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Introduction

An European option is a financial contract which gives the owner the right to buy or sell an

underlying asset at a strike price on a maturity date. Option pricing theory tries to understand

what is a fair price for such a contract. Option price models consist of two ingredients: dynam-

ics of the price of the underlying asset under a physical measure and a pricing mechanism which

is described by a stochastic discounting. Modelling the dynamics of asset price should incor-

porate the well documented fact that return variance is stochastic and to improve the model’s

performance it is necessary to have multi-component structure in volatility. Concerning the

second ingredient of option pricing model, stochastic discounting should be multi-dimensional,

in particular it should take into account variance risk premium.

Stochastic volatility models were introduced to reproduce well-established stylized facts like

volatility smile and negative correlation of returns and volatility. Despite many successful ap-

plications, stochastic volatility models in continuous and discrete time exhibit serious problems

with fitting strike profile and term structure of implied volatility surface, especially for far in-

the-money and out-of-the-money options. In order to overcome this problem volatility models

should incorporate heterogeneity of agents acting in the market. Investors with different time

horizons have different impact on instantaneous volatility and as a consequence a single factor

of volatility, running on a single time scale, is simply not sufficient for describing the dynamics

of the volatility process. This argument has been empirically confirmed (Müller et al., 1997)

and has led to the development of models with multi-component volatility structure, where

11



12 INTRODUCTION

each component of volatility corresponds to different time scale.

The necessity of taking into account variance risk premium stems from stochastic nature of

volatility. Since the future level of return variance is a source of uncertainty, it is natural to

assume that investor will demand a premium for bearing that risk. Variance risk premium is

equal to a compensation that a representative investor is demanding for investing in an asset

with unknown future return variance and it has a huge impact on the form and the properties

of the pricing kernel in the economy. Moreover, incorporating variance risk premium in the

model results in the so called ’U-shape’ log ratio between the risk-neutral and physical densities

which corresponds to the one observed in the market data.

Due primarily to mathematical tractability, the literature on option pricing traditionally has

been dominated by continuous time processes (for example Black and Scholes (1973), Merton

(1976), Heston (1993) and Bates (1996)). On the other hand, models for asset dynamics un-

der the physical measure P have primarily been developed in discrete time. The time-varying

volatility models of the ARCH-GARCH families (Engle, 1982; Bollerslev, 1996; Glosten et al.,

1993; Nelson, 1991) have led the field in estimating and predicting the volatility dynamics.

Another well-established discrete time volatility modelling approach is the so called Realized

Volatility (RV) approach which provides a precise nonparametric measure of daily volatility

(i.e., making it observable) leading to simplicity in model estimation and superior forecasting

performance. Discrete time models present the important advantage of being easily filtered

and estimated even in the presence of complex dynamical features such as long memory, mul-

tiple components and asymmetric effects, which turns out to be crucial in improving volatility

forecast and option pricing performances. However, in the current literature, the analytical

tractability of discrete time option pricing models is guaranteed only for rather specific types

of models and pricing kernels.
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The goal of the thesis is to propose a very general and fully analytical option pricing framework

encompassing a wide class of discrete time models featuring multiple components structure

in both volatility and leverage (the mechanism producing the asymmetric impact of positive

and negative past returns on future volatility) and a flexible pricing kernel with multiple risk

premia. We propose a framework general enough to include either GARCH-type volatility,

Realized Volatility or a combination of the two. Moreover, we apply multi-dimensional pricing

kernel, taking into account various risk premia and obtaining semi-closed form solutions for

option prices.

The class of processes nested within our option pricing framework are affine processes in state

variables, which are log-returns, volatility and leverage components. For such a class of pro-

cesses we are able to derive the moment generating function of log-returns. Moreover, applying

exponential-affine stochastic discount factor, often called Esscher transform, we are able to

characterise the formal change of measure, write no-arbitrage condition and moment gener-

ating function under risk-neutral measure. One of our main contributions is generalization:

our framework embraces several different option pricing models considered in the literature.

The other important novelty of our approach is multi-dimensionality: we are considering both

multi-dimensional affine processes (multi-component structure in volatility and leverage) and

multi-dimensional Esscher transform with each component being related to a premium for a

different risk.

Exploiting our general framework we propose three new option pricing models with original

dynamics under physical measure. We also reconsider the CGARCH model of Christoffersen

et al. (2008) by applying two-dimensional pricing kernel. Since our framework guarantees exis-

tence of semi-closed form formulas for option prices, the option pricing methodology is fast and

efficient in implementation. In addition, by applying family of our fully analytically models

with multi-component structure in volatility on a large sample of Standard and Poor 500 Index
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(S&P 500) options, we show that our models improve pricing out-of-the-money (OTM) options

compared to existing benchmarks. The strength of our framework is highlighted by a proposal

of a model being a combination of realized and latent volatility approaches which gives superior

option pricing performance.

To provide more accurate description of financial markets one has to take into account strong

discontinuities, so called jumps, which are observed even in the most liquid financial markets.

Various studies has provided statistical confirmation of theirs existence and several asset pricing

models allowing presence of jumps were proposed (see Maheu and McCurdy (2004), Duan et al.

(2006) and Christoffersen et al. (2010) for models with jumps in returns and see Eraker et al.

(2003), Eraker (2004), and Broadie et al. (2007) for jumps in volatility). In this thesis we will

consider a model with jumps in volatility.

Recent financial literature has devoted much attention to the measurement of variance risk

premium. Carr and Wu (2009); Bollerslev and Todorov (2011) and others provide model-free

methodologies of estimating a single maturity variance risk premium. Further analysis was de-

voted to decomposition of variance risk premium into continuous and jump component (Du and

Kapadia, 2012; Bollerslev et al., 2014). Model based measurement of variance risk premium has

been proposed by Wang and Eraker (2015). Beyond all mentioned references which consider

single maturity VRP, some studies were dedicated to the whole term structure of variance risk

premia (Mueller et al., 2013; Ait-Sahalia et al., 2015).

In the thesis we propose a dynamic measure of the VRP implied by a multi-component GARCH

model with a multi-dimensional stochastic discount factor. While most of the studies focus al-

most exclusively on single maturity, the use of an analytically tractable parametric model allow

us to compute risk premia over different maturity recovering the whole term structure of VRP.

Application of multiple components structure in volatility reproduces a realistic family of term
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structures of variance risk premium including the empirically observed hump-shaped curves

(see Egloff et al. (2010)). Contrary to the majority of research papers which analyze variance

swap market, we compute the VRP term structure extracting the information contained in the

stock and option prices time series. Due to market segmentation our VRP term structure might

contain different information with respect to the term structure observed in the variance swap

market. The presence of relevant information contained in the VRP term structure extracted

from equity and option data is confirmed by the final empirical analysis which identifies the

slope of VRP as a significant predictor of future stock market returns.

The thesis is divided in five chapters. We start the first chapter with a short introduction to

asset pricing theory, where we summarise the continuous and discrete time approaches to asset

prices modelling and we explain how Stochastic Discount Factor arises in pricing theory. In the

second chapter we introduce the general framework for dynamics under physical measure that

satisfies certain affine property and possesses multi-component structure in volatility. In the

end we motivate why a multi-dimensional Esscher transform is a good choice for an Stochastic

Discount Factor by deriving it from Pareto optimal allocation problem.

In the third chapter we introduce new models nested in general option pricing framework. We

start with an extension of HARG-RV model with heterogenous and analytically tractable lever-

age structure called LHARG-RV. Then we take a a CGARCH model of Christoffersen et al.

(2008) and we apply a new change of measure to obtain new dynamics under risk-neutral mea-

sure. We propose a model being mixture of LHARG-RV and GARCH approach acronymed

GARCH-LHARG-RV and finally we consider an extension of LHARG-RV with jumps called

JLHARG-RV.

In the forth chapter we present the applied procedure of realized variance measurement. Then

we describe the methodology and results of models parameters’ estimation. Next we introduce
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the option pricing procedure and we give the results of Stochastic Discount Factors’s parameters

calibration on option prices. We finish the chapter with an empirical assessment of proposed

option pricing models.

In the last chapter we focus on variance risk premium - we derive a formula for variance risk

premium implied by k-CGARCH model. Then we justify application of CGARCH model im-

plied measurement of variance risk premium by showing that it generates a realistic family of

shapes of term structure of variance swap rate, contrary to single component volatility model.

Motivated by the significance of variance risk premium in asset pricing, we propose an original

and efficient methodology for estimating the time evolution of the term structure of variance

risk premium and we show its predictive power in explaining stock market excess returns.

The second chapter where general option pricing framework is introduced and the Section 3.1

on LHARG model are based on Majewski et al. (2015). The part of the thesis devoted to

CGARCH model with two-dimensional Esscher transform (Section 3.2) and the part concerned

on variance risk premium (Chapter 5) are based on Bormetti et al. (2015). The Section 3.4 is

based on Alitab et al. (2015). A generalisation of result in Bühlmann et al. (1998) to multi-

dimensional case (Theorem 10 in the thesis is showing that multi-dimensional Esscher transform

ensures Pareto equilibrium) and everything about GARCH-LHARG-RV model (Section 3.3 and

empirical results in Chapter 4) have not been published anywhere but in this thesis.



Chapter 1

Review of asset pricing theory

1.1 Review of price dynamics models in continuous and

discrete time

Asset pricing is determined by three components: probabilistic description of future states of

economy, attitude towards certain risks and payoff structure. While the last one is specified in

a contract,1 the possible outcomes in economy and risk discounting have to be modelled. In

this section we shortly review the history of modelling the time evolution of prices in financial

markets and in the following section we describe the fundamentals of risk discounting.

The history of financial mathematics begins with the PhD thesis of Louis Bachelier (1900) titled

Théorie de la spéculation in which he proposes to model assets price with Brownian motion.

Among many original insight of Bachelier the two most striking are the first mathematical de-

scription of Brownian motion and the concept of martingale. Bachelier derived in his thesis the

distribution function of Wiener process linking it mathematically with the diffusion equation

and he did it 5 years before famous paper of Albert Einstein (1905) where a partial differential

1For example, in the case of European call option the payoff is specified by function f(ST ) = max (ST −K, 0),
where ST is a price of the underlying asset at the time of maturity of the option T and K is called strike of an
option.

17



18 CHAPTER 1. REVIEW OF ASSET PRICING THEORY

equation governing Brownian motion is derived. Moreover when providing the price of a barrier

option (an option which depends on whether the share price crosses a given threshold) Bachelier

has already realised that it must be computed under a probability measure which we call today

martingale measure, namely a measure under which the expected profit of a speculator is zero.

The major drawback of Bachelier modelling approach is that Brownian motion can generate

negative values while the price of an asset cannot. For this reason Paul Samuelson (1965)

proposes to replace Brownian motion with geometric Brownian motion which is a stochastic

process with a log-normal distribution. The next big breakthrough in financial mathematics

is the paper by Black and Scholes (1973) in which they derive the closed-form European call

option price formula assuming that the asset price dynamics is given by geometric Brownian

motion. Applying Itô lemma to payoff function of European call option and to dynamics of the

asset price Black and Scholes obtained a stochastic differential equation describing the evolu-

tion of option’s price. Then assuming that risk preferences of agents have been neutralised, the

drift of the price process normalized by the numeraire has to be equal zero and this condition

is written as a partial differential equation. By a transformation of variables PDE becomes a

heat equation which has a well-known solution.2

Black-Scholes model due to its simplicity and tractability gained so much popularity that it

became a market standard of quoting options. When a trader looks at her screen instead of

seeing option prices she would see implied volatilities - the volatility parameter in the diffu-

sion equation of Black-Scholes model that makes model option price match the current market

option price. Obviously if Black-Scholes assumption of constant volatility would be satisfied

trader should observe the same implied volatilities for all strikes and maturities. However, in

today’s reality3 the market implied volatility surface is far from being flat. Indeed, plotting

2Originally Black and Scholes have derived the PDE describing the option price by a hedging argument.
3This behaviour of markets became extremely evident after the Black monday (market crash of October 19th,

1987). Before this event market implied volatility surfaces were much flatter, close to Black-Scholes World.
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implied volatility against different strikes trader observes a parabolic shape, a deviation from

Black-Scholes World resembling a smile when it is symmetric or a smirk otherwise. Inability of

reproducing a volatility smile/smirk is considered as the main limitation of Black-Scholes model.

In the end of previous century, there have been two major approaches of introducing the smile

in option pricing model developed. The first one is by allowing jumps in the dynamics of

the asset price. Consequently the dynamics of a underlying asset’s price is generalised from

Brownian motion to a Lévy process and the distribution of log-returns admits skewness and

non-zero excess kurtosis. Examples of modelling the price with jump-diffusion process are

Merton (1976); Bates (1996); Geman et al. (2001); Kou (2002).4 Second way of introducing

volatility smile is by allowing a time-varying volatility in diffusion equation. Volatility can

become a deterministic function of price, like it is assumed in local volatility models (Dupire,

1994) or it can be a stochastic process itself, like it is assumed in stochastic volatility models.

One of the first and most celebrated stochastic volatility model is Heston (1993) where the

dynamics of price follows a diffusion process with volatility following mean-reverting process

called Cox-Ingersoll-Ross process (Cox et al., 1985).5

The majority of mentioned option pricing models belong to the family of affine processes.

Roughly speaking, a stochastic process is called affine if the logarithm of characteristic func-

tion of its transition distribution is affine with respect to initial state. Mathematical properties

of affine processes together with theirs financial application to option pricing, credit risk and

interest rates modelling can be found in seminal papers Duffie et al. (2000) and Duffie et al.

(2003). The importance of affine process in finance is twofold: it is very general family of

stochastic process containing most of well-known Markov jump-diffusions processes and it al-

lows for closed-form solutions for majority of pricing problems. In this thesis we will consider

affine processes in discrete time setting.

4For an introduction to jump-diffusion models see Cont and Tankov (2004).
5For an introduction to local and stochastic volatility models see Gatheral (2011).
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In the time-varying volatility models of the ARCH-GARCH families (Engle, 1982; Bollerslev,

1996; Glosten et al., 1993; Nelson, 1991), returns feature conditional heteroskedasticity which

is described by an auto-regressive structure. Describing variance by recursion that facilitates

maximum likelihood estimation has lead GARCH models to pioneer the field of measuring and

predicting the volatility dynamics. More recently, thanks to the availability of high-frequency

data, the so called Realized Volatility (RV) approach also became a prominent approach for

measuring volatility.6 RV is defined as a sum of consecutive squared intra-day returns and under

the assumption that price is a L2 semi-martingale it can be shown that neglecting microstruc-

ture noise it is a consistent estimator of quadratic variation of the price. The key advantage

of RV approach is that the mentioned estimation procedure makes volatility an observable

quantity which removes the need of volatility filtering and this in turn significantly simplifies

estimation of the model parameters. The standard model for describing and forecasting the

dynamics of RV is the Heterogeneous Autoregressive multi-components model by Corsi (2009)

which together with information contained in RV measure provides superior volatility predict-

ing performance.

The main problem of accommodating econometric models for option pricing application was

lack of risk-neutralisation procedure. Relatively lately, Duan (1995) using equilibrium argument

and postulating particular conditions on agent’s risk preference have proposed the locally risk-

neutral valuation relationship for GARCH processes. Since then we have witnessed renaissance

of discrete time volatility models and many examples of GARCH based option pricing models

have been proposed (Heston and Nandi (2000), Gourieroux and Monfort (2007), Christoffersen

et al. (2008) and Gagliardini et al. (2011) among others). Empirical comparison suggests that

GARCH models outperform continuous time stochastic volatility models (Lehar et al., 2002;

Christoffersen et al., 2006). Recently, it has been shown that option pricing models based

6See Andersen et al. (2001b, 2003); Barndorff-Nielsen and Shephard (2001, 2002a,b, 2005); Comte and
Renault (1998).
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on realized volatility provide good performance (Corsi et al., 2013; Christoffersen et al., 2014;

Majewski et al., 2015). In this thesis we will present a general option pricing framework en-

compassing both GARCH and RV based models.

Contrary to continuous-time models, volatility, in discrete time models, is readily observable

from the history of asset prices by filtration procedure (GARCH models) or by precise non-

parametric measurement from intra-day data (RV approach) and consequently all the param-

eters of discrete-time model can be easily estimated directly from the time series of observed

quantities. It holds true even in the presence of complex dynamical features like long memory,

multifractality, cascade and asymmetric effects. These features turn out to be crucial in option

pricing and from now on we will consider only discrete time option pricing models.

1.2 Introduction to stochastic discounting

The basic function of financial market in the economy is an efficient allocation of capital. Agents

can invest their wealth surplus in exchange for future stream of income. The investment de-

cisions of agents are based on two aspects: their statistical view on the cash-flow which is

described by probability law P and their attitude towards particular risks which can be de-

scribed by stochastic discounting. The way in which agents are discounting random payoffs

depends on compensation they are demanding for bearing investment uncertainty and it gives

rise to an operator which associates a price to every claim.

We consider a risk-free asset with interest rate r and a risky asset with price St and geometric

return

yt+1 = log

(
St+1

St

)
defined on a stochastic basis (Ω,F , (Ft)1≤t≤T ,P). The state space under our consideration is

generated by the risky asset price S till some horizon T , Ω = RT . Let L2
T = L2(RT ,P) = {X :
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EP
[∑T

i=1 X
2
i

]
< ∞} be a set of payoffs. It is easy to see that L2

T is a Hilbert space with a

scalar product 〈X, Y 〉 = EP
[∑T

i=1XiYi

]
. Any operator QT : L2

T → R associating a price to a

payoff is called a pricing operator. In this section we will provide conditions which a reasonable

pricing operator should satisfy.

Definition 1. A payoff X ∈ L2
T is an arbitrage opportunity if Xj ≥ 0 for every j ∈ {1, . . . T}

almost surely (P(Xj ≥ 0 for every j ∈ {1, . . . , T}) = 1) with non-zero probability of one

component being positive (P(Xj > 0 for some j ∈ {1, . . . , T}) > 0) and has price QT (X) ≤ 0.

We call an operator QT positive if QT (X) ≥ 0 for X ≥ 0 almost surely, where ≥ has to

be understood componentwise. We call an operator QT strictly positive if it is positive and

additionally QT (X) > 0 if P(Xj > 0 for some j ∈ {1, . . . , T}) > 0. Linear, strictly positive

pricing operators play very important role in asset pricing theory.

Theorem 2. There is no arbitrage opportunities in the market if and only if there exists a

strictly positive linear pricing operator.

The sufficient condition for no arbitrage in the market is an immediate consequence of the

definitions of arbitrage and strictly positive operator. The necessary condition is the difficult

part of the proof and we will not prove it here. It becomes substantially simpler if the state

space Ω is finite. In that case space of claims is equal to Rm, where m is cardinality of Ω

and using results from convex analysis one can easily construct desired operator (see Duffie

(2010) or Cochrane (2005)). In the case when state space is infinite, one has to operate within

topology induced by L2
T space. For the details of the proof see Bühlmann et al. (1998).

The existence of pricing operator guarantees existence of a particular stochastic process.

Theorem 3. If there exists a strictly positive linear pricing operator QT : L2
T → R then there

exists a positive payoff M̃ ∈ L2
T such that QT (X) = E

[
XM̃

]
for all X ∈ L2

T .

Proof. Since L2
T is a Hilbert space it follows immediately from Riesz representation theorem.
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An economic interpretation of M̃ = (M̃1, M̃2, . . . , M̃T ) from Riesz representation in Theorem 3

is that it is discounting the future value of a payoff X. To disentangle the risk discounting from

temporal discounting we introduce process Mt = ertM̃t. Let us observe an interesting property

of process Mt. Introducing notation that S(t) is a payoff from set L2
T with St on t-th component

and 0 on otherwise we obtain for t ≥ 1 that

S0 = QT (S(t)) = EP
[
S(t) · M̃

]
= e−rtEP [StMt] . (1.2.1)

Therefore one can formally show that stochastic process e−rtStMt is a P-martingale. In this

sense process Mt is discounting risk associated with the future states of the economy and it is

called a Stochastic Discount Factor (SDF). Moreover considering the price of risk-free asset we

obtain that it determines the mean of SDF,

EP [Mt] = EP
[
ertM̃t

]
= QT

(
B(t)

)
= 1, (1.2.2)

where B(t) is a bond with maturity t (a risk-free asset with a payoff ert at time t). Higher

moments of SDF depend on risk preferences of investors.

Valuing claims by taking the time-discounted expected value of payoff under physical mea-

sure would lead to arbitrage opportunity and hence it cannot be accepted as an asset pricing

methodology.7 The failure of this approach becomes comprehensible if one acknowledges that

the value of money depends not only on time but also on a state of economy. One dollar in

a bad state of economy is worth more than one dollar in a good state of economy. Therefore,

during pricing of an asset one should discount both time and state of the World with associated

risks, which is achieved by stochastic discounting mechanism.

Existence of stochastic discount factor enables us to define a probability measure Q equivalent

7See a very nice discussion in Carr (2005), where an arising example of arbitrage strategy is provided.
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to P (we call two measures P and Q equivalent when Q(A) = 0 if and only if P(A) = 0). Let

us denote by Pt the family probability measures such that Pt = P|Ft. Then one can construct

a family of probability measures Qt satisfying relations dQt = MtdPt and Qt|Ft−1 = Qt−1.8

Using the notation P = PT and Q = QT we obtain

Q(St ∈ A) = EP [χA (St)Mt] , (1.2.3)

where χA is indicator function of a set A. Using the definition of measure Q and the property

(1.2.1) of stochastic discount factor we obtain that St is a Q-martingale. For that reason

measure Q is called risk-neutral measure (or equivalent martingale measure). Price of any

claim in the market is an expectation of its payoff under risk-neutral measure:

QT
(
S(t)
)

= EQ [St] . (1.2.4)

All above results can be collected in the fundamental theorem of financial mathematics.

Theorem 4 (The First Fundamental Theorem of Asset Pricing). The following five statements

are equivalent:

1. There are no arbitrage opportunities.

2. A strictly positive, linear pricing operator QT exists.

3. A stochastic discount factor exists.

4. There exists a process Mt such that e−rtStMt is a P-martingale.

5. A risk-neutral probability measure exists.

While the First Fundamental Theorem of Asset Pricing states the conditions for the existence

of strictly positive linear pricing operator, the Second Fundamental Theorem of Asset Pricing

8For details see Bühlmann et al. (1996).
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states conditions for the uniqueness of the pricing operator. We call a market complete if agents

can construct a strategy that will generate wealth exactly equal to any claim available in the

market.

Theorem 5 (The Second Fundamental Theorem of Asset Pricing). An arbitrage-free market

is complete if and only if there exists a unique stochastic discount factor.

For the proof of the theorem see Duffie (2010). An example of a complete market is Black-

Scholes model. Stochastic volatility and all models considered in this thesis are incomplete. In

the case of incomplete market one has to determine the pricing kernel. The form of stochastic

discount factor is strictly related to the risk attitude of investors. In Section 2.2 we will see

that stochastic discount factor is determined as a solution to a Pareto optimal allocation in the

case of one asset and several investors. Here we present a result for a stochastic discount factor

in the case of several assets and one agent.

Lets assume there is an economic agent who wants to choose a portfolio θ so that he optimizes

his terminal wealth (at time t) by investing in L risky assets and one risk-free asset. The

optimization problem of the agent is

max
θ

EP [u(W θ
t )
]

(1.2.5)

with the constraint
L∑
i=0

θiS
i
t = W θ

0 , (1.2.6)

where W θ
t is value of portfolio θ at time t and u is a utility function of the agent. The assumption

of no-arbitrage condition and convexity of the function θ → EP
[
u(W θ

t )
]

is sufficient to ensure

the existence of solution θ∗ to the above optimization problem. Then the SDF is given in the
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following form

Mt =
u′(W θ∗

t )

EP
[
u′(W θ∗

t )
] . (1.2.7)

For instance, assuming the logarithmic utility of an investor one obtains that SDF is the inverse

of a Kelly portfolio. For further details see for example Kardaras (2010).

A great advantage of discrete time models is that they offer a simple procedure to estimate

pricing kernel. In continuous-time setting parameters of the model are usually fitted directly to

the option prices, completely neglecting the information contained in the time series of the log-

returns of the underlying and the preferences of agents. On the contrary discrete-time volatility

models provide a straightforward insight how investors are pricing certain risks. For instance,

assuming multi-dimensional power utility function of agents, discrete-time models provide an

easy estimation procedure of variance risk aversion.



Chapter 2

General Option Pricing Framework

2.1 Modelling volatility with multiple components

Despite large success, first stochastic volatility models (Heston, 1993; Heston and Nandi, 2000)

cannot price correctly options with long or short maturity and out-of-money options. As a

consequence they misfit strike profile and term structure of implied volatility surface. The

reason for a poor performance at those regions of moneyness and maturity is that modelling

volatility by single factor of volatility, running on a single time scale, is not sufficient to describe

volatility dynamics. There exist many stylised facts that cannot be explained by single-factor

volatility model. The family of term structures of variance swap has more realistic shapes under

model with multi factors which we discuss in Section 5.2. Moreover principal component anal-

ysis (PCA) shows the necessity of using two components to explain the dynamics of variance

swap rates (Filipovic et al. (2015); Ait-Sahalia et al. (2015)), while PCA of volatility surface

dynamics suggests at least two-three factors (Alexander (2001); Cont et al. (2002)). Finally,

the existence of several stochastic volatility factors running on different time scales has been

proven in the literature using empirical data (see for example Müller et al. (1997)).

The main purpose of introducing a multi-factor structure in volatility modelling is to account

27
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for dependencies among volatilities at different time scales. Currently, there exist two alterna-

tive approaches in the literature. The first one is to decompose the daily volatility into several

factors and model the dynamics of each factor independently, as done by Christoffersen et al.

(2008) or Fouque and Lorig (2011) in terms of short-run and long-run volatility components.

The second approach is to define factors as an average of past volatilities over different time

horizons, for instance the daily, weekly and monthly components in Corsi (2009). In this sec-

tion we describe a general framework introduced in Majewski et al. (2015) which includes both

approaches.

To model the dynamics of log-returns of the risky asset we define the k-dimensional vector of

Ft-measurable volatility factors f
(1)
t , . . ., f

(k)
t which we shortly denote as f t. The daily log-returns

on day t are modelled by equation

yt = r + λ L (f t−1, f t) +
√
L (f t−1, f t) εt , (2.1.1)

where L : Rk×Rk → R+ is a linear function of factors giving volatility at day t, r is the risk-free

rate, λ is the market price of risk, and εt are i.i.d. N (0, 1). Function L acts on f t in the case

of realized volatility models and on f t−1 if GARCH model is considered. The different domain

of function L for those two class of models underlines one of the most important differences

between realized volatility and GARCH modelling approaches. In the case of realized variance

models, volatility at day t is Ft-measurable while for GARCH models, volatility at day t+ 1 is

Ft-measurable. As a consequence a vector of variance factors for realized variance f t corresponds

to the level of variance factors on day t, while in the case of GARCH it corresponds to level of

variance factors on the following day t+ 1. In both cases we model f t+1 as

f t+1|Ft,Lt ∼ D (Θ0,Θ(Ft,Lt)) , (2.1.2)

where D denotes a generic distribution depending on the vector of parameters Θ which is a
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k-dimensional function of the matrices Ft = (f t, . . . , f t−p+1) ∈ Rk×p and Lt = (`t, . . . , `t−q+1) ∈
Rk×q for p > 0 and q > 0, respectively. We consider the case of a linear dependence of Θ on Ft

and Lt

Θ(Ft,Lt) = d +

p∑
i=1

Mif t+1−i +

q∑
j=1

Nj`t+1−j , (2.1.3)

where Mi,Nj ∈ Rk×k for i = 1, . . . , p and j = 1, . . . , q, d ∈ Rk, and vectors `t are of the form

`t =


(
εt − γ1

√
L (f t−1, f t)

)2

...(
εt − γk

√
L (f t−1, f t)

)2

 . (2.1.4)

The vector Θ0 collects all the parameters of the distribution D which do not depend on the past

history of the factors and of the leverage. For the distribution D considered in this thesis (Dirac

delta and non-central Gamma distribution) the sufficient condition for the non-negativity of

process reads:

d ≥ 0 Mi ≥ 0 for all i ∈ {1, . . . , p} Nj ≥ 0 for all j ∈ {1, . . . , q}, (2.1.5)

where ≥ has to be meant as component-wise inequality.

The results presented in this thesis are derived under the general assumption

Assumption 6. The following relation holds true

E
[
ezys+1+b·fs+1+c·`s+1 |Fs

]
= eA(z,b,c)+

∑p
i=1 Bi(z,b,c)·fs+1−i+

∑q
j=1 Cj(z,b,c)·`s+1−j (2.1.6)

for some functions A : R×Rk×Rk → R, Bi : R×Rk×Rk → Rk, and Cj : R×Rk×Rk → Rk,

where b, c ∈ Rk and · stands for the scalar product in Rk.

Our framework is suited to include both GARCH-like models and realized volatility models

or combination of two. As far as the former class is concerned, we encompass the family of
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multiple component GARCH models with parabolic leverage pioneered in Heston and Nandi

(2000) and later extended to the two Component GARCH (CGARCH) by Christoffersen et al.

(2008). For instance, the latter model corresponds to the following dynamics

yt+1 = r + λht+1 +
√
ht+1εt+1 ,

ht+1 = qt+1 + βh (ht − qt) + αh

(
ε2t − 1− 2γhεt

√
ht

)
,

qt+1 = ω + βqqt + αq

(
ε2t − 1− 2γqεt

√
ht

)
.

(2.1.7)

Setting k = 2, we define f
(1)
t = ht+1 − qt+1 and f

(2)
t = qt+1 and rewrite the model as

f
(1)
t+1

f
(2)
t+1

 =

 −αh
ω − αq

+

βh − αhγ2
h −αhγ2

h

−αqγ2
q βq − αqγ2

q

f
(1)
t

f
(2)
t

+

αh 0

0 α2

(εt − γh√L (f t)
)2(

εt − γq
√
L (f t)

)2

 ,

(2.1.8)

where L (f t, f t+1) = f
(1)
t + f

(2)
t = ht. If we now specify for D in eq. (2.1.2) the form of a

Dirac delta distribution, define d = (−αh, ω − αq)t, and identify the matrices M1 and N1 in

a natural way from the right term side of eq. (2.1.8), the model by Christoffersen et al. (2008)

fits the general formula (2.1.2). It is worth mentioning that for the CGARCH model it is not

possible to ensure the non-negative definiteness of both ht and qt for all t (condition (2.1.5) is

not satisfied). Nonetheless, for realistic values of the parameters the probability of obtaining

negative volatility factors is extremely low, and this drawback is largely compensated for by

the effectiveness of the model in capturing real time series empirical features. Since all models

proposed in the thesis are subject to the issue of positivity, we discuss it in greater detail in

Section 4.2.

The second example that we discuss is the class of realized volatility models known as Autore-

gressive Gamma Processes (ARG) introduced in Gourieroux and Jasiak (2006), to whom the

Heterogeneous Autoregressive Gamma (HARG) model presented in Corsi et al. (2013) belongs.

The process RVt is an ARG(p) if and only if its conditional distribution given (RVt−1, . . . ,RVt−p)
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is a noncentred gamma distribution γ̄(δ,
∑p

i=1 βiRVt−i, θ), where δ is the shape,
∑p

i=1 βiRVt−i

the non-centrality, and θ the scale. Then, the model described by eq.s (2.1.2)-(2.1.3) reduces

to an ARG(p) if we fix k = 1, ft = RVt, D (Θ0,Θ(Ft−1)) = γ̄ (δ,Θ(Ft−1), θ) with

Θ0 = (δ, θ)t , and Θ(Ft−1) =

p∑
i=1

βift−i .

In Chapter 2 we will introduce new models belonging to our general framework. They are

extension of HARG-RV model with heterogenous and analytically tractable leverage structure

called LHARG-RV, extension of LHARG-RV with jumps called JLHARG-RV and the mix-

ture of LHARG-RV and GARCH model. Moreover we will reconsider CGARCH model of

Christoffersen et al. (2008) by applying new change of measure to obtain new dynamics under

risk-neutral measure.

Recently, Christoffersen et al. (2014) have proposed an alternative option pricing model nest-

ing GARCH and realized volatilities models called General Affine Realized Volatility (GARV).

Even though both approaches are very general, provide closed-form solutions and allow for

multi component structure, they do not coincide. The main difference is in the addition of

new source of randomness related to the realized volatility. While Christoffersen et al. (2014)

are adding new innovation process in the realized volatility dynamics, we are introducing a

transition distribution (in the examples given in this thesis we consider a non-central gamma

distribution). As a consequence our approach nests HARG-RV model whereas GARV do not.

The general framework defined by eq.s (2.1.1)-(2.1.4) combined with the assumption (2.1.6)

allows us to completely characterise the MGF of the log-returns under the physical measure.

Theorem 7. If the dynamics of the underlying price satisfies Assumption 6 then the moment

generating function of log-returns under the physical measure P is given by recursive relations

in terms of functions A, Bi, Cj, where i ∈ {1, . . . , p} and j ∈ {1, . . . , q}.
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Proof. For the proof and the recursive relations see Appendix A.1.

2.2 Stochastic discounting with multi-dimensional Ess-

cher transform

The standard problem in asset pricing theory is how one can identify the stochastic discount

factor which gives an economically consistent and justifiable price for a contingent claim. The-

orem 4, often called the first fundamental theorem of asset pricing, states that it exists if the

market does not allow arbitrage opportunities. The second fundamental of asset pricing states

that uniqueness of stochastic discount factor is equivalent to completeness of the market. Since

the market considered in our framework are generally incomplete there are many stochastic

discount factors and the choice of a suitable pricing operator is arbitrary.

In our general framework we will apply multi-dimensional exponential-affine stochastic discount

factor given by formula

Mt =
t−1∏
s=0

Ms,s+1 (2.2.1)

where

Ms,s+1 =
e−νf ·fs+1−νyys+1

EP [e−νf ·fs+1−νyys+1|Fs]
, (2.2.2)

with νf ∈ Rk. The one-dimensional and unconditional version of transform of probability mea-

sure given by (2.2.2) was originally introduced to actuarial science in seminal work of Esscher

(1932) where random variables were independent and it was used to approximate the distribu-

tion of aggregate claims. Extensive application of Esscher transform to derivative pricing took

off with an original paper by Gerber and Shiu (1993) where they extended Esscher’s idea to

Lévy processes framework. One-dimensional version of conditional Esscher transfrom described

by equations (2.2.1)-(2.2.2) has been introduced in a beautiful paper by Bühlmann et al. (1996).
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Advantages of using multi-dimensional conditional Esscher transform are threefold. First, it is

easy to write the constraints that the parameters of the Esscher transform have to satisfy in

order to be a stochastic discount factor in our framework.

Theorem 8 (No arbitrage restriction). If the dynamics of the underlying price satisfies As-

sumption 6 then the Esscher transform (2.2.2) is a stochastic discount factor if, and only if the

following relations are satisfied

A(1− νy,−νf ,0) = r +A(−νy,−νf ,0)

Bi(1− νy,−νf ,0) = Bi(−νy,−νf ,0) for i = 1, . . . , p

Cj(1− νy,−νf ,0) = Cj(−νy,−νf ,0) for j = 1, . . . , q.

(2.2.3)

.

Proof. From Theorem 4 we know that there exists an SDF in the market if price process is Q-

martingale or equivalently price process multiplied by stochastic discount factor is P-martingale.

The last condition can be read as

EP [Ms,s+1eys+1|Fs] = er for ∈ {0, 1, . . . , T − 1}. (2.2.4)

Firstly, let us rewrite Esscher transform as

Ms,s+1 =
e−ν1·fs+1−ν2ys+1

EP [e−ν1·fs+1−ν2ys+1 |Fs]

= exp


−A(−νy,−νf ,0)−

p∑
i=1

Bi(−νy,−νf ,0) · f s+1−i

−
q∑
i=1

Ci(−νy,−νf ,0) · `s+1−i − νf · f s+1 − νyys+1

 ,

(2.2.5)

where νf ∈ Rk and functions A, Bi and Cj are defined in (2.1.6). Finally, the condition (2.2.4)
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reads

EP [exp (−νf · f s+1 + (1− νy) ys+1) |Fs]

= exp

(
r +A(−νy,−νf ,0) +

p∑
i=1

Bi(−νy,−νf ,0) · f s+1−i +

q∑
j=1

Cj(−νy,−νf ,0) · `s+1−j

)
.

(2.2.6)

Using once again the relation (2.1.6) we obtain conditions for Esscher transform (2.2.2) to be

an SDF. Following Theorem 4 conditions (2.2.3) can be viewed as no-arbitrage conditions.

Second, SDF (2.2.2) guarantees analytic expression for moment generating function under risk-

neutral measure which allows us to write a semi-closed formula for option price.

Theorem 9. If the dynamics of the underlying price satisfies Assumption 6 and the SDF

is given by (2.2.2) then the moment generating function of log-returns under the risk-neutral

measure Q is given by recursive relations in terms of functions A, Bi, Cj, where i ∈ {1, . . . , p}
and j ∈ {1, . . . , q}.

Proof. For the proof and the recursive relations see Appendix A.1.

Third, Esscher transform has a strong economic foundation. Lets assume that there are N

agents in the economy and the total volume of shares of asset with price St is equal V . Lets

define the wealth income in the economy as follows Wt+1 = V (lnSt+1− lnSt). One of the basic

question in economic theory is which allocation of wealth among agents

(
W

(1)
t+1,W

(2)
t+1, . . . ,W

(N)
t+1

)
(2.2.7)

is optimal. Allocation (2.2.7) can be equivalently expressed in terms of number of shares owned

by each agent (V1, V2, . . . , VN). Let us denote a price of payoff Wt+1 at time t by Qt,t+1 (Wt+1).

In this thesis we will consider Pareto optimal allocation and following Bühlmann et al. (1998)

it can be obtained as Price equilibrium, i.e. at time t two conditions has to be satisfied: for
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each agent j we have that

E
[
uj

(
W

(j)
t+1 −Qt,t+1

(
W

(j)
t+1

)
−mjf t+1

)
|Ft
]

(2.2.8)

achieves maximum among all possible random variables W
(j)
t+1 ∈ L2 and the allocation (2.2.7)

has to satisfy

Wt+1 =
N∑
j=1

W
(j)
t+1. (2.2.9)

Condition (2.2.8) means that agents want to maximise their expected utility of profit from the

investment
(
W

(j)
t+1 −Qt,t+1

(
W

(j)
t+1

))
corrected by the variance factors with penalty coefficients

mj. We will assume that agents have power utility:

uj(x) =
1

γj

(
1− e−γjx

)
for j = 1, . . . , N, (2.2.10)

with risk-aversion parameters given by γj > 0. The above problem can be restated as: which

pricing operator Qt,t+1 is satisfying Pareto optimal allocation? We will derive now Esscher

transform (2.2.2) from problem described by (2.2.7)-(2.2.10).

Theorem 10. Pricing operator Qt,t+1 given by Esscher transform (2.2.2) is a solution to Pareto

optimal allocation problem described by (2.2.7)-(2.2.10).

Proof. Given the concavity of function u, we obtain maximum in (2.2.8) if and only if for every

j the first order condition is satisfied

∂

∂Vj
E
[
uj

(
W

(j)
t+1 −Qt,t+1

(
W

(j)
t+1

)
−mjf t+1

)
|Ft
]

= 0. (2.2.11)

Since conditional expectation is a linear operator we can move differential operator inside and
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we are going to obtain that

E
[
u′j

(
W

(j)
t+1 −Qt,t+1

(
W

(j)
t+1

)
−mjf t+1

)
yt+1|Ft

]
=

= E
[
u′j

(
W

(j)
t+1 −Qt,t+1

(
W

(j)
t+1

)
−mjf t+1

)
|Ft
]
Qt,t+1 (yt+1)

(2.2.12)

From equation (2.2.12) we observe that the candidate Mt,t+1 in Riesz representation has to

satisfy relation

u′j

(
W

(j)
t+1 −Qt,t+1

(
W

(j)
t+1

)
−mjf t+1

)
= E

[
u′j

(
W

(j)
t+1 −Qt,t+1

(
W

(j)
t+1

)
−mjf t+1

)
|Ft
]
Mt,t+1

(2.2.13)

for every j ∈ {1, 2, . . . , N}. Since u′j (x) = e−γx and Qt,t+1

(
W

(j)
t+1

)
is Ft-measurable, we rewrite

(2.2.13) as

e−γjW
(j)
t+1+γjmjf t+1 = E

[
e−γjW

(j)
t+1+γjmjf t+1|Ft

]
Mt,t+1 (2.2.14)

for j = 1, 2, . . . , N and then taking logarithm we obtain

−W (j)
t+1 + mjf t+1 =

1

γj
lnE

[
e−γjW

(j)
t+1+γjmjf t+1|Ft

]
+

1

γj
lnMt,t+1. (2.2.15)

We take a sum of (2.2.15) over j = 1, 2, . . . , N and using notation m = 1
V

∑N
j=1 mj and

1
γ

= 1
V

∑N
j=1

1
γj

we obtain

− γ
V
Wt+1 + γmf t+1 =

γ

V
At + lnMt,t+1 (2.2.16)

where At is some Ft-measurable random variable. From condition (2.2.4) we obtain the form

of At and the stochastic discount factor has the following form

Mt,t+1 =
e−γyt+1+γmf t+1

EP [e−γyt+1+γmf t+1|Ft]
(2.2.17)
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If we compare (2.2.17) with (2.2.2) we obtain an interpretation of the parameters of the Es-

scher transform. The parameter νy is equal to γ i.e. it is aggregated risk aversions of agents

multiplied by the volume of assets. The parameter νf is equal to −γm i.e. it is −γ multiplied

by aggregated variance penalisation of agents divided by the volume of assets. Obviously the

above considerations are only true if the preferences of all agents in the economy are given by

power utility.
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Chapter 3

Particular Models

3.1 Heterogeneous Autoregressive Gamma model of re-

alized volatility with Heterogeneous parabolic Lever-

age (LHARG-RV)

3.1.1 Realized volatility and log-returns dynamics

Continuous-time stochastic volatility models are the most famous way of obtaining heavy-tailed

log-returns in financial mathematics literature. Log-returns dynamics is described by SDE

dY (t) =
(
r + λσ2(t)

)
dt+ σ(t)dW (t),

where r is the risk-free rate, λ is the market price of risk, W (t) is a Brownian motion and σ(t)

is a stochastic process describing the volatility of log-returns. Ané and Geman (2000) show

that Y can be seen as Brownian motion with a changed time

Y (t) = rt+ λIV(t) +W (IV(t)) ,

39
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where IV(t) is integrated variance

IV(t) =

∫ t

0

σ2(s)ds.

In stochastic analysis literature this feature is often described as IV(t) process being a random

time change for all continuous diffusion processes. Identifying integrated variance with a mea-

sure of market activity provide us the financial interpretation of this result: rescaling log-return

process by market activity restores Brownian motion in calendar time.

In the case of continuous-time diffusions integrated variance is equal to quadratic variation

defined as follows

QV(t) = lim
||Pn||→0

n∑
i=1

(Yti − Yti−1
)2,

where Pn stands for an n-element partition of interval [0, t] and the mesh of the partition is the

length of the longest subinterval (||Pn|| = max{|ti − ti−1| : i = 1, . . . , n}). Then

Y (t)|QV(t) ∼ N (rt+ λQV(t),QV(t)) .

Even if volatility σ(t) and quadratic variation are unobservable processes, there exists a reliable

proxy of QV. Let us denote by QVt quadratic variation at day t and by RVt realized variance

at day t

RVt =
M∑
i=1

y2
t,i (3.1.1)

where yt,i are intra-day log-returns

yt,i = Y

(
t− 1 +

i

M

)
− Y

(
t− 1 +

i− 1

M

)
, for i = 1, . . . ,M.

Then RVt is a consistent (as M → ∞) estimator of QVt. Precision or rate of convergence

estimation of quadratic variation with realized variance has been verified in several studies (see
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Barndorff-Nielsen and Shephard (2002b) among others). Description of RV measurement is

described in Section 4.1.

The basic idea of realized variance goes back to Merton (1980) who showed that the integrated

variance of Brownian motion can be approximated by RVt in (3.1.1). Realized Variance as a

measure of volatility was proposed by Andersen et al. (2001b) who have generalised the result

of Merton (1980) to semi-martingales. This model-free (nonparametric) measure makes volatil-

ity an observable quantity, which can have several applications. First statistical properties of

volatility can be tested directly and much simpler than in the case when volatility is latent.

Second it can be applied to forecast future level of volatility with high accuracy. Third infor-

mation contained in realized variance might be very useful in pricing financial derivatives.

Andersen et al. (2001a) and Andersen et al. (2003) show that log-returns standardised by

realized variance are in the first approximation normally distributed.1 Therefore we assume

that log-returns has the following dynamics on daily scale

yt = r + λRVt +
√

RVtεt. (3.1.2)

where εt are i.i.d. with standard normal random distribution. The dynamics of log-returns like

in equation (3.1.2) have been already assumed in Corsi et al. (2013).

3.1.2 Motivation and basic idea of Heterogeneous Autoregressive

processes

Modern volatility models aim to incorporate three stylized fact: long memory in the volatility,

multifractality and volatility cascade. Intuitively, process is perceived to have a long memory

feature if its autocorrelation remains significant for several months. Long memory property of

1When the dynamics of logreturns includes jumps this approximation is not true anymore. In Section 3.4
we are going to consider a model taking into account jumps in realized variance.
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the realized volatility has been widely accepted since the seminal analyses by Ding et al. (1993),

Andersen et al. (2001b) and Andersen et al. (2003). Despite broad recognition of long memory

property there is still a lot of ambiguity about statistical tests verifying its existence. Formally,

time series RVt is said to have long memory property if

∞∑
k=1

Cov (RVt,RVt+k) =∞. (3.1.3)

Since we do not have infinite time series of realized variance, the above definition is useless in

practical applications and it is replaced by testing if volatility has power law decay

Cov (RVt,RVt+k) ∼ C/kγ, (3.1.4)

where γ < 1. Since it is not possible to estimate the asymptotic behaviour of the covariance

function in model-free setting, usually it is done under some specification. For example, the

most classical statistical test for long memory assumes ARFIMA dynamics of realized volatility

which allows us to compute explicitly the variance of integrated realized volatility

V (∆) = Var

[
∆∑
i=1

√
RVi

]
= ∆2−γ, (3.1.5)

where γ is a decay of autocovariance function in (3.1.4). If we obtain that V (∆) behaves like

∆2−γ the test concludes that there is a long memory with parameter γ. However, it turns out

that there exist processes satisfying the above long memory test which have autocorrelation

function without power law decay (see Corsi (2009), LeBaron (2001), Gatheral et al. (2014)).

For this reason, econometricians continue to debate whether market volatility process is a real

long memory process or it just resembles one.

Similar ambiguity arises when multifractality property is considered. We say that RVt is mul-
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tifractal if

E [|RVt|q] = ctζ(q) (3.1.6)

where c is a constant, q > 0 is the order of the moment and ζ(q) is a nonlinear (concave)

function. The evidence of multifractality in financial data has been observed by Ding et al.

(1993), Fisher et al. (1997) and Calvet and Fisher (2002) among others. One can formally show

that only multiplicative process have multifractal property. However, multifractal feature can

be observed in the data generated from a process which is not really multifractal (see LeBaron

(2001) and Corsi (2009)). Both long memory and multi-fractality can be detected falsely, if the

aggregation level in the data is not large enough compared to the lowest frequency component

of the model. These ambiguities about multifractatility and long memory raises doubts about

applying sophisticated multiplicative models that are difficult to identify and estimate, and it

suggests to employ simpler additive process that can exhibit the demanded properties.

The most prominent example of an additive processes generating time series with long memory

and multifractal property is Heterogeneous Autoregressive process (HAR) introduced to finan-

cial literature by Corsi (2009). The basic idea of HAR processes stems from ”Heterogeneous

Market Hypothesis” by Müller et al. (1997) which aims to explain positive correlation between

market volatility and market presence. In the classical, homogeneous market framework with

all market agents identical, the more agents are active in the market, the faster should price

converge reducing the volatility. On the contrary, in the heterogeneous setting, agents try to

execute their transaction at different prices creating volatility.

While heterogeneity of agents may be due to difference in theirs’ beliefs, endowments, degree of

information, risk profiles and so on, the HAR model originates from the assumption that agents

have different investment horizon. Participants of financial markets can be characterised by dif-

ferent trading frequency: agents with very high trading frequency (dealers and high frequency

traders) are actors with low trading frequency (central banks and pension funds). Members of
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each group perceive and react to events on financial markets with different trading frequency so

that theirs contribution to overall market volatility can be described by different components

of volatility.

HAR process is characterised by the different impact that past realized variances aggregated

on a daily, weekly and monthly basis have on today’s realized variance. Lagged terms are

collected in three different non-overlapping factors: RV
(d)
t (short-term volatility factor), RV

(w)
t

(medium-term volatility factor), and RV
(m)
t (long-term volatility factor).

RVt+1 = d+ βdRV
(d)
t + βwRV

(w)
t + βmRV

(m)
t + ert+1 (3.1.7)

where d is some constant, ert+1 is an error term, the source of randomness in the RV’s dynamics

and

RV
(d)
t = RVt, RV

(w)
t =

1

4

4∑
i=1

RVt−i, and RV
(m)
t =

1

17

21∑
i=5

RVt−i.

If we describe the source of randomness by non-central gamma distribution we obtain HARG

process

RVt+1|Ft ∼ γ̄(δ,Θ(RVt), θ) (3.1.8)

where δ and θ are shape and scale parameters, respectively, and location of the distribution is

given by

Θ(RVt) = βdRV
(d)
t + βwRV

(w)
t + βmRV

(m)
t . (3.1.9)

HAR and HARG process reproduce volatility cascade effect - volatility over longer time intervals

has stronger influence on those at shorter time intervals than conversely. The asymmetric

propagation of volatility have been empirically confirmed by Müller et al. (1997) and Zumbach

and Lynch (2001). The economic interpretation of this effect is that while short-term traders

react to long-term volatility levels, long-term traders are not affected by short-term volatility

levels.



3.1. LHARG-RV 45

3.1.3 Realized variance dynamics

An extension of the HARG-RV with a daily binary Leverage component (HARGL) was applied

to option pricing by Corsi et al. (2013). The first main drawback of HARGL model is lack of

closed-form solutions for option prices (pricing needs to be done via heavy Monte Carlo simu-

lation). Another drawback of HARGL model is its too simple and unrealistic form of leverage -

the importance of a heterogeneous structure for leverage is stressed by Corsi and Renò (2012).

Thus we develop an Autoregressive Gamma model with Heterogeneous parabolic Leverage, and

we name it the LHARG-RV model.

LHARG-RV belongs to the family of models described by (2.1.1)-(2.1.4) setting k = 1 and

ft = RVt. Realized variance at time t+ 1 conditioned on information at day t is sampled from

a non-centred gamma distribution

RVt+1|Ft ∼ γ̄(δ,Θ(RVt,Lt), θ) (3.1.10)

with

Θ(RVt,Lt) = d+ βdRV
(d)
t + βwRV

(w)
t + βmRV

(m)
t + αd`

(d)
t + αw`

(w)
t + αm`

(m)
t . (3.1.11)

In the previous equation d ∈ R is a constant and the quantities

RV
(d)
t = RVt, `

(d)
t =

(
εt − γ

√
RVt

)2
,

RV
(w)
t = 1

4

∑4
i=1 RVt−i, `

(w)
t = 1

4

∑4
i=1

(
εt−i − γ

√
RVt−i

)2
,

RV
(m)
t = 1

17

∑21
i=5 RVt−i, `

(m)
t = 1

17

∑21
i=5

(
εt−i − γ

√
RVt−i

)2
,

(3.1.12)

correspond to the heterogeneous components associated with the short-term (daily), medium-

term (weekly), and long-term (monthly) volatility and leverage factors, on the left and right

columns respectively. The structure of leverage is analogous to the one in Heston and Nandi
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(2000), and it is based on asymmetric influence of shock: large positive idiosyncratic component

εt has a smaller impact on RVt+1 than large negative εt. As consequence the log-returns and

variance process are negatively correlated:

Covt−1(yt,RVt+1) = −2θαdγE [RVt|Ft−1]

= −2θ2αdγ (δ + Θ(RVt−1,Lt−1)) .
(3.1.13)

In order to adjust eq. (3.1.11) to our framework we rewrite Θ(RVt,Lt) as

d+
22∑
i=1

βiRVt+1−i +
22∑
j=1

αj

(
εt+1−j − γ

√
RVt+1−j

)2

, (3.1.14)

with

βi =


βd for i = 1

βw/4 for 2 ≤ i ≤ 5

βm/17 for 6 ≤ i ≤ 22

αj =


αd for j = 1

αw/4 for 2 ≤ j ≤ 5

αm/17 for 6 ≤ j ≤ 22

. (3.1.15)

Crucial advantage of LHARG process is affinity, namely it satisfies Assumption 6.

Proposition 11. For LHARG process the following relation holds true

EP [ezys+bRVs+c`s|Fs−1

]
= exp

[
A(z, b, c) +

p∑
i=1

Bi(z, b, c)RVs−i +

q∑
j=1

Ci(z, b, c)`s−j
]
, (3.1.16)

where

A(z, b, c) = zr − 1

2
ln(1− 2c)− δW(x, θ) + dV(x, θ) ,

Bi(z, b, c) = V(x, θ)βi ,

Cj(z, b, c) = V(x, θ)αj .

(3.1.17)
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The functions V, W are defined as follows

V(x, θ) =
θx

1− θx , W(x, θ) = ln (1− xθ) ,

and

x(z, b, c) = zλ+ b+
1
2
z2 + γ2c− 2cγz

1− 2c
.

Proof: See Appendix A.1.

Then, the MGF for LHARG process reads

Proposition 12. Under P, the MGF for LHARG model has the following form

ϕP(t, T, z) = EP [ezyt,T |Ft] = exp

(
at +

p∑
i=1

bt,iRVt+1−i +

q∑
j=1

ct,j`t+1−j

)
(3.1.18)

where

as = as+1 + zr − 1

2
ln(1− 2cs+1,1)− δW(xs+1, θ) + dV(xs+1, θ)

bs,i =

bs+1,i+1 + V(xs+1, θ)βi for 1 ≤ i ≤ p− 1

V(xs+1, θ)βi for i = p

cs,j =

cs+1,j+1 + V(xs+1, θ)αj for 1 ≤ j ≤ q − 1

V(xs+1, θ)αj for j = q

(3.1.19)

with

xs+1 = zλ+ bs+1,1 +
1
2
z2 + γ2cs+1,1 − 2cs+1,1γz

1− 2cs+1,1

.

and the terminal conditions read aT = bT,i = cT,j = 0 for i = 1, . . . , p and j = 1, . . . , q.

Proof: It follows immediately by plugging expressions for A, Bi and Cj (3.1.17) into recursive

relations from Theorem 7.
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Following the reasoning in Appendix F in Gourieroux and Jasiak (2006) one can derive the

stationarity condition for RVt process:

θ
(
βd + βw + βm + γ2 (αd + αw + αm)

)
< 1. (3.1.20)

3.1.4 Risk-neutral dynamics

To preserve analytical tractability of the model under martingale measure we proceed a risk-

neutralisation via Esscher transform suggested in Section (2.2), whose high flexibility allows to

incorporate multiple factor-dependent risk-premia. For LHARG process the proposed transform

takes the following form

Ms,s+1 =
e−νrRVs+1−νyys+1

EP [e−νrRVs+1−νyys+1|Fs]
, (3.1.21)

Esscher transform (3.1.21) has to satisfy no-arbitrage condition in order to be an SDF for

LHARG model. The no-arbitrage condition for LHARG is a consequence of Theorem 8.

Proposition 13. Esscher transform specified as in (3.1.21) is an SDF for LHARG model

defined by eq.s (3.1.2) and (3.1.10)-(3.1.12) if, and only if

νy = λ+
1

2
. (3.1.22)

Proof. The no-arbitrage condition follows from formulae (3.1.17) and relations (2.2.3) noticing

that it is sufficient to impose

x(1− ν2,−ν1, 0) = x(−ν2,−ν1, 0).

Proposition 14. Under the risk-neutral measure Q the MGF for LHARG has the form

ϕQ(t, T, z) = exp

(
a∗t +

p∑
i=1

b∗t,iRVt+1−i +

q∑
j=1

c∗t,j`t+1−j

)
,
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where a∗t , b∗t,i and c∗t,j are given by recursive relations.

Proof. It follows immediately by plugging expressions for A, Bi and Cj (3.1.17) into recursive

relations from Theorem 9. For recursive relations see (A.2.5).

To derive the price of vanilla options, for example, it is sufficient to know the MGF under the

risk-neutral measure Q which has been given in Proposition 14. However, for exotic instruments

it is essential to know the log-return dynamics under Q. The comparison of the physical and

risk-neutral MGFs provides us the one-to-one mapping among the parameters which transforms

the dynamics under Q into the dynamics under P.

Proposition 15. Under the risk-neutral measure Q the realized variance still follows a LHARG

process with parameters

β∗d = 1
1−θy∗βd , β∗w = 1

1−θy∗βw , β∗m = 1
1−θy∗βm ,

α∗d = 1
1−θy∗αd , α∗w = 1

1−θy∗αw , α∗m = 1
1−θy∗αm ,

θ∗ = 1
1−θy∗ θ , δ∗ = δ , γ∗ = γ + λ+ 1

2
,

d∗ = 1
1−θy∗d ,

(3.1.23)

where y∗ = −λ2/2− ν1 + 1
8
.

Proof: See Appendix A.2.2.

From the previous results we can write the simplified risk-neutral MGF which allows us to

reduce the computational burden when computing the backward recurrences.

Corollary 16. Under Q, the MGF for the LHARG model has the same form as in (3.1.18)-

(3.1.19) with equity risk premium λ∗ = −0.5 and d∗, δ∗, θ∗, γ∗, α∗l , β
∗
l for l = d, w,m as

in (3.1.23).
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3.1.5 Particular cases

We now discuss two special cases of the model presented in the previous section. The first

instance is the HARG model with Parabolic Leverage (P-LHARG) that we obtain setting

d = 0 in (3.1.11), while the second model is a LHARG with zero-mean leverage (ZM-LHARG).

The shape of the leverage in the latter has been inspired by the model of Christoffersen et al.

(2008) but in the present context it is enriched by a heterogeneous structure

¯̀(d)
t = ε2t − 1− 2εtγ

√
RVt ,

¯̀(w)
t =

1

4

4∑
i=1

(
ε2t−i − 1− 2εt−iγ

√
RVt−i

)
,

¯̀(m)
t =

1

17

21∑
i=5

(
ε2t−i − 1− 2εt−iγ

√
RVt−i

)
.

In this case the expected value of leverage components is equal zero (E[`
(k)
t ] = 0 for k = d, w,m)

and the linear Θ(RVt,Lt) reads

βdRV
(d)
t + βwRV

(w)
t + βmRV

(m)
t + αd ¯̀(d)

t + αw ¯̀(w)
t + αm ¯̀(m)

t , (3.1.24)

which can be reduced to the form (3.1.11) setting d = −(αd + αw + αm), βl = βl − αlγ
2

for l = d, w,m. As will be more clear in the following section, the introduction of the less

constrained leverage allows the process to explain a larger fraction of the skewness and kur-

tosis observed in real data. However, similarly to what has been discussed in Section 2.1

about Christoffersen et al. (2008), it is no more guaranteed that the non centrality parameter

of the gamma distribution is positive definite. Nonetheless, in the Section 4.2 we will pro-

vide numerical evidence of the effectiveness of our analytical results in describing a regularised

version of this model.
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3.2 Multi-component GARCH models (k-CGARCH)

3.2.1 The model

The starting point of our considerations in this section is a GARCH option pricing model

proposed by Heston and Nandi (2000), in which latent variance of log-returns is described by

NGARCH model of Engle and Ng (1993):

ht+1 = d+mht + n
(
εt − γ

√
ht

)2

. (3.2.1)

ARCH-GARCH models have been proven to be a good volatility predictors, hence it is natural

to consider theirs application to option pricing. Heston and Nandi (2000) derive the closed-

form solution for the price of a European call option. While Heston and Nandi (2000) use a

single lag model, authors are suggesting to extend it with multiple lags to improve the pricing

of long-term options. Another possible extension for the purpose of more accurate pricing long

time to maturity options is to add long-run component which give rise to CGARCH proposed

by Christoffersen et al. (2008). Volatility modelling with short-run and long-run components

enables one to account for dependencies among volatilities at different time-scales. One can

generalise this model to k component structure. In this section we introduce a class of GARCH

models with k components and multiple lags which we label as k-CGARCH(p, q).

We define the k-dimensional vector of variance factors h
(1)
t , . . ., h

(k)
t which we shortly denote as

ht. The variance on day t is defined as a sum of variance factors S (ht) = h
(1)
t + . . .+ h

(k)
t and

the daily log-returns on day t+ 1 are modelled by equation

yt+1 = r + λ S (ht+1) +
√
S (ht+1) εt+1 , (3.2.2)

where r is the risk-free rate, λ is the market price of risk, and εt are i.i.d. N (0, 1). We model
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ht+1 as

ht+1 = d +

p∑
i=1

Miht+1−i +

q∑
j=1

Nj`t+1−j , (3.2.3)

where Mi,Nj ∈ Rk×k for i = 1, . . . , p and j = 1, . . . , q, d ∈ Rk, and the vectors representing

leverage effect `t−j are of the form

`t+1−j =


(
εt+1−j − γ1

√
S (ht+1−j)

)2

...(
εt+1−j − γk

√
S (ht+1−j)

)2

 . (3.2.4)

We prove that the family of k-CGARCH(p, q) processes satisfies the affine property (it satisfies

Assumption 6).

Proposition 17. There exist functions A,Bi,Cj, i ∈ {1, . . . , p} and j ∈ {2, . . . , q} such that

the following relation for the k-CGARCH(p, q) process is satisfied

E
[
ezys+1+b·hs+2+c·`s+1 |Fs

]
= eA(z,b,c)+

∑p
i=1 Bi(z,b,c)·hs+2−i+

∑q
j=2 Cj(z,b,c)·`s+1−j . (3.2.5)

Proof: See Appendix A.3.1.

For k-CGARCH(p, q) processes the moment generating function is available in a closed form:

Proposition 18. Under the physical measure P the MGF of the log-returns yt,T = log(ST/St)

conditional on the information available at time t is of the form

ϕP(t, T, z) = eat+
∑p
i=1 bt,i·ht+2−i+

∑q
j=2 ct,j ·`t+1−j , (3.2.6)

where at, bt,i and ct,j are given by recursive relations.

Proof. We take the form of functions A, Bi, Cj derived in Proposition 17 and apply them to

Theorem 7. For the form of coefficients at, bt,i and ct,j see Appendix A.3.2.
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3.2.2 Risk-neutral dynamics

Change of measure is performed by applying two-dimensional Esscher transform2

Ms,s+1 =
e−νhS(hs+2)−νyys+1

EP [e−νhS(hs+2)−νyys+1|Fs]
. (3.2.7)

The no-arbitrage restriction can be formulated in the terms of the relation between risk-premia.

Proposition 19. The Esscher transform (3.2.7) is an SDF for k-CGARCH(p, q) model if, and

only if

νy = λ+
1

2
+ 2νh

k∑
i=1

k∑
j=1

ni,j(γj + λ), (3.2.8)

where ni,j are elements of matrix N1.

Proof. See Appendix A.3.3.

From relation (3.2.8) one can see that in the case of one-dimensional pricing kernel (νh = 0)

employed in Heston and Nandi (2000) the equity risk premium parameter νy equals equity

premium plus one half. Therefore all parameters of the option pricing model are fixed on

the level of estimation from log-returns time series. In the case of two-dimensional pricing

kernel, νh remains a free parameter that has to be calibrated on the option data time series.

This allows the model to reconcile the time series properties of stock returns with option prices.

The knowledge of functions A, Bi, Cj for i = 1, . . . , p and j = 1, . . . , q allows to write the

conditional moment generating function (see Theorem 9) needed to price vanilla contingent

claims. However, the computation of the VRP requires the knowledge of the complete dynamics

under measure Q. Moreover the derivation risk-neutral dynamics reduces the computational

burden in option pricing (likewise in the case of LHARG model).

2Theoretically one could propose the multi-dimensional, factor-dependent pricing kernel, but as it will become
clear later (see discussion in Appendix A.3.4) it would rise issue of identification problem.
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Proposition 20. Under the risk-neutral measure Q, obtained with SDF given by (3.2.7), the

dynamics of log-returns for k-CGARCH(p, q) model is still governed by equations (3.2.2)-(3.2.3)

with parameters

λ∗ = −1/2,

d∗ =
d

1 + 2νh
∑k

i=1

∑k
j=1 ni,j

,

Mi
∗ = Mi for 1 ≤ i ≤ p

Ni
∗ =

Ni(
1 + 2νh

∑k
i=1

∑k
j=1 ni,j

)2 for 1 ≤ i ≤ q,

γ∗l = γl + νy + 2νh

k∑
i=1

k∑
j=1

ni,j(γl − γj) for 1 ≤ l ≤ k.

(3.2.9)

The relation between the dynamics of the process under physical and risk-neutral measure is

described by equations:

yt = r − 1

2
S (h∗t ) + ε∗t

√
S (h∗t ), (3.2.10)

h∗t =
ht

1 + 2νh
∑k

i=1

∑k
j=1 ni,j

. (3.2.11)

Proof. See Appendix A.3.4.

Given the dynamics under Q, the risk-neutral moment generating function is a straightforward

consequence of Proposition 18.

Corollary 21. Under Q, the MGF for the k-CGARCH(p, q) model has the same form as

in (3.2.6) with parameters of the process λ∗, d∗, M∗, N∗, γ∗ as in (3.2.9).

Equation (3.2.11) provides a clear interpretation of the risk-premia appearing in the SDF (3.2.7).

We first observe that reducing the dimensionality of the Esscher transform to one (by setting

νh = 0) implies that the volatility process under the two measures remains the same. When νh
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is nonzero then the risk-neutral and physical volatilities differ and their ratio reads

ξ =

√
S (h∗t)√
S (ht)

=

(
1 + 2νh

k∑
i=1

k∑
j=1

ni,j

)−1/2

. (3.2.12)

It is worth noticing that our specification of the pricing kernel implies a constant volatility

ratio, which is mainly determined by the volatility risk premium νh.

3.2.3 The log-ratio of the risk-neutral and physical densities

Early option pricing literature (for example Rubinstein (1976) and Brennan (1979)) implicitly

assumes the existence of a monotonic relation between the risk-neutral and physical densities

log-ratio and market returns. However, in recent empirical studies it has been shown that the

ratio has a parabolic shape with a positive smile (see Bakshi et al. (2010)). As pointed out

by Christoffersen et al. (2013), a premium for the variance risk explains a number of puzzles

concerning the level and movement of implied option variance compared with observed time

series variance. The key feature of their modelling approach is that, although the pricing kernel

is monotonic on both returns and variance, the projection of the pricing kernel onto the stock

price return alone is U-shaped. The strong option smile associated to this non-monotonic

relation can be quantified looking at the natural logarithm of the ratio of the risk-neutral and

physical conditional densities – f and f ∗, respectively – implied by the model

ln (f ∗(yt|L (f t))/f(yt|L (f t))) . (3.2.13)

The parabolic shape of the log-ratio (3.2.13) for SDF (3.2.7) and multi-component GARCH

models readily follows noticing that yt|L (f t) ∼ N (r + λL (f t) ,L (f t)) under measure P and

yt|L (f∗t) ∼ N (r − 1
2
L (f∗t) ,L (f∗t)) under measure Q. Knowing that L (f∗t) = ξ2L (f t) we

obtain the following corollary (for details see Appendix A.3.5).

Corollary 22. The logarithm of the ratio of the risk-neutral and physical conditional densities
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is a quadratic function of the log-return

ln

(
f ∗(yt|L (f∗t))

f(yt|L (f t))

)
=

ξ2 − 1

2L (f t) ξ2
(yt − r)2−

(
λ+

1

2

)
(yt − r) +

4λ2 − ξ2

8
L (f t)− ln ξ. (3.2.14)

From Corollary 22 we can infer the importance of the ratio ξ. When ξ = 1 (νh = 0), then

the log-ratio (3.2.13) becomes a linear decreasing function of log-returns. Whereas for values

greater than 1 (νh < 0) the relation (3.2.14) becomes U-shaped, consistently with empirical

observations.

3.3 Combination of latent and realized volatility (GARCH-

LHARG-RV)

3.3.1 The model

Our general framework allows us to incorporate a model being a combination of realized volatil-

ity and latent volatility. Measure of RV applied in Section 3.1 is a very precise measure of

continuous part of volatility and its dynamics can be modelled accurately by LHARG process.

Though it does not take into account volatility due to jumps and to overnight effect. In this

section we will add to RV modelled with LHARG, a parallel factor of latent volatility which

we will model with GARCH process and we label the complete model GARCH-LHARG-RV.

GARCH-LHARG-RV is described by general framework (2.1.1)-(2.1.4) setting k = 2, f t =

(ht+1,RVt) and L (f t−1, f t) = f
(1)
t−1 + f

(2)
t = ht + RVt. Thus, log-returns evolve according to the

equation

yt+1 = r + λ (RVt+1 + ht+1) +
√

RVt+1 + ht+1εt+1 . (3.3.1)

To model dynamics of latent variance h we adopt non-linear GARCH model of Heston and
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Nandi (2000), but in our case leverage depends on both components of volatility:

ht+1 = ω + βhht + αh

(
εt − γh

√
RVt + ht

)2

. (3.3.2)

Analogously dynamics of RV is described by LHARG process with leverage component depend-

ing on both volatility components:

RVt+1|Ft ∼ γ̄(δ,Θ(RVt,Lt), θ) (3.3.3)

with

Θ(RVt,Lt) = βdRV
(d)
t + βwRV

(w)
t + βmRV

(m)
t + αd ¯̀(d)

t + αw ¯̀(w)
t + αm ¯̀(m)

t . (3.3.4)

In previous equation d ∈ R is a constant and the quantities

RV
(d)
t = RVt, ¯̀(d)

t = ε2t − 1− 2γεt
√

RVt + ht,

RV
(w)
t = 1

4

∑4
i=1 RVt−i, ¯̀(w)

t = 1
4

∑4
i=1

(
ε2t−i − 1− γεt−i

√
RVt−i + ht−i

)
,

RV
(m)
t = 1

17

∑21
i=5 RVt−i, ¯̀(m)

t = 1
17

∑21
i=5

(
ε2t−i − 1− 2γεt−i

√
RVt−i + ht−i

)
,

(3.3.5)

correspond to the heterogeneous components associated to the short-term (daily), medium-

term (weekly), and long-term (monthly) volatility and leverage factors, on the left and right

column respectively. In this thesis we consider only zero-mean leverage case (E[`
(k)
t ] = 0 for

k = d, w,m).3

It can be shown that that GARCH-LHARG-RV model satisfies Assumption 6. Then, the MGF

can be obtained easily from Theorem 7.

3Similarly to ZM-LHARG and CGARCH processes, positivity of Θ(RVt,Lt) and of volatility is no more
guaranteed, but it can be justified by approximation analysis in Section 4.2.



58 CHAPTER 3. PARTICULAR MODELS

Proposition 23. Under the physical measure P the MGF for GARCH-LHARG has the form

ϕP(t, T, z) = exp

(
at + bht ht+1 +

22∑
i=1

brt,iRVt+1−i +
22∑
j=1

ct,j`t+1−j

)
,

where at, bht , brt,i, ct,j are given by recursive relations and `t =
(
εt − γ

√
RVt + ht

)2
.

Proof. See Appendix A.4.1.

3.3.2 Risk-neutralisation

To derive the pricing measure Q we apply three-dimensional Esscher transform

Ms,s+1 =
e−νrRVs+1−νhhs+2−νyys+1

EP [e−νrRVs+1−νhhs+2−νyys+1|Fs]
, (3.3.6)

where νr, νh, νy ∈ R are parameters of the transform. The main advantage of the above change

of measure is that it clearly identifies the sources of risk and explicitly compensate them with

separated risk-premia. The parameter νr corresponds to risk related with continuous part of

realized variance and νh to the remaining, latent part of daily volatility.

The derivation of the no-arbitrage condition for GARCH-LHARG readily follows from the

Proposition 8.

Proposition 24. Esscher transform (3.3.6) is an SDF in a setting described by equations

(3.3.1)-(3.3.5) if, and only if

νy = λ+
1

2
+ 2νhαh(γh + λ). (3.3.7)

Proof. The no-arbitrage condition follows from formulae (A.4.7) and relations (2.2.3).

Proposition 25. Under the risk-neutral measure Q the MGF for GARCH-LHARG-RV has
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the form

ϕQ(t, T, z) = exp

(
a∗t +

p∑
i=1

b∗t,iRVt+1−i +

q∑
j=1

c∗t,j`t+1−j

)
,

where a∗t , b∗t,i and c∗t,j are given by recursive relations.

Proof. It follows immediately by plugging expressions for A, Bi and Cj (A.4.7) into recursive

relations from Theorem 9. For recursive relations see Appendix A.4.2.

3.4 Jump component of realized variance (JLHARG-

RV)

3.4.1 The model

In this section we employ the measurement of jump component of RV instead of modelling latent

volatility component ht with GARCH process like we did in Section 3.3. Under the assumption

of the continuity of price process, quadratic variation of log-price is equal to integrated variance,

like we had in Section 3.1. In fully generality, in the presence of jumps, the total quadratic

variation of a log-price process has another component - squared jump variation. In this section

we take into account both components of quadratic variation and we assume the following

dynamics of log-returns

yt = r + λ
(
RVc

t + RVj
t

)
+

√
RVc

t + RVj
tεt. (3.4.1)

where r is the risk-free rate, λ is the market price of risk, εt are i.i.d. with standard normal

random distribution, RVc
t is continuous component of RV and RVj

t is jump component of RV

(details on the RV measure employed in the implementation of the model are given in Section

4.2).

Dynamics proposed in equation (3.4.1) may be justified by the empirical studies of Ander-
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sen et al. (2001a), who find that the distributions of daily equity returns standardized by the

corresponding RV is approximately Gaussian and Andersen et al. (2010) who investigate the

deviation from normality ascribed to a jump component in the price process. The latter results

indicate that the discontinuous component has a minor impact on the distributional proper-

ties, since the jump-adjusted standardized series are not systematically closer to the Gaussian

than the yt/
√
RVt standardized returns.4 This is especially true for time series generated from

futures contracts on the S&P500 Index, which are recognized in Andersen et al. (2010) to

suffer from minimal microstructure distortion and low liquidity effects. As can be seen from

the density plots of Figure 3.1, we observe the same feature for the S&P500 Futures in our

sampling period. The two-sample Kolmogorov-Smirnov test between the RV standardized and

jump-adjusted series indicates that the two distributions cannot be distinguished. If any, by

judging on the value of the kurtosis of 3.64 for the jump-adjusted distribution and 3.06 for the

RV standardized, we conclude that the latter is closer to a normal distribution than the former

one.

The dynamics of the realized volatility components is given by sampling at time t + 1 a new

realisation from two distributions conditionally independent given the information at time t.

The continuous part of RV depends on past realisations of RVc and on past realisations of

leverage term `t which is a quadratic function of the total realized variance thus including the

contributions from the jumps

¯̀
t = ε2t − 1− 2γεt

√
RVc

t + RVj
t . (3.4.2)

We introdcue notation RVc
t = (RVc

t−21, . . . ,RVc
t) and Lt = (¯̀

t−21, . . . , ¯̀
t). Then the continuous

4“Perhaps surprisingly, the results indicate that neither of the jump-adjusted standardized series are system-
atically closer to Gaussian than the non-adjusted realized volatility standardized returns. [...] One reason is that
jumps largely self-standardize: a large jump tends to inflate the (absolute) value of both the return (numerator)
and the realized volatility (denominator) of standardized returns, so the impact is muted.” - Andersen et al.
(2010)
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Figure 3.1: Histogram of returns rescaled by total realized volatility (yt/(
√

RVc + RVj)), his-
togram of returns purified from jumps rescaled by continuous component of realized volatility
(ỹt/(

√
RVc), where ỹt are returns without jumps) and standard normal distributition.



62 CHAPTER 3. PARTICULAR MODELS

component of RV is drawn from a non-central gamma distribution

RVc
t+1|Ft ∼ γ̄(δ,Θ(RVc

t,Lt), θ) , (3.4.3)

where δ is the shape parameter, θ is the scale and the non-centrality is given by

Θ(RVc
t,Lt) = βdRV

c (d)
t + βwRV

c (w)
t + βmRV

c (m)
t + αd ¯̀(d)

t + αw ¯̀(w)
t + αm ¯̀(m)

t . (3.4.4)

where βi ∈ R+, αi ∈ R+ are constant and the quantities

RV
c (d)
t = RVc

t ,
¯̀(d)
t = ¯̀

t ,

RV
c (w)
t = 1

4

∑4
i=1 RVc

t−i,
¯̀(w)
t = 1

4

∑4
i=1

¯̀
t−i ,

RV
c (m)
t = 1

17

∑21
i=5 RVc

t−i,
¯̀(m)
t = 1

17

∑21
i=5

¯̀
t−i

(3.4.5)

represent the heterogeneous components corresponding to the short-term or daily (d), medium-

term or weekly (w) and long-term or monthly (m) realized variance and leverage terms, respec-

tively on the left and right columns above. In this thesis we consider only zero-mean leverage

version of JLHARG-RV model (E[`
(k)
t ] = 0 for k = d, w,m).5 A positive leverage version of

JLHARG model is discussed in Alitab et al. (2015).

The jump component of the realized variance is instead modelled as a compound Poisson process

with intensity Θ̃ and sizes sampled from a gamma distribution with shape δ̃ and scale θ̃

RVj
t+1|Ft ∼

nt+1∑
i=1

Yi with nt+1 ∼ P(Θ̃) and Yi i.i.d. ∼ γ(δ̃, θ̃). (3.4.6)

Equations (3.4.1)-(3.4.6) completely characterise the dynamics of log-returns by Autoregressive

Gamma model in Realized Volatility with heterogeneous leverage and jumps and we acronym

5Similarly to ZM-LHARG and CGARCH processes, positivity of Θ(RVt,Lt) and of volatility is no more
guaranteed, but it can be justified by approximation analysis in Section 4.2.
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it JLHARG-RV model. The crucial advantage of JLHARG process is that it is affine, namely

Assumption 6 is satisfied for some functions A, Bi and Cj. Knowing the form of the functions

one can prove the following

Proposition 26. Under P, the MGF of the log-return yt,T =
∑T

k=t+1 yk for JLHARG model

has the following form

φP (t, T, z) = EP [ezyt,T |Ft] = exp

(
at +

p∑
i=1

bt,iRVc
t+1−i +

q∑
i=1

ct,i`t+1−i

)
(3.4.7)

where at, bt,i and ct,i are given by recursive relations.

Proof. See Appendix A.5.1.

3.4.2 Risk-neutralisation

To proceed change of measure we apply Esscher transform whose high flexibility allows to

incorporate multiple factor-dependent risk-premia:

Ms,s+1 =
e−νrRVcs+1−νjRVjs+1−νyys+1

EP
[
e−νrRVcs+1−νjRVjs+1−νyys+1 |Fs

] . (3.4.8)

Specifically, it allows to take into account both variance risk premia components: continuous

(νr) and jump (νj), in addition to the standard equity premium (νy). Esscher transform (3.4.8)

has to satisfy no-arbitrage condition in order to be an SDF.

Proposition 27. The Esscher transform (3.4.8) is an SDF for JLHARG model if and only if

νy = λ+
1

2
.

Proof. The no-arbitrage condition follows from formulae (A.5.13) and relations (2.2.3).

An advantage of SDF (3.4.8) is that under risk-neutral measure the dynamics of the log-returns
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is still given by JLHARG process with mapped parameters. Moreover we are able to provide a

one-to-one mapping of parameters from P to Q dynamics.

Proposition 28. Under risk-neutral measure Q the realized variance follows a JLHARG process

with parameters

β∗d =
βd

1− θyc ∗ , β
∗
w =

βw
1− θyc ∗ , β

∗
m =

βm
1− θyc ∗ ,

α∗d =
αd

1− θyc ∗ , α
∗
w =

αw
1− θyc ∗ , α

∗
m =

αm
1− θyc ∗ ,

θ∗ =
θ

1− θyc ∗ , δ
∗ = δ, γ∗ = γ + λ+

1

2
, (3.4.9)

d∗ =
d

1− θyc ∗

Θ̃∗ =
Θ̃(

1− θ̃yj ∗
)δ̃ , δ̃∗ = δ̃, θ̃∗ =

θ̃

1− θ̃yj ∗
,

where yc ∗ = −λ2/2− νr + 1
8

and yj ∗ = −λ2/2− νj + 1
8
.

Proof: Appendix A.5.2.

Knowing the dynamics of process under Q, moment generating function under risk-neutral

measure is a straightforward consequence of Proposition 26.

Corollary 29. Under Q the MGF of the JLHARG model is formally the same as in Proposition

26 with equity risk premium parameter λ∗ = −0.5 and d∗, δ∗, θ∗, Θ̃∗, δ̃∗, θ̃∗ γ∗, α∗l , β
∗
l for l =

d, w,m as in (3.4.9).

We point out that the risk premia parameters νr and νj need to be calibrated on option

data. All the parameters governing the dynamic of the process under Q, can be explicitly

computed through the set of equation (3.4.9) from those estimated under P once (νr, νj) has

been calibrated.



Chapter 4

Option Pricing

4.1 Estimation of realized variance

In this section we describe the measurement of realized variance employed in RV models

(LHARG-RV, GARCH-LHARG-RV, JLHARG-RV). For this family of stochastic volatility

models, we employ the RV computed from tick-by-tick data for the S&P 500 Futures, from

January 1, 1990 to December 31, 2007. The choice of future contracts is for the sake of their

high liquidity - while the S&P 500 index is not exchanged directly, futures are traded exten-

sively. Moreover time series generated from futures contracts on the S&P 500 Index suffer from

minimal microstructure noise.1

Our RV measurement procedure is based on estimating total quadratic variation of log-prices

using the Two-Scale estimator introduced by Zhang et al. (2005) (with a fast scale of two ticks

and a slower one of 20 ticks). Such a proxy of total quadratic variation includes jumps in

both returns and volatility. To identify the jump component we apply two step procedure. In

the first step we proceed the Threshold Bipower variation method with a significance level of

99% by Corsi et al. (2010) which detects the spikes in RV time series and we remove it from

1See Andersen et al. (2010).

65
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RV time series. In the second step we remove the most extreme observations in the remain-

ing RV series, seemingly due to volatility jumps, employing a threshold-based jumps detection

method: we set a four standard deviations threshold computed on a rolling window of 200 days.

The purified RV series are our proxy of the integrated variance (IVt). In models LHARG-RV

and GARCH-LHARG-RV we use it as a measure of RV and we label it RVt. We label the

same quantity as RVc
t (continuous component of RV) in JLHARG-RV model. The difference

between total quadratic variation and continuous component of RV is called jump component

of RV and it is labeled as RVj
t . On Figure 4.1 we plot the time series of continuous and jump

components of RV.

Both RV measures (RVc
t and RVj

t) are proxies of volatility during the trading period, i.e., from

open to close. As a result, they neglects the contribution coming from overnight returns. To

overcome this problem for models without GARCH component (LHARG-RV and JLHARG-

RV), we rescale our RV estimator to match the unconditional mean of the squared daily (i.e.,

close-to-close) returns. In the case of GARCH-LHARG-RV model overnight effect is captured

by GARCH component.

4.2 Estimation of models under physical probability mea-

sure

We choose the FED Fund rate as proxy for the risk-free rate r in all considered models. For em-

pirical assessment we will apply two-component GARCH model by Christoffersen et al. (2008)

with dynamics (2.1.7) and we will apply to it a new SDF proposed in (3.2.7). The estimation

of parameters under physical measure of CGARCH models is done by maximum likelihood

estimation (MLE) used by Bollerslev (1996) and others.
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Figure 4.1: Time series of RVc and RVj.
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The estimation of the parameters in LHARG-RV model is greatly simplified by the use of

Realized Volatility, which avoids any filtering procedure related to latent volatility processes.

Firstly we determine the market price of risk λ in equation (3.1.2) regressing the centred and

normalised log-return on the realized volatility. This regression is performed by rewriting the

equation (3.1.2) as
yt+1 − r√

RVt+1

= λ
√

RVt+1 + εt+1, (4.2.1)

The use of an RV proxy for the unobservable volatility allows us simply to employ a Maximum

Likelihood Estimator (MLE) on historical data. Arguing as in Gourieroux and Jasiak (2006),

the conditional transition density for the LHARG-RV family is available in closed-form, and so

the log-likelihood reads

lTt (δ, θ, d, βd, βw, βm, αd, αw, αm, γ) =

−
T∑
t=1

(
RVt

θ
+ Θ (RVt−1,Lt−1)

)
+

T∑
t=1

log

(
∞∑
k=1

RVδ+k−1
t

θδ+kΓ(δ + k)

Θ (RVt−1,Lt−1)k

k!

)

where Θ (RVt−1,Lt−1) is given in eq. (3.1.11). To implement the MLE, we truncate the infinite

sum on the right hand side to the 90th order as done in Corsi et al. (2013).

In the case of JLHARG-RV model we have two time series for the RV components (RV
(c)
t ,RV

(j)
t )

and again proceed the estimation via Maximum Likelihood Estimator. According to the model

specified in equation (3.4.3) and (3.4.6), the log-likelihood functions for the continuous and
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jump RV components, respectively lct,T and ljt,T , are given by the following series-expansions

lct,T (δ, θ, d, βd, βw, βm, αd, αw, αm, γ) = −
T∑
t=1

(
RVc

t

θ
+ Θ (RVt−1,Lt−1)

)

+
T∑
t=1

log

(
∞∑
k=1

(RVc
t)
δ+k−1

θδ+kΓ (δ + k)

Θ (RVt−1,Lt−1)k

k!

)
(4.2.2)

ljt,T

(
δ̃, θ̃, Θ̃

)
= −

T∑
t=1

(
RVj

t

θ̃
+ Θ̃

)
+

T∑
t=1

log

 ∞∑
k=1

(
RVj

t

)kδ̃−1

θkδ̃Γ
(
kδ̃
) Θ̃k

k!

 . (4.2.3)

We truncate the infinite sum on the right hand side in both log-likelihoods to the 90th order

similarly to LHARG-RV estimation.

In the case of GARCH-LHARG-RV model, in the first step we apply MLE to estimate λ and

parameters of GARCH part of the model given the returns and time series of continuous realized

volatility RVt. Next, having the parameters of latent variance process dynamics, we filter out

the time series of ht and finally, we apply MLE to estimate the parameters of the LHARG-RV

part of the model.

For the sake of completeness we also estimate HARGL-RV presented in Corsi et al. (2013). THe

dynamics of HARGL differs from LHARG by the non-central parameter in gamma distribution

which in case of HARGL is equal

Θ(RVt) = βdRV
(d)
t + βwRV

(w)
t + βmRV

(m)
t + αdI(yt<0)RV

(d)
t , (4.2.4)

where I(yt<0) takes value one if the log-return at date t is negative and takes value zero otherwise.

In this way we lose analytical tractability of the model and heterogeneity of leverage component.

The estimation procedure for the HARGL model can be found in Corsi et al. (2013).
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Model

Param. HARGL P-LHARG ZM-LHARG JLHARG CGARCH GARCH-LHARG
λ 2.005 2.005 2.005 2.005 2.9392 2.2

(1.489) (1.489) (1.489) (1.489) (1.5614) (1.504)
θ 1.116e-005 1.068e-005 1.117e-005 9.357e-06 - 6.9802e-06

(9.864e-008) (9.466e-008) (9.484e-008) (8.3e-08) (6.1416e-08)
δ 1.395 1.243 1.78 1.880 - 1.7568

(0.04646) (0.0482) (0.04319) (2.8e-02) (0.034487)
βd 2.993e+004 2.429e+004 3.382e+004 3.939e+04 - 5e+004

(1037) (439.4) (180.1) (6.2e+02) (9.6e+003)
βw 2.796e+004 2.317e+004 2.542e+004 3.028e+04 - 4.55e+004

(1247) (1199) (225) (2.8e+02) (2.2e+003)
βm 1.132e+004 1.322e+004 1.338e+004 1.689e+04 - 2.18e+004

(897) (1690) (142.7) (1.3e+02) (253)
αd 1.389e+004 0.2376 0.3991 0.4338 - 0.4129

(1235) (0.00113) (0.007164) (7.3e-03) (0.046074 )
αw - 0.1194 0.3446 0.410 - 0.41801

(0.002058) (0.01162) (2.1e-02) (0.13826)
αm - 3.85e-006 0.4034 0.519 - 0.25521

(3.649e-006) (0.02082) (7.5e-02) (0.68535)
γ - 223.7 134.8 125.4 - 126.54

(5.122) (9.525) (6.8) (13.702 )

θ̃ - - - 4.70e-05 - -
(3.0e-06)

δ̃ - - - 1.152 - -
(2.5e-02)

Θ̃ - - - 0.2994 - -
(8.9e-03)

ω - - - - 1.2667e-006 0
(1.8699e-007) (0)

αh - - - - 1.49e-006 2.8999e-06
(6.5849e-007) (6.6497e-07)

βh - - - - 0.49505 0.647
(0.061499) (0.06215)

γh - - - - 425.59 237.46
(169.0385) (36.62)

αq - - - - 2.4502e-006 -
(2.8226e-007)

βq - - - - 0.9861 -
(0.0020844)

γq - - - - 87.824 -
(15.0899)

Log-lik. -25344 -25279 -25234 -24476 12473 23175

Table 4.1: Maximum likelihood estimates, robust standard errors, and models’ performance.
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The variance process in the majority of models considered in the thesis (ZM-LHARG, JL-

HARG, GARCH-LHARG, CGARCH) is not always well-defined. For example, while we can

ensure that P-LHARG model satisfies condition (2.1.5), for the ZM-LHARG model the relation

(3.1.24) cannot be prevented from obtaining negative values. Since the ZM-LHARG is worth

considering, we provide some numerical evidence supporting the analytical MGF as a reliable

approximation of the MGF computed by simulation. We compare an extensive Monte Carlo

(MC) simulation of the ZM-LHARG dynamics where the non centrality parameter is artificially

bounded from below (by zero) with the analytical MGF computed according to Proposition 12.

As the probability of obtaining a negative value for the non centrality of the gamma distribution

is small (given the parameter values in Table 4.1), we can assess that the analytical MGF is a

good approximation of the unknown MGF of the regularised ZM-LHARG. We fix the number

of MC to 0.5 × 106 and consider six relevant maturities, one day (T = 1), one week (T = 5),

one month (T = 22), one quarter (T = 63), six months (T = 126), and one year (T = 256).

In the left column from top to bottom of Figure 4.2 we plot the MGF, the real and imaginary

parts of the characteristic function under the physical measure, respectively, while in the right

column we show the same quantities under the risk-neutral measure. The lines correspond to

the analytical MGFs while the MC expectations are represented by points whose size is larger

than the associated error bars. The quality of the agreement is extremely high. Moreover, the

MC estimate of the probability associated with the event Θ(RVt−1,Lt−1) < 0 is 2×10−5 under

P, and 3 × 10−6 under Q, confirming once more the reliability of the approximation. Similar

analysis can be proceeded for ZM-JLHARG, GARCH-LHARG or CGARCH processes.

4.3 Option pricing methodology and calibration of SDF

Our option data set contains European out-of-the-money (OTM) options on S&P 500 index for

each Wednesday from January 1, 1996 to December 31, 2004. We first apply a standard filter

removing options with maturity less than 10 days or more than 365 days, implied volatility

larger than 70% and prices less than 0.05$ (see Barone-Adesi et al. (2008) and Corsi et al.
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Figure 4.2: Left column, from top to bottom: MGF, real and imaginary parts of the char-
acteristic function of the ZM-LHARG process under the physical measure P. Right column,
from top to bottom: MGF, real and imaginary parts of the Characteristic Function of the ZM-
LHARG process under the risk-neutral measure Q. The lines correspond to different maturities
T = 1, 5, 22, 63, 126, 252, while points to Monte Carlo expected values; Monte Carlo error bars
are smaller than the point size.
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(2013)). Using K/St as definition of moneyness, we filter out deep OTM options with mon-

eyness larger than 1.3 for call options and less than 0.7 for put options. This choice yields a

total number of 46066 observations. For our purposes, put options are identified as Deep OTM

(DOTM) if their moneyness is between 0.7 ≤ m ≤ 0.9 and OTM if 0.9 < m ≤ 0.98. On the

other hand, call options are said to be DOTM if 1.1 < m ≤ 1.3 and OTM if 1.02 < m ≤ 1.1.

Options are called at-the-money (ATM) if 0.98 < m ≤ 1.02. As far as the time to maturity

τ is concerned, we identify options as short maturity (τ ≤ 50 days), short-medium maturity

(50 < τ ≤ 90 days), long-medium maturity (90 < τ ≤ 160 days) and long maturity (τ > 160

days).

Proposed Esscher transform (2.2.2) has a vector of free parameters. In all considered models

suiting our general framework νy is constrained by no-arbitrage condition, but vector νf has

to be calibrated on option data (for example νr in case of LHARG-RV model and νh in case

of CGARCH model). For the calibration procedure, we adopt a method based on an uncon-

ditional optimisation made by minimising the distance between the market implied and the

model implied volatility surface. For this reason, we divide our dataset in different intervals

of moneyness and maturity obtaining a 5x4 moneyness-maturity grid. For each subset of the

grid we compute the unconditional mean of the market implied volatility of the options within

the subset. In this way, we obtain a 20-points-grid representation of the implied volatility

surface as shown in Table 4.2. Finally, the calibration of the variance risk-premia is obtained

by computing the same grid for the model implied volatility and finding the optimal values for

the νf which minimise the distance between the two grids, i.e. The objective function fobj(νf )

is defined as

fobj(νf ) =

√√√√ 5∑
i=1

4∑
j=1

(
IVmod

ij (νf )− IVmkt
ij

)2
,

and represents the distance between the two matrices relative to the model implied volatility

surface and the market one, whose elements are IVmod
ij (νf ) and IVmkt

ij , respectively. In Table
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4.2 we report variance-risk parameters of SDF calibrated on option data.

Parameter
Model νr νh νj

HARGL -3119 - -
P-LHARG -3069 - -
ZM-LHARG -3375 - -
JLHARG -4442 - -1033
CGARCH - -46437 -
GARCH-LHARG 1195 -7798 -

Table 4.2: Variance-risk parameters of SDF calibrated on option data.

There can be three classes of numerical methods for option pricing distinguished: Monte Carlo

simulations, numerical scheme for solving the pricing PDE and Fourier transform techniques.

Since characteristic function is available for price processes in models considered in the thesis,

we compute price of European options by means of Fourier inversion methods which turn out

to be a very effective tool. In order to implement the option pricing scheme numerically, we use

the COS method which is based on Fourier-cosine expansions and it was introduced by Fang

and Oosterlee (2008).

We can summarise the option pricing procedure in four steps: (i) estimation of the parameters

under the physical measure P; (ii) unconditional calibration of parameter vector νf ; (iii) map-

ping of parameters of the model estimated under P into parameters under Q; (iv) numerical

computation of option prices through COS method using the MGF recursive formulas with

parameters under Q.
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4.4 Option pricing performance

In this section we present empirical results for option pricing with models presented in the

thesis. We compare CGARCH model with the SDF proposed in our general framework with

the original change of measure proposed by Christoffersen et al. (2008) which is based on making

equal the second moment of the process under both measures. As a result the dynamics of the

process is described under Q by (2.1.7) with parameters λ∗, ω, α1, β∗1 , γ∗1 , α2, β∗2 , γ∗2 , where

λ∗ = 1/2 and

β∗1 = β1 + α1

(
γ∗21 − γ2

1

)
+ α2

(
γ∗22 − γ2

2

)
,

β∗2 = β2 + α1

(
γ∗21 − γ2

1

)
+ α2

(
γ∗22 − γ2

2

)
,

γ∗i = γi + λ+
1

2
for i = 1, 2.

(4.4.1)

Note that by construction this change of measure does not require calibration of any parameter

under martingale measure and it gives the risk-neutral variance equal to physical one with the

ratio ξ between volatilities under measure Q and P equal to 1.2 Whereas applying change of

measure by SDF (3.2.7) give us

ξ =
1√

1 + 2ν1 (α1 + α2)
. (4.4.2)

We also compare RV models with the HARGL-RV presented in Corsi et al. (2013). Since the

functional form of the leverage of the latter model is not consistent with the current general

framework, closed-form formulae for the MGF and for option pricing are not available. Thus,

we resort to numerical methodologies such as extensive Monte Carlo scenario generation.

As a measure of the option pricing performance we use the percentage Implied Volatility Root

2Notice that risk-neutral dynamics proposed by Christoffersen et al. (2008) is not equivalent to dynamics
obtained by applying SDF (3.2.7) with ν1 = 0. Even if in both cases risk-neutral variance is equal to physical
variance, particular components of variance have different dynamics.
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Mean Square Error (RMSEIV ) put forward by Renault (1997) and computed as

RMSEIV =

√√√√ 1

N

N∑
i=1

(
IV mkt

i − IV mod
i

)2 × 100 ,

where N is the number of options, IV mkt and IV mod represent the market and model implied

volatilities, respectively. An alternative performance measure corresponds to the Price Root

Mean Square Error (RMSEP ) defined in a similar way as RMSEIV but with implied volatil-

ities replaced by relative prices. We employ the RMSEIV measure since it tends to put more

weight on OTM options, while the RMSEP emphasises the importance of ATM options.

Implied Volatility RMSE

Moneyness
Model 0.9 < m < 1.1 0.8 < m < 1.2
HARGL 4.067 6.428
P-LHARG 3.664 5.026
ZM-LHARG 3.539 4.732
GARCH-LHARG 3.385 4.349
CGARCH 1D 5.543 6.877
CGARCH 2D 4.426 5.384

Table 4.3: Global option pricing performance on S&P500 out-of-the-money options from Jan-
uary 1, 1996 to December 31, 2004, computed with the CRV measure estimated from 1990
to 2007. We use the maximum likelihood parameter estimates from Table 4.1. GARCH 1D
stands for model with original change of measure (4.4.1) and GARCH 2D stands for model
with change of measure by applying SDF (3.2.7) .

The result of our empirical analysis is that both LHARG models outperform competing RV-

based stochastic volatility model (HARGL). Table 4.3 shows that P-LHARG and ZM-LHARG

outperforms HARGL by about 4% and 7%, respectively, in range of moneyness 0.9 < m < 1.1

and by about 17% and 22%, respectively, in range of moneyness 0.8 < m < 1.2. Moreover,

ZM-LHARG improves P-LHARG by about 3% and 6%, in range of moneyness 0.9 < m < 1.1
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and 0.8 < m < 1.2, respectively. Adding latent volatility factor in GARCH-LHARG-RV gives

improvement of about 4% in narrow and 8% in wide region of moneyness. Table 4.3 underlines

also the importance of variance risk premium in option pricing via the example of CGARCH

model. The change of measure in CGARCH proposed by Christoffersen et al. (2008) does

not take into account variance risk premium and it underperforms the model with change of

measure done by applying SDF (3.2.7). Introducing a variance risk premium in SDF gives

us immediately an improvement of 22.1% for the wider range of moneyness. Both CGARCH

model exhibit worse performance than RV models. This can be explained by the importance of

information contained in realized variance for option pricing. The detailed analysis in Tables

4.5 and 4.6 shows that the discussed improvements are basically independent of the region of

moneyness or maturity.

Comparing JLHARG (and also GARCH-LHARG) performance with ZM-LHARG, when RV in

the latter model is rescaled to adjust the mean level of volatility is unfair. By rescaling RV

we are pretending to take into account jumps in volatility in ZM-LHARG even if the model is

not designed to do this. Therefore in Table 4.4 we compare JLHARG and GARCH-LHARG

with ZM-LHARG where RV is rescaled just by over-night effect for JLHARG and ZM-LHARG

models (in the case of GARCH-LHARG any rescaling in not needed as GARCH component

is taking into account both jumps and over-night effect in volatility). We can observe that

adding jumps in volatility in JLHARG-RV gives improvement of about 4% and 14%, in range

of moneyness 0.9 < m < 1.1 and 0.8 < m < 1.2, respectively. Moreover GARCH-LHARG out-

performs JLHARG by 40% and 29%, in range of moneyness 0.9 < m < 1.1 and 0.8 < m < 1.2,

respectively. This huge outperformance of GARCH-LHARG over JLHARG can be explained

in two ways. First the impact of jumps on volatility is not big compared with over-night effect

and other latent factors of volatility. Second JLHARG lacks memory in modelling jumps in

volatility which implies too little persistence.
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Implied Volatility RMSE

Moneyness
Model 0.9 < m < 1.1 0.8 < m < 1.2
ZM-LHARG 5.690 7.186
JLHARG 5.454 6.159
GARCH-LHARG 3.385 4.349

Table 4.4: Comparison of option pricing performance for ZM-LHARG, JLHARG and GARCH-
LHARG on S&P500 out-of-the-money options from January 1, 1996 to December 31, 2004.

The difference in option pricing performance can be explained by looking at term structure of

skewness and kurtosis. On Figure 4.3 we compare the skewness and excess kurtosis for models

using RV time series. Good option pricing performance of GARCH-LHARG model corresponds

with the largest negative skewness and the highest excess kurtosis. On Figure 4.4 we compare

the skewness and excess kurtosis for CGARCH under measure P and measure Q resulting from

a one-dimensional and two-dimensional pricing kernel - green and red lines, respectively. We

can clearly see that the process under the risk-neutral measure corresponding to a SDF which

includes compensation for variance risk exhibits the largest negative skewness and the highest

excess kurtosis.
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Figure 4.3: Skewness and excess kurtosis under physical measure for processes: HARGL, P-
LHARG, ZM-LHARG, JLHARG and GARCH-LHARG. Since process HARGL does not have
MGF, we compute skewness and kurtosis by means of Monte Carlo simulation.
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Figure 4.4: Skewness and excess kurtosis of CGARCH process under physical and risk-neutral
measure, computed as in Christoffersen et al. (2008) (1D SDF) and by means of the two-
dimensional SDF (3.2.7). Skewness and kurtosis are computed using third and forth order
derivatives of MGF.
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Maturity

Moneyness τ ≤ 50 50 < τ ≤ 90 90 < τ ≤ 160 160 < τ

Panel A HARGL Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 16.806 8.802 7.325 5.951
0.9 < m ≤ 0.98 5.778 4.533 4.143 4.118
0.98 < m ≤ 1.02 2.771 2.922 3.134 3.591
1.02 < m ≤ 1.1 3.436 3.387 3.403 3.591
1.1 < m ≤ 1.2 4.696 3.982 3.902 3.838

Panel B P-LHARG Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 11.160 7.579 6.390 5.368
0.9 < m ≤ 0.98 4.991 4.080 3.841 3.951
0.98 < m ≤ 1.02 2.650 2.849 3.077 3.546
1.02 < m ≤ 1.1 2.984 2.975 3.123 3.421
1.1 < m ≤ 1.2 4.322 3.095 3.137 3.359

Panel C ZM-LHARG Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 10.458 6.807 5.741 4.975
0.9 < m ≤ 0.98 4.708 3.837 3.658 3.877
0.98 < m ≤ 1.02 2.650 2.878 3.083 3.574
1.02 < m ≤ 1.1 2.941 2.899 3.036 3.381
1.1 < m ≤ 1.2 4.244 2.769 2.748 3.115

Panel D JLHARG Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 11.228 7.356 5.732 4.720
0.9 < m ≤ 0.98 6.345 5.169 4.454 4.455
0.98 < m ≤ 1.02 5.782 5.073 2.872 3.261
1.02 < m ≤ 1.1 5.820 5.328 4.799 4.875
1.1 < m ≤ 1.2 6.791 4.968 4.663 4.932

Table 4.5: Detailed option pricing performance on S&P500 out-of-the-money options from
January 1, 1996 to December 31, 2004, computed with the CRV measure estimated from 1990
to 2007. We use the maximum likelihood parameter estimates from Table 4.1.
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Maturity

Moneyness τ ≤ 50 50 < τ ≤ 90 90 < τ ≤ 160 160 < τ

Panel E GARCH-LHARG-RV Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 9.257 5.776 4.794 4.178
0.9 < m ≤ 0.98 4.029 3.313 3.322 3.667
0.98 < m ≤ 1.02 2.680 2.917 3.210 3.801
1.02 < m ≤ 1.1 3.030 3.170 3.465 3.889
1.1 < m ≤ 1.2 4.732 2.945 3.197 3.765

Panel F CGARCH 1D Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 13.570 9.921 8.964 8.155
0.9 < m ≤ 0.98 7.536 6.744 6.652 6.911
0.98 < m ≤ 1.02 4.495 4.975 5.382 6.202
1.02 < m ≤ 1.1 3.521 2.828 2.719 3.243
1.1 < m ≤ 1.2 7.098 2.942 2.331 2.405

Panel G CGARCH 2D Implied Volatility RMSE

0.8 ≤ m ≤ 0.9 10.742 6.502 4.849 3.907
0.9 < m ≤ 0.98 5.763 4.079 3.500 3.828
0.98 < m ≤ 1.02 3.658 3.409 3.743 4.963
1.02 < m ≤ 1.1 3.164 3.430 5.124 7.507
1.1 < m ≤ 1.2 6.357 2.644 4.533 7.438

Table 4.6: Continuation of Table 4.5.



Chapter 5

Variance Risk Premium

5.1 k-CGARCH implied variance risk premium

The equity risk premium represents the additional profit that investors demand from investing

in an asset with uncertain future price level. It is formally defined as

ERP(t, T ) =
1

T

(
EP
t

[
St+T − St

St

]
− EQ

t

[
St+T − St

St

])
. (5.1.1)

Since the measure Q is chosen so that the process exp (−rt)St is a Q-martingale one can easily

see that the second expectation in (5.1.1) is equal to exp (rT ) − 1, regardless of which model

is used to describe the dynamics of the asset’s price St. Therefore, the equity risk premium

is a sole property of the measure P. Since under our modelling assumptions the properties of

the physical measure are fixed conditionally on Ft we conclude that investors require a stable

compensation for the uncertainty about future price levels.

On the other hand variance risk premium essentially depends on both measures P and Q.

Following Bollerslev and Todorov (2011) we define

VRP(t, T ) =
1

T

(
EP
t

[
QVt,t+T

]
− EQ

t

[
QVt,t+T

])
, (5.1.2)

83



84 CHAPTER 5. VARIANCE RISK PREMIUM

where QVt,t+T stands for the quadratic variation of the asset price over time [t, t + T ]. Un-

derestimating variance risk premium was one of the reasons for fail of Long-Term Capital

Management in 1997 (see Lowenstein (2000)). During 1998 implied volatility was relatively

high, around 19% with realized volatility at the level of 16%. Big spread between the two

volatilities can be translated into high fee for issuing options. However, higher initial profits

from going short with volatility are usually associated by a higher risk of temporal changes

of returns variance. LTCM was neglecting that risk and was writing options to the extent in

which it has been responsible for a fourth of the overall market and it gained a nickname the

Central Bank of Volatility. This strategy had exposed the hedge fund to huge losses when the

realized variance raised.

After the LTCM collapse in 1998, variance swap contracts with payoff being the difference

between realized variance and predefined strike, started to be traded OTC extensively. Buyers

of such contracts are usually mutual funds and portfolio managers who need insurance against

rising volatility. On the other hand variance swap contracts can be used for speculative rea-

sons, as they provide investors with pure volatility exposure. Consequently there has been an

increasing interest in pricing those contracts and in understanding the nature of the difference

between volatilities under risk-neutral measure and physical one.

Variance risk premium, the spread between conditional expectation of variance under physical

and risk-neutral measure, is not only interesting for the sake of understanding the features of

financial contracts like variance swap rate and volatility derivatives in general, but also from the

economic point of view. Variance risk premium quantifies the reward that investor demand for

bearing risk related with unknown future level of variance. It has been well-documented that

variance risk premium is significantly non-zero and it is time-varying with nontrivial dynamics

(Carr and Wu (2009); Bakshi et al. (2010)). Since lack of information about distribution of

future realized volatility under physical measure, a complete model-free dynamic measure of
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variance risk premium is unfeasible.

In the case of GARCH processes the proxy of the daily quadratic variation is L (f t) under the

physical measure and L (f∗t+k) under the risk-neutral measure. Consistently, the variance risk

premium in the GARCH modelling framework is equal to

VRP(t, T ) =
1

T

(
EP
t

[
T∑
k=1

L (f t+k)

]
− EQ

t

[
T∑
k=1

L (f∗t+k)

])
. (5.1.3)

Straightforward computations show that

EP
t [f t+T ] = d̃ + M̃d̃ + M̃

2
d̃ + . . .+ M̃

T−2
d̃ + M̃

T−1
f t+1, (5.1.4)

where

d̃ = d +


n

(d)
1

...

n
(d)
k

 and M̃ = M +


n

(m)
1 . . . n

(m)
1

...
...

n
(m)
k . . . n

(m)
k

 , (5.1.5)

with n
(d)
i = ni,1 + . . . + ni,k and n

(m)
i = ni,1γ

2
1 + . . . + ni,kγ

2
k. An analogous formula can be

derived for EQ
t

[
f∗t+T

]
with d̃∗ and M̃∗. From this we immediately obtain

Proposition 30. The variance risk premium for the k-CGARCH(1, 1) model with pricing ker-

nel (3.2.7) is given by

VRP(t, T ) =

=
1

T
L
(

(T − 1)d̃ + (T − 2)M̃d̃ + . . .+ M̃
T−2

d̃ +
(
I + M̃ + . . .+ M̃

T−1
)

f t+1

)
− 1

T
L
(

(T − 1)d̃∗ + (T − 2)M̃∗d̃∗ + . . .+ M̃∗
T−2

d̃∗ +
(
I + M̃∗ + . . .+ M̃∗

T−1
)

f∗t+1

)
.

(5.1.6)

For technical reasons in this thesis we consider only CGARCH-implied variance risk premium

(VRP computations are simplified in this case). Moreover, in the next section we show that
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CGARCH implies a realistic family of term structures if variance swap rates.

5.2 Hump-shaped term structure of variance swap rate

The second component of the right-hand-side of equation (5.1.2) is termed Variance Swap Rate

(VSR). The aim of this section is to show that the family of CGARCH-implied VSR term

structures is richer and more realistic than in the case of single component models. The VSR

term structure at day t is a function of T defined as follows

V SRt(T ) =
1

T
EQ
t

[
T∑
k=1

L
(
f∗t+k

)]
. (5.2.1)

Stated differently, the variance swap rate is an average of expected variances under measure Q

over next T days. For one-component volatility models belonging to our framework, we show

that the VSR term structure is always a monotonic function. From (5.1.4) we see that

EQ
t

[
L
(
f∗t+T+1

)]
− EQ

t

[
L
(
f∗t+T

)]
= L

(
M̃∗

T−1
(
d̃∗ +

(
M̃∗ − I

)
f∗t+1

))
. (5.2.2)

For a single factor model L (f∗t ) = f ∗t and all the quantities in (5.2.2) are scalars, and we

conclude that {EQ
t

[
L
(
f∗t+T

)]
}T≥1 (and consequently {V SRt(T )}T≥1) is an increasing sequence

if

f ∗t+1 <
d̃∗

1− M̃∗
, (5.2.3)

decreasing if the opposite inequality holds, and constant if the relation (5.2.3) becomes an

equality. Recognising that d̃∗/(1−M̃∗) is the variance unconditional mean, we have that at every

day t the VSR term structure is either a constant function of T – if the risk-neutral variance

f ∗t+1 is equal to the unconditional level – or a strictly monotonic function of T otherwise. This

is a serious limitation of single factor volatility models. In reality the variety of shapes assumed

by the term structure is richer and it includes so called hump-shaped term structures. We

now show that two-factor volatility models actually feature humps in the VSR term structure.
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Using (5.1.4) one can rewrite (5.2.1) as

V SRt(T ) =
1

T
L
(

(T − 1)d̃∗ + (T − 2)M̃∗d̃∗ + . . .+ M̃∗
T−2

d̃∗ +
(
I + M̃∗ + . . .+ M̃∗

T−1
)

f∗t+1

)
,

(5.2.4)

where d̃∗ and M̃∗ are defined in (5.1.5). Employing formula (5.2.4) we draw in the top panel

of Figure 5.1 the term structure for the CGARCH model. We clearly recognise a hump-shaped

term-structure – firstly it increases and then becomes a decreasing function of the maturity.

The decomposition in the middle panel of Figure 5.1 explains how the hump in term structure

can be obtained (we draw the two components of variance swap rate which can be obtained

from formula (5.2.4)). Let us consider a day when the long-term component is relatively high

and decreasing, while the short-term component is negative but increasing. Moreover, for small

maturities the tangent of the short-term component is larger in absolute terms than the tan-

gent of the long-term component, and this relation is reversed for longer maturities. Then, as a

consequence of the superposition of two components, the first derivative of the complete curve

switches sign and features a hump-shaped VSR term structure.

The analysis of term structures induced by GARCH models supports our choice of two-component

GARCH models when considering the variance risk premium. Since the variance swap rate is a

component of the variance risk premium, it is necessary to employ multi-component volatility

models to correctly capture the information content carried by the VSR over different maturi-

ties. On the bottom panel of Figure 5.1 we can see that the hump from the VSR term structure

transfers to the VRP term structure. In section 5.4 we test stock return predictability exploiting

the information content of the term structure of variance risk premium.
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Term Structure of Variance Risk Premium

Figure 5.1: Term structure of annualised variance swap rate and variance risk premium ob-
tained from CGARCH with initial annual variance set equal to 10.21%, short-run component
of variance equal to −1.76%, and long-run component equal to 11.97%. Parameters of the
model are given in Table 4.1 with νf = −46437.
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5.3 Dynamic measurement of CGARCH-implied vari-

ance risk premium

Recently, Wang and Eraker (2015) have proposed a nonlinear diffusion model based measure-

ment of variance risk premium fitting it directly to VIX and VIX derivatives data. Moreover

Ait-Sahalia et al. (2015) calibrate the term structure of VRP implied by jump-diffusion model

on variance swap market data and they investigate investors’ willingness to ensure against

volatility risk and its relation with various economic indicators. Since variance swap contracts

and other volatility derivatives are mainly traded by hedge funds and the objectives of invest-

ment in the variance swap rate market are different from the stock market, one cannot in general

expect that the model-implied curve conditioned on information from option and stock market

data will coincide with the variance swap rate curve observed in the market. Therefore in our

study we propose a dynamic measure of the variance risk premium implied by the nonlinear two

component GARCH model fitted to stock and option dataset. Due to market segmentation our

term structure of VRP will contain different information than term structure seen in variance

swap market and we claim that our methodology of extracting term structure of VRP provides

a significant predictor of stock market excess returns.

Due to the market incompleteness there are infinite SDFs consistent with no-arbitrage con-

dition. In CGARCH model each SDF is identified by a free parameter νh which represents

an aggregate attitude of investors towards the uncertainty about future level of volatility. If

we assume that agents are maximising their power utility function given by (2.2.8) then νh is

equal to mνy where m represents how much investors are penalising the input in utility for high

volatility (we remind that νy is fixed by no-arbitrage condition). Since investors active in the

market might change from one week to another, we relax the assumption that m and conse-

quently νh is constant over the entire period. Instead we assume that the variance premium νh

follows a stochastic dynamics. Specifically, we assume that ν
(t)
h is a P-martingale. Since we do
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not price the risk associated with the randomness of νh, we replace its future values with the

best predictor, ν̂
(t)
h = E

[
ν

(s)
h |Ft

]
for all s ≥ t. Then, on each Wednesday t market applies a

different pricing kernel according to the formula

M
(t)
s,s+1 =

e−ν̂
(t)
h L(fs+2)−νyys+1

EP
[
e−ν̂

(t)
h L(fs+2)−νyys+1 |Fs

] for s ≥ t. (5.3.1)

In order to extract the temporary information on variance risk premium from the option data

we apply a dynamic calibration procedure. We calibrate parameter ν̂
(t)
h of SDF (5.3.1) each

week to obtain different mapping of the parameters of the model estimated under P into the

parameters under Qt. The whole VRP dynamic measurement procedure can be described in

four steps. The first one is done once per all Wednesdays:

1. estimation under the physical measure P,

The steps from second to the forth are repeated every Wednesday t on data from option market

on that Wednesday:

2. We measure the value of SDF parameter ν̂
(t)
h doing calibration conditioned on Wednesday

t on out-of-money put and call European options traded on Wednesday t,

3. Mapping of the parameters of the model estimated under P into the parameters under Qt

using the current SDF parameter ν̂
(t)
h on that week and transformation (3.1.23).

4. Having extracted information from implied volatility surface we compute GARCH-implied

variance risk premium measure:

VRPG(t, T ) =
1

T

(
EP
t

[
T∑
k=1

S (ht+k)

]
− EQt

t

[
T∑
k=1

S
(
h∗t+k

)])
, (5.3.2)

where Qt is a time varying risk-neutral measure obtained in point 3 of the algorithm.

We would like here to emphasis that we do not consider described above algorithm as a dynamic

model for option pricing (because as such it would be inconsistent in the sense of Richter and
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Teichmann (2014)) but as a posteriori procedure to extract from the market data the informa-

tion on model-implied variance risk premium.

In this section we analyse the dynamics of the variance risk premium in the special case when

T is equal to 22 days. The choice of T is motivated by the availability of a market bench-

mark for the variance risk premium. In fact, the second component in the right hand side of

equation (5.3.2) – the conditional expected value of annualised variance over the next month

under the martingale measure – is the variance swap rate VSRt(22) (see formula (5.2.4)). Then,

following Carr and Wu (2006) and Bollerslev et al. (2009) we approximate it by the square of

the VIX Index. Under the assumption that the stock price dynamics does not admit jumps,

both quantities are equal 1. On the top panel of Figure 5.2 we present VIX2 and the value of

VSRt(22) computed using the CGARCH model and the pricing kernel (3.2.7) 2.

To measure the market view on realized variance over next 22 days under physical measure

we follow the approach by Bollerslev and Todorov (2011) based on reduced-form time series

models. For tractability reasons we apply the HAR-RV modelling approach of Corsi (2009)

and we assume the model-implied conditional expectations as a good proxy for market-implied

expectations. On the bottom panel of Figure 5.2 we compare the expected variance over next

22 days under objective measure obtained with the CGARCH and HAR-RV models.

To sum up the proxy for market variance risk premium over next month can be read as:

VRPM(t, 22) =
1

22

22∑
k=1

EP
t [RVt+k]− VIX2

t , (5.3.3)

where estimate of EP
t [RVt+k] is based on the application of the HAR model to the Realized

1See Filipović (2013) and Ait-Sahalia et al. (2015).
2Time series of VIX Index has been downloaded from http://finance.yahoo.com.
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Figure 5.2: Expected variance over next month from 1996 to 2005. Top panel: comparison
between squared VIX Index and expected variance over next month under risk-neutral measure
resulting from CGARCH. Bottom panel: expected variance over next month under physical
measure resulting from HAR-RV and CGARCH models.
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Volatility process RVt
3. On Figure 5.3, we present the variance risk premium computed for

different models and different assumptions about the parameter νf . From the first panel we

clearly see the reason why νf is termed variance premium: When νf is equal to zero then also

the variance risk premium is approximately 0, whereas for νf statically calibrated to option

data we obtain a substantial negative premium (around −2 percent). This latter case also

demonstrates that the variance risk premium is not constant over time but undergoes sizable

fluctuations which can be ascribed to variations of the conditioning volatility factors. The

same panel shows that this effect is exacerbated moving to the dynamic calibration on a weekly

basis. The second panel compares the variance risk premium implied by the CGARCH model

calibrated every Wednesday with the variance risk premium measured in the market using for-

mula (5.3.3). In Figure 5.4 we plot the time evolution of the bucket VRPG(t, 22) and of the

slope ∆VRPG(t) of the CGARCH-implied VRP term structure.

5.4 Predictability of excess returns in the stock market

with variance risk premium

The quality assessment of our variance risk premium dynamic measure includes its ability to ex-

plain the stock market returns. The predictive relationship between the variance risk premium

and future stock returns has been acknowledged in several studies (Bollerslev et al. (2009);

Drechsler and Yaron (2011); Du and Kapadia (2012); Camponovo et al. (2014); Bollerslev et al.

(2014) among others). We test if information contained in the proposed CGARCH-implied

VRP term structure can improve predictability of future long-run stock returns with respect

to well-established predictors of stock returns. These include the Cyclically Adjusted Price

Earning ratio (CAPEt) of Schiller (2000) and the slope of the Treasury yield curve, also called

Term Spread (TMSPt), defined as the difference between the ten-year T-bond and the three-

3The measure of realized volatility is based on the methodology proposed by Corsi et al. (2013).
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Figure 5.3: Variance risk premium with T = 22 from 1996 to 2005. Top panel: CGARCH-
implied variance risk premium obtained with different νf in SDF (3.2.7): zero, constant –
calibrated on the whole period of option data set – and dynamically calibrated every Wednesday.
Bottom panel: comparison between VRPG(t, 22) (model-implied with dynamic calibration) and
VRPM(t, 22) (market variance risk premium).



5.4. PREDICTABILITY OF EXCESS RETURNS WITH VRP 95

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
−15

−10

−5

0

5

A
n

n
u

a
li
z
e

d
 V

a
ri
a

n
c
e

(%
)

CGARCH−implied Variance Risk Premium

 

 

∆ VRP
G

VRP
G

(t,22)

Figure 5.4: Time evolution from 1996 to 2005 of the monthly model-implied VRP, and of the
difference between annual and monthly model-implied VRP (∆VRPG).

month T-bill yields. We also compare the predictive power of CGARCH-implied VRP with

the standard market measure of the variance risk premium (5.3.3). In Table 5.1 we present the

basic statistics and correlations for the considered predictors.

To test the predictive power of CGARCH-implied VRP we perform a regression of excess

log-returns aggregated at different investment horizons (three months and one year) over our

variance risk premium measures (5.1.6) and the other competitive predictors in various con-

figurations. Specifically, the regression is performed with respect to the initial point of the

VRP term structure VRPG(t, 22) and its slope ∆VRPG(t), defined as the difference between

VRPG(t, 252) and VRPG(t, 22). For the monthly variance risk premium VRPG(t, 22) we take

the one from the last Wednesday of the month. For all regression coefficients we report Newey-

West t-statistics corrected for heteroskedasticity and serial correlation effects. Finally, to assess

the significance of coefficients in regressions with overlapping returns and persistent predictors
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ERt CAPEt TMSPt VRPM(t, 22) VRPG(t, 22) ∆VRPG(t, 252)
mean 3.391 30.650 1.565 -1.959 -2.252 -2.253
st dev 44.172 6.540 1.186 1.638 1.670 1.363
skewness -0.608 0.744 0.159 -1.029 -1.648 -1.275
kurtosis 4.373 2.215 1.878 6.355 7.428 5.681

correlation
ERt 1.000 -0.124 -0.049 -0.189 -0.232 -0.212
CAPEt 1.000 -0.719 -0.074 -0.219 -0.470
TMSPt 1.000 0.140 0.253 0.400
VRPM(t, 22) 1.000 0.744 0.691
VRPG(t, 22) 1.000 0.778
∆VRPG(t, 252) 1.000

Table 5.1: Basic statistics of excess returns, CAPE, TMSP and VRP. ERt stands for excess
monthly log-returns and ∆VRPG(t, 252) = VRPG(t, 252)− VRPG(t, 22).

we report t-statistics computed following Hodrick (1992).

The results of the regressions are presented in Tables 5.2 and 5.3, from which several important

observations can be drawn. First, the variance risk premium computed with the procedure

proposed in Section 5.3 improves predictability of stock returns when compared to the market

benchmark. Second, the forecasting power of the variance risk premium is stronger over short

horizons, where it performs better than economic fundamentals. Finally we observe that en-

riching the VRP term structure with the information for large T (like VRPG(t, 252)) increases

the adjusted R2 of the linear regression. Given the relative scarcity of options with time to

maturity close to one year it is difficult and questionable to recover the same information em-

ploying the model-free VRP measurements proposed in the econometric literature.

When only one variance risk premium is considered as regressor, its coefficient is always nega-

tive. This translates into the rule of thumb to buy the stock when the variance risk premium

is low. Since low levels of variance risk premium usually correspond to high levels of VIX, and
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variance swaps in general, our findings are consistent with an old Wall Street’s wisdom: “When

the VIX is high, it’s time to buy, when the VIX is low, it’s time to go.” 4

In the case when we include in the regression the slope of the VRP term structure we observe

that its coefficient becomes more significant than the one associated to the one-month maturity

VRP – the absolute value of Newey-West and Hodrick t-statistics are always higher for ∆VRP(t)

than for VRPG(t, 22) (from 24% to 309%). Since the coefficient is negative we conclude that

if the VRP is decreasing in the long-term returns are expected to be higher. This fact can

be interpreted as follows: The larger is the fear about long-term volatility risk perceived by

the market, the larger is the profit from the investment demanded by investors. The empirical

observation that the slope of the VRP term structure is a strong predictor of future market

excess return, even much stronger than the one-month VRP, provides the argument for a

modification of above market rule of thumb: When the VRP slope decreases future excess

returns will be high. Then, defining −∆VRP(t) as VRP term spread we might rephrase the

Wall Street’s adage “When the spread is high it’s time to buy, when the spread is low it’s time

to go”.

4The adage is taken from Bollerslev et al. (2014).
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Quarterly return regressions

regressor: constant CAPEt TMSPt VRPM(t, 22) VRPG(t, 22) ∆VRPG(t, 252) R̂2

Coefficient -12.603 - - - 0.576 -7.287 0.090
H -1.643 - - - 0.133 -1.378 0.035
NW -1.455 - - - 0.222 -2.061 0.049
Coefficient 30.058 -0.858 - - - - 0.036
H 1.574 -1.439 - - - -
NW 1.818 -1.753 - - - -
Coefficient 23.896 -0.926 - -4.180 - - 0.087
H 1.252 -1.545 - -2.157 - - 0.042
NW 1.387 -1.880 - -1.892 - - 0.028
Coefficient 26.807 -1.115 - - -4.996 - 0.107
H 1.418 -1.780 - - -2.182 - 0.051
NW 1.525 -2.122 - - -2.030 - 0.036
Coefficient 42.242 -2.057 - - 3.727 -15.104 0.246
H 2.202 -2.996 - - 0.839 -2.589 0.001
NW 2.641 -3.704 - - 1.269 -3.451 0.000
Coefficient 89.172 -2.197 -10.642 - - - 0.121
H 2.607 -2.586 -1.833 - - - 0.035
NW 2.682 -2.727 -1.769 - - - 0.022
Coefficient 79.050 -2.144 -9.762 -3.549 - - 0.158
H 2.275 -2.521 -1.664 -1.807 - - 0.019
NW 2.519 -2.728 -1.704 -1.914 - - 0.022
Coefficient 79.752 -2.269 -9.451 - -4.308 - 0.174
H 2.327 -2.656 -1.608 - -1.856 - 0.025
NW 2.573 -2.878 -1.684 - -1.979 - 0.023
Coefficient 96.529 -3.247 -9.661 - 4.525 -15.266 0.318
H 2.747 -3.475 -1.641 - 1.005 -2.612 0.001
NW 3.339 -3.941 -2.029 - 1.471 -3.390 0.000
Coefficient 100.413 -3.403 -9.594 4.837 - -15.376 0.326
H 2.800 -3.501 -1.637 1.574 - -3.355 0.001
NW 3.714 -4.509 -2.076 1.606 - -3.919 0.000

Table 5.2: Table shows the results from regressions of quarterly excess stock market returns
on prior month variance risk premium and economic fundamentals. The values of CAPEt

are taken from Robert Schiller’s webpage. Values of TMSPt are computed using the ten-
year Treasury yield and the three-month Treasury yield available from the webpage of Federal
Reserve Board. VRPM(t, 22) corresponds to measurement obtained with equation (5.3.3) and
VRPG(t, T ) corresponds to measurement obtained with equation (5.1.6). Below the coefficients
of regressions we report the Newey-West (NW) and Hodrick (H) t-statistics. In the last column,
we report an adjusted R2 and for multiple regressions Newey-West and Hodrick p-values of χ2(n)
(n ≥ 2) test that all coefficients are jointly equal to zero.
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Annual return regressions

regressor: constant CAPEt TMSPt VRPM(t, 22) VRPG(t, 22) ∆VRPG(t, 252) R̂2

Coefficient -0.688 - - - 1.863 -3.124 0.022
H -0.121 - - - 0.891 -1.001 0.600
NW -0.083 - - - 0.583 -1.097 0.497
Coefficient 38.768 -1.149 - - - - 0.187
H 2.029 -1.765 - - - -
NW 2.527 -2.372 - - - -
Coefficient 37.304 -1.165 - -0.993 - - 0.197
H 1.991 -1.776 - -0.848 - - 0.194
NW 2.380 -2.498 - -0.614 - - 0.025
Coefficient 38.013 -1.209 - - -1.161 - 0.199
H 1.980 -1.861 - - -1.015 - 0.110
NW 2.383 -2.692 - - -0.901 - 0.004
Coefficient 48.348 -1.839 - - 4.680 -10.113 0.378
H 2.305 -2.351 - - 1.844 -2.498 0.047
NW 3.886 -5.629 - - 2.299 -4.878 0.000
Coefficient 85.642 -2.211 -8.439 - - - 0.340
H 2.776 -2.580 -2.228 - - - 0.028
NW 3.773 -3.674 -2.118 - - - 0.001
Coefficient 84.345 -2.204 -8.326 -0.455 - - 0.345
H 2.716 -2.575 -2.157 -0.374 - - 0.061
NW 3.392 -3.589 -1.991 -0.327 - - 0.000
Coefficient 84.424 -2.220 -8.285 - -0.558 - 0.346
H 2.627 -2.613 -2.081 - -0.434 - 0.014
NW 3.445 -3.786 -1.981 - -0.510 - 0.000
Coefficient 95.693 -2.877 -8.426 - 5.375 -10.255 0.533
H 2.860 -2.984 -2.115 - 2.047 -2.531 0.007
NW 4.768 -5.690 -2.515 - 2.822 -4.502 0.000
Coefficient 97.109 -2.956 -8.225 4.555 - -9.187 0.518
H 3.146 -3.297 -2.126 2.028 - -2.521 0.003
NW 5.265 -6.349 -2.554 1.861 - -3.112 0.000

Table 5.3: Table shows the results from regressions of annual excess stock market returns
on prior month variance risk premium and economic fundamentals. The values of CAPEt

are taken from Robert Schiller’s webpage. Values of TMSPt are computed using the ten-
year Treasury yield and the three-month Treasury yield available from the webpage of Federal
Reserve Board. VRPM(t, 22) corresponds to measurement obtained with equation (5.3.3) and
VRPG(t, T ) corresponds to measurement obtained with equation (5.1.6). Below the coefficients
of regressions we report the Newey-West (NW) and Hodrick (H) t-statistics. In the last column,
we report an adjusted R2 and for multiple regressions Newey-West and Hodrick p-values of χ2(n)
(n ≥ 2) test that all coefficients are jointly equal to zero.
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Conclusions

The objective of the thesis is fourfold. First, we propose and motivate a very general option

pricing framework which includes a wide class of discrete time models featuring multiple com-

ponents structure in both volatility and leverage and a flexible pricing kernel with multiple risk

premia, in particular variance risk premium. Within this framework we characterise the recur-

sive formulae for the analytical MGF under P and Q measures, the formal change of measure

obtained using a general and flexible exponentially affine SDF, and the general characterisation

of the analytical no-arbitrage condition. The usage of multi-dimensional Esscher transform is

motivated by proving that it ensures Pareto optimal allocation.

Second, we introduce four new option pricing models: (i) a specific new class of realized volatil-

ity models, named LHARG, which extend the HARGL model of Corsi et al. (2013) by in-

troducing various flexible types of leverage with heterogeneous structures and obtaining the

full analytical tractability of the model, (ii) apply a new change of measure to a CGARCH

model of Christoffersen et al. (2008) so that we take into account variance risk premium, (iii)

extend the class of RV models by adding a jump component in volatility and its associated risk

premium which provides a rapidly moving volatility factor and we label the model JLHARG,

(iv) introduce a volatility model being a combination of RV and GARCH approach labeled

GARCH-LHARG-RV. Moreover, we obtain an explicit one-to-one mapping between the pa-

rameters of the volatility dynamics under P and Q for models (i)-(iii) and we have closed-form

option prices for all models.

101



102 CONCLUSIONS

Third, we empirically assess the importance of multi-components in volatility and variance risk

premium in option pricing - proposed models suggest significant improvement compared to

existing models in the literature. The best option pricing performance is achieved for GARCH-

LHARG-RV, model being a combination of latent and realized volatility.

Finally, we propose and motivate an efficient methodology of estimating term structure of

CGARCH-implied variance risk premium. We show that two-component GARCH model gen-

erates realistic hump-shape term structure of variance swap rate, contrary to the single volatility

component model. Moreover we demonstrate the superiority of our VRP estimation procedure

by comparing its ability to predict the stock market returns compared with the benchmark

method available in the literature on variance risk premium. At the end of the thesis we

provide an empiricial observation that the shape of term structure of variance risk premium

(summarized by its slope) has a strong predictive power on future stock-index returns.
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Appendix A

Proofs

A.1 MGF in general framework

We start from deriving the MGF of the log-returns yt,T = log(ST/St) under the risk-neutral

measure Q conditional on the information available at time t. Applying the expression for the

SDF given in (2.2.5), repeatedly and using the tower law of conditional expectation we obtain

ϕQ(t, T, z)

= EQ [ezyt,T |Ft]
= EP [Mt,t+1 . . .MT−1,T ezyt,T |Ft]
= EP [Mt,t+1 . . .MT−2,T−1ezyt,T−1EP [MT−1,T ezyT |FT−1] |Ft

]
= EP

[
Mt,t+1 . . .MT−2,T−1ezyt,T−1−A(−ν2,−ν1,0)−

∑p
i=1 Bi(−ν2,−ν1,0)·fT−i

× e−
∑q
j=1 Cj(−ν2,−ν1,0)·`T−iEP [e−ν1·fT+(z−ν2)yT |FT−1

] |Ft
]

= EP

[
Mt,t+1 . . .MT−2,T−1ezyt,T−1+A(z−ν2,−ν1,0)−A(−ν2,−ν1,0)

× e
∑p
i=1[Bi(z−ν2,−ν1,0)−Bi(−ν2,−ν1,0)]·fT−i+

∑q
j=1[Cj(z−ν2,−ν1,0)−Cj(−ν2,−ν1,0)]·`T−j

|Ft
]

= EP
[
Mt,t+1 . . .MT−2,T−1ezyt,T−1+a∗T−1+

∑p
i=1 b

∗
T−1,i·fT−i+

∑q
j=1 c

∗
T−1,j ·`T−j |Ft

]
= EP

Mt,t+1 . . .MT−3,T−2ezyt,T−2+a∗T−1

× EP
[
MT−2,T−1ezyT−1+

∑p
i=1 b

∗
T−1,i·fT−i+

∑q
j=1 c

∗
T−1,j ·`T−j |FT−2

]|Ft


= . . .

= ea∗t+
∑p
i=1 b

∗
t,i·f t+1−i+

∑q
j=1 c

∗
t,j ·`t+1−j .
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Therefore MGF of the log-returns under Q is of the form

ϕQ(t, T, z) = ea∗t+
∑p
i=1 b

∗
t,i·f t+1−i+

∑q
j=1 c

∗
t,j ·`t+1−j , (A.1.1)

where

a∗s = a∗s+1 +A(z − ν2,b
∗
s+1,1 − ν1, c

∗
s+1,1)−A(−ν2,−ν1,0)

b∗s,i =

b∗s+1,i+1 + Bi(z − ν2,b
∗
s+1,1 − ν1, c

∗
s+1,1)−Bi(−ν2,−ν1,0) if 1 ≤ i ≤ p− 1

Bi(z − ν2,b
∗
s+1,1 − ν1, c

∗
s+1,1)−Bi(−ν2,−ν1,0) if i = p

c∗s,j =

c∗s+1,j+1 + Cj(z − ν2,b
∗
s+1,1 − ν1, c

∗
s+1,1)− Cj(−ν2,−ν1,0) if 1 ≤ j ≤ q − 1

Cj(z − ν2,b
∗
s+1,1 − ν1, c

∗
s+1,1)− Cj(−ν2,−ν1,0) if j = q

(A.1.2)

and a∗T = 0, b∗T,i = c∗T,j = 0 ∈ Rk for i = 1, . . . , p and j = 1, . . . , q.

Finally, the MGF under P readily follows by noticing that for ν1 = ν2 = 0 the SDF reduces to

one, therefore ϕP(t, T, z) = ϕQ(t, T, z)|(νy ,νf )=0.

A.2 LHARG-RV

A.2.1 Affine property of LHARG process

We have

EP [ezys+bRVs+c`s|Fs−1

]
= ezrEP

[
e(zλ+b)RVsEP

[
ez
√

RVsεs+c(εs−γ
√

RVs)2 |RVs

]
|Fs−1

]
= ezrEP

[
e

(
zλ+b− z

2

4c
+γz

)
RVsEP

[
ec(εs−(γ− z

2c
)
√

RVs)2|RVs

]
|Fs−1

]
= ezr−

1
2

ln(1−2c)EP

[
e

(
zλ+b+

1
2 z

2+γ2c−2cγz

1−2c

)
RVs|Fs−1

]
.

(A.2.1)

In the last equality we have used the fact that if Z ∼ N (0, 1) then

E
[
exp

(
x(Z + y)2

)]
= exp

(
−1

2
ln(1− 2x) +

xy2

1− 2x

)
. (A.2.2)
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Using eq.s (8)-(9) from Gourieroux and Jasiak (2006) we obtain

EP [ezys+bRVs+c`s|Fs−1

]
= exp

[
zr − 1

2
ln(1− 2c)− δW(x, θ) + V(x, θ)

(
d+

p∑
i=1

βiRVs−i +

q∑
j=1

αj`s−j

)]
,

(A.2.3)

where

V(x, θ) =
θx

1− θx , W(x, θ) = ln (1− xθ) ,

and

x(z, b, c) = zλ+ b+
1
2
z2 + γ2c− 2cγz

1− 2c
.

From a direct inspection of the relation (2.1.6), we conclude that

A(z, b, c) = zr − 1

2
ln(1− 2c)− δW(x, θ) + dV(x, θ) ,

Bi(z, b, c) = V(x, θ)βi ,

Cj(z, b, c) = V(x, θ)αj .

(A.2.4)

Finally, plugging the above expressions for A, Bi and Cj in eq. (A.1.2) we readily obtain the

recurrence relations for MGF under physical measure.

A.2.2 Risk-neutral dynamics

First, we write MGF under risk-neutral measure. From Proposition 14 we have that under

measure Q the MGF for LHARG has the form

ϕQ(t, T, z) = exp

(
a∗t +

p∑
i=1

b∗t,iRVt+1−i +

q∑
j=1

c∗t,j`t+1−j

)
,
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where

a∗s =a∗s+1 + zr − 1

2
ln(1− 2c∗s+1,1)− δW(x∗s+1, θ) + δW(y∗s+1, θ)

+ dV(x∗s+1, θ)− dV(y∗s+1, θ)

b∗s,i =

b∗s+1,i+1 +
(
V(x∗s+1, θ)− V(y∗s+1, θ)

)
βi for 1 ≤ i ≤ p− 1(

V(x∗s+1, θ)− V(y∗s+1, θ)
)
βi for i = p

c∗s,i =

c∗s+1,i+1 +
(
V(x∗s+1, θ)− V(y∗s+1, θ)

)
αi for 1 ≤ i ≤ q − 1(

V(x∗s+1, θ)− V(y∗s+1, θ)
)
αi for i = q ,

(A.2.5)

with

x∗s+1 = (z − ν2)λ+ b∗s+1,1 − ν1 +
1
2
(z − ν2)2 + γ2c∗s+1,1 − 2c∗s+1,1γ(z − ν2)

1− 2c∗s+1,1

,

y∗s+1 = −ν2λ− ν1 +
1

2
ν2

2 ,

and terminal conditions a∗T = b∗T,i = c∗T,j = 0 for i = 1, . . . , p and j = 1, . . . , q.

To derive the mapping of the parameters under which the risk-neutral MGF is formally equiv-

alent to the physical MGF, we need to compare eq. (A.2.5) to eq. (3.1.19). In particular we

have to find a set of starred parameters for which the recursions under P correspond to the

expressions under Q. More precisely, after defining

x∗∗s+1 = zλ∗ + b∗s+1,1 +
1
2
z2 + (γ∗)2c∗s+1,1 − 2c∗s+1,1γ

∗z

1− 2c∗s+1,1

,

the following relations have to hold

δ
(
W(x∗s+1, θ)−W(y∗, θ)

)
= δ∗W(x∗∗s+1, θ

∗) , (A.2.6)

βi
(
V(x∗s+1, θ)− V(y∗, θ)

)
= β∗i V(x∗∗s+1, θ

∗) , (A.2.7)

αj
(
V(x∗s+1, θ)− V(y∗, θ)

)
= α∗jV(x∗∗s+1, θ

∗) , (A.2.8)

d
(
V(x∗s+1, θ)− V(y∗, θ)

)
= d∗V(x∗∗s+1, θ

∗) , (A.2.9)
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with y∗ = −λ2/2− ν1 + 1
8
. Eq. (A.2.6) can be rewritten as

δ log

[
1− θ

1− θy∗
(
x∗s+1 − y∗

)]
= δ∗ log

(
1− θ∗x∗∗s+1

)
,

from which we obtain the sufficient conditions δ∗ = δ, θ∗ = θ/(1− θy∗), and x∗s+1 − y∗ = x∗∗s+1.

It is possible to verify by substitution that the latter relation is satisfied posing λ∗ = −1/2 and

γ∗ = γ + λ+ 1/2. The relation (A.2.7) is equivalent to

βi
1− θy∗

θ

1− θy∗
x∗s+1 − y∗[

1− θ/(1− θy∗)
(
x∗s+1 − y∗

)] = β∗i
θ∗x∗∗s+1

1− θ∗x∗∗s+1

,

which implies β∗i = βi/(1− θy∗). Similar reasoning applies for eq.s (A.2.8) and (A.2.9).

A.3 k-CGARCH(p, q)

A.3.1 Affine property

EP
[
ezr+zλS(hs+1)+z

√
S(hs+1)εs+1+bhs+2+c`s+1|Fs

]
= ezr+zλS(hs+1)+bd+

∑p
i=1 bMihs+2−i+

∑q
i=2 bNi`s+2−iEP

[
ez
√
S(hs+1)εs+1+(bN1+c)`s+1|Fs

]
= e

zr+zλS(hs+1)+bd+
∑p
i=1 bMihs+2−i+

∑q
i=2 bNi`s+2−i+

∑k
i=1

∑k
j=1(bini,j+cj)γ

2
j−

(∑k
i=1

∑k
j=1((bini,j+cj)γj)−0.5z)

2

(∑k
i=1

∑k
j=1

(bini,j+cj))

S(hs+1)

× EP

e(∑k
i=1

∑k
j=1(bini,j+cj))

(
εs−

∑k
i=1

∑k
j=1((bini,j+cj)γj)−0.5z

(∑k
i=1

∑k
j=1

(bini,j+cj))

√
S(hs+1)

)2

|Fs


(A.3.1)

Using property (A.2.2) we obtain
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EP
[
ezr+zλS(hs+1)+z

√
S(hs+1)εs+1+bhs+2+c`s+1|Fs

]

= exp



zr + zλS (hs+1) + bd +

p∑
i=1

bMihs+2−i +

q∑
i=2

bNi`s+2−i

+

 k∑
i=1

k∑
j=1

(bini,j + cj)γ
2
j −

(∑k
i=1

∑k
j=1 ((bini,j + cj)γj)− 0.5z

)2(∑k
i=1

∑k
j=1(bini,j + cj)

)
S (hs+1)

− 1

2
ln

(
1− 2

(
k∑
i=1

k∑
j=1

(bini,j + cj)

))

+

(∑k
i=1

∑k
j=1 ((bini,j + cj)γj)− 0.5z

)2(
1− 2

(∑k
i=1

∑k
j=1(bini,j + cj)

))(∑k
i=1

∑k
j=1(bini,j + cj)

)S (hs+1)


(A.3.2)

Taking into account that S (hs) = h
(1)
s + . . .+ h

(k)
s we finally obtain

A(z,b, c) = zr + bd− 1

2
ln

(
1− 2

(
k∑
i=1

k∑
j=1

(bini,j + cj)

))

B1(z,b, c) = bM1 +

zλ+
k∑
i=1

k∑
j=1

(bini,j + cj)γ
2
j + 2

(∑k
i=1

∑k
j=1 ((bini,j + cj)γj)− 0.5z

)2

1− 2
(∑k

i=1

∑k
j=1(bini,j + cj)

)
1

Bi(z,b, c) = bMi for i ∈ {2, . . . , p}
C1(z,b, c) = 0

Cj(z,b, c) = bNj for j ∈ {2, . . . , q}
(A.3.3)

where 1 = (1, . . . , 1)′ ∈ Rk, b, c ∈ Rk, ni,j are elements of matrix N1 and · stands for the scalar

product in Rk.
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A.3.2 Moment Generating Function

Under the physical measure P the MGF of the log-returns yt,T = log(ST/St) conditional on the

information available at time t is of the form

ϕP(t, T, z) = eat+
∑p
i=1 bt,i·ht+2−i+

∑q
j=2 ct,j ·`t+1−j , (A.3.4)

where

as = as+1 + zr + bs+1,1d−
1

2
ln

(
1− 2

(
k∑
i=1

k∑
j=1

(b
((i))
s+1ni,j + c

((j))
s+1 )

))

bs,i =


bs+1,i+1 + bs+1,1Mi +X if i = 1

bs+1,i+1 + bs+1,1Mi if 2 ≤ i ≤ p− 1

Bi(z,bs+1,1, cs+1,1) if i = p

cs,j =

cs+1,j+1 + bs+1,1Nj if 2 ≤ j ≤ q − 1

bs+1,1Nj if j = q

(A.3.5)

where

X =

zλ+
k∑
i=1

k∑
j=1

(b
((i))
s+1ni,j + c

((j))
s+1 )γ2

j + 2

(∑k
i=1

∑k
j=1

(
(b

((i))
s+1ni,j + c

((j))
s+1 )γj

)
− 0.5z

)2

1− 2
(∑k

i=1

∑k
j=1(b

((i))
s+1ni,j + c

((j))
s+1 )

)
1

(A.3.6)

and aT = 0, bT,i = cT,j = 0 ∈ Rk for i = 1, . . . , p and j = 1, . . . , q, ni,j are elements of matrix

N1.

In the case of a process with one time lag in volatility and leverage (k-CGARCH(1, 1)) the

MGF of the log-returns yt,T = log(ST/St) conditional on the information available at time t is

of the form

ϕP(t, T, z) = eat+bt·ht+1 , (A.3.7)
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where

as = as+1 + zr + bs+1d−
1

2
ln

(
1− 2

(
k∑
i=1

k∑
j=1

b
((i))
s+1ni,j

))
,

bs = bs+1 + bs+1M +X ,

(A.3.8)

with

X =

zλ+
k∑
i=1

k∑
j=1

b
((i))
s+1ni,jγ

2
j + 2

(∑k
i=1

∑k
j=1 b

((i))
s+1ni,jγj − 0.5z

)2

1− 2
∑k

i=1

∑k
j=1 b

((i))
s+1ni,j

1 , (A.3.9)

and aT = 0, bT = 0 ∈ Rk.

A.3.3 No arbitrage condition

We derive the no-arbitrage condition for a general SDF

Ms,s+1 =
e−νh·hs+2−νyys+1

EP [e−νh·hs+2−νyys+1 |Fs]
, (A.3.10)

where νh ∈ Rk. To derive the no-arbitrage condition we plug functions (A.3.3) to condi-

tions (2.2.3). Except from the following condition

B1(1− νy,−νh,0) = B1(−νy,−νh,0), (A.3.11)

all conditions are trivial. After doing some computations condition (A.3.11) translates into

no-arbitrage condition

νy = λ+
1

2
+ 2

k∑
i=1

ν
(i)
h

k∑
j=1

ni,j(γj + λ), (A.3.12)

where νh = (ν
(1)
h , . . . , ν

(k)
h ). When we apply SDF (3.2.7) we need to substitute vector νh by a

scalar νh.
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A.3.4 Risk-neutral dynamics

Firstly we compute

ϕQ(t, t+ 1, z) = EQ [ezyt+1 |Ft] = EP [Mt,t+1e
zyt+1|Ft] , (A.3.13)

where Mt,t+1 is defined in (A.3.10). After some computations, using no-arbitrage condition

(A.3.12) and the form of functions A, Bi, Cj for i = 1, . . . , p, j = 1, . . . , q, we obtain

ϕQ(t, t+ 1, z) = exp

(
zr − S (ht+1)

2 + 4
∑k

i=1 ν
(i)
h

∑k
j=1 ni,j

z +
S (ht+1)

2 + 4
∑k

i=1 ν
(i)
h

∑k
j=1 ni,j

z2

)
.

(A.3.14)

From (A.3.14) we deduce that

yt = r − 1

2
S (h∗t ) + ε∗t

√
S (h∗t ), (A.3.15)

where

h∗t =
ht

1 + 2
∑k

i=1 ν
(i)
h

∑k
j=1 ni,j

, (A.3.16)

and ε∗t has distribution N (0, 1) under measure Q. Comparing (A.3.15) with (3.2.2) we obtain

the following relation between ε∗t and εt:

ε∗t =

√√√√1 + 2
k∑
i=1

ν
(i)
h

k∑
j=1

ni,j

(
εt +

(
1

2(1 + 2
∑k

i=1 ν
(i)
h

∑k
j=1 ni,j)

+ λ

)√
S (ht)

)
. (A.3.17)
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We conclude by applying no-arbitrage condition (3.2.8), the relations (A.3.16) and (A.3.17) in

dynamics of ht described by equation (3.2.3) to obtain the following mappings of parameters:

λ∗ = −1/2,

d∗ =
d

1 + 2
∑k

i=1 ν
(i)
h

∑k
j=1 ni,j

,

M∗
i = Mi for i = 1, . . . , p

N∗j =
Nj(

1 + 2
∑k

i=1 ν
(i)
h

∑k
j=1 ni,j

)2 for i = 1, . . . , q

γ∗l = γl + νy + 2
k∑
i=1

ν
(i)
h

k∑
j=1

ni,j(γl − γj) for 1 ≤ l ≤ k.

(A.3.18)

The dynamics of the process under risk-neutral measure is described by equations (A.3.15)-

(A.3.16). From there we can see that the dynamics of each factor of volatility h
(i∗)
t is equal the

dynamics of h
(i)
t divided by some constant, the same for every factor i ∈ 1, . . . , k. Considering

k+ 1-dimensional Esscher transform does not improve the flexibility of our model which would

suffer from identification problem and it is enough to apply 2-dimensional Esscher transform

substituting vector νh by a scalar νh.

Obtaining efficient k + 1-dimensional change of measure would be possible by increasing the

number of sources of randomness in the dynamics under measure P. Let us consider a class

of GARCH models with multi time scales associated with independent innovations, which we

define as MTS-GARCH(p, q), where p and q stands for the order of regression:

yt+1 = r + λ
k∑
i=1

h
(i)
t +

k∑
i=1

√
h

(i)
t ε

(i)
t+1 , (A.3.19)

where r is the risk-free rate, λ is the market price of risk, and ε
(1)
t , . . . , ε

(k)
t are i.i.d. N (0, 1).

We model ht+1 as

ht+1 = d +

p∑
i=1

Miht+1−i +

q∑
j=1

Nj`t+1−j , (A.3.20)
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where Mi,Nj ∈ Rk×k for i = 1, . . . , p and j = 1, . . . , q, d ∈ Rk, and vectors `t−j are of the form

`t+1−j =



(
ε

(1)
t+1−j − γ1

√
h

(1)
t+1−j

)2

...(
ε

(k)
t+1−j − γk

√
h

(k)
t+1−j

)2

 . (A.3.21)

Since innovations in ( A.3.19 ) are independent we have that y ∼ N
(
r + S (ht) ,

√
S (ht)

)
and

equation (A.3.19) is equivalent to (3.2.2). The dynamics of the 2TS-GARCH, analog of CJOW,

is described by following equations:.

yt+1 = r + λ
(
h

(1)
t+1 + h

(2)
t+1

)
+

√
h

(1)
t+1ε

(1)
t+1 +

√
h

(2)
t+1ε

(2)
t+1 ,

h
(1)
t+1 = β1h

(1)
t + α1

((
ε

(1)
t

)2

− 1− 2γ1ε
(1)
t

√
h

(1)
t + h

(2)
t

)
,

h
(2)
t+1 = ω + β2h

(2)
t + α2

((
ε

(2)
t

)2

− 1− 2γ2ε
(2)
t

√
h

(1)
t + h

(2)
t

)
.

(A.3.22)

Multiple independent innovation enables to apply efficiently k + 1 dimensional Esscher trans-

form, so that we can associate risk with each component of volatility. Moreover, class of

MTS-GARCH(p, q) processes belongs to generalised affine processes satisfying the generalised

version of Assumption 6 in Section 2.1, and as a consequence we are able to use a generalisation

of the framework presented in Chapter 2.

A.3.5 ’U shape’ of pricing kernel

Since log-returns have Gaussian distribution under measure P, the physical probability density

function of log-return yt conditioned on variance S (ht) can be written as follows

f(yt) =
1√

2πS (ht)
exp

(
−(yt − r − λS (ht))

2

2S (ht)

)
. (A.3.23)

On the other hand, log-returns have Gaussian distribution also under measure Q, and due to

the fact that S (h∗t) = ξ2S (ht), the risk-neutral probability density function of log-return yt
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conditioned on variance S (ht) can be written as follows

f ∗(yt) =
1√

2πξ2S (ht)
exp

−
(
yt − r + ξ2

2
S (ht)

)2

2ξ2S (ht)

 . (A.3.24)

Dividing (A.3.24) by (A.3.23) and taking the logarithm we obtain the formula (3.2.14).

A.4 GARCH-LHARG-RV

A.4.1 Moment Generating Function under physical measure

First, we rewrite equation (3.3.4) as

Θ(RVt,Lt) = d+ β̂dRV
(d)
t + β̂wRV

(w)
t + β̂mRV

(m)
t + αd`

(d)
t + αw`

(w)
t + αm`

(m)
t , (A.4.1)

where

`
(d)
t =

(
εt − γ

√
RVt + ht

)2

,

`
(w)
t =

1

4

4∑
i=1

(
εt−i − γ

√
RVt−i + ht−i

)2

,

`
(m)
t =

1

17

21∑
i=5

(
εt−i − γ

√
RVt−i + ht−i

)2

.

and d = −(αd + αw + αm), β̂l = βl − αlγ2 for l = d, w,m. Then we rewrite (A.4.1) as

Θ(RVc
t,Lt) = d+

22∑
i=1

βiRVc
t+1−i +

22∑
j=1

αj

(
εt+1−j − γ

√
RVt+1−j

)2

(A.4.2)

with

βi =


β̂d for i = 1

β̂w/4 for 2 ≤ i ≤ 5

β̂m/17 for 6 ≤ i ≤ 22

αi =


αd for i = 1

αw/4 for 2 ≤ i ≤ 5

αm/17 for 6 ≤ i ≤ 22

. (A.4.3)

Now we can show that GARCH-LHARG process satisfies an affine property.
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EP [ezys+1+b1hs+2+b2RVs+1+c`s+1|Fs
]

= EP
[
ezr+zλ(hs+1+RVs+1)+z

√
hs+1+RVs+1εs+1+b1hs+2+b2RVs+1+c`s+1|Fs

]
= ezr+zλhs+1+b1ω+b1βhhs+1EP

[
e
zλRVs+1+z

√
hs+1+RVs+1εs+1+b1αh

(
εs+1−γh

√
hs+1+RVs+1

)2
+b2RVs+1+c`s+1|Fs

]
= ezr+zλhs+1+b1ω+b1βhhs+1

× EP

[
e

(
b1αhγ

2
h+cγ2− (b1αhγh+cγ−0.5z)2

b1αh+c

)
(hs+1+RVs+1)+zλRVs+1+b2RVs+1+(b1αh+c)

(
εs+1−

b1αhγh+cγ−0.5z

b1αh+c

√
hs+1+RVs+1

)2
|Fs
]

= e
zr+zλhs+1+b1ω+b1βhhs+1− 1

2
ln(1−2(b1αh+c))+

(
b1αhγ

2
h+cγ2+2

(b1αhγh+cγ−0.5z)2

1−2(b1αh+c)

)
hs+1

× EP

[
e

(
b1αhγ

2
h+cγ2+2

(b1αhγh+cγ−0.5z)2

1−2(b1αh+c)
+zλ+b2

)
RVs+1|Fs

]
(A.4.4)

Using eq.s (8)-(9) from Gourieroux and Jasiak (2006) we obtain

EP [ezys+1+b1hs+2+b2RVs+1+c`s+1|Fs
]

= exp


zr + b1ω −

1

2
ln (1− 2(b1αh + c)) + x1hs+1

− δW(x2, θ) + V(x2, θ)

(
d+

p∑
i=1

βiRVs−i +

q∑
j=1

αj`s−j

)
 ,

(A.4.5)

where

V(x, θ) =
θx

1− θx , W(x, θ) = ln (1− xθ) ,

and

xh(z,b, c) = zλ+ b1βh + 2
(b1αhγh + cγ − 0.5z)2

1− 2(b1αh + c)
+ b1αhγ

2
h + cγ2

xr(z,b, c) = zλ+ b2 + 2
(b1αhγh + cγ − 0.5z)2

1− 2(b1αh + c)
+ b1αhγ

2
h + cγ2
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From direct inspection of the relation (2.1.6), we conclude that

EP [ezys+1+b1hs+2+b2RVs+1+c`s+1|Fs
]

= exp

(
A(z,b, c) + B(1)

1 (z,b, c)hs+1 +
22∑
i=1

B(2)
i (z,b, c)RVs+1−i +

22∑
i=1

Cj(z,b, c)`s+1−j

)
(A.4.6)

with

A(z,b, c) = zr + b1ω −
1

2
ln (1− 2(b1α + c))− δW(xr, θ) + dV(xr, θ) ,

B(1)
1 (z,b, c) = xh(z,b, c) ,

B(2)
i (z,b, c) = V(xr(z,b, c), θ)βi ,

Cj(z,b, c) = V(xr(z,b, c), θ)αj .

(A.4.7)

Finally, plugging the above expressions for A, Bi and Cj with ν1 = 0 in eq. (A.1.2) we readily

obtain the MGF under the physical measure:

ϕP(t, T, z) = exp

(
at + bht ht+1 +

22∑
i=1

brt,iRVt+1−i +
22∑
j=1

ct,j`t+1−j

)
,

where at, bht , brt,i, ct,j are given by recursive relations and `t =
(
εt − γ

√
RVt + ht

)2
.

as =as+1 + zr + bhs+1ω −
1

2
ln
(
1− 2(bhs+1αh + cs+1)

)
− δW(xrs+1, θ) + dV(xs+1, θ)

bhs =xh∗s+1

brs,i =

brs+1,i+1 + V(xrs+1, θ)βi for 1 ≤ i ≤ 21

V(xrs+1, θ)βi for i = 22

cs,i =

cs+1,i+1 + V(xr∗s+1, θ)αi for 1 ≤ i ≤ 21

V(xrs+1, θ)αi for i = 22 ,

(A.4.8)
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with

xhs+1 = zλ+ (βh + αhγ
2
h)b

h
s+1 + 2

(bhs+1αγh + cs+1γ − 0.5z)2

1− 2(bhs+1α + cs+1)
+ cs+1γ

2,

xrs+1 = zλ+ brs+1 + αhγ
2
hb

h
s+1 + 2

(bhs+1αhγh + cs+1γ − 0.5z)2

1− 2(bhs+1α + cs+1)
+ cs+1γ

2,

A.4.2 Moment Generating Function under risk-neutral measure

Under the risk-neutral measure Q the MGF for LHARG has the form

ϕQ(t, T, z) = exp

(
a∗t + bh∗t ht+1 +

p∑
i=1

br∗t,iRVt+1−i +

q∑
j=1

c∗t,j`t+1−j

)
,

where

a∗s =a∗s+1 + zr + bh∗s+1ω −
1

2
ln
(
1− 2((bh∗s+1 − νh)αh + c∗s+1)

)
+

1

2
ln (1 + 2νhαh)

− δW(xr∗s+1, θ) + δW(yr∗s+1, θ) + dV(xr∗s+1, θ)− dV(yr∗s+1, θ)

bh∗s =xh∗s+1 − yh∗s+1

br∗s,i =

br∗s+1,i+1 +
(
V(xr∗s+1, θ)− V(yr∗s+1, θ)

)
βi for 1 ≤ i ≤ p− 1(

V(xr∗s+1, θ)− V(yr∗s+1, θ)
)
βi for i = p

c∗s,i =

c∗s+1,i+1 +
(
V(xr∗s+1, θ)− V(yr∗s+1, θ)

)
αi for 1 ≤ i ≤ q − 1(

V(xr∗s+1, θ)− V(yr∗s+1, θ)
)
αi for i = q ,

(A.4.9)

with

xh∗s+1 = (z − νy)λ+ (αhγ
2
h + βh)(b

h∗
s+1 − νh) + 2

((bh∗s+1 − νh)αhγh + c∗s+1γ − 0.5(z − νy))2

1− 2((bh∗s+1 − νh)αh + c∗s+1)
+ c∗s+1γ

2,

yh∗s+1 = −νyλ− νh(βh + αhγ
2
h) + 2

(−νhαhγh + 0.5νy)
2

1 + 2νhαh
,

xr∗s+1 = (z − νy)λ+ (br∗s+1 − νr) + αhγ
2
h(b

h∗
s+1 − νh) + 2

((bh∗s+1 − νh)αhγh + c∗s+1γ − 0.5(z − νy))2

1− 2((bh∗s+1 − νh)αh + c∗s+1)
+ c∗s+1γ

2,

yr∗s+1 = −νyλ− νhαhγ2
h − νr + 2

(−νhαhγh + 0.5νy)
2

1 + 2νhαh
,

and terminal conditions a∗T = bh∗T = br∗T,i = c∗T,j = 0 for i = 1, . . . , p and j = 1, . . . , q.
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A.5 JLHARG-RV

A.5.1 MGF computations under P measure

Similarly to GARCH-LHARG process we begin by fiting the leverage and hetergoneous struc-

ture into our general framework. The expression (3.4.4) is rewritten as

Θ(RVc
t,Lt) = d+

22∑
i=1

βiRVc
t+1−i +

22∑
j=1

αj

(
εt+1−j − γ

√
RVt+1−j

)2

(A.5.1)

with

βi =


βd − αdγ2 for i = 1

(βw − αwγ2)/4 for 2 ≤ i ≤ 5

(βm − αmγ2)/17 for 6 ≤ i ≤ 22

αi =


αd for i = 1

αw/4 for 2 ≤ i ≤ 5

αm/17 for 6 ≤ i ≤ 22

, (A.5.2)

where d = −(αd + αw + αm).

We begin by showing that JLHARG process satisfies an affine property, namely the following

relation holds true

E
[
ezys+1+b·rvs+1+c·`s+1|Fs

]
= eA(z,b,c)+

∑p
i=1 Bi(z,b,c)·rvs+1−i+

∑q
j=1 Ci(z,b,c)·`s+1−j , (A.5.3)

for some functions A : R× Rk × Rk → R, Bi : R× Rk × Rk → Rk, Cj : R× Rk × Rk → Rk,

where RVt = (RVc
t ,RVj

t) and b, c ∈ Rk and · is the scalar product in Rk. We derive the form
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of the functions A, Bi, Cj which allow to compute the MGF for JLHARG.

EP [ezyt+b·rvt+c`t |Ft−1

]
= EP

[
ez(r+λRVt+

√
RVtεt)+b·rvt+c`t |Ft−1

]
= EP

[
ez(r+λRVt)+b·rvtEP

[
ez
√

RVtεt+c(εt−γ
√

RVt)2|RVt

]
|Ft−1

]
= EP

ez(r+λRVt)+b1RVct+b2RVjt−
1
2

ln(1−2c)+

(
z2

2 +γ2c−2cγz

1−2c

)
RVt

|Ft−1


= EP

ezr− 1
2

ln(1−2c)+

(
zλ+b1+

z2

2 +γ2c−2cγz

1−2c

)
RVct+

(
zλ+b2+

z2

2 +γ2c−2cγz

1−2c

)
RVjt |Ft−1


= ezr−

1
2

ln(1−2c)EP

e
(
zλ+b1+

z2

2 +γ2c−2cγz

1−2c

)
RVct |Ft−1

EP

e
(
zλ+b2+

z2

2 +γ2c−2cγz

1−2c

)
RVjt |Ft−1

 .

(A.5.4)

In the third passage we use property (A.2.2). From Gourieroux and Jasiak (2006) for a non-

centred gamma distributed random variable, we obtain

EP [exRVct |Ft−1

]
= exp

(
δW (x, θ) + V (x, θ)

(
d+

p∑
i=1

βiRVc
s−i +

q∑
j=1

αj`s−j

))
, (A.5.5)

where

V(x, θ) =
θx

1− θx, W(x, θ) = ln(1− xθ), (A.5.6)

and

x(z, b, c) = zλ+ b1 +
1
2
z2 + γ2c− 2cγz

1− 2c
. (A.5.7)

For the computation of the last expectation in the last line of expression (A.5.4), we use the

property that if Zt is a compound Poisson process with rate ω and sizes Di i.i.d. then

E
[
exZt|Ft−1

]
= exp (ω (MD(x)− 1)) , (A.5.8)

where MD(x) is the moment-generating function of the random variable D of the jump size.

Since the sizes of the jumps in realized volatility are distributed according to a gamma distri-
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bution, we have that

MD(x) =
1(

1− xθ̃
)δ̃ . (A.5.9)

According to expressions (A.5.8) and (A.5.9), we obtain

EP

e
(
zλ+b2+

z2

2 +γ2c−2cγz

1−2c

)
RVjt |Ft−1

 = exp
(

Θ̃J
(
x, θ̃, δ̃

))
, (A.5.10)

where

J (x, θ̃, δ̃) =
1− (1− θ̃x)δ̃

(1− θ̃x)δ̃
. (A.5.11)

Gathering all the previous results, we finally have

EP [ezyt+b·RVt+c`t|Ft−1

]
=

exp

[
zr − 1

2
ln(1− 2c) + V(x1, θ)

(
d+

p∑
i=1

βiRVc
t−i +

q∑
j=1

αj`t−j

)

−δW(x1, θ) + Θ̃J (x2, θ̃, δ̃)

] (A.5.12)

where we distinguish the two functions x1 = x(z, b1, c) and x2 = x(z, b2, c) and the expression

for x is given by (A.5.7). The direct comparison of the last expression with A.5.3 allow to

derive explicitly the form of the functions of the exponential affine form:

A(z,b, c) = zr − 1

2
ln(1− 2c)− δW(x1, θ) + dV(x1, θ) + Θ̃J (x2,

˜θ, δ̃)

Bi(z, b1, c) = V(x1, θ)βi

Cj(z, b1, c) = V(x1, θ)αj.

(A.5.13)

Finally, plugging the above expressions for A, Bi and Cj in eq. (A.1.2) with SDF’s parametrs

equal zero we readily obtain the MGF under the physical measure:

ϕP(t, T, z) = EP [ezyt,T |Ft] = exp

(
at +

p∑
i=1

bt,iRVc
t+1−i +

q∑
i=1

ct,i`t+1−i

)
(A.5.14)
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where

as = as+1 + zr − 1

2
log(1− 2cs+1,1) + dV(xcs+1, θ)− δW(xcs+1, θ) + Θ̃J (xjs+1, θ̃)

bs,i =

bs+1,i + V(xcs+1, θ)βi for 1 ≤ i ≤ p− 1

V(xcs+1, θ)βi for i = p
(A.5.15)

cs,i =

cs+1,i + V(xcs+1, θ)αi for 1 ≤ i ≤ q − 1

V(xcs+1, θ)αi for i = q

where

xcs+1 = zλ+ bs+1,1 +
1
2
z2 + γ2cs+1,1 − 2cs+1,1γz

1− 2cs+1,1

(A.5.16)

xjs+1 = zλ+
1
2
z2 + γ2cs+1,1 − 2cs+1,1γz

1− 2cs+1,1

(A.5.17)

The functions V , W and J are defined as

V(x, θ) =
θx

1− θx, W(x, θ) = ln(1− xθ), J (x, θ̃, δ̃) =
1− (1− θ̃x)δ̃

(1− θ̃x)δ̃
(A.5.18)

and the terminal condition are aT = bT,i = cT,j = 0 for i = 1, 2, ..., p and j = 1, 2, ..., q.

A.5.2 Risk-neutral dynamics

Firstly we observe that risk-neutral MGF can be expressed with a recursive set of expressions,

involving a combination of the functions A, Bi, Cj. From Theorem 9, the MGF for JLHARG

model under measure Q has the following form

ϕQ
νr,νj ,νy

(t, T, z) = EQ [ezyt,T |Ft] = exp

(
a∗t +

p∑
i=1

b∗t,iRVc
t+1−i +

q∑
i=1

c∗t,i`t+1−i

)
,
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where

a∗s = a∗s+1 + zr − 1

2
log(1− 2c∗s+1,1) + dV(xc ∗s+1, θ)− dV(yc ∗s+1, θ)

− δW(xc ∗s+1, θ) + δW(yc ∗s+1, θ) + Θ̃J (xj ∗s+1, θ̃)− Θ̃J (yj ∗s+1, θ̃)

b∗s,i =

b∗s+1,i +
(
V(xc ∗s+1, θ)− V(yc ∗s+1, θ)

)
βi for 1 ≤ i ≤ p− 1(

V(xc ∗s+1, θ)− V(yc ∗s+1, θ)
)
βi for i = p

(A.5.19)

c∗s,j =

c∗s+1,j +
(
V(xc ∗s+1, θ)− V(yc ∗s+1, θ)

)
αj for 1 ≤ j ≤ q − 1(

V(xc ∗s+1, θ)− V(yc ∗s+1, θ)
)
αj for j = q

where

xc ∗s+1 = (z − νy)λ+ b∗s+1,1 − νc +
1
2
(z − νy)2 + γ2c∗s+1,1 − 2c∗s+1,1γ(z − νy)

1− 2c∗s+1,1

xj ∗s+1 = (z − νy)λ− νj +
1
2
(z − νy)2 + γ2c∗s+1,1 − 2c∗s+1,1γ(z − νy)

1− 2c∗s+1,1

yl ∗s+1 = −νyλ− νl +
1

2
ν2
y ,

with l = r, j and the terminal conditions are a∗T = b∗T,i = c∗T,j = 0 for i = 1, 2, ..., p and

j = 1, 2, ..., q.

The first passage consists in comparing expression (A.5.19) with (A.5.15). We have to find a

set of new parameters for which the recursive expressions for a∗t , b
∗
t , c
∗
t under Q correspond to

the expressions under P. We start defining

xc ∗∗s+1,i = zλ∗ + b∗s+1,1 +
1
2
z2 + (γ∗)2c∗s+1,1 − 2c∗s+1,1γ

∗z

1− 2c∗s+1,1

,

xj ∗∗s+1,i = zλ∗ +
1
2
z2 + (γ∗)2c∗s+1,1 − 2c∗s+1,1γ

∗z

1− 2c∗s+1,1

.
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Then, the following relations have to hold

δ
(
W
(
xc ∗s+1, θ

)
−W (yc ∗, θ)

)
= δ∗W

(
xc ∗∗s+1, θ

∗) (A.5.20)

βi
(
V
(
xc ∗s+1, θ

)
− V (yc ∗, θ)

)
= β∗i V

(
xc ∗∗s+1, θ

∗) (A.5.21)

αj
(
V
(
xc ∗s+1, θ

)
− V (yc ∗, θ)

)
= α∗jV

(
xc ∗∗s+1, θ

∗) (A.5.22)

Θ̃
(
J
(

xj ∗s+1, θ̃
)
− J

(
yj ∗, θ̃

))
= Θ̃∗J

(
xj ∗∗s+1, θ̃

∗
)

(A.5.23)

with yc ∗ = −λ2/2− νr + 1
8

and yj ∗ = −λ2/2− νj + 1
8
.

Equation (A.5.20) can be explicitly written as

δ log

[
1− θ

1− θyc ∗
(
xc ∗s+1 − yc ∗

)]
= δ∗ log

(
1− θ∗xc ∗∗s+1

)
,

which implies the following three sufficient conditions

δ∗ = δ

θ∗ =
θ

1− θyc ∗
xc ∗∗s+1 = xc ∗s+1 − yc ∗. (A.5.24)

It can be easily verified that the last condition (A.5.24) is satisfied by substituting

λ∗ = −1

2
,

γ∗ = γ + λ+
1

2
.

The equation (A.5.21) can be equivalently expressed in the form

βi
1− θyc ∗

θ

1− θyc ∗
xc ∗s+1 − yc ∗

1− θ/(1− θyc ∗)
(
xc ∗s+1 − yc ∗

) = β∗i
θ∗xc ∗∗s+1

1− θ∗xc ∗∗s+1

which gives another sufficient condition for the mapping

β∗i =
βi

1− θyc ∗ .

An analogous consideration about the third condition (A.5.22) allows to obtain the condition
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on α∗i ,

α∗i =
αi

1− θyc ∗ .

Relation (A.5.2) gives us the expressions for β∗d , β
∗
w, β∗m, α∗d, α

∗
w and α∗m. Finally, equation

(A.5.23) provides the last sufficient condition

Θ̃(
1− θ̃yj ∗

)δ̃ 1−
((

1− θ̃xj ∗s+1

)
/
(

1− θ̃yj ∗
))δ̃

((
1− θ̃xj ∗s+1

)
/
(

1− θ̃yj ∗
))δ̃ = Θ̃∗

1− (1− θ̃∗xj ∗∗s+1)δ̃
∗

(1− θ̃∗xj ∗∗s+1)δ̃∗
,

which is satisfied if

δ̃∗ = δ̃ ,

Θ̃∗ =
Θ̃(

1− θ̃yj ∗
)δ̃ ,

θ̃∗ =
θ̃

1− θ̃yj ∗
,

xj ∗∗s+1 = xj ∗s+1 − yj ∗ . (A.5.25)

As it can be seen the last condition (A.5.25) is redundant when compared to the condition

(A.5.24).


