓ small enough such that σ2
∣log ℓ∣ is large to fulfill the conditions in

Theorem 14.

Proof. Since D = T2, the function ∇�x hD(x, y) is bounded above uniformly and does not affect the computations on K(x, y), which will
be based only on the term 1

2π
(x−y)�
∣x−y∣2 . Thus, we use the approximation for all x ∈ T2, a.s.,

∣Kℓ(x, X0)∣ ≤ ∫
T2
∣K(x, y)∣θℓ(y − X0)dy ∼

1
2π∫T2

1
∣x − y∣

θℓ(y − X0)dy.

Let CKℓ be the random variable defined as

CKℓ ∶= ∫
T2
∣Kℓ(x, X0)∣dx.

Under our approximation, we have

∫
T2
∣Kℓ(x, X0)∣dx ≲

1
2π∫T2∫T2

1
∣x − y∣

θℓ(y − X0)dydx

=
1

2π∫T2
(∫

T2

1
∣x − y∣

dx)θℓ(y − X0)dy

≤ C∫
T2
θℓ(y − X0)dy = C,

and hence, CKℓ is finite a.s. and even uniformly bounded above. Then,
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⟨Qℓv, v⟩ ≤ E[Γ2
(∫

T2
∣v(x)∣∣Kℓ(x, X0)∣dx)

2
]

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

Γ2C2
Kℓ
(∫

T2
∣v(x)∣

∣Kℓ(x, X0)∣

CKℓ

dx)
2⎤
⎥
⎥
⎥
⎥
⎦

≤ E[Γ2C2
Kℓ∫

T2
∣v(x)∣2

∣Kℓ(x, X0)∣

CKℓ

dx]

= E[Γ2CKℓ∫
T2
∣v(x)∣2∣Kℓ(x, X0)∣dx].

Let C̃Kℓ be the deterministic constant defined as

C̃Kℓ ∶= sup
x∈T2

E[Γ2CKℓ ∣Kℓ(x, X0)∣] <∞.

We have proved

⟨Qℓv, v⟩ ≤ C̃Kℓ∥v∥
2
H.

Concerning the size of C̃Kℓ , under the assumptions that p0 has a bounded density, we have

C̃Kℓ ≤ Csup
x∈T2

E[Γ2
∣Kℓ(x, X0)∣]

∼
C
2π

sup
x∈T2

E[Γ2
∫

T2

1
∣x − y∣

θℓ(y − X0)dy]

=
C
2π

sup
x∈T2

E[Γ2
∫

T2 ∫
1
∣x − y∣

θℓ(y − x0)p0(x0)dx0dy]

≤
Cpmax

2π
sup
x∈T2

E[Γ2
∫

T2

1
∣x − y∣

dy]

≤ C(pmax,T2
)E(Γ2

)

since

sup
x∈T2
∫

T2

1
∣x − y∣

dy ≤ CT2.

Therefore,
⟨Qℓv, v⟩ ≤ CE(Γ2

)∥v∥2
H.

This quantity is small if E(Γ2
) is small.

Concerning vTQ(x, x)v, v ∈ R2, using again the simplified asymptotics, we have

vTQ(x, x)v = E(Γ2
∫

T2
∣Kℓ(x, x0) ⋅ v∣

2p0(dx0))

∼ E
⎛

⎝

Γ2

(2π)2∫T2
∣∫

T2

(x − y)� ⋅ v
∣x − y∣2

θℓ(y − x0)dy∣
2

p0(dx0)
⎞

⎠
.

Given any x ∈ T2 and unit vector v ∈ R2, there is a cone C(x, v) ⊂ T2 (a set of the form x + rw, r ∈ [0, r0], ∣w∣ = 1, w ⋅ e ≥ α for some ∣e∣ = 1
and α ∈ (0, 1)) such that

(x − x0)
�
⋅ v ≥

1
2
∣x − x0∣∣v∣ for every x0 ∈ C(x, v)

and
∣C(x, v)∣ ≥ η > 0.
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Moreover, assume p0(dx0) is bounded below by pminLeb for some constant pmin > 0. We then have

vTQℓ(x, x)v ≥ E
⎛

⎝

Γ2pmin

(2π)2 ∫C(x,v)
∣∫

B(x0 ,ℓ)
(x − y)� ⋅ v
∣x − y∣2

θℓ(y − x0)dy∣
2

dx0
⎞

⎠
.

Taking ℓ > 0 very small, reduce the cone C(x, v) to the set

Cℓ(x, v) ⊂ C(x, v)

of points x0 such that
dist(x0,∂C(x, v)) ≥ 2ℓ.

We then have
y ∈ C(x, v) if y ∈ B(x0, ℓ) with x0 ∈ Cℓ(x, v),

and thus,

vTQℓ(x, x)v ≥ E
⎛

⎝

Γ2pmin

(2π)2 ∫Cℓ(x,v)
∣∫

B(x0 ,ℓ)

1
2 ∣x − y∣∣v∣
∣x − y∣2

θℓ(y − x0)dy∣
2

dx0
⎞

⎠

= E
⎛

⎝

Γ2pmin∣v∣
2

4(2π)2 ∫Cℓ(x,v)
∣∫

B(x0 ,ℓ)
1
∣x − y∣

θℓ(y − x0)dy∣
2

dx0
⎞

⎠

= E
⎛

⎝

Γ2pmin∣v∣
2

4(2π)2 ∫Cℓ(x,v)
(θℓ ∗

1
∣⋅∣
)

2

(x − x0)dx0
⎞

⎠

= E
⎛

⎝

Γ2pmin∣v∣
2

4(2π)2 ∫Cℓ(0,v)
(θℓ ∗

1
∣⋅∣
)

2

(x0)dx0
⎞

⎠

≥ c(pmin,η)∣v∣2E(Γ2
)∫ (θℓ ∗

1
∣⋅∣
)

2

(x0)dx0.

The last inequality is because the quantity x0 ↦ (θℓ ∗ 1
∣⋅∣)

2
(x0) is rotationally invariant; hence, the integral ∫Cℓ(0,v)(θℓ ∗

1
∣⋅∣)

2
(x0)dx0 does not

depend on v. Since ∣C(0, v)∣ ≥ η, we have that

∫
Cℓ(0,v)

(θℓ ∗
1
∣⋅∣
)

2

(x0)dx0 ≥ cη−1
∫ (θℓ∗

1
∣⋅∣
)

2

(x0)dx0.

Let us investigate the problem of the scaling in ℓ of the quantity ∫ (θℓ ∗ 1
∣⋅∣)

2
(x)dx. Given the mollifier θℓ(x) = ℓ−2θ(ℓ−1x) that we assume

the best possible one (non-negative, smooth, symmetric), let us introduce the smooth symmetric pdf, compactly supported in B(0, 2),

θ(2)(z) ∶= ∫ θ(z − z′)θ(z′)dz′.

Then,

θ(2)ℓ (z) = ℓ
−2θ(2)(ℓ−1x) = ∫ ℓ−2θ(ℓ−1z − z′)θ(z′)dz′

z′=ℓ−1w
= ∫ ℓ−2θ(ℓ−1

(z −w))θ(ℓ−1w)ℓ−2dw

= ∫ θℓ(z −w)θℓ(w)dw

= (θℓ ∗θℓ)(z).

Below we shall use the formula,

θ(2)ℓ (y − y′) = ∫ θℓ(x − y)θℓ(x − y′)dx
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true because

θ(2)ℓ (y − y′) = ∫ θℓ(y − y′ −w)θℓ(w)dw

w=x−y′
= ∫ θℓ(y − x)θℓ(x − y′)dx

(recall θ is symmetric). After these preliminaries, we have

∫ (θℓ ∗
1
∣⋅∣
)

2

(x)dx = ∫ (∫ θℓ(x − y)
1
∣y∣

dy)
2

dx

=∭ θℓ(x − y)θℓ(x − y′)
1
∣y∣

1
∣y′∣

dydy′dx

=∬ θ(2)ℓ (y − y′)
1
∣y∣

1
∣y′∣

dydy′

=∬ θ(2)ℓ (z)
1
∣y∣

1
∣y − z∣

dydz

= ∫ (∫
1
∣y∣

1
∣y − z∣

dy)θ(2)ℓ (z)dz.

Now, we have to understand first the behavior of

z ↦ ∫
1
∣y∣

1
∣y − z∣

dy.

We can prove that for ∣z∣ ≤ 1,

∫
R2

1
∣y∣

1
∣y − z∣

dy ≥ ∣log∣z∣∣.

Indeed, since ∣y − z∣ ≤ ∣y∣ + ∣z∣,

∫
R2

1
∣y∣

1
∣y − z∣

dy ≥ ∫
1
∣y∣

1
∣y∣ + ∣z∣

dy

≥ ∫

1

0

1
ρ

1
ρ + ∣z∣

ρ dρ = log (1 + ∣z∣) − log ∣z∣

≥ − log ∣z∣ = ∣ log ∣z∥.

Then, ∫ (∫
1
∣y∣

1
∣y−z∣dy)θ(2)ℓ (z)dz can be bounded below by

∫ θ(2)ℓ (z)∣log∣z∣∣dz

≥ ℓ−2
∫∣z∣≤ℓ

θ(2)(ℓ−1z)∣log∣z∣∣dz

≥ −cθℓ
−2
∫

ℓ

0
r log rdr

= cθ
⎛

⎝
−ℓ−2
[

r2

2
log r]

r=ℓ

r=0
+ ℓ−2

∫

ℓ

0

r2

2
1
r

dr
⎞

⎠

= cθ(−ℓ
−2 ℓ

2

2
log ℓ + ℓ−2 ℓ

2

2
)

= cθ(∣log ℓ∣ +
1
2
),

where without loss of generality
cθ ∶= inf

z∈B(0,1)
θ(2)(z) > 0.
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This yields that
vTQ(x, x)v
∣v∣2

≥ c E(Γ2
)∣ log ℓ∣

for some c > 0 and any ℓ ∈ (0, 1).

C. The 3D case
Recall that we take D = T3; hence, the computation below can be based solely on the 1

4π
x−y
∣x−y∣3 × part of the kernel K(x, y) (10), with the

other part from∇xhD,x0(x)× uniformly bounded. We also set τ =∞. The following theorem applies to any realization ℓ of L. We shall use the
notation Qℓ(x, y) and Qℓ for fixed ℓ, similarly to what is done in the 2D case, while recalling (11).

In the next statement, we set σ2
= E(Γ2

).

Theorem 17. (i) There exists a constant C <∞ such that for every v ∈ H and ℓ ∈ (0, 1),

⟨Qℓv, v⟩
∥v∥2

H
≤ C E(U)σ2.

(ii) There exists a constant c > 0 such that for all x ∈ T3, v ∈ R3, and ℓ ∈ (0, 1),

vTQℓ(x, x)v
∣v∣2

≥ c E(U)σ2ℓ−1.

Remark 18. We can choose the distribution of (Γ, U) such that E(U)σ2 is small and then choose ℓ small enough such that E(U)σ2ℓ−1 is
large to fulfill the conditions in Theorem 14.

Proof. Taking any v ∈ H, we consider

⟨Qℓv, v⟩ = ∫
T3∫T3

v(x)TQℓ(x, y)v(y)dxdy

= E[Γ2
(∫

T3
v(x) ⋅ ∫

T3
K(x, y) × (∫

U∧τ

0
θℓ(y − Xt)dXt)dydx)

2
].

For any fixed realization of (Γ, U), we take expectation over W first

⟨Qℓv, v⟩ ∼ Γ2W
⎡
⎢
⎢
⎢
⎢
⎣

(∫
T3∫T3∫

U

0
θℓ(y − Xt)v(x) ⋅

1
4π

x − y
∣x − y∣3

× dXtdydx)
2⎤
⎥
⎥
⎥
⎥
⎦

= Γ2W
⎡
⎢
⎢
⎢
⎢
⎣

(∫

U

0
∫

T3∫T3
θℓ(y − Xt)v(x) ×

1
4π

x − y
∣x − y∣3

dydx ⋅ dXt)

2⎤
⎥
⎥
⎥
⎥
⎦

= Γ2W
⎡
⎢
⎢
⎢
⎢
⎣

∫

U

0
∣∫

T3∫T3
θℓ(y − Xt)v(x) ×

1
4π

x − y
∣x − y∣3

dydx∣
2

dt
⎤
⎥
⎥
⎥
⎥
⎦

,

where the last step is due to Itô isometry. We further bound it above by moving the norm inside the integral,

Γ2W
⎡
⎢
⎢
⎢
⎢
⎣

∫

U

0
(∫

T3∫T3
θℓ(y − Xt)∣v(x)∣

1
4π

1
∣x − y∣2

dydx)
2

dt
⎤
⎥
⎥
⎥
⎥
⎦

= Γ2W
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫

U

0
C2

u
⎛

⎝
∫

T3
∣v(x)∣

∫T3θℓ(y − Xt)
1

4π
1

∣x−y∣2 dy

Cu
dx
⎞

⎠

2

dt
⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ Γ2W[∫
U

0
Cu∫

T3
∣v(x)∣2∫

T3
θℓ(y − Xt)

1
4π

1
∣x − y∣2

dydxdt],
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where the random constant Cu is

Cu ∶= ∫
T3∫T3

θℓ(y − Xt)
1

4π
1

∣x − y∣2
dydx ≤ CT3

for some deterministic finite constant CT3 (integrate first dx then dy). Set

C′u ∶= sup
x∈T3

W[∫
U

0
∫

T3
θℓ(y − Xt)

1
4π

1
∣x − y∣2

dydt].

Recall that X0 has density p0(x), which is bounded above uniformly by pmax. Since the heat semigroup is an L∞-contraction, the density of Xt
at any later time t is bounded above by pmax, and thus, we have

C′u ≤ Upmax sup
x∈T3
∫

T3∫T3
θℓ(y − z)

1
4π

1
∣x − y∣2

dydz ≤ UC′T3

(integrating first dz then dy) for some deterministic finite constant C′T3 . We conclude with

⟨Qv, v⟩ ≤ E(Γ2C′u)∥v∥
2
H ≤ C′T3σ2E(U)∥v∥2

H.

Taking now any unit vector v ∈ R3, for any x ∈ T3, we consider the quantity

vTQ(x, x)v = E[Γ2
∣v ⋅ u(x)∣2].

We again fix any realization of (Γ, U, ℓ) and take expectation over W first,

W[Γ2
∣v ⋅ u(x)∣2]

= Γ2W
⎡
⎢
⎢
⎢
⎢
⎣

(∫
T3∫

U

0
θℓ(y − Xt)v ⋅

1
4π

x − y
∣x − y∣3

× dXtdy)
2⎤
⎥
⎥
⎥
⎥
⎦

= Γ2W
⎡
⎢
⎢
⎢
⎢
⎣

(∫

U

0
∫

T3
θℓ(y − Xt)v ×

1
4π

x − y
∣x − y∣3

dy ⋅ dXt)

2⎤
⎥
⎥
⎥
⎥
⎦

= Γ2W
⎡
⎢
⎢
⎢
⎢
⎣

∫

U

0
∣∫

T3
θℓ(y − Xt)v ×

1
4π

x − y
∣x − y∣3

dy∣
2

dt
⎤
⎥
⎥
⎥
⎥
⎦

,

where the last step is due to Itô isometry.
Since D = T3 is compact, the density of Xt , denoted pt(z), converges to the uniform distribution, and hence, it is not hard to see that

there exists some pmin > 0 independent of t such that

pt(z) ≥ pmin, z ∈ T3, t ∈ [0, U].

Then, we can continue to bound below W[Γ2
∣v ⋅ u(x)∣2] by

Γ2
∫

U

0
∫

T3
∣∫

T3
θℓ(y − z)v ×

1
4π

x − y
∣x − y∣3

dy∣
2

pt(z)dz

≥ Γ2pminU∫
T3
∣∫

T3
θℓ(y − z)v ×

1
4π

x − y
∣x − y∣3

dy∣
2

dz.

For any x ∈ T3, there exist a cone C(x, v) and a ball B = B(x∗, ℓ/2) ⊂ C(x, v) of radius ℓ/2 with center x∗ with ∣x − x∗∣ = 2ℓ such that provided
z ∈ B, we have all the y that contribute to the above integral be contained in B(x∗, 3ℓ/2) and ℓ/2 ≤ ∣x − y∣ ≤ 7ℓ/2, and on the other hand, the
orientation of the cone is chosen such that v × (x − y) are roughly in the same direction for all the y. This implies that for some absolute
constant c > 0 and any z ∈ B,

∣∫
T3
θℓ(y − z)v ×

1
4π

x − y
∣x − y∣3

dy∣ ≥ c∣v∣∫
T3
θℓ(y − z)ℓ−2dy = cℓ−2.
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Thus, we have that upon squaring and using ∣B∣ ≍ ℓ3,

vTQℓ(x, x)v ≥ cpminE(Γ2U∫
B
ℓ−4dz) = cpminE(Γ2U)ℓ−1.

This completes the proof. ■
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