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Abstract. Binary random variables are the building blocks used to describe a
large variety of systems, from magnetic spins to financial time series and neuron
activity. In statistical physics the kinetic Ising model has been introduced to
describe the dynamics of the magnetic moments of a spin lattice, while in time
series analysis discrete autoregressive processes have been designed to capture
the multivariate dependence structure across binary time series. In this article we
provide a rigorous proof of the equivalence between the two models in the range of
a unique and invertible map unambiguously linking one model parameters set to
the other. Our result finds further justification acknowledging that both models
provide maximum entropy distributions of binary time series with given means,
auto-correlations, and lagged cross-correlations of order one. We further show
that the equivalence between the two models permits to exploit the inference
methods originally developed for one model in the inference of the other.
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1. Introduction

The dynamics of a large variety of systems, from physics to economics and finance, can
be represented as time series of binary variables. The most telling examples are the
spin systems in statistical physics, where magnetic moments of the particles in a lat-
tice are described as two-state variables, or binary time series in quantitative finance,
capturing for instance the occurrence of extreme events of prices [1, 2], or buy and sell
orders in the order book of financial markets [3]. Different models have been introduced
to capture the multivariate interaction structure of such binary systems, in particular
the kinetic Ising model (KIM) [4] in physics and the discrete autoregressive processes
[5, 6] in time series analysis, together with the (Markovian) multivariate generalization
recently introduced by [7], namely the vector discrete autoregressive process VDAR(1).
In this paper we prove analytically that, under some condition, the KIM is equivalent to
the VDAR(1) model. Furthermore it is well known that the Ising model, in both static
[8] and kinetic [9] version, is a maximum entropy model, given mean magnetizations
and pairwise correlations (at lag one in the kinetic case), see also [10–12], and, among
other aspects, maximum entropy arguments can be used to define without ambiguity
the temperature in such nonequilibrium spin systems [13]. Here, by exploiting the equiv-
alence between the two models, we prove also that the Markov chain associated with the
VDAR(1) can be interpreted as the maximum entropy distribution of binary random
variables with given means , auto-correlations, and lagged cross-correlations (of order
one). Thus, the KIM and the VDAR(1) should be preferable to other models in absence
of prior information on other metrics, following the principle of maximum entropy.

The KIM [4, 14–16], was originally proposed as the out of equilibrium version of
the classical Ising spin glass [17–19] to describe a Markovian dynamics of spins σi

t, i.e.
binary random variables taking values −1 and 1, interacting with each other according
to some generic matrix of couplings. The KIM has found countless applications in many
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contexts such as neuroscience [20, 21], computational biology [22], machine learning
[23–25], and economics and finance [26–28].

In mathematical terms, the KIM is a logistic regression model specified by the
following transition probability for a set of N spins σt ≡ {σi

t}i=1,...,N ,

pKIM(σt|σt−1,J,h) = Z−1
t−1 exp

(
N∑

i,j=1

σi
t Jijσ

j
t−1 +

N∑
i=1

σi
thi

)
(1)

where J ≡ {Jij}i,j=1,...,N is a matrix of real-valued parameters giving the multivari-
ate auto-regressive structure of the model or, equivalently, representing the couplings
between spins, h ≡ {hi}i=1,...,N is a set of variable-specific parameters representing the
external magnetic fields associated with each spin, and Zt−1 is the partition function
Zt−1 =

∏N
i=1 2 cosh (

∑
j Jijσ

j
t−1 + hi) guaranteeing that the probability distribution is

properly normalized.
The KIM of equation (1) is a maximum entropy [29, 30] model for a set of binary

random variables which display on average given means , and both auto- and (lagged)
cross-correlations . For the sake of clarity and in preparation to the section below, let us
move from the spin variables σi

t ∈ {−1, 1} to the binary variables Xi
t ∈ {0, 1}.

Given a set of N binary variables Xt ≡ {Xi
t}

t=1,...,T
i=1,...,N , let us consider the following

metrics,

2
∑
t

Xi
t , ∀i = 1, . . . ,N , (2)

2
∑
t

Xi
tX

j
t−1 + (1−Xi

t)(1−Xj
t−1), ∀i, j = 1, . . . ,N , (3)

related (under stationarity conditions) to the mean of the binary random variables and
the correlation between them, respectively.

The metric (3) for i = j is known as stability [31], which is connected with
the sample auto-correlation of a binary sequence, i.e.

∑
t X

i
tX

i
t−1. Similarly, when

i �= j the metric is related to lagged cross-correlations. The maximum entropy
probability distribution of X 1,X 2, . . . ,X T , i.e. the one maximizing the entropy
−
∑

X1,...,XT
p(X1, . . . ,XT ) log p(X1, . . . ,XT ) while preserving on average some given val-

ues for the metrics (2) and (3), has transition probability (by assuming a given initial
condition X 0 and exploiting the Markov property)

p(Xt|Xt−1 ;J,h) =
N∏
i=1

exp
[
2Xi

t

(
hi +

∑N
j=1 Jij(2X

j
t−1 − 1)

)]
1 + exp

[
2
(
hi +

∑N
j=1 Jij(2X

j
t−1 − 1)

)] (4)

where J = {Jij}i,j=1,...,N and h = {hi}i=1,...,N are N 2 +N Lagrange multipliers solving the
maximum entropy problem [29, 32]. It is trivial to show that the transition probability
of the KIM (1) can be stated equivalently as the maximum entropy probability (4) in
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terms of the binary variables X t∀i, t, through the relation Xi
t =

1+σi
t

2
(with the same

parameters J and h).
The VDAR(1) model describes the dependence structure of a set of binary random

variables which has Markov property and Bernoulli marginal distribution. It has been
proposed originally in its univariate version [5] and followed by several extensions such
as the Discrete AutoRegressive Moving Average (DARMA) model [6] and recently pro-
posed in its multivariate formulation [7], the VDAR model. Models from this family
have seen applications in genetics [33], queueing theory [34], temporal networks [35]
and recently in financial systems, as methods to forecast order flows [36] or to identify
preferential lending between banks [37].

In terms of the N binary variables Xt ≡ {Xi
t}i=1,...,N with Xi

t ∈ {0, 1} (and initial
condition X 0), the VDAR(1) process describes the evolution of Xi

t as

Xi
t = V i

t X
Ai

t
t−1 +

(
1− V i

t

)
Zi

t (5)

with V i
t ∼ B(νi) a Bernoulli random variable with parameter νi ∈ [0, 1], Ai

t ∼
M(λi1, . . . λiN) a multinomial random variable taking integer value in {1, . . . , N }, with
parameters λi1, . . . ,λiN such that

∑N
j=1 λij = 1, and Zi

t ∼ B(χi) with χi ∈ [0, 1]. In other
words, the VDAR(1) process captures the (multivariate) mechanism of copying from the
past: with probability νi, X

i
t is copied from the past and, in this case, λij is the probabil-

ity thatXi
t is equal toX

j
t−1 (including also the past itself with probability λii); otherwise,

with probability 1− νi, X
i
t is not copied and is instead sampled according to a Bernoulli

marginal with probability χi. Hence, the VDAR(1) model describes N binary random
variables with both Markov property and some autoregressive dependency structure,
similarly to the KIM. The model is formalized by the transition probability

pVDAR(Xt|Xt−1 ;π) =

N∏
i=1

[
νi

(
N∑
j=1

λijδXi
t ,X

j
t−1

)
+ (1− νi)(χi)

Xi
t (1− χi)

1−Xi
t

]
(6)

where δXi
t ,X

j
t−1

is the Kronecker delta, π = {{νi}, {λij}, {χi}}i,j=1,...,N .

Notice that the model has N 2 +N parameters, exactly as the KIM. It is thus imme-
diate to ask the question whether a mapping between the two models exists, as well as
finding under which conditions the two models can be considered equivalent. In the fol-
lowing, we indicate the KIM model as {{X t}, pKIM, θ} with set of parameters θ ≡ (J ,h),
while the VDAR(1) model is summarized as {{X t}, pVDAR,π}. Calling Θ = R

N×N × R
N

the space of all possible KIM parameters θ and Π the space of all possible VDAR(1)
parameters π,

Definition 1. The KIM and the VDAR(1) models are said to be equivalent on (Θ̂, Π̂)

if there exist an unique invertible map f : Π̂ ⊆ Π→ Θ̂ ⊆ Θ such that

pKIM(Xt|Xt−1 ; f(π)) = pVDAR(Xt|Xt−1 ;π)

for any X t and X t−1.
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2. Model equivalence

Before stating the main theorem, let us show that this mapping exists in the trivial
cases of N = 1 and N = 2. For N = 1, both J and h are scalar parameters, while the
DAR(1) model, namely the univariate version of VDAR(1), has two parameters, i.e. ν
and χ (λ = 1 by design, since we can copy only the past value of the single variable),
thus it is trivial to prove that

h =
1

4
log

(
χ

1−χ
+ ν

1
χ
− (1− ν)

)
(7a)

J =
1

4
log

(
1 +

ν

(1− ν)2χ(1− χ)

)
. (7b)

One can notice that here J is strictly positive as long as ν,χ > 0, while it is J = 0 if
and only if ν = 0: this suggests that the VDAR(1) model is indeed a restricted version
of the KIM, with the elements of the coupling matrix restricted to positive values.
Intuitively, in the KIM Jij < 0 implies that spin i tends to take the opposite value of the
past state of j, whereas the VDAR model describes only positive (or zero) correlations.

When N = 2, both models have 6 free parameters, three parameters associated with
each variable (spin) i = 1, 2, thus one can map the two models by considering three inde-
pendent configurations of X t−1, e.g. {X1

t−1,X
2
t−1} = {1, 1}, {0, 1}, {0, 0} and one possible

realization of Xi
t , e.g. X

i
t = 1, for both cases i = 1 and i = 2. Then, by matching the

transition probabilities for the two models, one obtains the following system

⎛
⎝ 1 1 −1

1 −1 −1
−1 −1 −1

⎞
⎠

⎛
⎝Ji1

Ji2

hi

⎞
⎠ =

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

log

(
1

(1− νi)χi

− 1

)

log

(
1

νi(1− λi) + (1− νi)χi
− 1

)

log

(
1

νi + (1− νi)χi
− 1

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

∀i = 1, 2.
Hence, there exists a unique mapping f : Π→ Θ as long as the linear system of

equation (8) admits a solution in the domain of parameters: (i) the solution exists
because the matrix in the left-hand side of (8) is invertible, then (ii) the mapping f
admits the inverse f−1 : Θ|Jij�0 → Π in the restricted codomain Jij � 0∀i, j (as can be
verified by simple computations).

Given these premises, we can now move to the main result of this paper, by stating

Theorem 1. The kinetic Ising model {{Xt}, pKIM, θ} is equivalent to the VDAR(1)
model {{Xt}, pVDAR,π} if and only if Jij � 0 ∀i, j.

In order to prove the theorem above, let us first prove the existence of a map f : Π→ Θ
from the VDAR(1) model to the KIM, for any set of parameters π ∈ Π. In particular,
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this map is unique because of the linearity of the mapping problem, see below. Sec-
ond, we prove that the mapping of parameters is invertible on its codomain f(Π) ⊂ Θ,
corresponding to the set of positive couplings Jij � 0, ∀i, j. Thus, the two models are
equivalent under such condition.

Let us start by constructing the system of equations generating the mapping for the
generic case N > 2. Following the same procedure used to obtain equation (8), we find

Mn ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ji1
Ji2
Ji3
...

JiN
hi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1 −1
1 1 . . . 1 −1 −1
1 1 . . . −1 −1 −1
1 . . . . . . . . . . . . −1
1 −1 . . . −1 −1 −1
−1 −1 . . . −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ji1
Ji2
Ji3
...

JiN
hi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

log

(
1

(1 − νi)χi
− 1

)

log

(
1

νiλiN + (1− νi)χi
− 1

)
...
...

log

(
1

νi
∑

j�2λij + (1 − νi)χi
− 1

)

log

(
1

νi + (1− νi)χi
− 1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

∀i = 1, . . . ,N.
Similarly to the case N = 2, the above system is obtained by considering n ≡ N+

1 independent configurations for Xt−1 and the transition probability associated with
Xi

t = 1. By matching the transition probabilities (4) and (6) associated with the N+ 1
independent configurations, one finds the system of equation (9) for variable i. Then,
one can repeat the same procedure for all is, thus obtaining N systems of (N+ 1) linear
equations in (N+ 1) unknowns, namely Ji1, Ji2, . . . , hi, each one characterized by the
same matrix Mn in equation (9).

Defining Λ(x) ≡ e2x

1+e2x
, the matching of probabilities associated with the N+ 1

independent configurations read as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ

⎛
⎝hi +

∑
j�1

Jij

⎞
⎠ = νi + (1− νi)χi if X1

t−1 = 1,X2
t−1 = 1, . . . ,XN

t−1 = 1

Λ

(
hi − Ji1 +

∑
j>1

Jij

)
= νi

(
N∑
j=2

λij

)
+ (1− νi)χi if X1

t−1 = 0,X2
t−1 = 1, . . . ,XN

t−1 = 1 ;

Λ

⎛
⎝hi −

∑
j�2

Jij +
∑
j>2

Jij

⎞
⎠ = νi

(
N∑
j=3

λij

)
+ (1− νi)χi if X1

t−1 = 0,X2
t−1 = 0, . . . ,XN

t−1 = 1 ;

. . . . . .

Λ

⎛
⎝hi −

∑
j�n

Jij

⎞
⎠ = (1− νi)χi if X1

t−1 = 0,X2
t−1 = 0, . . . ,XN

t−1 = 0,

(10)

then, equation (9) is obtained by applying Λ−1(y) ≡ 1
2
log

(
1
y
− 1

)
to both sides of

equation (10).
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Given this result, a unique mapping f : Π→ Θ exists as long as there exists the inverse
of the matrix Mn in equation (9), i.e. if the determinant of Mn is non-zero. We then start
by proving the following

Proposition 1. Given the determinant of the matrix Mn−1, then the determinant of the
matrix Mn is

det(Mn) = (−1)n2 det(Mn−1). (11)

Proof of Proposition 1. By means of the minor expansion formula (by using the minors
associated with the elements of the first row), the determinant of Mn can be computed
as

det(Mn) = (+1)1

∣∣∣∣∣∣∣∣∣∣

1 . . . 1 −1 −1
1 . . . −1 −1 −1
. . . . . . . . . . . . . . .
−1 . . . −1 −1 −1
−1 . . . −1 −1 −1

∣∣∣∣∣∣∣∣∣∣
+ (−1)1

∣∣∣∣∣∣∣∣∣∣

1 . . . 1 −1 −1
1 . . . −1 −1 −1
. . . . . . . . . . . . . . .
1 . . . −1 −1 −1
−1 . . . −1 −1 −1

∣∣∣∣∣∣∣∣∣∣

+ · · ·+ (−1)n(1)

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 −1
1 1 . . . −1 −1
. . . . . . . . . . . . . . .
1 −1 . . . −1 −1
−1 −1 . . . −1 −1

∣∣∣∣∣∣∣∣∣∣

+ (−1)n+1(−1)

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 −1
1 1 . . . −1 −1
. . . . . . . . . . . . . . .
1 −1 . . . −1 −1
−1 −1 . . . −1 −1

∣∣∣∣∣∣∣∣∣∣
. (12)

In the previous formula, one can notice that the first n− 2 minors of the sum in the
right-hand side are zero, because the last two columns of each (n− 1)× (n− 1) matrix
are indeed equal (two (n− 1)× 1 vectors of −1). Thus, equation (12) is simplified as

det(Mn) = (−1)n2

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 −1
1 1 . . . −1 −1
. . . . . . . . . . . . . . .
1 −1 . . . −1 −1
−1 −1 . . . −1 −1

∣∣∣∣∣∣∣∣∣∣
= (−1)n2 det(Mn−1) (13)

where we notice that the last two minors of (12) are equal to each other and correspond
to the determinant of Mn−1. Equation (13) then completes the proof of the proposition.

Thanks to this result, we are now able to prove the existence of the mapping from
the VDAR(1) model to the KIM model, expressed by

Proposition 2. Given π ∈ Π, there exists a solution of the problem of equation (9) for
any N > 0 and this solution is unique.
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Proof of Proposition 2. For N = 1, the solution can be explicitly computed as showed
in equations (7a) and (7b). For N = 2 the problem in equation (9) is equivalent to
equation (8) and det(M 3) = 4, thus there exists the inverse of the matrix M 3 and the
solution is uniquely determined by solving the linear system of equation (8). Because of
proposition 1, the determinant of Mn is different from zero, in particular

det (Mn) = (−1)

n∑
l=4

l (
2n−3

)
det (M3)

= (−1)

n∑
l=4

l (
2n−3

)
4,

∀n > 3 (or, equivalently, ∀N > 2), thus resulting in the existence of the inverse matrix
of Mn. Hence, the solution of the problem in equation (9) can be uniquely determined.
This completes the proof of the proposition.

Proof of Theorem 1. Given propositions 1 and 2, we have proved there exists a unique
mapping f : Π→ Θ from the VDAR(1) model to the KIM. To complete the proof, we
are now left with the existence of the inverse of the map f in its codomain f(Π) ⊂ Θ. By
restricting to such subset of parameters, the two models are equivalent. In particular, we
now prove the last claim of theorem 1 which states that the two models are equivalent
if and only if Jij � 0 ∀i, j.

Let us start by proving that, if π ∈ Π, then Jij � 0. To this end let us go back to
equation (10) and notice that, combining the equations by taking the difference between
the first and the second, between the second and the third and so on, we obtain the
following N relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νi

(
1−

∑
j�2

λij

)
= Λ

(
hi +

∑
j�2

Jij + Ji1

)
− Λ

(
hi +

∑
j�2

Jij − Ji1

)

. . .

νiλik = Λ

(
hi −

∑
j<k

Jij +
∑
j�k+1

Jij + Jik

)
− Λ

(
hi −

∑
j<k

Jij +
∑
j�k+1

Jij − Jik

)

. . .

νiλiN = Λ

(
hi −

∑
j<N

Jij + JiN

)
− Λ

(
hi −

∑
j<N

Jij − JiN

)
.

(14)

By definition νiλij � 0 for any i, j (because it represents a probability), then it is

Λ(C + Jij)− Λ(C − Jij) � 0.

Since Λ(x) is a monotonically increasing function of x, the previous inequality is fulfilled
if and only if Jij � 0∀i, j. Thus, this condition is necessarily true if π is in the domain
of f.

By following the same steps in the opposite direction it is straightforward to prove
the reverse relation, that is Jij � 0 is a sufficient condition to have f−1(θ) ∈ Π. Indeed for
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any Jij � 0, the product νiλij is 0 � νiλij � 1∀i, j given the system (14) and Λ(x) ∈ [0, 1]
for any x. Then, by summing all the equations in system (14), one obtains

νi = Λ

(
hi +

∑
j

Jij

)
− Λ

(
hi −

∑
j

Jij

)

which is also positive and smaller than 1 if Jij � 0 ∀j. Then, it follows that all the
λij are 0 � λij � 1 ∀i, j. Finally, combining the first and last lines of equation (10), one
finds that 0 � χi � 1. This procedure can be repeated for all variables i = 1, . . . ,N , thus
obtaining the inverse mapping f−1 : Θ|Jij�0 → Π in the subset of the codomain Θ defined
by the condition Jij � 0∀i, j = 1, . . . ,N . This concludes the proof.

3. Practical implications in model inference

Having formally demonstrated the equivalence between the KIM and the VDAR opens
the door to cross-contamination between the literatures in which they were developed.
In this section we show that one can use inference methods of the KIM developed in the
statistical literature, namely the mean field (MF) method [38], for improving standard
inference methods for discrete autoregressive processes, namely the Yule-Walker (YW)
equations.

Specifically, a popular method in time series literature for the inference of autore-
gressive models is the method of moments, which generates the so-called YW equations
matching the empirically measured moments with the ones implied by the model param-
eters [39]. In the context of the VDAR(1) it can be shown [7] that the YW equations
read

E (Xt) = φ+ΨE (Xt−1) (15)

E

(
X̃tX̃t−1

)
= ΨE

(
X̃t−1X̃t−1

)
(16)

where X̃t = Xt − E(Xt), φ is a N -dimensional vector and Ψ is a N ×N matrix. Solving
these linear systems for φ and Ψ allows to obtain the VDAR parameters as νi =

∑
j Ψij,

λij = Ψij/νi and χi = φi/(1− νi).
On the other hand, the statistical mechanics literature has developed suitable approx-

imation methods of maximum likelihood estimation of KIM. In particular, we consider
the method developed by Mézard and Sakellariou [38], which takes advantage of a
MF approximation to infer the parameters of the KIM. The method is exact if the
J generating the data has all Jij �= 0 and can be adapted to a sparse version through �1-
regularization or decimation methods [40]. It has been extensively used in applications
of the model to real financial and neural data [28, 41].

The equivalence between KIM and VDAR we proved in this paper allows us to use
the MF method for doing inference on a VDAR model. To test this idea, we apply MF
and YW method on simulated data and compare them both in speed and accuracy.
The speed is measured by the time needed to perform the inference as a function of N
on a regular commercial laptop, while the accuracy is measured by the bias and root
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Figure 1. Comparison between the mean field (MF) and Yule-Walker (YW) meth-
ods for the inference of the KIM/VDAR(1). (Top) Execution time varying the
number of variables N ; (bottom left) histogram of the estimator bias relative to the
average size of Jij over 500 simulations; (bottom right) histogram of the estimator
RMSE relative to the average size of Jij over 500 simulations.

mean squared error (RMSE) of the estimator of J over 500 simulations. We simulate
the KIM with uniformly distributed Jij ∼ U(1/2N , 1/N) to keep the model far from
the dynamic ferromagnetic transition [15], for T = 10N time steps and N ranging from
10 to 10 000. For the sake of simplicity we consider hi = 0 ∀i in our simulations. We
show the results of the comparison in figure 1, where it is clear that the YW method
is faster on small scale systems but is also less accurate. In particular we see that the
method of moments has a positive bias and a relatively large RMSE, whereas the MF
method has close to zero bias and a smaller RMSE. The computational effort required
in the two methods is comparable as the biggest contribution comes from the inversion
of the covariance matrix, typically achieved in O(N 3) operations, hence they present
similar execution time for large N . Thus the MF method is a better choice for the
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inference of the KIM/VDAR(1), and this result is somewhat expected, since MF is a
likelihood-based method whereas the YW equations are not.

This simple analysis shows that the equivalence between the two models can be
leveraged to identify inference methods, originally developed for the KIM, that can
be used in the inference of the VDAR. As shown above, this can lead to significant
improvements in performance when compared to standard VDAR inference methods.

4. Conclusions

In conclusion, the VDAR(1) model is equivalent to the KIM thanks to the existence
of a unique mapping for both the binary random variables and the parameters as long
as the J parameters of the KIM are positive or zero, as a consequence of the fact
that the ν and λ parameters only account for non-negative lagged correlations among
random variables. Moreover, since the two models can be interpreted as the maximum
entropy distribution of binary random sequences with given means, and both auto- and
cross-correlations (only non-negative correlations for the specific case of the VDAR(1)
model), both of them represent further the best choice in describing such binary random
sequences in absence of prior information on other metrics, according to the principle
of maximum entropy.

There are several directions in which future research can go to take advantage of our
equivalence theorem. We have already shown that inference methods developed in the
statistical physics literature can be used to improve model estimation; another straight-
forward application of this theorem is that of defining an extension of the VDAR(1)
including negative correlations, as the equivalent to the KIM without the restriction
on the positive J elements. Finally, it is common in autoregressive models to consider
Markov chains of order higher than 1, that is where there are explicit parameters link-
ing the value of Xt to the value of Xt−k with k = 1, . . . , p, p > 1. The properties of
a KIM with higher order interactions have not been studied yet to the best of our
knowledge, thus opening another interesting perspective to explore in the context of
this cross-contamination between very active research fields.
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