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Introduction

An European option is a financial contract which gives the owner the right to buy or sell an
underlying asset at a strike price on a maturity date. Option pricing theory tries to understand
what is a fair price for such a contract. Option price models consist of two ingredients: dynam-
ics of the price of the underlying asset under a physical measure and a pricing mechanism which
is described by a stochastic discounting. Modelling the dynamics of asset price should incor-
porate the well documented fact that return variance is stochastic and to improve the model’s
performance it is necessary to have multi-component structure in volatility. Concerning the
second ingredient of option pricing model, stochastic discounting should be multi-dimensional,

in particular it should take into account variance risk premium.

Stochastic volatility models were introduced to reproduce well-established stylized facts like
volatility smile and negative correlation of returns and volatility. Despite many successful ap-
plications, stochastic volatility models in continuous and discrete time exhibit serious problems
with fitting strike profile and term structure of implied volatility surface, especially for far in-
the-money and out-of-the-money options. In order to overcome this problem volatility models
should incorporate heterogeneity of agents acting in the market. Investors with different time
horizons have different impact on instantaneous volatility and as a consequence a single factor
of volatility, running on a single time scale, is simply not sufficient for describing the dynamics
of the volatility process. This argument has been empirically confirmed (Miiller et al., 1997)

and has led to the development of models with multi-component volatility structure, where

11



12 INTRODUCTION

each component of volatility corresponds to different time scale.

The necessity of taking into account variance risk premium stems from stochastic nature of
volatility. Since the future level of return variance is a source of uncertainty, it is natural to
assume that investor will demand a premium for bearing that risk. Variance risk premium is
equal to a compensation that a representative investor is demanding for investing in an asset
with unknown future return variance and it has a huge impact on the form and the properties
of the pricing kernel in the economy. Moreover, incorporating variance risk premium in the
model results in the so called "U-shape’ log ratio between the risk-neutral and physical densities

which corresponds to the one observed in the market data.

Due primarily to mathematical tractability, the literature on option pricing traditionally has
been dominated by continuous time processes (for example Black and Scholes (1973), Merton
(1976), Heston (1993) and Bates (1996)). On the other hand, models for asset dynamics un-
der the physical measure P have primarily been developed in discrete time. The time-varying
volatility models of the ARCH-GARCH families (Engle, 1982; Bollerslev, 1996; Glosten et al.,
1993; Nelson, 1991) have led the field in estimating and predicting the volatility dynamics.
Another well-established discrete time volatility modelling approach is the so called Realized
Volatility (RV) approach which provides a precise nonparametric measure of daily volatility
(i.e., making it observable) leading to simplicity in model estimation and superior forecasting
performance. Discrete time models present the important advantage of being easily filtered
and estimated even in the presence of complex dynamical features such as long memory, mul-
tiple components and asymmetric effects, which turns out to be crucial in improving volatility
forecast and option pricing performances. However, in the current literature, the analytical
tractability of discrete time option pricing models is guaranteed only for rather specific types

of models and pricing kernels.
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The goal of the thesis is to propose a very general and fully analytical option pricing framework
encompassing a wide class of discrete time models featuring multiple components structure
in both volatility and leverage (the mechanism producing the asymmetric impact of positive
and negative past returns on future volatility) and a flexible pricing kernel with multiple risk
premia. We propose a framework general enough to include either GARCH-type volatility,
Realized Volatility or a combination of the two. Moreover, we apply multi-dimensional pricing
kernel, taking into account various risk premia and obtaining semi-closed form solutions for

option prices.

The class of processes nested within our option pricing framework are affine processes in state
variables, which are log-returns, volatility and leverage components. For such a class of pro-
cesses we are able to derive the moment generating function of log-returns. Moreover, applying
exponential-affine stochastic discount factor, often called Esscher transform, we are able to
characterise the formal change of measure, write no-arbitrage condition and moment gener-
ating function under risk-neutral measure. One of our main contributions is generalization:
our framework embraces several different option pricing models considered in the literature.
The other important novelty of our approach is multi-dimensionality: we are considering both
multi-dimensional affine processes (multi-component structure in volatility and leverage) and
multi-dimensional Esscher transform with each component being related to a premium for a

different risk.

Exploiting our general framework we propose three new option pricing models with original
dynamics under physical measure. We also reconsider the CGARCH model of Christoffersen
et al. (2008) by applying two-dimensional pricing kernel. Since our framework guarantees exis-
tence of semi-closed form formulas for option prices, the option pricing methodology is fast and
efficient in implementation. In addition, by applying family of our fully analytically models

with multi-component structure in volatility on a large sample of Standard and Poor 500 Index
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(S&P 500) options, we show that our models improve pricing out-of-the-money (OTM) options
compared to existing benchmarks. The strength of our framework is highlighted by a proposal
of a model being a combination of realized and latent volatility approaches which gives superior

option pricing performance.

To provide more accurate description of financial markets one has to take into account strong
discontinuities, so called jumps, which are observed even in the most liquid financial markets.
Various studies has provided statistical confirmation of theirs existence and several asset pricing
models allowing presence of jumps were proposed (see Maheu and McCurdy (2004), Duan et al.
(2006) and Christoffersen et al. (2010) for models with jumps in returns and see Eraker et al.
(2003), Eraker (2004), and Broadie et al. (2007) for jumps in volatility). In this thesis we will

consider a model with jumps in volatility.

Recent financial literature has devoted much attention to the measurement of variance risk
premium. Carr and Wu (2009); Bollerslev and Todorov (2011) and others provide model-free
methodologies of estimating a single maturity variance risk premium. Further analysis was de-
voted to decomposition of variance risk premium into continuous and jump component (Du and
Kapadia, 2012; Bollerslev et al., 2014). Model based measurement of variance risk premium has
been proposed by Wang and Eraker (2015). Beyond all mentioned references which consider
single maturity VRP, some studies were dedicated to the whole term structure of variance risk

premia (Mueller et al., 2013; Ait-Sahalia et al., 2015).

In the thesis we propose a dynamic measure of the VRP implied by a multi-component GARCH
model with a multi-dimensional stochastic discount factor. While most of the studies focus al-
most exclusively on single maturity, the use of an analytically tractable parametric model allow
us to compute risk premia over different maturity recovering the whole term structure of VRP.

Application of multiple components structure in volatility reproduces a realistic family of term
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structures of variance risk premium including the empirically observed hump-shaped curves
(see Egloff et al. (2010)). Contrary to the majority of research papers which analyze variance
swap market, we compute the VRP term structure extracting the information contained in the
stock and option prices time series. Due to market segmentation our VRP term structure might
contain different information with respect to the term structure observed in the variance swap
market. The presence of relevant information contained in the VRP term structure extracted
from equity and option data is confirmed by the final empirical analysis which identifies the

slope of VRP as a significant predictor of future stock market returns.

The thesis is divided in five chapters. We start the first chapter with a short introduction to
asset pricing theory, where we summarise the continuous and discrete time approaches to asset
prices modelling and we explain how Stochastic Discount Factor arises in pricing theory. In the
second chapter we introduce the general framework for dynamics under physical measure that
satisfies certain affine property and possesses multi-component structure in volatility. In the
end we motivate why a multi-dimensional Esscher transform is a good choice for an Stochastic

Discount Factor by deriving it from Pareto optimal allocation problem.

In the third chapter we introduce new models nested in general option pricing framework. We
start with an extension of HARG-RV model with heterogenous and analytically tractable lever-
age structure called LHARG-RV. Then we take a a CGARCH model of Christoffersen et al.
(2008) and we apply a new change of measure to obtain new dynamics under risk-neutral mea-
sure. We propose a model being mixture of LHARG-RV and GARCH approach acronymed
GARCH-LHARG-RV and finally we consider an extension of LHARG-RV with jumps called
JLHARG-RV.

In the forth chapter we present the applied procedure of realized variance measurement. Then

we describe the methodology and results of models parameters’ estimation. Next we introduce
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the option pricing procedure and we give the results of Stochastic Discount Factors’s parameters
calibration on option prices. We finish the chapter with an empirical assessment of proposed

option pricing models.

In the last chapter we focus on variance risk premium - we derive a formula for variance risk
premium implied by k-CGARCH model. Then we justify application of CGARCH model im-
plied measurement of variance risk premium by showing that it generates a realistic family of
shapes of term structure of variance swap rate, contrary to single component volatility model.
Motivated by the significance of variance risk premium in asset pricing, we propose an original
and efficient methodology for estimating the time evolution of the term structure of variance

risk premium and we show its predictive power in explaining stock market excess returns.

The second chapter where general option pricing framework is introduced and the Section 3.1
on LHARG model are based on Majewski et al. (2015). The part of the thesis devoted to
CGARCH model with two-dimensional Esscher transform (Section 3.2) and the part concerned
on variance risk premium (Chapter 5) are based on Bormetti et al. (2015). The Section 3.4 is
based on Alitab et al. (2015). A generalisation of result in Biithlmann et al. (1998) to multi-
dimensional case (Theorem 10 in the thesis is showing that multi-dimensional Esscher transform
ensures Pareto equilibrium) and everything about GARCH-LHARG-RV model (Section 3.3 and

empirical results in Chapter 4) have not been published anywhere but in this thesis.



Chapter 1

Review of asset pricing theory

1.1 Review of price dynamics models in continuous and
discrete time

Asset pricing is determined by three components: probabilistic description of future states of
economy, attitude towards certain risks and payoff structure. While the last one is specified in
a contract,! the possible outcomes in economy and risk discounting have to be modelled. In
this section we shortly review the history of modelling the time evolution of prices in financial

markets and in the following section we describe the fundamentals of risk discounting.

The history of financial mathematics begins with the PhD thesis of Louis Bachelier (1900) titled
Théorie de la spéculation in which he proposes to model assets price with Brownian motion.
Among many original insight of Bachelier the two most striking are the first mathematical de-
scription of Brownian motion and the concept of martingale. Bachelier derived in his thesis the
distribution function of Wiener process linking it mathematically with the diffusion equation

and he did it 5 years before famous paper of Albert Einstein (1905) where a partial differential

IFor example, in the case of European call option the payoff is specified by function f(S7) = max (St — K,0),
where S is a price of the underlying asset at the time of maturity of the option T" and K is called strike of an
option.

17



18 CHAPTER 1. REVIEW OF ASSET PRICING THEORY

equation governing Brownian motion is derived. Moreover when providing the price of a barrier
option (an option which depends on whether the share price crosses a given threshold) Bachelier
has already realised that it must be computed under a probability measure which we call today

martingale measure, namely a measure under which the expected profit of a speculator is zero.

The major drawback of Bachelier modelling approach is that Brownian motion can generate
negative values while the price of an asset cannot. For this reason Paul Samuelson (1965)
proposes to replace Brownian motion with geometric Brownian motion which is a stochastic
process with a log-normal distribution. The next big breakthrough in financial mathematics
is the paper by Black and Scholes (1973) in which they derive the closed-form European call
option price formula assuming that the asset price dynamics is given by geometric Brownian
motion. Applying It6 lemma to payoff function of European call option and to dynamics of the
asset price Black and Scholes obtained a stochastic differential equation describing the evolu-
tion of option’s price. Then assuming that risk preferences of agents have been neutralised, the
drift of the price process normalized by the numeraire has to be equal zero and this condition
is written as a partial differential equation. By a transformation of variables PDE becomes a

heat equation which has a well-known solution.?

Black-Scholes model due to its simplicity and tractability gained so much popularity that it
became a market standard of quoting options. When a trader looks at her screen instead of
seeing option prices she would see implied volatilities - the volatility parameter in the diffu-
sion equation of Black-Scholes model that makes model option price match the current market
option price. Obviously if Black-Scholes assumption of constant volatility would be satisfied
trader should observe the same implied volatilities for all strikes and maturities. However, in

today’s reality® the market implied volatility surface is far from being flat. Indeed, plotting

2Originally Black and Scholes have derived the PDE describing the option price by a hedging argument.
3This behaviour of markets became extremely evident after the Black monday (market crash of October 19th,
1987). Before this event market implied volatility surfaces were much flatter, close to Black-Scholes World.
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implied volatility against different strikes trader observes a parabolic shape, a deviation from
Black-Scholes World resembling a smile when it is symmetric or a smirk otherwise. Inability of

reproducing a volatility smile/smirk is considered as the main limitation of Black-Scholes model.

In the end of previous century, there have been two major approaches of introducing the smile
in option pricing model developed. The first one is by allowing jumps in the dynamics of
the asset price. Consequently the dynamics of a underlying asset’s price is generalised from
Brownian motion to a Lévy process and the distribution of log-returns admits skewness and
non-zero excess kurtosis. Examples of modelling the price with jump-diffusion process are
Merton (1976); Bates (1996); Geman et al. (2001); Kou (2002).* Second way of introducing
volatility smile is by allowing a time-varying volatility in diffusion equation. Volatility can
become a deterministic function of price, like it is assumed in local volatility models (Dupire,
1994) or it can be a stochastic process itself, like it is assumed in stochastic volatility models.
One of the first and most celebrated stochastic volatility model is Heston (1993) where the
dynamics of price follows a diffusion process with volatility following mean-reverting process

called Cox-Ingersoll-Ross process (Cox et al., 1985).5

The majority of mentioned option pricing models belong to the family of affine processes.
Roughly speaking, a stochastic process is called affine if the logarithm of characteristic func-
tion of its transition distribution is affine with respect to initial state. Mathematical properties
of affine processes together with theirs financial application to option pricing, credit risk and
interest rates modelling can be found in seminal papers Duffie et al. (2000) and Duffie et al.
(2003). The importance of affine process in finance is twofold: it is very general family of
stochastic process containing most of well-known Markov jump-diffusions processes and it al-
lows for closed-form solutions for majority of pricing problems. In this thesis we will consider

affine processes in discrete time setting.

4For an introduction to jump-diffusion models see Cont and Tankov (2004).
°For an introduction to local and stochastic volatility models see Gatheral (2011).
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In the time-varying volatility models of the ARCH-GARCH families (Engle, 1982; Bollerslev,
1996; Glosten et al., 1993; Nelson, 1991), returns feature conditional heteroskedasticity which
is described by an auto-regressive structure. Describing variance by recursion that facilitates
maximum likelihood estimation has lead GARCH models to pioneer the field of measuring and
predicting the volatility dynamics. More recently, thanks to the availability of high-frequency
data, the so called Realized Volatility (RV) approach also became a prominent approach for
measuring volatility.® RV is defined as a sum of consecutive squared intra-day returns and under
the assumption that price is a L? semi-martingale it can be shown that neglecting microstruc-
ture noise it is a consistent estimator of quadratic variation of the price. The key advantage
of RV approach is that the mentioned estimation procedure makes volatility an observable
quantity which removes the need of volatility filtering and this in turn significantly simplifies
estimation of the model parameters. The standard model for describing and forecasting the
dynamics of RV is the Heterogeneous Autoregressive multi-components model by Corsi (2009)
which together with information contained in RV measure provides superior volatility predict-

ing performance.

The main problem of accommodating econometric models for option pricing application was
lack of risk-neutralisation procedure. Relatively lately, Duan (1995) using equilibrium argument
and postulating particular conditions on agent’s risk preference have proposed the locally risk-
neutral valuation relationship for GARCH processes. Since then we have witnessed renaissance
of discrete time volatility models and many examples of GARCH based option pricing models
have been proposed (Heston and Nandi (2000), Gourieroux and Monfort (2007), Christoffersen
et al. (2008) and Gagliardini et al. (2011) among others). Empirical comparison suggests that
GARCH models outperform continuous time stochastic volatility models (Lehar et al., 2002;
Christoffersen et al., 2006). Recently, it has been shown that option pricing models based

6See Andersen et al. (2001b, 2003); Barndorff-Nielsen and Shephard (2001, 2002a,b, 2005); Comte and
Renault (1998).
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on realized volatility provide good performance (Corsi et al., 2013; Christoffersen et al., 2014;

Majewski et al., 2015). In this thesis we will present a general option pricing framework en-

compassing both GARCH and RV based models.

Contrary to continuous-time models, volatility, in discrete time models, is readily observable
from the history of asset prices by filtration procedure (GARCH models) or by precise non-
parametric measurement from intra-day data (RV approach) and consequently all the param-
eters of discrete-time model can be easily estimated directly from the time series of observed
quantities. It holds true even in the presence of complex dynamical features like long memory,
multifractality, cascade and asymmetric effects. These features turn out to be crucial in option

pricing and from now on we will consider only discrete time option pricing models.

1.2 Introduction to stochastic discounting

The basic function of financial market in the economy is an efficient allocation of capital. Agents
can invest their wealth surplus in exchange for future stream of income. The investment de-
cisions of agents are based on two aspects: their statistical view on the cash-flow which is
described by probability law P and their attitude towards particular risks which can be de-
scribed by stochastic discounting. The way in which agents are discounting random payoffs
depends on compensation they are demanding for bearing investment uncertainty and it gives

rise to an operator which associates a price to every claim.

We consider a risk-free asset with interest rate r and a risky asset with price S; and geometric

g (S
Yi+1 g S,

defined on a stochastic basis (2, F, (Fi)i1<t<7,P). The state space under our consideration is

generated by the risky asset price S till some horizon T, Q = R, Let L2 = L*(RT,P) = {X :

return
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EF [Zle Xf] < oo} be a set of payoffs. It is easy to see that L% is a Hilbert space with a
scalar product (X,Y) = EF [ZZTZI XZ-YZ-]. Any operator Qr : L2 — R associating a price to a
payoff is called a pricing operator. In this section we will provide conditions which a reasonable

pricing operator should satisfy.

Definition 1. A payoff X € L3 is an arbitrage opportunity if X; > 0 for every j € {1,...T}
almost surely (P(X; > 0 forevery j € {1,...,7}) = 1) with non-zero probability of one
component being positive (P(X; > 0 for some j € {1,...,7}) > 0) and has price Qp(X) < 0.

We call an operator Qr positive if Qr(X) > 0 for X > 0 almost surely, where > has to
be understood componentwise. We call an operator Qr strictly positive if it is positive and
additionally Qr(X) > 0 if P(X; > 0 for some j € {1,...,7}) > 0. Linear, strictly positive

pricing operators play very important role in asset pricing theory.

Theorem 2. There is no arbitrage opportunities in the market if and only if there exists a

strictly positive linear pricing operator.

The sufficient condition for no arbitrage in the market is an immediate consequence of the
definitions of arbitrage and strictly positive operator. The necessary condition is the difficult
part of the proof and we will not prove it here. It becomes substantially simpler if the state
space 2 is finite. In that case space of claims is equal to R, where m is cardinality of {2
and using results from convex analysis one can easily construct desired operator (see Duffie
(2010) or Cochrane (2005)). In the case when state space is infinite, one has to operate within

topology induced by L2 space. For the details of the proof see Bithlmann et al. (1998).

The existence of pricing operator guarantees existence of a particular stochastic process.

Theorem 3. If there exists a strictly positive linear pricing operator Qp : L2 — R then there

exists a positive payoff M € L3 such that Qp(X) = E [XM] for all X € L2.

Proof. Since L is a Hilbert space it follows immediately from Riesz representation theorem. [



1.2. INTRODUCTION TO STOCHASTIC DISCOUNTING 23

An economic interpretation of M = (Ml, M,, ... , M) from Riesz representation in Theorem 3
is that it is discounting the future value of a payoff X. To disentangle the risk discounting from
temporal discounting we introduce process M, = e"*M,. Let us observe an interesting property
of process M,. Introducing notation that S is a payoff from set L2 with S, on ¢-th component

and 0 on otherwise we obtain for ¢ > 1 that
So = Qr(S") = BF | SO - 1| = e " "BF [5,0;]. (1.2.1)

Therefore one can formally show that stochastic process e "'S;M; is a P-martingale. In this
sense process M, is discounting risk associated with the future states of the economy and it is
called a Stochastic Discount Factor (SDF). Moreover considering the price of risk-free asset we

obtain that it determines the mean of SDF,
EF (M) = BF [0, | = Qr (BY) =1, (1.2.2)

where B® is a bond with maturity ¢ (a risk-free asset with a payoff e™ at time t). Higher

moments of SDF depend on risk preferences of investors.

Valuing claims by taking the time-discounted expected value of payoff under physical mea-
sure would lead to arbitrage opportunity and hence it cannot be accepted as an asset pricing
methodology.” The failure of this approach becomes comprehensible if one acknowledges that
the value of money depends not only on time but also on a state of economy. One dollar in
a bad state of economy is worth more than one dollar in a good state of economy. Therefore,
during pricing of an asset one should discount both time and state of the World with associated

risks, which is achieved by stochastic discounting mechanism.

Existence of stochastic discount factor enables us to define a probability measure Q equivalent

"See a very nice discussion in Carr (2005), where an arising example of arbitrage strategy is provided.
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to P (we call two measures P and Q equivalent when Q(A) = 0 if and only if P(A) = 0). Let
us denote by P; the family probability measures such that P, = P|F;. Then one can construct
a family of probability measures Q; satisfying relations dQ; = M;dP; and Q;|F;_1 = Q; 1.8
Using the notation P = Py and Q = Q¢ we obtain

Q(S; € A) = E" [xa (S1) Mi], (1.2.3)

where x4 is indicator function of a set A. Using the definition of measure Q and the property
(1.2.1) of stochastic discount factor we obtain that S; is a Q-martingale. For that reason
measure Q is called risk-neutral measure (or equivalent martingale measure). Price of any

claim in the market is an expectation of its payoff under risk-neutral measure:
Or (W) =E2[3)]. (1.2.4)

All above results can be collected in the fundamental theorem of financial mathematics.

Theorem 4 (The First Fundamental Theorem of Asset Pricing). The following five statements

are equivalent:

1. There are no arbitrage opportunities.

NS

. A strictly positive, linear pricing operator Qr exists.

3. A stochastic discount factor exists.

4. There exists a process M; such that e™"'S, M, is a P-martingale.
5. A risk-neutral probability measure exists.

While the First Fundamental Theorem of Asset Pricing states the conditions for the existence

of strictly positive linear pricing operator, the Second Fundamental Theorem of Asset Pricing

8For details see Biithlmann et al. (1996).
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states conditions for the uniqueness of the pricing operator. We call a market complete if agents
can construct a strategy that will generate wealth exactly equal to any claim available in the

market.

Theorem 5 (The Second Fundamental Theorem of Asset Pricing). An arbitrage-free market

15 complete if and only if there exists a unique stochastic discount factor.

For the proof of the theorem see Duffie (2010). An example of a complete market is Black-
Scholes model. Stochastic volatility and all models considered in this thesis are incomplete. In
the case of incomplete market one has to determine the pricing kernel. The form of stochastic
discount factor is strictly related to the risk attitude of investors. In Section 2.2 we will see
that stochastic discount factor is determined as a solution to a Pareto optimal allocation in the
case of one asset and several investors. Here we present a result for a stochastic discount factor

in the case of several assets and one agent.

Lets assume there is an economic agent who wants to choose a portfolio 6 so that he optimizes
his terminal wealth (at time ¢) by investing in L risky assets and one risk-free asset. The

optimization problem of the agent is

rngax]EP [u(W))] (1.2.5)
with the constraint .

> 0,8 =Wy, (1.2.6)

i=0

where WY is value of portfolio @ at time ¢ and u is a utility function of the agent. The assumption
of no-arbitrage condition and convexity of the function § — E¥ [u(W/)] is sufficient to ensure

the existence of solution #* to the above optimization problem. Then the SDF is given in the
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following form
u' (W)

(1.2.7)

For instance, assuming the logarithmic utility of an investor one obtains that SDF is the inverse

of a Kelly portfolio. For further details see for example Kardaras (2010).

A great advantage of discrete time models is that they offer a simple procedure to estimate
pricing kernel. In continuous-time setting parameters of the model are usually fitted directly to
the option prices, completely neglecting the information contained in the time series of the log-
returns of the underlying and the preferences of agents. On the contrary discrete-time volatility
models provide a straightforward insight how investors are pricing certain risks. For instance,
assuming multi-dimensional power utility function of agents, discrete-time models provide an

easy estimation procedure of variance risk aversion.



Chapter 2

General Option Pricing Framework

2.1 Modelling volatility with multiple components

Despite large success, first stochastic volatility models (Heston, 1993; Heston and Nandi, 2000)
cannot price correctly options with long or short maturity and out-of-money options. As a
consequence they misfit strike profile and term structure of implied volatility surface. The
reason for a poor performance at those regions of moneyness and maturity is that modelling
volatility by single factor of volatility, running on a single time scale, is not sufficient to describe
volatility dynamics. There exist many stylised facts that cannot be explained by single-factor
volatility model. The family of term structures of variance swap has more realistic shapes under
model with multi factors which we discuss in Section 5.2. Moreover principal component anal-
ysis (PCA) shows the necessity of using two components to explain the dynamics of variance
swap rates (Filipovic et al. (2015); Ait-Sahalia et al. (2015)), while PCA of volatility surface
dynamics suggests at least two-three factors (Alexander (2001); Cont et al. (2002)). Finally,
the existence of several stochastic volatility factors running on different time scales has been

proven in the literature using empirical data (see for example Miiller et al. (1997)).
The main purpose of introducing a multi-factor structure in volatility modelling is to account

27
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for dependencies among volatilities at different time scales. Currently, there exist two alterna-
tive approaches in the literature. The first one is to decompose the daily volatility into several
factors and model the dynamics of each factor independently, as done by Christoffersen et al.
(2008) or Fouque and Lorig (2011) in terms of short-run and long-run volatility components.
The second approach is to define factors as an average of past volatilities over different time
horizons, for instance the daily, weekly and monthly components in Corsi (2009). In this sec-
tion we describe a general framework introduced in Majewski et al. (2015) which includes both

approaches.

To model the dynamics of log-returns of the risky asset we define the k-dimensional vector of
Fi-measurable volatility factors ft(l), ey ft(k) which we shortly denote as f;. The daily log-returns

on day t are modelled by equation

Yt :T+)\ ﬁ(ft—laft)—'— \/*C(ft—laft) €ty (2]_]_)

where £ : R* x R* — R, is a linear function of factors giving volatility at day ¢, r is the risk-free
rate, A is the market price of risk, and ¢, are i.i.d. N (0,1). Function £ acts on f; in the case
of realized volatility models and on f; ; if GARCH model is considered. The different domain
of function L for those two class of models underlines one of the most important differences
between realized volatility and GARCH modelling approaches. In the case of realized variance
models, volatility at day ¢ is F;-measurable while for GARCH models, volatility at day ¢t + 1 is
Fi-measurable. As a consequence a vector of variance factors for realized variance f; corresponds
to the level of variance factors on day ¢, while in the case of GARCH it corresponds to level of

variance factors on the following day ¢ + 1. In both cases we model f;,; as
ftJrl’FtaLt ~ D(@07@(Ft7Lt)) ) (212)

where D denotes a generic distribution depending on the vector of parameters © which is a
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k-dimensional function of the matrices Fy = (f4,...,f_p11) e RP and L, = (£,...,€;_411) €
R¥*4 for p > 0 and ¢ > 0, respectively. We consider the case of a linear dependence of © on F,

and L;
p q
OF L) =d+ Y Mfii+Y N, (2.1.3)
=1

J=1

where M;,N; € R*** fori=1,...,pand j =1,...,q, d € R¥ and vectors £; are of the form

<€t —nv£EL (fi-1, ft))2

L, = : . (2.1.4)
<€t — MV L (£io1, ft)>2

The vector O collects all the parameters of the distribution D which do not depend on the past
history of the factors and of the leverage. For the distribution D considered in this thesis (Dirac
delta and non-central Gamma distribution) the sufficient condition for the non-negativity of

process reads:
d>0 M;>0 forallie{l,...,p} N,; >0 forallje{1,...,q}, (2.1.5)

where > has to be meant as component-wise inequality.

The results presented in this thesis are derived under the general assumption

Assumption 6. The following relation holds true

E [ezys+1+b-fs+1+c-£s+1 |]:S} — AEDOFEL Bi(zbe)fop1 437, Cj(2.b,0)Lot1—; (2.1.6)

for some functions A: RxRF xRF - R, B; : RxR¥ xR¥ — R¥ and C; : R x R¥ x RF — R*,

where b,c € R* and - stands for the scalar product in R¥.

Our framework is suited to include both GARCH-like models and realized volatility models

or combination of two. As far as the former class is concerned, we encompass the family of
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multiple component GARCH models with parabolic leverage pioneered in Heston and Nandi
(2000) and later extended to the two Component GARCH (CGARCH) by Christoffersen et al.

(2008). For instance, the latter model corresponds to the following dynamics

Y1 =1+ M1 + / hegr€ega
hiy1 = i1 + B (ht - Qt) + ap (€t2 — 1 =296 v/ ht) ) (2-1-7)

Gir1 = W + Beqr + oy (ef -1 27qet\/ht> )

Setting k = 2, we define ft(l) = hyy1 — @1 and ft(2) = @11 and rewrite the model as

2
ft(i)l —Qp n Bh — Oéh%% _Oéh72 ft(l) ap 0 <€t — VL (ft)>
_ 2
ft(JQr)l Wy —agy; By ag; ft(Q) 0 a <€t — YV L (ft>>
(2.1.8)

where L (f;,fi1) = ft(l) + ft@) = hy. If we now specify for D in eq. (2.1.2) the form of a
Dirac delta distribution, define d = (—ay, w — aq)t, and identify the matrices M; and Ny in
a natural way from the right term side of eq. (2.1.8), the model by Christoffersen et al. (2008)
fits the general formula (2.1.2). It is worth mentioning that for the CGARCH model it is not
possible to ensure the non-negative definiteness of both h; and ¢ for all ¢ (condition (2.1.5) is
not satisfied). Nonetheless, for realistic values of the parameters the probability of obtaining
negative volatility factors is extremely low, and this drawback is largely compensated for by
the effectiveness of the model in capturing real time series empirical features. Since all models
proposed in the thesis are subject to the issue of positivity, we discuss it in greater detail in

Section 4.2.

The second example that we discuss is the class of realized volatility models known as Autore-
gressive Gamma Processes (ARG) introduced in Gourieroux and Jasiak (2006), to whom the
Heterogeneous Autoregressive Gamma (HARG) model presented in Corsi et al. (2013) belongs.
The process RV, is an ARG(p) if and only if its conditional distribution given (RV;_4,...,RV;_,)
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is a noncentred gamma distribution (0, >, f;RV;_;, 6), where ¢ is the shape, > | f;RV,_;
the non-centrality, and 6 the scale. Then, the model described by eq.s (2.1.2)-(2.1.3) reduces
to an ARG(p) if we fix k =1, f; = RVy, D (09, 0(F;_1)) = 7 (0, 0(F;_1),0) with

p
Oy =(5,0)", and O(F,_y)=> Bifi;.
=1

In Chapter 2 we will introduce new models belonging to our general framework. They are
extension of HARG-RV model with heterogenous and analytically tractable leverage structure
called LHARG-RV, extension of LHARG-RV with jumps called JLHARG-RV and the mix-
ture of LHARG-RV and GARCH model. Moreover we will reconsider CGARCH model of
Christoffersen et al. (2008) by applying new change of measure to obtain new dynamics under

risk-neutral measure.

Recently, Christoffersen et al. (2014) have proposed an alternative option pricing model nest-
ing GARCH and realized volatilities models called General Affine Realized Volatility (GARV).
Even though both approaches are very general, provide closed-form solutions and allow for
multi component structure, they do not coincide. The main difference is in the addition of
new source of randomness related to the realized volatility. While Christoffersen et al. (2014)
are adding new innovation process in the realized volatility dynamics, we are introducing a
transition distribution (in the examples given in this thesis we consider a non-central gamma

distribution). As a consequence our approach nests HARG-RV model whereas GARV do not.

The general framework defined by eq.s (2.1.1)-(2.1.4) combined with the assumption (2.1.6)

allows us to completely characterise the MGF of the log-returns under the physical measure.

Theorem 7. If the dynamics of the underlying price satisfies Assumption 6 then the moment
generating function of log-returns under the physical measure P is given by recursive relations

in terms of functions A, B;, C;, where i € {1,...,p} and j € {1,...,q}.



32 CHAPTER 2. GENERAL OPTION PRICING FRAMEWORK

Proof. For the proof and the recursive relations see Appendix A.1. n

2.2 Stochastic discounting with multi-dimensional Ess-

cher transform

The standard problem in asset pricing theory is how one can identify the stochastic discount
factor which gives an economically consistent and justifiable price for a contingent claim. The-
orem 4, often called the first fundamental theorem of asset pricing, states that it exists if the
market does not allow arbitrage opportunities. The second fundamental of asset pricing states
that uniqueness of stochastic discount factor is equivalent to completeness of the market. Since
the market considered in our framework are generally incomplete there are many stochastic

discount factors and the choice of a suitable pricing operator is arbitrary.

In our general framework we will apply multi-dimensional exponential-affine stochastic discount

factor given by formula

t—1
M; = H Ms,s+1 (221)
s=0

where
e_Vf'fs+1_Vyys+1

EP [e_Vf'fs+1_Vyys+1 ‘f’s] ’

Myoiy = (2.2.2)

with v¢ € R*. The one-dimensional and unconditional version of transform of probability mea-
sure given by (2.2.2) was originally introduced to actuarial science in seminal work of Esscher
(1932) where random variables were independent and it was used to approximate the distribu-
tion of aggregate claims. Extensive application of Esscher transform to derivative pricing took
off with an original paper by Gerber and Shiu (1993) where they extended Esscher’s idea to
Lévy processes framework. One-dimensional version of conditional Esscher transfrom described

by equations (2.2.1)-(2.2.2) has been introduced in a beautiful paper by Biihlmann et al. (1996).
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Advantages of using multi-dimensional conditional Esscher transform are threefold. First, it is
easy to write the constraints that the parameters of the Esscher transform have to satisfy in

order to be a stochastic discount factor in our framework.

Theorem 8 (No arbitrage restriction). If the dynamics of the underlying price satisfies As-
sumption 6 then the Esscher transform (2.2.2) is a stochastic discount factor if, and only if the

following relations are satisfied
A(l — vy, =1, 0) = 7+ A(—v,, —1%,0)

Bi(1 — v, —v,0) = Bi(—v,, —15,0) fori=1,....p (2.2.3)

C;(1—-v,,—1%,0)=Cj(—vy, —v5,0) forj=1,...,q.

Proof. From Theorem 4 we know that there exists an SDF in the market if price process is Q-
martingale or equivalently price process multiplied by stochastic discount factor is P-martingale.

The last condition can be read as
E" [M; g1 | F] = ¢ for € {0,1,...,T —1}. (2.2.4)

Firstly, let us rewrite Esscher transform as

e Vifst1—vayst1

EP [e_ul'ferl_Vst«l»l |fs]

Ms,erl =

p

— A(—v,, —1,0) — Z Bi(—vy, —v%,0) - £, (2.2.5)

i=1

= exp a
- Zci(_ygp —Ur, 0) oy —ve-foq — VyYs+1
i=1

I

where v¢ € R* and functions A, B; and C; are defined in (2.1.6). Finally, the condition (2.2.4)
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reads

E" lexp (—vyg - fop1 + (1 — vy) Yorn) | F]
p q
= exp (7‘ + A(—v,, —1,0) + Z Bi(—vy, —vg,0) - fo1 . + Z C,;(—vy, —v%,0) - £s+1_j> .
i=1 j=1
(2.2.6)

Using once again the relation (2.1.6) we obtain conditions for Esscher transform (2.2.2) to be

an SDF. Following Theorem 4 conditions (2.2.3) can be viewed as no-arbitrage conditions. [

Second, SDF (2.2.2) guarantees analytic expression for moment generating function under risk-

neutral measure which allows us to write a semi-closed formula for option price.

Theorem 9. If the dynamics of the underlying price satisfies Assumption 6 and the SDF
is given by (2.2.2) then the moment generating function of log-returns under the risk-neutral

measure Q is given by recursive relations in terms of functions A, B;, C;, where i € {1,...,p}

and j € {1,...,q}.
Proof. For the proof and the recursive relations see Appendix A.1. n

Third, Esscher transform has a strong economic foundation. Lets assume that there are N
agents in the economy and the total volume of shares of asset with price S; is equal V. Lets
define the wealth income in the economy as follows W;.; = V(In S;y1 —In S;). One of the basic

question in economic theory is which allocation of wealth among agents
1 2 N
(Wi Wi i) (2.2.7)

is optimal. Allocation (2.2.7) can be equivalently expressed in terms of number of shares owned
by each agent (Vi,Va,...,Vy). Let us denote a price of payoft W, at time ¢ by Q; ;11 (Wii1).
In this thesis we will consider Pareto optimal allocation and following Bithlmann et al. (1998)

it can be obtained as Price equilibrium, i.e. at time ¢ two conditions has to be satisfied: for
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each agent 7 we have that

E [Uj ( = Quent ( t(+)1> - mjft+1> |ft} (2.2.8)

achieves maximum among all possible random variables Wt(ﬁ € L, and the allocation (2.2.7)

has to satisfy
N

Wer =y W (2.2.9)

j=1
Condition (2.2. 8) means that agents want to maximise their expected utility of profit from the
investment < p +1 — Q41 < t(+)1>> corrected by the variance factors with penalty coefficients

m;. We will assume that agents have power utility:

1
uj(z) = o (1—e™") forj=1,...,N, (2.2.10)
J

with risk-aversion parameters given by v; > 0. The above problem can be restated as: which
pricing operator Q. is satisfying Pareto optimal allocation? We will derive now Esscher

transform (2.2.2) from problem described by (2.2.7)-(2.2.10).

Theorem 10. Pricing operator Q11 given by Esscher transform (2.2.2) is a solution to Pareto

optimal allocation problem described by (2.2.7)-(2.2.10).

Proof. Given the concavity of function u, we obtain maximum in (2.2.8) if and only if for every

7 the first order condition is satisfied

5 E [u]( = Qi ( t+)1> —mjfm) \]—"t] —0. (2.2.11)

Since conditional expectation is a linear operator we can move differential operator inside and
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we are going to obtain that

E [u; (Wt(il Q, A1 ( t+)1> - mjft+1> yt+1|-7'—t} =

(2.2.12)
=E [u; ( t+1 — Qiiq1 ( t(+)1) - mjft+1> \]:t} Qr i1 (Yer1)

From equation (2.2.12) we observe that the candidate M;,;; in Riesz representation has to

satisfy relation

U (Wt(il Qi1 ( t+)1) - mjft+1) =E [u; <Wt(i)1 — Q41 (Wt(ﬁ) - mjft+1) |ft] My 41
(2.2.13)
for every j € {1,2,..., N}. Since v (v) = e™7* and Q14 <Wt(i)1> is Fi-measurable, we rewrite
(2.2.13) as

e—’Yth(i)l+'7jmjft+1 - F [e—Wth(i)l-ﬁ-’ijjftﬂ |‘Ft} M, 441 (2.2.14)

for 5 =1,2,..., N and then taking logarithm we obtain

O L myfiy = —InE [ i fﬁlwmafmyf} 71n M. (2.2.15)
j j
We take a sum of (2.2.15) over j = 1,2,..., N and using notation m = %Z;\le m; and
% =3 Zjvzl % we obtain
J
_%Wt+1 + ’met+1 = %At + In Mt,t+1 (2216)

where A; is some F;-measurable random variable. From condition (2.2.4) we obtain the form

of A; and the stochastic discount factor has the following form

e VYt+1 +ymf;

Mt,t—H = EP [ef’yyt+1+'ymfz+1 |«Ft]

(2.2.17)
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If we compare (2.2.17) with (2.2.2) we obtain an interpretation of the parameters of the Es-
scher transform. The parameter v, is equal to 7 i.e. it is aggregated risk aversions of agents
multiplied by the volume of assets. The parameter v is equal to —ym i.e. it is —y multiplied
by aggregated variance penalisation of agents divided by the volume of assets. Obviously the
above considerations are only true if the preferences of all agents in the economy are given by

power utility.
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Chapter 3

Particular Models

3.1 Heterogeneous Autoregressive Gamma model of re-
alized volatility with Heterogeneous parabolic Lever-

age (LHARG-RYV)

3.1.1 Realized volatility and log-returns dynamics

Continuous-time stochastic volatility models are the most famous way of obtaining heavy-tailed

log-returns in financial mathematics literature. Log-returns dynamics is described by SDE
AY (t) = (r+Ao(t)) dt + o (t)dW (),

where r is the risk-free rate, A is the market price of risk, W (t) is a Brownian motion and o(t)
is a stochastic process describing the volatility of log-returns. Ané and Geman (2000) show

that Y can be seen as Brownian motion with a changed time

Y(t)=rt+ AIV(t) + W (IV(1)),

39
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where IV(¢) is integrated variance

IV(t) = /Ot o?(s)ds.

In stochastic analysis literature this feature is often described as IV(t) process being a random
time change for all continuous diffusion processes. Identifying integrated variance with a mea-
sure of market activity provide us the financial interpretation of this result: rescaling log-return

process by market activity restores Brownian motion in calendar time.

In the case of continuous-time diffusions integrated variance is equal to quadratic variation

defined as follows

QV(t) = lim Y (¥, =Y, )%

[|Pn]]—0 <
=1

where P, stands for an n-element partition of interval [0,¢] and the mesh of the partition is the

length of the longest subinterval (||P,|| = max{|t; —t;_1] :i=1,...,n}). Then
Y(B)[QV(E) ~ N (rt + AQV (1), QV(?)) -

Even if volatility o(¢) and quadratic variation are unobservable processes, there exists a reliable
proxy of QV. Let us denote by QV, quadratic variation at day ¢t and by RV, realized variance
at day ¢

M
RV, = ui, (3.1.1)
i=1
where y;; are intra-day log-returns
yi(i—1+ ) v -1+, foriz1,.m
_ — — ) = — ori=1,..., M.
yt,z M M ) ) )

Then RV, is a consistent (as M — oo) estimator of QV,. Precision or rate of convergence

estimation of quadratic variation with realized variance has been verified in several studies (see
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Barndorff-Nielsen and Shephard (2002b) among others). Description of RV measurement is

described in Section 4.1.

The basic idea of realized variance goes back to Merton (1980) who showed that the integrated
variance of Brownian motion can be approximated by RV, in (3.1.1). Realized Variance as a
measure of volatility was proposed by Andersen et al. (2001b) who have generalised the result
of Merton (1980) to semi-martingales. This model-free (nonparametric) measure makes volatil-
ity an observable quantity, which can have several applications. First statistical properties of
volatility can be tested directly and much simpler than in the case when volatility is latent.
Second it can be applied to forecast future level of volatility with high accuracy. Third infor-

mation contained in realized variance might be very useful in pricing financial derivatives.

Andersen et al. (2001a) and Andersen et al. (2003) show that log-returns standardised by
realized variance are in the first approximation normally distributed.! Therefore we assume

that log-returns has the following dynamics on daily scale

yr =1+ ARV, + v/ RV,¢,. (3.1.2)

where ¢, are i.i.d. with standard normal random distribution. The dynamics of log-returns like

in equation (3.1.2) have been already assumed in Corsi et al. (2013).

3.1.2 DMotivation and basic idea of Heterogeneous Autoregressive
processes
Modern volatility models aim to incorporate three stylized fact: long memory in the volatility,

multifractality and volatility cascade. Intuitively, process is perceived to have a long memory

feature if its autocorrelation remains significant for several months. Long memory property of

"When the dynamics of logreturns includes jumps this approximation is not true anymore. In Section 3.4
we are going to consider a model taking into account jumps in realized variance.
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the realized volatility has been widely accepted since the seminal analyses by Ding et al. (1993),
Andersen et al. (2001b) and Andersen et al. (2003). Despite broad recognition of long memory
property there is still a lot of ambiguity about statistical tests verifying its existence. Formally,

time series RV, is said to have long memory property if

oo
> " Cov (RVy, RVyyi) = oo (3.1.3)
k=1

Since we do not have infinite time series of realized variance, the above definition is useless in

practical applications and it is replaced by testing if volatility has power law decay
Cov (th, th+k) ~ C/kﬁ’ (314)

where v < 1. Since it is not possible to estimate the asymptotic behaviour of the covariance
function in model-free setting, usually it is done under some specification. For example, the
most classical statistical test for long memory assumes ARFIMA dynamics of realized volatility
which allows us to compute explicitly the variance of integrated realized volatility

V(A) = Var = A*7, (3.1.5)

A
> VA,
=1

where v is a decay of autocovariance function in (3.1.4). If we obtain that V(A) behaves like
A?77 the test concludes that there is a long memory with parameter . However, it turns out
that there exist processes satisfying the above long memory test which have autocorrelation
function without power law decay (see Corsi (2009), LeBaron (2001), Gatheral et al. (2014)).
For this reason, econometricians continue to debate whether market volatility process is a real

long memory process or it just resembles one.

Similar ambiguity arises when multifractality property is considered. We say that RV, is mul-
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tifractal if
E[|RV,|Y] = ct@ (3.1.6)

where ¢ is a constant, ¢ > 0 is the order of the moment and ((¢) is a nonlinear (concave)
function. The evidence of multifractality in financial data has been observed by Ding et al.
(1993), Fisher et al. (1997) and Calvet and Fisher (2002) among others. One can formally show
that only multiplicative process have multifractal property. However, multifractal feature can
be observed in the data generated from a process which is not really multifractal (see LeBaron
(2001) and Corsi (2009)). Both long memory and multi-fractality can be detected falsely, if the
aggregation level in the data is not large enough compared to the lowest frequency component
of the model. These ambiguities about multifractatility and long memory raises doubts about
applying sophisticated multiplicative models that are difficult to identify and estimate, and it

suggests to employ simpler additive process that can exhibit the demanded properties.

The most prominent example of an additive processes generating time series with long memory
and multifractal property is Heterogeneous Autoregressive process (HAR) introduced to finan-
cial literature by Corsi (2009). The basic idea of HAR processes stems from ”Heterogeneous
Market Hypothesis” by Miiller et al. (1997) which aims to explain positive correlation between
market volatility and market presence. In the classical, homogeneous market framework with
all market agents identical, the more agents are active in the market, the faster should price
converge reducing the volatility. On the contrary, in the heterogeneous setting, agents try to

execute their transaction at different prices creating volatility.

While heterogeneity of agents may be due to difference in theirs’ beliefs, endowments, degree of
information, risk profiles and so on, the HAR model originates from the assumption that agents
have different investment horizon. Participants of financial markets can be characterised by dif-
ferent trading frequency: agents with very high trading frequency (dealers and high frequency

traders) are actors with low trading frequency (central banks and pension funds). Members of
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each group perceive and react to events on financial markets with different trading frequency so
that theirs contribution to overall market volatility can be described by different components

of volatility.

HAR process is characterised by the different impact that past realized variances aggregated
on a daily, weekly and monthly basis have on today’s realized variance. Lagged terms are
collected in three different non-overlapping factors: R\/Ed) (short-term volatility factor), R\/Ew)

(medium-term volatility factor), and RV{™ (long-term volatility factor).
RV = d + BRV?Y + B,RVI™ + 8, RVI™ + ery,y (3.1.7)

where d is some constant, er;,; is an error term, the source of randomness in the RV’s dynamics
and

4 21
1 1
R\/ﬁd) = th, Rng) - Z Z th*h and vagm) = 1_7 Z th*i'
i=1 =5

If we describe the source of randomness by non-central gamma distribution we obtain HARG
process

RV,1|F, ~ (5, O(RV,), 6) (3.1.8)

where § and 6 are shape and scale parameters, respectively, and location of the distribution is
given by
O(RV,) = ARV(” + B,RV(" + B, RV{™. (3.1.9)

HAR and HARG process reproduce volatility cascade effect - volatility over longer time intervals
has stronger influence on those at shorter time intervals than conversely. The asymmetric
propagation of volatility have been empirically confirmed by Miiller et al. (1997) and Zumbach
and Lynch (2001). The economic interpretation of this effect is that while short-term traders
react to long-term volatility levels, long-term traders are not affected by short-term volatility

levels.
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3.1.3 Realized variance dynamics

An extension of the HARG-RV with a daily binary Leverage component (HARGL) was applied
to option pricing by Corsi et al. (2013). The first main drawback of HARGL model is lack of
closed-form solutions for option prices (pricing needs to be done via heavy Monte Carlo simu-
lation). Another drawback of HARGL model is its too simple and unrealistic form of leverage -
the importance of a heterogeneous structure for leverage is stressed by Corsi and Reno (2012).

Thus we develop an Autoregressive Gamma model with Heterogeneous parabolic Leverage, and

we name it the LHARG-RV model.

LHARG-RV belongs to the family of models described by (2.1.1)-(2.1.4) setting k& = 1 and
f; = RV;. Realized variance at time t 4+ 1 conditioned on information at day ¢ is sampled from

a non-centred gamma distribution
RV | Fe ~ 7(0, ©(RVy, Ly), 6) (3.1.10)
with
O(RV,, L) = d + BRVIY + B,RVI™ + B, RVI™ + agl\? + 0™ + 0™ . (3.1.11)

In the previous equation d € R is a constant and the quantities

RV = RV, (9 = (e =RV,
Rvgw) - iZ?ﬂ RV, éwgw) - iZ?:l (et—i - 7m)2> (3.1.12)

RV = LY RV, 67 = L T2 (s — RV

correspond to the heterogeneous components associated with the short-term (daily), medium-
term (weekly), and long-term (monthly) volatility and leverage factors, on the left and right

columns respectively. The structure of leverage is analogous to the one in Heston and Nandi
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(2000), and it is based on asymmetric influence of shock: large positive idiosyncratic component
€; has a smaller impact on RV;,; than large negative ¢;. As consequence the log-returns and

variance process are negatively correlated:

COUt—l(Z/ta th+1) = —20a4VE [th|-7:t—1]

(3.1.13)
= —20%a4y (0 + O(RV,_1, L)) .
In order to adjust eq. (3.1.11) to our framework we rewrite ©(RV,, L;) as
22 22 )
d+ 3 BRVii+ Y ay <et+1_j Y Rvm_j) : (3.1.14)
i=1 j=1
with
Ba fori=1 Qg forj =1
Bi=9q Bu/d for2<i<5 ;=% a,/4 for2<j<5 . (3.1.15)
Bn/17  for 6 < i< 22 /17 for 6 < j < 22
Crucial advantage of LHARG process is affinity, namely it satisfies Assumption 6.
Proposition 11. For LHARG process the following relation holds true
p q
EF [e7vstPRVetels| 7 1] = exp [ A(z,b,¢) + Z Bi(z,b,¢c)RV,_; + ZC7;<Z, b,c)ls—;| , (3.1.16)
i=1 j=1
where
1
A(z,b,¢) = zr — 5 In(1 —2¢) — IW(x,0) + dV(z,0),
Bi(z,b,¢) = V(x,0)p;, (3.1.17)

Ci(z,b,¢) =V(z,0)q;.
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The functions V, VW are defined as follows

V(x79): 1_01_7

and
1

2(2,b,c) = 2\ + b+ 2

22+ % — 27z
1—2c '

Proof: See Appendix A.1.
Then, the MGF for LHARG process reads
Proposition 12. Under P, the MGF for LHARG model has the following form

P q
QOP@? T’ Z) — ]E]P [ezyt,T ’th] = exp (at -+ Z bt,iRVt—i-l—i + Z Ct,jgt—i-l—j) (3118)
i=1 =1
where
1
Ag = g1 + zr — 5 hl(l — 2C5+171) - 5W(Xs+1, 6) —+ dV(XS+1, (9)
(
b bsi1it1 + V(Xs41,0)8; for1 <i<p-—1
|V (%11, 0)5i fori=p (3.1.19)
.
Coy1jr1 T V(Xsq1,0)a; for1 <j<q—1
Csj =
\V(XS_H, Q)Oéj forj=q
with
122 4 42, — 2¢, z
Xop1 = 2A + b1 + 2 7 S+l 1,17 )
I —2¢ce41
and the terminal conditions read ap = br; =cp; =0 fori=1,...,pand j=1,...,q.

Proof: It follows immediately by plugging expressions for A, B; and C; (3.1.17) into recursive

relations from Theorem 7.
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Following the reasoning in Appendix F in Gourieroux and Jasiak (2006) one can derive the

stationarity condition for RV, process:

0 (Ba + Bu + B + 77 (g + aw + o)) < 1. (3.1.20)

3.1.4 Risk-neutral dynamics

To preserve analytical tractability of the model under martingale measure we proceed a risk-
neutralisation via Esscher transform suggested in Section (2.2), whose high flexibility allows to
incorporate multiple factor-dependent risk-premia. For LHARG process the proposed transform

takes the following form
e*V'rRVs+1*Vyys+1

]EP I:e—VTRVS+1—Vny+1 |Fs] )

M1 = (3.1.21)

Esscher transform (3.1.21) has to satisfy no-arbitrage condition in order to be an SDF for

LHARG model. The no-arbitrage condition for LHARG is a consequence of Theorem 8.

Proposition 13. Esscher transform specified as in (3.1.21) is an SDF for LHARG model
defined by eq.s (3.1.2) and (3.1.10)-(53.1.12) if, and only if

vy = A+ = (3.1.22)

Proof. The no-arbitrage condition follows from formulae (3.1.17) and relations (2.2.3) noticing

that it is sufficient to impose

r(1 — 1o, —11,0) = 2(=vy, —11,0).

Proposition 14. Under the risk-neutral measure Q the MGF for LHARG has the form

p q
@t T, z) = exp (a;:k + Z by RV + Z C;tk,jgt-&-l—j) ;

i=1 j=1
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where af, by, and c;; are given by recursive relations.

Proof. 1t follows immediately by plugging expressions for A, B; and C; (3.1.17) into recursive

relations from Theorem 9. For recursive relations see (A.2.5). [

To derive the price of vanilla options, for example, it is sufficient to know the MGF under the
risk-neutral measure Q which has been given in Proposition 14. However, for exotic instruments
it is essential to know the log-return dynamics under Q. The comparison of the physical and
risk-neutral MGF's provides us the one-to-one mapping among the parameters which transforms

the dynamics under QQ into the dynamics under P.

Proposition 15. Under the risk-neutral measure Q the realized variance still follows a LHARG

process with parameters

Bi= 1581, By =15Pus B =15 0m,

* 1 * 1 * 1
ad - 179},* Oéd, Oéw - 179},* aw 9 Oém - 179},* Oém,

1 1 (3.1.23)
0" = 1=t 0" =0, Yr=7+A+3,
&=,

where y* = —X\?/2 — vy + &

Proof: See Appendix A.2.2.

From the previous results we can write the simplified risk-neutral MGF which allows us to

reduce the computational burden when computing the backward recurrences.

Corollary 16. Under Q, the MGF for the LHARG model has the same form as in (3.1.18)-
(3.1.19) with equity risk premium \* = —0.5 and d*, §*, 0*, v*, of, B} forl = d,w,m as
in (3.1.23).
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3.1.5 Particular cases

We now discuss two special cases of the model presented in the previous section. The first
instance is the HARG model with Parabolic Leverage (P-LHARG) that we obtain setting
d =0 in (3.1.11), while the second model is a LHARG with zero-mean leverage (ZM-LHARG).
The shape of the leverage in the latter has been inspired by the model of Christoffersen et al.

(2008) but in the present context it is enriched by a heterogeneous structure

ng) = ef —1— 267V RVy,

4
D RV
&E ) — Z Z (6?—1' —1— 2€t7iﬁ)/ Rlvtfi> )

i=1
21

& = %7 Z <e§_i —-1- 26t_i’}/\/RVt_i> :

=5

In this case the expected value of leverage components is equal zero (E[éﬁk)] =0 for k = d,w,m)

and the linear O(RVy, L;) reads
BaRV? + B, RV + B, RVI™ + agll? + ali) + aml™ (3.1.24)

which can be reduced to the form (3.1.11) setting d = —(ag + Qu + ), B = B — ary?
for | = d,w,m. As will be more clear in the following section, the introduction of the less
constrained leverage allows the process to explain a larger fraction of the skewness and kur-
tosis observed in real data. However, similarly to what has been discussed in Section 2.1
about Christoffersen et al. (2008), it is no more guaranteed that the non centrality parameter
of the gamma distribution is positive definite. Nonetheless, in the Section 4.2 we will pro-
vide numerical evidence of the effectiveness of our analytical results in describing a regularised

version of this model.
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3.2 Multi-component GARCH models (k-CGARCH)

3.2.1 The model

The starting point of our considerations in this section is a GARCH option pricing model
proposed by Heston and Nandi (2000), in which latent variance of log-returns is described by
NGARCH model of Engle and Ng (1993):

2
ht+1 =d + mht +n (Et — '}/\/h_t) . (321)

ARCH-GARCH models have been proven to be a good volatility predictors, hence it is natural
to consider theirs application to option pricing. Heston and Nandi (2000) derive the closed-
form solution for the price of a European call option. While Heston and Nandi (2000) use a
single lag model, authors are suggesting to extend it with multiple lags to improve the pricing
of long-term options. Another possible extension for the purpose of more accurate pricing long
time to maturity options is to add long-run component which give rise to CGARCH proposed
by Christoffersen et al. (2008). Volatility modelling with short-run and long-run components
enables one to account for dependencies among volatilities at different time-scales. One can
generalise this model to k component structure. In this section we introduce a class of GARCH
models with & components and multiple lags which we label as k--CGARCH(p, q).

We define the k-dimensional vector of variance factors hgl), e h§k) which we shortly denote as
h;. The variance on day ¢ is defined as a sum of variance factors S (h;) = h{” + ... + h* and

the daily log-returns on day t 4+ 1 are modelled by equation

Yt4o1 =T + A S (ht+1> + S (ht+1> €41, (322>

where r is the risk-free rate, A is the market price of risk, and ¢, are i.i.d. A (0,1). We model
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ht+1 as

p q
ht+1 == d + Z MihtJrl,Z' + Z Nj£t+1fj 5 (323)

i=1 j=1
where M;,N; € R** for i = 1,...,pand j = 1,...,q, d € R¥, and the vectors representing

leverage effect £;_; are of the form

2
<6t+1—j - 71vS (ht+1—j)>
/et_i_l_j == . (324)

<€t+1—j %V S (ht+1—j)>2

We prove that the family of &~-CGARCH(p, q) processes satisfies the affine property (it satisfies
Assumption 6).

Proposition 17. There exist functions A,B;,C;, i € {1,...,p} and j € {2,...,q} such that
the following relation for the k-CGARCH (p, q) process is satisfied

B [ezys+1+b-hs+z+cls+1 |~Fs} _ eA(z7b7C)+Z€:1Bi(zvb:c)'hs+2—i+25:2 Cj(zb,e)Lst1—j (3_2‘5)
Proof: See Appendix A.3.1.

For k-CGARCH(p, ¢) processes the moment generating function is available in a closed form:

Proposition 18. Under the physical measure P the MGF of the log-returns y, 7 = log(St/St)

conditional on the information available at time t is of the form
QOP(t, T, Z) _ eat-i-Zf:l beihyio i +370 o ¢t jlip1—; ’ (326)

where a;, by; and c,; are given by recursive relations.

Proof. We take the form of functions A, B;, C; derived in Proposition 17 and apply them to
Theorem 7. For the form of coefficients a;, b;; and c;; see Appendix A.3.2. O
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3.2.2 Risk-neutral dynamics
Change of measure is performed by applying two-dimensional Esscher transform?

e vhS(hst2)—vyyst1

EP [e_VhS(h5+2)_Vyy5+l |-FS] ’

MS,S+1 - (327)

The no-arbitrage restriction can be formulated in the terms of the relation between risk-premia.

Proposition 19. The Esscher transform (3.2.7) is an SDF for k-CGARCH(p, q) model if, and
only if

k k
1
Vy = A+ 5 + 2, Z an(vj -+ )\), (328)

i=1 j=1

where n; ; are elements of matriz Ny.

Proof. See Appendix A.3.3.
]

From relation (3.2.8) one can see that in the case of one-dimensional pricing kernel (v, = 0)
employed in Heston and Nandi (2000) the equity risk premium parameter v, equals equity
premium plus one half. Therefore all parameters of the option pricing model are fixed on
the level of estimation from log-returns time series. In the case of two-dimensional pricing
kernel, v, remains a free parameter that has to be calibrated on the option data time series.

This allows the model to reconcile the time series properties of stock returns with option prices.

The knowledge of functions A, B;, C; for i = 1,...,p and j = 1,...,q allows to write the
conditional moment generating function (see Theorem 9) needed to price vanilla contingent
claims. However, the computation of the VRP requires the knowledge of the complete dynamics
under measure Q. Moreover the derivation risk-neutral dynamics reduces the computational

burden in option pricing (likewise in the case of LHARG model).

2Theoretically one could propose the multi-dimensional, factor-dependent pricing kernel, but as it will become
clear later (see discussion in Appendix A.3.4) it would rise issue of identification problem.
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Proposition 20. Under the risk-neutral measure Q, obtained with SDF given by (3.2.7), the
dynamics of log-returns for k-CGARCH (p, q) model is still governed by equations (3.2.2)-(3.2.3)

with parameters

A= —1/2,
d
- % % ’
1+ 2u, ) Zj:l Ni,j

M;"=M; for1 <i<p

*

N (3.2.9)
N;* = - 5 for 1 <i<gq,
(1 + 2vp Zf:l Z?ﬂ n”)
ko k
Y=ty + 2thzni,j(% — ;) for 1 <1<k
i=1 j=1

The relation between the dynamics of the process under physical and risk-neutral measure is

described by equations:
]' * * *
ve=r— 58 () + /S (7)), (3.2.10)
h
h = —— . (3.2.11)
14 2v, ) 5y Zj:l Nij

Proof. See Appendix A.3.4. O

Given the dynamics under QQ, the risk-neutral moment generating function is a straightforward

consequence of Proposition 18.

Corollary 21. Under Q, the MGF for the k-CGARCH(p,q) model has the same form as
in (3.2.6) with parameters of the process \*, d*, M*, N*, v* as in (3.2.9).

Equation (3.2.11) provides a clear interpretation of the risk-premia appearing in the SDF (3.2.7).
We first observe that reducing the dimensionality of the Esscher transform to one (by setting

v, = 0) implies that the volatility process under the two measures remains the same. When v,
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is nonzero then the risk-neutral and physical volatilities differ and their ratio reads

Lk k -1/2
g- VMY (1 + 2uhZan> . (3.2.12)

S (hy)

i=1 j=1

It is worth noticing that our specification of the pricing kernel implies a constant volatility

ratio, which is mainly determined by the volatility risk premium vy,.

3.2.3 The log-ratio of the risk-neutral and physical densities

Early option pricing literature (for example Rubinstein (1976) and Brennan (1979)) implicitly
assumes the existence of a monotonic relation between the risk-neutral and physical densities
log-ratio and market returns. However, in recent empirical studies it has been shown that the
ratio has a parabolic shape with a positive smile (see Bakshi et al. (2010)). As pointed out
by Christoffersen et al. (2013), a premium for the variance risk explains a number of puzzles
concerning the level and movement of implied option variance compared with observed time
series variance. The key feature of their modelling approach is that, although the pricing kernel
is monotonic on both returns and variance, the projection of the pricing kernel onto the stock
price return alone is U-shaped. The strong option smile associated to this non-monotonic
relation can be quantified looking at the natural logarithm of the ratio of the risk-neutral and

physical conditional densities — f and f*, respectively — implied by the model

In (f*(wel £ (£0))/ f (el £ (£2))) - (3.2.13)

The parabolic shape of the log-ratio (3.2.13) for SDF (3.2.7) and multi-component GARCH
models readily follows noticing that y|L (f;) ~ N(r + AL (f;), £ (f;)) under measure P and
w|L (%) ~ N(r — 3L (f*), L (f*;)) under measure Q. Knowing that £ (f*;) = &2L (f;) we
obtain the following corollary (for details see Appendix A.3.5).

Corollary 22. The logarithm of the ratio of the risk-neutral and physical conditional densities
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1 a quadratic function of the log-return

FOILEDY €1 (Y g
ln(f(ytlﬁ(ft)))_2£<ft)gz<yt ) <A+2)(yt )+ g L) —mg (32.14)

From Corollary 22 we can infer the importance of the ratio {&. When £ = 1 (v, = 0), then
the log-ratio (3.2.13) becomes a linear decreasing function of log-returns. Whereas for values
greater than 1 (v, < 0) the relation (3.2.14) becomes U-shaped, consistently with empirical

observations.

3.3 Combination of latent and realized volatility (GARCH-
LHARG-RV)

3.3.1 The model

Our general framework allows us to incorporate a model being a combination of realized volatil-
ity and latent volatility. Measure of RV applied in Section 3.1 is a very precise measure of
continuous part of volatility and its dynamics can be modelled accurately by LHARG process.
Though it does not take into account volatility due to jumps and to overnight effect. In this
section we will add to RV modelled with LHARG, a parallel factor of latent volatility which
we will model with GARCH process and we label the complete model GARCH-LHARG-RV.

GARCH-LHARG-RV is described by general framework (2.1.1)-(2.1.4) setting £ = 2, f; =
(hiy1,RVy) and L (f,_q,f;) = ft(i)l + ft(Q) = hy + RV;. Thus, log-returns evolve according to the

equation

Y41 =T -+ A (R,Vt+1 -+ ht+1> + \/ RVtJrl —+ ht+1€t+1 . (331)

To model dynamics of latent variance h we adopt non-linear GARCH model of Heston and
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Nandi (2000), but in our case leverage depends on both components of volatility:

2
ht+1 =w -+ tht + ap, <€t — YhV th + ht> . (332)

Analogously dynamics of RV is described by LHARG process with leverage component depend-

ing on both volatility components:
RV | Fe ~ 7(0, 0(RVy, Ly), 6) (3.3.3)
with
O(RV,, L) = SRV + B,RV™ + B, RVI™ + agl? + 0,8 + 8™ . (3.3.4)

In previous equation d € R is a constant and the quantities

RV{Y = RV, 6" = 1= 29e/RV, I,
RV = § XL RV 67 =430 (@ — 1= ye/RVi + i) (33.3)
RV = LS RV, A7 = & 52 (@ =1 = 29e iRV + b )

correspond to the heterogeneous components associated to the short-term (daily), medium-
term (weekly), and long-term (monthly) volatility and leverage factors, on the left and right
column respectively. In this thesis we consider only zero-mean leverage case (E[ﬁik)] = 0 for

k=d,wm)3

It can be shown that that GARCH-LHARG-RV model satisfies Assumption 6. Then, the MGF

can be obtained easily from Theorem 7.

3Similarly to ZM-LHARG and CGARCH processes, positivity of ©(RVy,L;) and of volatility is no more
guaranteed, but it can be justified by approximation analysis in Section 4.2.
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Proposition 23. Under the physical measure P the MGF for GARCH-LHARG has the form

22 22
¢ (t,T,z) = exp <at + b} herr + Z by RV + Z Ct7j€t+1—j> ;

i=1 j=1
‘ . . 2
where a;, bl bi;, cij are given by recursive relations and {; = (et —vvRV,; + ht) .

Proof. See Appendix A.4.1. n

3.3.2 Risk-neutralisation
To derive the pricing measure Q we apply three-dimensional Esscher transform

e VrRVst1—vrhsro—vyys i1

Ms,s—‘rl = (336)

EP [e*V'rRVS-!—l*ths+2*1’yys+1 ‘FS] !

where v,., v, v, € R are parameters of the transform. The main advantage of the above change
of measure is that it clearly identifies the sources of risk and explicitly compensate them with
separated risk-premia. The parameter v, corresponds to risk related with continuous part of

realized variance and v}, to the remaining, latent part of daily volatility.
The derivation of the no-arbitrage condition for GARCH-LHARG readily follows from the
Proposition 8.

Proposition 24. Esscher transform (3.5.6) is an SDF in a setting described by equations
(8.3.1)-(3.3.5) if, and only if

1
vy = A+ 5t 2upan(n + A). (3.3.7)
Proof. The no-arbitrage condition follows from formulae (A.4.7) and relations (2.2.3). O

Proposition 25. Under the risk-neutral measure Q the MGF for GARCH-LHARG-RV has
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the form

p q
S0@(757 T, Z) = exXp <at* + Z b;tk,iRVt—‘rl—i + Z C:,jgt-l-l—j) s

i—1 j=1

where aj, by, and c; ; are given by recursive relations.

Proof. 1t follows immediately by plugging expressions for A, B; and C; (A.4.7) into recursive

relations from Theorem 9. For recursive relations see Appendix A.4.2. O

3.4 Jump component of realized variance (JLHARG-
RV)

3.4.1 The model

In this section we employ the measurement of jump component of RV instead of modelling latent
volatility component h; with GARCH process like we did in Section 3.3. Under the assumption
of the continuity of price process, quadratic variation of log-price is equal to integrated variance,
like we had in Section 3.1. In fully generality, in the presence of jumps, the total quadratic
variation of a log-price process has another component - squared jump variation. In this section
we take into account both components of quadratic variation and we assume the following

dynamics of log-returns

yi =7+ A (RVS + RV]) + 1/RV¢ + RVe,. (3.4.1)

where r is the risk-free rate, A is the market price of risk, ¢; are i.i.d. with standard normal
random distribution, RVYy is continuous component of RV and RV{ is jump component of RV
(details on the RV measure employed in the implementation of the model are given in Section

42).

Dynamics proposed in equation (3.4.1) may be justified by the empirical studies of Ander-
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sen et al. (2001a), who find that the distributions of daily equity returns standardized by the
corresponding RV is approximately Gaussian and Andersen et al. (2010) who investigate the
deviation from normality ascribed to a jump component in the price process. The latter results
indicate that the discontinuous component has a minor impact on the distributional proper-
ties, since the jump-adjusted standardized series are not systematically closer to the Gaussian
than the y,/v/RV, standardized returns.* This is especially true for time series generated from
futures contracts on the S&P500 Index, which are recognized in Andersen et al. (2010) to
suffer from minimal microstructure distortion and low liquidity effects. As can be seen from
the density plots of Figure 3.1, we observe the same feature for the S&P500 Futures in our
sampling period. The two-sample Kolmogorov-Smirnov test between the RV standardized and
jump-adjusted series indicates that the two distributions cannot be distinguished. If any, by
judging on the value of the kurtosis of 3.64 for the jump-adjusted distribution and 3.06 for the
RV standardized, we conclude that the latter is closer to a normal distribution than the former

one.

The dynamics of the realized volatility components is given by sampling at time ¢t + 1 a new
realisation from two distributions conditionally independent given the information at time t.
The continuous part of RV depends on past realisations of RV® and on past realisations of
leverage term ¢; which is a quadratic function of the total realized variance thus including the

contributions from the jumps

0y =€ — 1 — 2ve,\/RVE + RVY. (3.4.2)

We introdcue notation RV, = (RVS ,,,...,RV¢) and L; = ({;_21, ..., ;). Then the continuous

4«Perhaps surprisingly, the results indicate that neither of the jump-adjusted standardized series are system-
atically closer to Gaussian than the non-adjusted realized volatility standardized returns. [...] One reason is that
Jumps largely self-standardize: a large jump tends to inflate the (absolute) value of both the return (numerator)

and the realized volatility (denominator) of standardized returns, so the impact is muted.” - Andersen et al.
(2010)
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S&P log-returns
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Figure 3.1: Histogram of returns rescaled by total realized volatility (y;/(v/RV®+ RV?)), his-
togram of returns purified from jumps rescaled by continuous component of realized volatility
(9¢/(VRV), where g, are returns without jumps) and standard normal distributition.
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component of RV is drawn from a non-central gamma distribution
RV 1| F ~ (0, 0(RVS, Ly), 0) (3.4.3)
where ¢ is the shape parameter, 6 is the scale and the non-centrality is given by
O(RVS, L;) = BRVED + B, RVE™ 1 8, RVE™ 4 0,0\ + 0,0 + 0,y 0™ . (3.4.4)

where 5; € RT, a; € R are constant and the quantities

RVC@ = Rv?, 0 =1,
RV ) = i Z?:l RV, gl(tw) = zll Z?:I =y (3.4.5)
RV;™ = LY RV, 4 =L 0

represent the heterogeneous components corresponding to the short-term or daily (d), medium-
term or weekly (w) and long-term or monthly (m) realized variance and leverage terms, respec-
tively on the left and right columns above. In this thesis we consider only zero-mean leverage
version of JLHARG-RV model (E[€§k)] = 0 for k = d,w,m).5 A positive leverage version of
JLHARG model is discussed in Alitab et al. (2015).

The jump component of the realized variance is instead modelled as a compound Poisson process

with intensity © and sizes sampled from a gamma distribution with shape 6 and scale 0

N4l
RV |Fi~ > Y; with ngyy ~P(0) and Y;iid. ~ (d,6). (3.4.6)
i=1
Equations (3.4.1)-(3.4.6) completely characterise the dynamics of log-returns by Autoregressive

Gamma model in Realized Volatility with heterogeneous leverage and jumps and we acronym

SSimilarly to ZM-LHARG and CGARCH processes, positivity of ©(RVy,L;) and of volatility is no more
guaranteed, but it can be justified by approximation analysis in Section 4.2.
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it JLHARG-RV model. The crucial advantage of JLHARG process is that it is affine, namely
Assumption 6 is satisfied for some functions A, B; and C;. Knowing the form of the functions

one can prove the following

Proposition 26. Under P, the MGF of the log-return vy o = ZZ:tH Yy for JLHARG model
has the following form

p q
¢]P’ (t, T, Z) — EP [ezyt,T|ft] = exXp (at + Z btyiRV§+1_i + Z Ct,igt—i—l—i) (347)
i=1 i=1
where ay, by; and c,; are given by recursive relations.

Proof. See Appendix A.5.1. O

3.4.2 Risk-neutralisation

To proceed change of measure we apply Esscher transform whose high flexibility allows to

incorporate multiple factor-dependent risk-premia:

eV RVE L~ RV —vyysi

Ms,s—i—l =

(3.4.8)

EP €—V7-RV§+1—VJ'R,V‘;+1—Vyys+1 |fs]

Specifically, it allows to take into account both variance risk premia components: continuous
(v,) and jump (v;), in addition to the standard equity premium (v,). Esscher transform (3.4.8)

has to satisfy no-arbitrage condition in order to be an SDF.

Proposition 27. The Esscher transform (3.4.8) is an SDF for JLHARG model if and only if

1
I/y = )\ + 5 .
Proof. The no-arbitrage condition follows from formulae (A.5.13) and relations (2.2.3). O

An advantage of SDF (3.4.8) is that under risk-neutral measure the dynamics of the log-returns
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is still given by JLHARG process with mapped parameters. Moreover we are able to provide a
one-to-one mapping of parameters from P to Q dynamics.

Proposition 28. Under risk-neutral measure Q the realized variance follows a JLHARG process

with parameters

* ﬁ * 610 * ﬁm
Bd: dC*>Bw: C*aﬁm: cx’
1—0y 1—0y 1—0y
CU*_ Oéd Oé* o O{w O[* o Oém
d_]__gyc*’ w_l_eyc*’ m_l_gyc*’
0 1
= ——— 0" =0, v = A+ - 4.
gy Y=yt AtS (3.4.9)
d
="
1 — fyex
- s T 0
@*:Ly 5 =00 =
(1—§yj*> 1-0y

where y°* = —\/2 — v, + & and It = —\/2— vy + L.

Proof: Appendix A.5.2.

Knowing the dynamics of process under Q, moment generating function under risk-neutral

measure is a straightforward consequence of Proposition 26.

Corollary 29. Under Q the MGF of the JLHARG model is formally the same as in Proposition
26 with equity risk premium parameter \* = —0.5 and d*, 6*, 0%, O, 0%, 0" v ap, B forl =
d,w,m as in (3.4.9).

We point out that the risk premia parameters v, and v; need to be calibrated on option
data. All the parameters governing the dynamic of the process under QQ, can be explicitly
computed through the set of equation (3.4.9) from those estimated under P once (v,,v;) has

been calibrated.



Chapter 4

Option Pricing

4.1 Estimation of realized variance

In this section we describe the measurement of realized variance employed in RV models
(LHARG-RV, GARCH-LHARG-RV, JLHARG-RV). For this family of stochastic volatility
models, we employ the RV computed from tick-by-tick data for the S&P 500 Futures, from
January 1, 1990 to December 31, 2007. The choice of future contracts is for the sake of their
high liquidity - while the S&P 500 index is not exchanged directly, futures are traded exten-
sively. Moreover time series generated from futures contracts on the S&P 500 Index suffer from

minimal microstructure noise.!

Our RV measurement procedure is based on estimating total quadratic variation of log-prices
using the Two-Scale estimator introduced by Zhang et al. (2005) (with a fast scale of two ticks
and a slower one of 20 ticks). Such a proxy of total quadratic variation includes jumps in
both returns and volatility. To identify the jump component we apply two step procedure. In
the first step we proceed the Threshold Bipower variation method with a significance level of

99% by Corsi et al. (2010) which detects the spikes in RV time series and we remove it from

!See Andersen et al. (2010).

65



66 CHAPTER 4. OPTION PRICING

RV time series. In the second step we remove the most extreme observations in the remain-
ing RV series, seemingly due to volatility jumps, employing a threshold-based jumps detection

method: we set a four standard deviations threshold computed on a rolling window of 200 days.

The purified RV series are our proxy of the integrated variance (IVy). In models LHARG-RV
and GARCH-LHARG-RV we use it as a measure of RV and we label it RV;. We label the
same quantity as RV{ (continuous component of RV) in JLHARG-RV model. The difference
between total quadratic variation and continuous component of RV is called jump component
of RV and it is labeled as RV{. On Figure 4.1 we plot the time series of continuous and jump

components of RV.

Both RV measures (RVy and RV{ ) are proxies of volatility during the trading period, i.e., from
open to close. As a result, they neglects the contribution coming from overnight returns. To
overcome this problem for models without GARCH component (LHARG-RV and JLHARG-
RV), we rescale our RV estimator to match the unconditional mean of the squared daily (i.e.,
close-to-close) returns. In the case of GARCH-LHARG-RV model overnight effect is captured
by GARCH component.

4.2 Estimation of models under physical probability mea-
sure

We choose the FED Fund rate as proxy for the risk-free rate r in all considered models. For em-
pirical assessment we will apply two-component GARCH model by Christoffersen et al. (2008)
with dynamics (2.1.7) and we will apply to it a new SDF proposed in (3.2.7). The estimation
of parameters under physical measure of CGARCH models is done by maximum likelihood

estimation (MLE) used by Bollerslev (1996) and others.
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Figure 4.1: Time series of RV and RV,
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The estimation of the parameters in LHARG-RV model is greatly simplified by the use of
Realized Volatility, which avoids any filtering procedure related to latent volatility processes.
Firstly we determine the market price of risk A in equation (3.1.2) regressing the centred and
normalised log-return on the realized volatility. This regression is performed by rewriting the

equation (3.1.2) as

Y1 — 7
= AM/RV 4.2.1
—thﬂ VRV + €41, ( )

The use of an RV proxy for the unobservable volatility allows us simply to employ a Maximum
Likelihood Estimator (MLE) on historical data. Arguing as in Gourieroux and Jasiak (2006),
the conditional transition density for the LHARG-RV family is available in closed-form, and so
the log-likelihood reads

ltT(5 9 d 5(1761076m705d7aw7am77) -

RV, RVITL @ (Rthlthfl)k
_Z(—+@ (RV,_1,L,_ 1) Zlog( G R o

where © (RV;_,L;_1) is given in eq. (3.1.11). To implement the MLE, we truncate the infinite
sum on the right hand side to the 90th order as done in Corsi et al. (2013).

In the case of JLHARG-RV model we have two time series for the RV components (R\/ﬁc), RV]Ej ))
and again proceed the estimation via Maximum Likelihood Estimator. According to the model

specified in equation (3.4.3) and (3.4.6), the log-likelihood functions for the continuous and
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jump RV components, respectively lf, and lf’T, are given by the following series-expansions

T
RV¢
lzf,T (57 0,d, Ba, Buw: Bm, A, Cy, Qs '7) = — Z < ! + 06 (RVt—l, Lt—l))
t=1
T 00 e\O+k—1 k
(RV}) O (RV,_1,L;)
+ Zlog ( Q+kT (5 + /{;) A (4.2.2)
t=1 k=1

; N\ ko—1 ~
e RVI . a = (RV])" Ok
. (5,9, @) — S () S g [T (4.2.3)
" 2\ 2%\ & gor (ké)
We truncate the infinite sum on the right hand side in both log-likelihoods to the 90th order
similarly to LHARG-RV estimation.

In the case of GARCH-LHARG-RV model, in the first step we apply MLE to estimate A and
parameters of GARCH part of the model given the returns and time series of continuous realized
volatility RV;. Next, having the parameters of latent variance process dynamics, we filter out
the time series of h; and finally, we apply MLE to estimate the parameters of the LHARG-RV

part of the model.

For the sake of completeness we also estimate HARGL-RV presented in Corsi et al. (2013). THe
dynamics of HARGL differs from LHARG by the non-central parameter in gamma distribution
which in case of HARGL is equal

O(RV,) = SRV + B,RVI™ + 8, RVI™ + agl(y, <)RVLY (4.2.4)

where I, o) takes value one if the log-return at date ¢ is negative and takes value zero otherwise.
In this way we lose analytical tractability of the model and heterogeneity of leverage component.

The estimation procedure for the HARGL model can be found in Corsi et al. (2013).
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Model
Param. HARGL P-LHARG ZM-LHARG JLHARG CGARCH GARCH-LHARG
Py 2.005 2.005 2.005 2.005 2.9392 2.2
(1.489) (1.489) (1.489) (1.489) (1.5614) (1.504)
0 1.116e-005  1.068¢-005  1.117e-005  9.357e-06 - 6.9802¢-06
(9.864e-008)  (9.466e-008)  (9.484e-008)  (8.3e-08) (6.1416e-08)
§ 1.395 1.243 1.78 1.880 - 1.7568
(0.04646) (0.0482) (0.04319) (2.8¢-02) (0.034487)
Ba 2.993e4+004  2.429¢+004  3.382e4+004  3.939e+04 . 5e4004
(1037) (439.4) (180.1) (6.2¢4-02) (9.6e+003)
Bu 2.796e+004  2.317e+004  2.542e+004  3.028¢+04 . 4.55e+004
(1247) (1199) (225) (2.8e+02) (2.2e+003)
B 1.132e+004  1.322e+004  1.338e+004  1.689e+04 . 2.18e+004
(897) (1690) (142.7) (1.3e+02) (253)
g 1.389e+004 0.2376 0.3991 0.4338 . 0.4129
(1235) (0.00113) (0.007164)  (7.3e-03) (0.046074 )
Qap - 0.1194 0.3446 0.410 - 0.41801
(0.002058) (0.01162) (2.1e-02) (0.13826)
m - 3.85¢-006 0.4034 0.519 - 0.25521
(3.649¢-006)  (0.02082) (7.5¢-02) (0.68535)
v - 223.7 134.8 125.4 . 126.54
(5.122) (9.525) (6.8) (13.702 )
6 - - - 4.70e-05 - -
(3.0e-06)
5 - - - 1.152 - -
(2.5e-02)
S} - - - 0.2994 - -
(8.9¢-03)
w - - - - 1.2667¢-006 0
(1.8699¢-007) (0)
an - - . . 1.49¢-006 2.8999¢-06
(6.5849¢-007) (6.6497¢-07)
Bn - - - - 0.49505 0.647
(0.061499) (0.06215)
Y - - . . 425.59 237.46
(169.0385) (36.62)
a, - . - - 2.4502¢-006 -
(2.8226e-007)
Bq . . - - 0.9861 -
(0.0020844)
Ya . - - - 87.824 .
(15.0899)
Log-lik. 225344 225279 225234 224476 12473 23175

Table 4.1: Maximum likelihood estimates, robust standard errors, and models’ performance.
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The variance process in the majority of models considered in the thesis (ZM-LHARG, JL-
HARG, GARCH-LHARG, CGARCH) is not always well-defined. For example, while we can
ensure that P-LHARG model satisfies condition (2.1.5), for the ZM-LHARG model the relation
(3.1.24) cannot be prevented from obtaining negative values. Since the ZM-LHARG is worth
considering, we provide some numerical evidence supporting the analytical MGF as a reliable
approximation of the MGF computed by simulation. We compare an extensive Monte Carlo
(MC) simulation of the ZM-LHARG dynamics where the non centrality parameter is artificially
bounded from below (by zero) with the analytical MGF computed according to Proposition 12.
As the probability of obtaining a negative value for the non centrality of the gamma distribution
is small (given the parameter values in Table 4.1), we can assess that the analytical MGF is a
good approximation of the unknown MGF of the regularised ZM-LHARG. We fix the number
of MC to 0.5 x 10° and consider six relevant maturities, one day (7' = 1), one week (T = 5),
one month (7" = 22), one quarter (7" = 63), six months (7" = 126), and one year (T' = 256).
In the left column from top to bottom of Figure 4.2 we plot the MGF, the real and imaginary
parts of the characteristic function under the physical measure, respectively, while in the right
column we show the same quantities under the risk-neutral measure. The lines correspond to
the analytical MGF's while the MC expectations are represented by points whose size is larger
than the associated error bars. The quality of the agreement is extremely high. Moreover, the
MC estimate of the probability associated with the event ©(RV;_1,L;_1) < 0 is 2 x 107° under
P, and 3 x 107% under Q, confirming once more the reliability of the approximation. Similar

analysis can be proceeded for ZM-JLHARG, GARCH-LHARG or CGARCH processes.

4.3 Option pricing methodology and calibration of SDF

Our option data set contains European out-of-the-money (OTM) options on S&P 500 index for
each Wednesday from January 1, 1996 to December 31, 2004. We first apply a standard filter
removing options with maturity less than 10 days or more than 365 days, implied volatility

larger than 70% and prices less than 0.05$ (see Barone-Adesi et al. (2008) and Corsi et al.
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Figure 4.2: Left column, from top to bottom: MGF, real and imaginary parts of the char-
acteristic function of the ZM-LHARG process under the physical measure P. Right column,
from top to bottom: MGF, real and imaginary parts of the Characteristic Function of the ZM-
LHARG process under the risk-neutral measure Q. The lines correspond to different maturities
T =1,5,22,63,126,252, while points to Monte Carlo expected values; Monte Carlo error bars

are smaller than the point size.
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(2013)). Using K/S; as definition of moneyness, we filter out deep OTM options with mon-
eyness larger than 1.3 for call options and less than 0.7 for put options. This choice yields a
total number of 46066 observations. For our purposes, put options are identified as Deep OTM
(DOTM) if their moneyness is between 0.7 < m < 0.9 and OTM if 0.9 < m < 0.98. On the
other hand, call options are said to be DOTM if 1.1 < m < 1.3 and OTM if 1.02 < m < 1.1.
Options are called at-the-money (ATM) if 0.98 < m < 1.02. As far as the time to maturity
7 is concerned, we identify options as short maturity (7 < 50 days), short-medium maturity
(50 < 7 < 90 days), long-medium maturity (90 < 7 < 160 days) and long maturity (7 > 160
days).

Proposed Esscher transform (2.2.2) has a vector of free parameters. In all considered models
suiting our general framework v, is constrained by no-arbitrage condition, but vector v¢ has
to be calibrated on option data (for example v, in case of LHARG-RV model and v}, in case
of CGARCH model). For the calibration procedure, we adopt a method based on an uncon-
ditional optimisation made by minimising the distance between the market implied and the
model implied volatility surface. For this reason, we divide our dataset in different intervals
of moneyness and maturity obtaining a 5x4 moneyness-maturity grid. For each subset of the
grid we compute the unconditional mean of the market implied volatility of the options within
the subset. In this way, we obtain a 20-points-grid representation of the implied volatility
surface as shown in Table 4.2. Finally, the calibration of the variance risk-premia is obtained
by computing the same grid for the model implied volatility and finding the optimal values for
the v¢ which minimise the distance between the two grids, i.e. The objective function fop;(v¢)

is defined as

5 4
foni(we) = [ DD AVt (v ) — IV