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Abstract

Due to increasing greenhouse gas emission as a consequence of the production activities in

various industries, managing the supply chain has been a big concern between both scholars

and practitioners. Green supplier selection and order allocation is among important topics

that managers should pay attention to as the majority of the supply chain costs and emis-

sion level during production process depends on the procured material by suppliers. Also,

investigating the emission abatement regulations, and interactions between regulator and

manufacturers is one of the main concerns of supply chain managers that should be figured

out.

In the present study, green supply chain problems are taken into account for more inves-

tigations. First, a green supplier selection and order allocation model in a closed-loop supply

chain considering both environmental and economical criteria, is studied. In this study, one

of the carbon emission abatement schemes, cap-and-trade mechanism is proposed. The de-

scribed problem is modeled as a multi-objective robust optimization (RO) model. Second,

the cap-and-trade (C&T) mechanism is further investigated. The goal of this investigation

is to find the best strategy for supply chain parties to maximize their utility as well as min-

imize the carbon emission. To model the described problem, a stochastic three-player game

theoretical model is developed.

The results show that the developed models can effectively help decision makers select the

most appropriate suppliers, allocate the proper amount of order to each selected supplier, and

find optimal strategy of C&T players. Also, the results show that the uncertainty control

approaches used in the presented models are capable of handling the model uncertainties

from different sources. Furthermore, this study shows that C&T outperforms the penalty

based systems in terms of the total utility of the supply chain. Moreover, the robustness of

the results is proved by sensitivity analyses.

Another area that is investigated in this study is the disruption effects on supply chain.

Disasters and pandemics like COVID-19 can destroy industries by causing huge disruptions

in their supply chains. To control these disruptions, decision-makers need to design re-
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silient supply chains. This study proposes a multi-stage, multi-period resilient green supply

chain design model considering six resilient strategies. Disruptions are taken into account

in both downstream and upstream directions, causing the ripple effect and bullwhip effect,

respectively. To control the mentioned disruptions, and handle uncertainties of parameter

estimations, a two-stage stochastic optimization approach is applied. The objectives are to

minimize the total cost of disruption and CO2 emission considering the cap-and-trade mech-

anism as a government-issued emission regulation. The proposed decision-making framework

and solution approach are validated using a numerical experiment followed by a sensitivity

analysis. The results show the optimal structure of the supply chain and the best resilient

strategies to mitigate the ripple effect. Moreover, the effect of a decrease in capacity of facil-

ities on the optimal solution and the applied resilient strategies is investigated. This study

provides managerial insights to help governments set the proper amount of cap and supply

chain managers to predict the demand behaviour of essential and non-essential products in

the event of disruptions.
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1. Introduction

Environmental considerations have been receiving more attention in various industries

across the world. Greenhouse gas (GHG) emission is considered one of the most important

environmental concerns caused by economic activities and production, threatens human

health, and imposes a cost on governments (Gao et al., 2018). Climate change, which is a

consequence of the elevation of GHG emissions leads to challenges that must be addressed

by manufacturers and governments. In the following thesis, novel mathematical models

to provide an environmental-friendly supply chain and appropriate methods to solve these

models are presented. In this chapter, after discussing the problem objectives, motivations

behind the following thesis, followed by a summary of the contributions of this thesis is

provided. Then, the publications and submissions during Ph.D. studies are presented.

1.1 Research problem and objectives

Supply chains can be assigned an important role in reducing the harmful effects of the

product manufacturing process such as CO2 emission to avoid climate change. Consequently,

the concept of green supply chain (GSC) has been widely studied to find better ways of con-

trolling GHG emissions (Haeri and Rezaei, 2019). Due to the increasing environmental issues

that have arisen recently, GSCM has become an important topic for both practitioners and

researchers (Sang and Liu, 2016). According to Srivastava (2007), GSCM brings environmen-

tal considerations to supply chain management; this includes product design, raw material

and parts sourcing, production processes, and transportation of finished products to cus-

tomers. One of the most critical topics in GSCM is supplier selection since about 70% of

the cost of the final product arises from component parts and raw material (Ghodsypour
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and O’brien, 2001). Thus, procuring the raw materials from proper suppliers significantly

impacts both the characteristics and the costs of the final product. Accordingly, companies

involved in GSCM seek partners that score the highest on environmental criteria (Rao and

Holt, 2005).

Supplier selection is the process of evaluating various suppliers to select the best one(s)

according to the high-priority criteria for the manufacturers (Ding et al., 2015). In case of

multiple sourcing, where more than one partner can be selected for outsourcing, a solution

must encompass the selected suppliers and the size of the order to be placed with each

of them. To evaluate the suppliers, the manufacturers should first specify their appraisal

criteria. According to the literature of GSCM, there are two general types of measures in

supplier selection: non-green and green.

Non-green criteria ascertain a company’s competitiveness compared to other firms in

the market. The most common non-green measures used in the selection process are cost,

quality, and lead time (Mirzaee et al., 2018). On the other hand, green criteria consider those

company activities that have an adverse impact on the quality of water, air, and soil. The

most utilized measures in evaluating the green criteria are the toxicity level of the materials

used in products, recyclability, green production, and environmental management systems

(Rezaei et al., 2016), as well as pollution production (i.e., the amount of carbon emission)

(Yu et al., 2018).

Considering green criteria mentioned above by manufacturers is caused by some incen-

tives that government makes for them to reduce the pollution level. Within the supply

chain, there are incentives for manufacturers to apply GSC management. One of the main

goals of the manufacturers is satisfying the environmental preferences of the customers given

the positive correlation between product greenness and customers’ demand (Nouira et al.,

2014). Governmental incentives designed to encourage pollution rate reduction exemplify

another factor impacting the manufacturers’ decision on adopting green technology. These

incentives generally reward green economic activities (Li et al., 2018a), or penalize exten-

sive polluting to reduce GHG emissions. In other words, manufacturing emission level is

restricted by charging for extra emission (Rout et al., 2021). Two common systems exist for
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implementing such restrictions: penalty-based system and cap-and-trade (C&T) (Du et al.,

2015). A penalty-based system is usually used to force companies to apply environmentally

friendly production approaches. Based on this concept, manufacturers will have to pay a

penalty based on their GHG emission amounts. Various methods are devised to achieve the

mentioned objective. For instance, some governments impose a carbon tax on economical

activities. As a result, manufacturers must reduce their carbon emission levels to minimize

their carbon tax. Another popular pollution reduction scheme is cap-and-trade (C&T).

C&T is a market-based approach in which the government provides economic incentives

to reduce the overall carbon emission level in a geographical area (Knoope et al., 2015).

This approach features carbon emission quotas determined by the government for each man-

ufacturer. This quota is calculated based on various factors, including the amount of the

manufacturer’s annual production. If a manufacturer emits more carbon than its quota, it

is required to purchase the extra quota from other manufacturers in the C&T market. In re-

verse, manufacturers can sell their allowance if they produce less carbon than determined in

their quota (Xu et al., 2021a). Cap-and-trade system is one of the most effective mechanisms

of controlling GHG emission levels (Xu et al., 2021b). Also, based on Yu et al. (2021), C&T

reduces GHG emissions more effectively than the carbon tax system due to making more

profit for the manufacturers and producing a higher social welfare. Social welfare can be

measured by an indicator called consumer surplus. According to Sinayi and Rasti-Barzoki

(2018) consumer surplus can be modeled based on variables such as price and greening level

of the product. C&T aims to keep the GHG emissions of an entire geographical area below a

predetermined amount. In this system, the policy-maker assigns a combined GHG emission

limit to all of the industries that operate in a jurisdiction or the C&T market. Obviously,

enforcing a C&T market creates unique challenges. For instance, assessing the amount of

carbon emission of the manufacturers or investigating the interactions between active par-

ties in the C&T market. The mentioned complications are one of the main concerns of this

thesis.

Given these circumstances, each player in the C&T market must make important deci-

sions, which are often complicated with conflicts of interest among different parties. Each

3



group needs to select the best option among all the available alternatives. In other words,

while each party strives to select the option that maximizes its utility, these decisions will

undoubtedly impact the utility functions of the other parties. Consequently, an effective

solution approach is required to scrutinize the described conflicts and find an equilibrium

that maximizes the benefits of all the involved parties. Thus, an appropriate optimization

method is required to find the equilibrium.

According to Rao (2019), optimization methods are used to find the maximum or min-

imum amount of a function while examining different values of its parameters. In our de-

scribed environment, the goal of each different party is optimizing its own objective function

against other parties. One of the main techniques to find the best decision for each party

considering their conflicts and the mutual impact of their decisions on the other parties is

game theory (GT) (Chavoshlou et al., 2019). GT is a useful tool for decision making when

the utility function of different players is affected not only by their own decisions, but also

the other players’ strategies (Xing et al., 2020). GT is a way to control the uncertainty of

predicting other parties’ decisions in a supply chain. In other words, GT optimizes a com-

bination of strategies for players with conflicting objectives in a competitive and uncertain

environment. GT’s appropriateness in dealing with problems with such characteristics has

been shown in various studies in the literature (Mahmoudi et al., 2021). It should be noted

that various game strategies are devised to deal with different practical conditions. In cer-

tain games, players look for a combination of strategies that maximizes everyone’s payoff. In

other words, if any of the players choose a different strategy, their utility will not increase.

This point is called the Nash equilibrium (Axelsson, 2019). Furthermore, games can be

categorized based on the players’ tendency to cooperate with each other, which results in

cooperative and non-cooperative games (Agi and Hazir, 2019). In cooperative games players

forge an alliance and all the players know about other parties’ decisions. In non-cooperative

games, a player is not aware of other players’ strategies and needs to select its best strat-

egy based on all the possible outcomes of the other parties’ decisions. In this case, a Nash

equilibrium shows the best possible strategy, where the players do not change their decision

since they will not gain more profit by doing so (Jiang et al., 2021). Agi and Hazir (2019)
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provide more information about the possible game classifications, especially in the supply

chain management context.

In a supply chain, the amount of production, and consequently, the decisions related to

raw material outsourcing are highly impacted by market demand and procurement costs.

Typically, these factors are not under the company’s control. Although firms can impact

these parameters by marketing and product pricing, they cannot predict their exact values

because of unpredictable factors such as rivals’ strategies. This uncertainty prevents the

manufacturer from forecasting precise values for demand and procurement cost. Moreover,

in a closed-loop supply chain, the quantity of returns consisting of used or rejected prod-

ucts is not easy to predict and is therefore uncertain (Pishvaee et al., 2011). Consequently,

decision-makers need to consider appropriately the uncertainty of the parameters, while si-

multaneously generating models that adequately represent realistic scenarios. In the context

of the supply chain, there are three common ways to control the uncertainty of the input data

include: stochastic optimization, fuzzy set theory, and robust optimization (RO) (Tordecilla

et al., 2021).

In the green supplier selection literature, the majority of studies have focused on deal-

ing with uncertain parameters using stochastic or fuzzy programming. However, correctly

estimating the probability distribution of uncertain parameters is one of the challenges of

using stochastic programming (Gorissen et al., 2015). Accurate estimation of probability

distributions can be particularly difficult when there is a lack of historical data on these

parameters, which can lead to unreliable results (Vahdani et al., 2012a). While stochastic

programming approach can provide estimated parameter values that are likely to be correct,

there is still a small probability that these parameter estimates are wrong; in rare cases, this

could cause the solution to be infeasible, which can lead to a significant cost increase. In

other words, despite the high accuracy of stochastic programming, there is still some risk

involved, and this risk must be carefully considered when making decisions in a supply chain

context. (Pishvaee et al., 2011). Similarly, the fuzzy set theory presents challenges as it

requires exhaustive knowledge and comprehension of the parameters to generate an accu-

rate membership function. Undoubtedly, obtaining such comprehensive awareness about the
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market and its dynamics poses an enormous challenge for decision-makers, and is consid-

ered to be one of the obstacles for effectively employing the fuzzy set theory for real-world

problem optimization (Memon et al., 2015a).

Robust optimization is an analytical technique to address uncertainty in decision-making

and has fewer drawbacks compared to the methods mentioned above (Jabbarzadeh et al.,

2019). In particular, both robust and stochastic optimization rely on historical data to pre-

dict the scenarios and probability distributions, which, once correctly identified, can accu-

rately reflect the uncertain characteristics of random variables (Chen et al., 2022). However,

the precision of the probability distribution information is dependent on the number of data

samples and the accuracy of the prediction methods; lack of accuracy leads to increased

complexity and reduced confidence (Firouzmakan et al., 2019). In the robust optimization

approach, the uncertain parameters are typically modeled as belonging to a given uncer-

tainty set, which can be defined in a variety of ways including as a bounded set or as a set of

scenarios. The goal of robust optimization is to find a decision or solution that performs well

under the worst-case scenario within the given uncertainty set. Accordingly, after realizing

any uncertain parameters, the optimal solution is achieved with decent generalization and

does not have the mentioned complexity(Lu et al., 2020).

Another important aspect of supply chain management is disruption management. Dis-

ruptions caused by natural or human-made disasters affect supply chains in different aspects

including transportation delays, labor unavailability, and supply-side shortage. A supply

chain disruption announcement decreases a firm’s stock returns by 20% on average after

six months (Hendricks and Singhal, 2005). Various examples demonstrate the challenges

the firms face when trying to recover from a disruption: six months after Japan’s tsunami

in 2011, Toyota faced disruption in its supply network, and due to a shortage of parts,

idled some of its plants in North America (Kim et al., 2015). More recently, the COVID-19

pandemic outbreak caused long-term negative impacts on supply chains and revealed their

vulnerabilities (Liu et al., 2022a). These examples showcase the importance of adaptability

and resiliency of supply chains in surviving new conditions in case of a sizeable disruption,

which has recently gained attention among scholars and practitioners (Ivanov and Dolgui,
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2022).

One type of interruption to scrutinize for improving supply chain adaptability is the ripple

effect, which is described as the propagation of disturbances that arise from the disruption of

supply chain elements (Ivanov et al., 2016). The adverse impacts of the ripple effect spread

downstream in the supply chain (Monostori, 2021). Real-world examples emphasize that

controlling the ripple effect is crucial for supply chain managers. For instance, in June 2020,

Mercedes-Benz ceased production of an off-road vehicle in Alabama as a result of a shortage

in components imported from its European suppliers during the global COVID-19 pandemic

(Reuters, 2020).

The desirable approach for efficient recovery from the impact of ripple effect is construct-

ing intrinsic supply chain resiliency. Having contingency plans such as backup suppliers or

temporary facilities at the supply chain design stage is helpful in controlling the ripple effect

(Ivanov et al., 2015). In other words, appropriate strategies must be considered during the

design stage to mitigate the crunch in the aftermath of inadmissible events such as supply

delay, demand hike, or capacity contraction (Sharma et al., 2022). The auspicious design

strategies include, but are not limited to, considering backup suppliers, capacity expansion

and multiple assignments (Gholami-Zanjani et al., 2021).

1.2 Motivations

Although there exist numerous studies in the area of supplier selection, only a few papers

have considered both green and non-green criteria at the same time. Also, to the best of

our knowledge, this chapter is the first study that employs robust optimization to handle

uncertainties of the green supplier selection (GSS) problem and cap-and-trade mechanism

for carbon emission. Based on the literature, RO is one of the best options to solve various

problems in supply chain. In other words, as confirmed by the literature, RO is an efficient

approach to deal with uncertainty. However, this approach has not been applied to the green

supplier selection problem.

In other words, in this thesis, a GSS model which is embedded in a closed-loop supply
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chain framework is presented. The model regards both green and non-green measurements

in the presence of distinct quantitative and qualitative factors. Moreover, it is assumed that

the market operates under the cap-and-trade regulations imposed by the government. To

deal with the described problem, an RO approach is employed. It will be demonstrated

that the proposed RO model can generate solutions that closely approximate the optimal

strategy among all possible strategies. Furthermore, in order to solve the conflicts between

different players in the C&T mechanism, a non-cooperative game maximizing the welfare

in a cap-and-trade market, in which the players have conflicting interests and objectives

is developed. The considered game is decentralized and non-sequential: a) each of the

considered three players tries to optimize their own objective function, while being unaware

of the other players’ strategies; b) decisions are made simultaneously and based on all the

possible strategies of the other players. In other words, the mentioned model develops a

decision support system (DSS) for the players involved in a C&T mechanism to select the

best strategy considering their rivals’ moves. The developed DSS also helps the government

lower the re-verification costs and the probability of collusion between the manufacturers

and verifiers. To achieve a solution which best represents the real world, the supplier lead

time and customer preferences are considered to be stochastic. It is assumed that the values

of the parameters such as demand, carbon price, amount of lost sales, and manufacturer’s

quota are dependent on lead time and customer preferences. Additionally, the impact of

product greenness on demand is investigated.

This study aims to address the following research questions:

• The impact of cap-and-trade, as an environmental mandate, on the supply chain;

• Finding an effective approach for controlling the intrinsic uncertainty of the model’s

parameters;

• Selecting the best supplier among all candidates in a supply chain considering economic

and environmental criteria;

• Determining clear cause-and-effect relationships between various factors to help gov-

ernment entities with their decision making efforts.
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• How the interactions between C&T players impact their decisions?

• Which strategies best help the manufacturers reduce their emission level?

• How C&T players can make effective decisions in presence of uncertainty in other

players’ strategies and stochastic model parameters?

• How the customers’ sensitivity to product greenness versus price impacts the manu-

facturers’ decisions regarding reducing carbon emission levels?

• Which strategic and operational decisions should be made to design a sustainable,

resilient green supply chain?

• Which strategies are best to mitigate the ripple effect?

1.3 Contributions of the Thesis

Although there are numerous studies on the supplier selection problem, we know of

only a small group of papers addressing both green and non-green factors in the process

of supplier evaluation while considering a closed-loop structure with uncertain parameters.

Furthermore, as the literature shows, there is no paper that considers RO for green supplier

evaluation as well as the cap-and-trade mechanism. Moreover, to the best of our knowledge,

previous studies have not considered the role of suppliers in the C&T mechanism as a profit

maximizing strategy, or the correlation between sensitivity to product greenness and the

demand. Also, a limited number of studies have analyzed C&T as a three-player stochastic

game. The present research is an attempt to fill these gaps by fostering the contributions

presented below.

• A multi-objective mathematical model for a closed-loop supplier selection and order

allocation evaluating the candidates in terms of both environmental and economical

criteria is presented. The developed model helps firms achieve a more environmentally

friendly manufacturing system. Model realism is enhanced by developing an approach

that considers two groups of conflicting criteria (green and non-green).
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• The cap-and-trade mechanism, as a method to manage air pollution, is employed in

the model. Analyses on the cap and market prices of carbon are performed to help

firms and governments determine the values of the parameters to achieve better results.

These analyses can subsequently translate to lower cost and carbon emission, as well

as more environmentally friendly products. Moreover, based on the analysis conducted

on the cap-and-trade approach, this mechanism is demonstrated as a proper approach

for carbon emission reduction.

• The generalized model is solved by the RO approach to handle the uncertainty em-

bedded in the problem. Sensitivity analysis has been conducted on two parameters to

illustrate the trade-off between model robustness and solution robustness, and solution

deviation. This can inform decision-makers of the best parameter values.

• A three-player game is modeled to analyze the interactions between cap-and-trade

parties. In this game, a third-party verifier acts a mediator between manufacturer and

government. The goal of modeling this problem is to construct a decision support

system for cap-and-trade players to maximize their utility and minimize the emission

level.

• All possible strategies of the manufacturer to reduce the emission levels are predicted.

Upgrading production technology, and outsourcing are two such options. Also, to make

the model more realistic, possible bribing actions between the verifier and manufacturer

is taken into account, and the government intervention to prevent bribery through a

re-verification is analyzed as one of the main variables of the problem.

• The actions of the customer as a vital link in the supply chain are studied with more

scrutiny. The correlation between customer sensitivity to product greenness and its

impact on upgrading to green technology is investigated. Also, the relationship between

product greenness and customer demand is taken into consideration. Furthermore, the

linkage between the demand level and the price of purchasing extra carbon emission

allowance in the C&T market is formulated.

• The uncertainty of the cap-and-trade players’ interactions is controlled in two ways.
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First, the uncertainty of the C&T players’ decisions, which impacts the other players’

utility is handled by applying a game theory model. Second, the uncertainty of the

values of the parameters of the problem is handled by stochastic optimization.

• The ways to mitigate the ripple effect and demand uncertainty are investigated by de-

veloping a multi-period, multi-stage green resilient supply chain considering 6 resilient

strategies.

• A two-stage stochastic optimization approach as an efficient way to control the param-

eter estimation uncertainty and the ripple effect is deployed for the RGSCD problem.

1.4 Publications and Submissions During Ph.D. Study

1.4.1 Preprints

1. Mirzaee, H., Samarghandi, H., Willoughby, K. (2023). Resilient green supply chain

design to mitigate the ripple effect: A two-stage stochastic optimization model. Journal

of Cleaner Production (under review).

A major portion of this paper is included in Chapter 5.

1.4.2 Publications

1. Mirzaee, H., Samarghandi, H., Willoughby, K. (2022). A robust optimization model for

green supplier selection and order allocation in a closed-loop supply chain considering

cap-and-trade mechanism. Expert Systems with Applications (accepted).

A major portion of this paper is included in Chapter 3.

2. Mirzaee, H., Samarghandi, H., Willoughby, K. (2022). A three-player game theory

model for carbon cap-and-trade mechanism with stochastic parameters. Computers

Industrial Engineering, 108285.

A major portion of this paper is included in Chapter 4.

1.5 Organization of the Thesis

The thesis is organized as follows:
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• Chapter 1: Introduction gives a clear view of the problem and encountered chal-

lenges. In this chapter, we also explained the motivations behind this research, followed

by the contributions of this thesis are presented. Then, publications and submissions

during the Ph.D. program are listed.

• Chapter 2: Literature Review provides a review of previous works regarding the

green supplier selection as well as the C&T mechanism. The latest advancements in

the uncertainty methods to solve GSCM problems are also addressed.

• Chapter 3: A robust optimization model for green supplier selection and

order allocation in a closed-loop supply chain considering cap-and-trade

mechanism proposes a framework based on the RO approach to model and solve

a green supplier selection problem under uncertainty. Then, different analyzes are

employed to assess the model and approach performance under uncertainty.

• Chapter 4: A three-player game theory model for carbon cap-and-trade

mechanism with stochastic parameters explains the procedure of solving conflict

between C&T parties using a stochastic game theory model. The robustness of the

model is tested under different conditions in presence of uncertainty.

• Chapter 5: Resilient green supply chain design to mitigate the ripple effect:

A two-stage stochastic optimization model proposes the best resilient strategies

to overcome disruptions and mitigate the ripple effect efficiently.

• Chapter 6: Conclusions and Future work summarizes this thesis, remaining

challenges, and discusses potential future works.
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2. Literature Review

In the past few years, GSCM has received considerable attention in both theoretical and

empirical studies. GSC researchers have focused on how firms maximize their utility while

decreasing their carbon footprint and abiding by the regulations. One of the important

topics in the GSCM field, which is relatively recent, is C&T. This mechanism is proven to

be one of the most effective approaches of reducing pollutant emissions (Li et al., 2018b).

2.1 Cap-and-trade

Applied research invariably involves the development of methods to more closely align

decisions to real-life situations. One such approach to augment applicability involves consid-

ering the supply chain as a closed-loop system. Firms in the supply chain can collect used

or rejected products and deploy them again in the production system, thus contributing to

reduced environmentally harmful waste (Cao et al., 2020a). Moreover, pollution control sys-

tems can also provide enhanced applicability for solutions. Cap-and-trade is an interesting

mechanism that is becoming more popular in today’s consumer market. The emission of

greenhouse gas was restricted by the Kyoto Protocol (Oberthür and Ott, 1999) for the first

time. The Kyoto Protocol is an international treaty developed within the United Nations

Framework Convention on Climate Change (UNFCCC). It was adopted in Kyoto, Japan in

1997 and came into effect in 2005. The Protocol proposes cap-and-trade, which is a flexible

framework for reducing air pollution. The existing literature regards cap-and-trade as one

of the most effective ways to control the carbon emission (Golp̂ıra and Javanmardan, 2022).

Furthermore, based on Yu et al. (2021), cap-and-trade is more effective than the carbon tax

system on reducing GHG emissions because it produces a higher social welfare and maxi-
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mizes utility of the manufacturers. Another research supporting the effectiveness of C&T

is conducted by Chen et al. (2020), which further compared emission reduction effects of

carbon tax and C&T schemes. They showed that both mechanisms stimulate clean innova-

tion, but C&T is more efficient. They stated that government can control air pollution by

assigning the proper carbon cap for manufacturers in a trade-off between environmental and

economical objectives.

The C&T approach has been studied from different perspectives in the literature. Gong

and Zhou (2013) developed a model to investigate the impacts of creating an emission trading

market on single-product production planning problem with stochastic allowance prices and

found the optimal production policy as well as emission trading policy under this regulation.

They considered the usage of green production technology to decrease emissions. Zhang and

Xu (2013) extended the work of Gong and Zhou (2013) by presenting a multi-product pro-

duction planning model under the C&T system and proposed a profit-maximization model

to achieve the firm’s optimal policy. In their analyzes, they showed that C&T curbs the

emission level better than carbon tax system. Also, they showed that in the C&T system,

there is more tendency to produce carbon efficient products. Shen et al. (2014) studied Cal-

ifornia’s cap-and-trade scheme with the goal of implementing it as China’s carbon reduction

program. Li et al. (2018b) studied the impact of cap-and-trade system on manufacturers’ op-

timal operational decision and showed that customers’ green preferences act as an incentive

for greening the production technology. Zhang et al. (2019a) considered two scenarios for

carbon allowance prices: dynamic and static. They investigated the effects of cap-and-trade

market on manufacturers’ decisions under both scenarios and showed that upgrading the

production technology is positively correlated with penalties imposed for extra emissions.

In the context of supply chain management, cap-and-trade is a relatively new topic.

Thus, the need for more research in this area is deeply felt. To the best of the authors’

knowledge cap-and-trade regulations have not been addressed in the research body related

to green supplier selection. Moreover, although studying the interaction between the verifier

and other parties in the C&T market is of consequential importance, the above studies

have not considered the role of verifier. To fill this gap, this study involves the third-party
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emission verifier as a building block of the described network of players in the game. Also,

the possibility of using suppliers as a carbon sustainable emission reduction strategy is not

considered in the cap-and-trade literature; this option is contemplated in this research as

well.

2.2 Game Theory

When investigating the interactions between C&T parties, compromising between con-

flicting objectives becomes important. Game theory properly deals with the mentioned goal

by accounting for the uncertainty of game players’ strategies. As such, several articles in-

vestigate the interactions between the parties involved in the C&T mechanism from a game

theoretical standpoint. The effect of government interventions to make the supply chain

greener was studied by Sheu and Chen (2012), who applied a three-stage game theory model

to show that government incentives are needed to reduce the adverse environmental effects

of supply chain operations. Their results indicate that by using game theory and finding the

Nash equilibrium, both supply chain utility and social welfare are increased compared to the

case when government intervention is not present.

Zhang et al. (2019a) studied the impact of government intervention on supply chain us-

ing game theory. They applied an evolutionary game analysis on manufacturers’ behavior

under cap-and-trade regulation to investigate the impact of government strategies on manu-

facturers’ decisions under dynamic and static carbon price scenarios. In the two-player game

model, they showed that implementing dynamic allowance prices for cap-and-trade system

results in a stable strategy; however, with static allowance prices, their evolutionary game

was unable to find a stable strategy. Also, they indicated that the manufacturer’s proba-

bility of implementing a greener technology increases when government penalty for firms’

speculations increases, and decreases when the cost of government intervention elevates.

Pan et al. (2019) expanded the literature on C&T players’ conflict resolution through a

game which consisted of more players. They employed a model to solve a three-player game

of C&T between manufacturer, government, and a third-party verifier, and found the best

policy for the players. Furthermore, they established a method on how the government can
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reduce carbon emissions efficiently. Chapter 4 expands on the work of Pan et al. (2019) by

considering parameter uncertainty and supplier’s role in carbon emission reduction, relating

demand to product greenness, and correlating carbon emission quota to carbon price. Addi-

tionally, the cited studies do not explore vertical disintegration or effects of subcontracting

and outsourcing parts of the manufacturing process in an effort to reduce the manufacturer’s

emission penalties. To the best of the authors’ knowledge, few research efforts examine the

three-player game between C&T players. Henceforth, in this study a three-player game which

includes all players involved in a C&T game is developed to fill this gap in the literature.

The next topic to consider is categorizing the proposed model from a centralized—

decentralized decision making standpoint. Centralized decision models optimize the entire

supply chain’s profit instead of maximizing the profit of each member separately (Esmaeili-

Najafabadi et al., 2021). On the other hand, where a unified decision system is not an

option, decentralized models prove to be useful by optimizing the objective function of each

organization in the supply chain separately (Golp̂ıra and Javanmardan, 2021). Decentral-

ized decision systems have been applied in various problems from closed-loop supply chain

(Muneeb et al., 2018), to green supply chain (Golp̂ıra et al., 2017), to energy management

(Golp̂ıra et al., 2020), among others.

For instance, Golp̂ıra and Javanmardan (2021) developed a decentralized decision sup-

port system for a closed-loop supply chain and showed that it is an appropriate approach

for a competitive environment including different parties in a supply chain. Muneeb et al.

(2018) developed a decentralized decision planning model for a solid waste management

system and asserted that a supply chain consisting of different decision makers in different

echelons is generally a decentralized system. Feng et al. (2022) investigated the impact of

environmental decentralization on green technology innovation, and indicated that there is a

positive correlation with improvement of green innovation and environmental decentraliza-

tion. The effects of fiscal decentralization on ecological sustainability is investigated by Sun

et al. (2022), which showed that using a decentralized fiscal system plays an important role

in decreasing the ecological footprint.

The proposed scheme in this study is a decentralized decision model because, in the real-
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world, it is not logical to assume that a manufacturer cooperates with the government in

concealing its true carbon emission; such assumptions are not realistic and negate the cause

for enacting C&T regulations and GHG emission verification regimes. On the contrary, in

the proposed model, each involved party has its own objective function which is optimized

without consideration for the other partys’ utility or losses.

2.3 Product Greenness and Demand

When designing a game theory model for C&T, it is important to take all external

factors that influence the players’ objectives into account, including customer preference

toward product greenness (Krass et al., 2013). Many authors assert that product greenness

is an important factor impacting customer demand (Kundu et al., 2021). For instance, Cao

et al. (2020b) designed an agri-food supply chain, where demand is dependent on a product’s

greenness and price. They demonstrated that increasing green standards can result in greener

and higher quality products, yet decrease the supply chain profits, because the product cost

rises, which reduces demand. Also, Li et al. (2018b) studied the effects of C&T regulation on

manufacturers’ operational decisions when customer sensitivity toward product greenness is

an incentive for manufacturers to use green production technologies. Their work showed that

customer preference for green products is a strong incentive for manufacturers to upgrade

their technology. The work of Li et al. (2018b) inspired us to consider similar incentives in

the presented model to make the results more representative of the real world.

It should be noted that demand magnitude and its dependence on the employed green

technology have not been explored in most of the available C&T literature; only a few

research studies exist on the correlation between demand and greenness in the context of

carbon reduction regulations. In addition, the classification of customers based on their

reaction to environmental issues has not been well studied. In the present study, demand and

product greenness are considered to be interrelated. In other words, using environmentally-

friendly material in the production process, or upgrading machinery to green technology to

decrease carbon emission increases demand. On the other hand, when customer sensitivity

toward product greenness is correlated with demand for a product, manufacturers tend
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to green their processes and products to enhance customer satisfaction, and consequently,

increase their market share.

2.4 Uncertainty

Another important factor in designing a game for C&T is accounting for uncertainty of

the forecast values of parameters to make the model robust for unforeseen changes in the

parameter values, as inaccurate parameter estimation causes higher losses in an uncertain

environment (Wang et al., 2021). Therefore, devising an effective approach to handle uncer-

tainty is required. Uncertainty can be categorized based on different criteria. One possible

categorization is based on the nature of uncertainty, which includes likelihood, vagueness,

missing information, imprecise and messy information. The categorization of uncertainty is

essential for selecting the appropriate technique for its effective handling and management.

This thesis focuses on controlling the uncertainty caused by missing information. The three

common approaches of dealing with such uncertainty are stochastic programming and fuzzy

set theory, and robust optimization (Tordecilla et al., 2021). Several studies in the field

of supply chain management have utilized robust optimization as a means to manage and

mitigate uncertainty (Lamba and Singh, 2019; Thevenin et al., 2022; Xia et al., 2018). Ac-

cording to the literature, stochastic optimization is used to control the uncertainty when

historical data is available and predicting the future values of a parameter based on past

data and trends is doable (Vahdani et al., 2012b). Although fuzzy set theory is one of the

most commonly used methods of tackling uncertainty, it needs a deep knowledge about the

parameters to build a membership function, which is not always available (Memon et al.,

2015b).

In the context of cap-and-trade, various researchers have included uncertainty in their

work. Carmona et al. (2009) formulated an uncertain model for carbon allowance price

in the C&T market, and identified the main influencing factors. They applied stochastic

method for handling uncertainty, and considered emission reduction cost as the stochastic

parameter. Uncertainty control in C&T games was extended by Ludkovski (2011), who

applied a combination of two relevant methods: a stochastic game-theoretical model to
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investigate the optimal strategy for energy producers under a carbon emission reduction

program, and a hybrid method to control the uncertainty of the problem. Game theory was

employed to control the uncertainty of interaction with other chain parties, and stochastic

method was applied to tackle the uncertainty of model parameters. Ludkovski (2011) showed

that this hybrid method is proved to be an efficient approach to control a model containing

uncertainty in both model parameters and players’ decisions in a non-cooperative game.

Song et al. (2019) conducted another research which combined more than one uncertainty

control method. They considered fuzzy set theory and stochastic modeling, and developed

a fuzzy stochastic model to predict the exact price of carbon allowance.

The above papers generally consider demand and carbon price as uncertain parameters

but do not discuss their interaction with factors such as customer preference regarding prod-

uct greenness. This chapter considers the relation between demand and customer preference

toward product greenness. Also, carbon price is deemed to be dependent to demand. Fur-

thermore, sensitivity to product greenness, and supplier lead time are two parameters that

are assumed to be uncertain. Since stochastic optimization is proven to be an appropriate

method of handling uncertainty, and thus, has been a popular method in the literature, it is

employed in the present manuscript as well.

2.5 Supplier Selection

Green supply chain management seeks to reduce the harmful effects of the supply chain’s

activities on the environment. In this regard, firms need to identify the most effective mea-

sures for evaluating the environmental performance of their suppliers. Research in green

supplier selection, in comparison with traditional supplier selection (which generally deals

with the firm’s utility and quality of the products) is limited. However, the common envi-

ronmental criteria used in green supplier selection include:

• Environmental management system: the suppliers’ policies for making the production

process environmentally friendly (e.g., the ISO 14001 certificate). (Amin and Zhang,

2012; Awasthi et al., 2010; Bai and Sarkis, 2010; Govindan et al., 2013; Gupta and
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Barua, 2017; Handfield et al., 2002; Hashemi et al., 2015; Hsu and Hu, 2009; Hu et al.,

2015; Kumar et al., 2017; Kuo et al., 2010; Lee et al., 2009; Mafakheri et al., 2011; Qin

et al., 2017; Rashidi and Cullinane, 2019; Rezaei et al., 2016; Tseng and Chiu, 2013;

Yeh and Chuang, 2011);

• Pollution production: the amount of pollution created by a manufacturer (Amin and

Zhang, 2012; Giri et al., 2022; Govindan et al., 2013; Hashemi et al., 2015; Hu et al.,

2015; Huang et al., 2016; Kannan et al., 2015; Kumar et al., 2017; Luthra et al., 2017;

Qin et al., 2017; Rezaei et al., 2016; Wu et al., 2021);

• Recyclability: the capability of suppliers in using recycled material in their manufac-

turing process (Amin and Zhang, 2012; Govindan and Sivakumar, 2016; Hu et al.,

2015; Kannan et al., 2015; Yeh and Chuang, 2011);

• Green product: the ability of suppliers in using green technology as well as environ-

mentally friendly material (Amin and Zhang, 2012; Giri et al., 2022; Handfield et al.,

2002; Lee et al., 2009; Tseng and Chiu, 2013);

• Product toxicity: the level of toxic substance used in suppliers’ products (Gupta and

Barua, 2017; Hu et al., 2015; Kannan et al., 2015; Rezaei et al., 2016).

Table 2.1 summarizes the findings of the mentioned papers. One of the challenges of the

supplier selection problem is that firms tend to maximize their utility while trying to perform

proficiently on environmental characteristics. Therefore, companies are required to identify

both the non-green and green criteria affecting the firm’s performance. Different studies

have identified the most important criteria in the traditional supplier selection problems.

Dickson (1966), Lehmann and O’shaughnessy (1974), Weber et al. (1991), and Cheraghi

et al. (2004) conducted research to identify non-green supplier evaluation measures. Those

studies showed that cost, delivery performance, and quality are the three most used and

important criteria in this particular problem area.

The next step of the supplier selection and order allocation process is assessing the candi-

dates regarding the criteria mentioned above. Researchers have applied different techniques
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to solve this problem. Chai et al. (2013) classified these techniques into three main groups:

multi-criteria decision-making (MCDM), artificial intelligence (AI), and mathematical pro-

gramming (MP). A list of the papers that apply these techniques to solve the supplier

selection problem is presented in table 2.1. Multi-criteria decision-making is a framework

that helps the decision makers find the best alternative between multiple options based on

various criteria. To select the best option, MCDM sorts the alternatives based on their

scores. Artificial intelligence refers to the science of making computers able to work, learn,

and think intelligently.Finally, MP is a useful approach in clearly addressing supply chain

management problems. Constraints or equations can implement assumptions to improve

model realism. In this research, an MP is presented to model the problem.

The decision to develop a closed-loop supply chain setting instead of an open supply chain

environment was made based on the premise that a closed-loop system is more reflective of

the real-world situations. This is supported by findings in the problem’s literature, which

suggest that supply chains tend to collect second-hand products from customers in an effort

to reduce costs and improve environmental sustainability. Therefore, we deemed it necessary

to create a model that accounts for these realistic factors.
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Table 2.1: Literature review summary

References Criteria
Solving
Approach

Uncertainty
Approach

Closed-loop Findings

Green Non-green MCDM MP AI Fuzzy SO RO

Awasthi et al. (2010) -
A fuzzy multi-criteria approach is presented that consists three steps: finding the best criteria, scoring
the suppliers using fuzzy TOPSIS, and sensitivity analysis of criteria weights on suppliers evaluation.

Bai and Sarkis (2010) A new supplier selection technique using rough set and grey system theory is presented.

Kuo et al. (2010) A green supplier selection model is generalized using a hybrid method called ANN-MADA.

Mafakheri et al. (2011)
A two-stage multi-criteria dynamic programming approach for supplier
selection and order allocation is proposed.

Yeh and Chuang (2011)
A green partner selection model is solved by genetic algorithm to find the
set of pareto optimal solutions.

Amin and Zhang (2012) A framework for supplier evaluation in a closed-loop supply chain is generalized.

Govindan et al. (2013)
Triple Bottom Line approach for supplier selection using a fuzzy multi-criteria
model is developed.

Tseng and Chiu (2013)
Environmental and non-environmental criteria for selecting the best partners
are identified by evaluating the weight of criteria and using grey relational analysis.

Hu et al. (2015)
A novel evaluation system of green supplier selection under the mode of low
carbon economy is investigated.

Hashemi et al. (2015)
A comprehensive green supplier selection model using ANP and Grey relational
analysis is proposed.

Kannan et al. (2015)
Fuzzy Axiomatic Design is proposed to to select the best green supplier for a plastic
manufacturing company.

Huang et al. (2016)
A game-theoretic model is presented in order to investigate the impacts of supplier
selection, transportation mode selection, the product line design, and pricing strategies
on profits and greenhouse gases emissions.

Rezaei et al. (2016) Best worst method is used to find the best suppliers among the qualified suppliers.

Luthra et al. (2017)
An integrated approach of AHP, VIKOR, and multi-criteria optimization is developed
to solve evaluate the sustainable supplier selection.

Qin et al. (2017) -
TOMID approach to solve a green supplier selection problem considering interval
type-2 fuzzy sets is extended.

Kumar et al. (2017)
Suppliers’ performance is evaluated based on Green Practices using the
fuzzy-extended Elimination and Choice Expressing Reality approach.

Gupta and Barua (2017) -
Supplier evaluation is done using a three-phase methodology including three phases:
identifying green criteria, ranking determined criteria using a novel best worst
method, and ranking suppliers using fuzzy TOPSIS.

Arabsheybani et al. (2018)
The study presents a novel fuzzy MOORA model using ratio analysis for sustainable supplier
selection, coupled with FMEA to assess supplier risks, and demonstrates its effectiveness
through a case study on evaporative coolers in the home appliance industry.

Moheb-Alizadeh and Handfield (2018)
A sustainable and efficient supply chain is designed using a multi-objective
MINLP model for supplier selection and order allocation with stochastic demand.

Rashidi and Cullinane (2019)
A comparative analysis of TOPSIS and Fuzzy DEA for addressing the sustainable supplier selection
problem is presented. Results demonstrate that TOPSIS yields superior results in terms of both
computational complexity and responsiveness to turbulence in the number of suppliers.

Wu et al. (2021)
A framework employing multiple methods is introduced for selecting sustainable suppliers in
the chemical industry, taking into account economic, social, and environmental criteria.

Liu et al. (2022b)
A novel MCGDM approach considering the bidirectional influence relation among criteria,
consensus, decision-makers’ psychological factors is proposed. The model is designed to offer
effective support for emergency decision-making.

Giri et al. (2022)
The Pythagorean fuzzy set-based DEMATEL method is developed and applied to
solve the supplier selection problem in sustainable supply chain management.

Saputro et al. (2023)
A two-phase solution approach based on integrated (MCDM) and multi-objective simulation-
optimization is developed to solve an uncertain supplier selection problem.

Our thesis

2.6 Resilient strategies to mitigate the ripple effect

The literature related to the resilient strategies to mitigate the disruption effects focuses

on three aspects. First is the environmental perspective of the supply chain design. The

second facet is linked to resilience strategies of mitigating the ripple effect. The third prospect

is associated with employing stochastic optimization to deal with parameter uncertainty and

ripple effect. Table 2.2 lists the related studies and highlights their opposing views. The rest

of this section recaps the corresponding literature, the existing gaps, and the contributions

of this paper.

Green supply chain design integrates environmental issues into strategic decisions (Foroozesh

et al., 2022). The significance of these issues has attracted the attention of various scholars

recently (Bhatia and Gangwani, 2021). The role of environmental investment in the supply

chain network configuration phase in making the supply chain greener is the main focus of
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Wang et al. (2011). In their study, they considered CO2 emission as the main indicator

of supply chain greenness, which is a mainstream index for environmental issues and can

be estimated with more ease. In a similar study O’Brien (2013) considered environmental

issues in GSCD by explaining limited goals such as GHG emission. Hasani et al. (2021) take

environmental and economic concerns into account in designing a supply chain network.

They utilized resilient strategies to mitigate disruptions. Mohebalizadehgashti et al. (2020)

formulated a multi-objective MILP for the GSCD problem which aims to minimize CO2

emissions from transportation and maximize total utilization of facility capacities.

In recent years, especially after the COVID-19 pandemic, supply chain resiliency has re-

ceived extensive attention. For instance, several researchers published review papers to com-

prehensively study resilience strategies in supply chains (Hosseini et al., 2019; Ivanov et al.,

2019; Snyder et al., 2016). Tomlin (2006) specify that resilience strategies are classified into

two main groups: pre-disruption and post-disruption schemes. For instance, accumulating

safety stock is a pre-disruption resilience strategy for a situation when the supply side of

the supply chain is affected (Foroozesh et al., 2022). Yılmaz et al. (2021) introduced four

stages of controlling the ripple effect, namely, preparation, first response, preparation for

recovery, and recovery. They suggest employing pre-disruption resilience strategies in the

first three stages and utilizing a post-disruption resilient strategy for the last stage. The

resilience of a system refers to its ability of recovering from disruptions and continuing to

provide the necessary service functions. Based on Hosseini and Ivanov (2022), a measure

of this ability is the ratio of recovery to loss in terms of service function. It means that if

a system experiences loss of service due to a disruption, its resilience is measured by the

amount of time and money it requires to recover and restore the lost service. The higher the

ratio of recovery to loss, the more resilient the system is considered to be.

Ni et al. (2018) recommend applying post-disruption strategies such as using contingency

supplies furnished by backup suppliers or stockpiling systems to maintain customer satis-

faction and responding to unmet demand. Kamalahmadi and Mellat-Parast (2016) develop

a two-stage MIP to design a sourcing plan with high flexibility. They combine the trans-

portation channel selection problem and supplier selection and order allocation problem,
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and devise contingency plans for mitigating the negative effects of disruption to minimize

total supply chain cost. They found that contingency plan implementation increases sup-

pliers’ flexibility in adapting to manufacturers’ capacity, and reduces disruption’s severity.

Jabbarzadeh et al. (2018) applied and assessed inventory levels and backup suppliers as two

resilient strategies. Hosseini et al. (2020) considered segregating suppliers as a resilience

strategy in supply chain design.

One way to prevent the spread of the ripple effect and to disallow parameter uncer-

tainty to negatively affect the predictions is utilizing a proper uncertainty control method.

Accoding to Rezapour et al. (2017) and Kamalahmadi and Mellat-Parast (2016), robust,

stochastic, and fuzzy techniques are more prominent than the deterministic models to cope

with uncertainties. Badri et al. (2017) developed a two-stage stochastic optimization model

to maximize the total value of a supply chain. Yılmaz et al. (2021) applied a two-stage

stochastic technique to design a reverse supply chain in the presence of ripple effect, and

showed that, as a result, the emission level increases by 40%. Therefore, emission abatement

regulations should be enforced to avoid the upsurge. In chapter 5, a two-stage stochastic

optimization approach is utilized to cope with uncertainties. For more information about

multi-stage stochastic optimization and implementation of stochastic techniques, the inter-

ested reader is referred to Khaloie et al. (2020) and Cui et al. (2020).

Table 2.2 summarizes the recent and relevant studies. According to the literature sum-

mary and the above-mentioned papers, one notices that although there is more emphasis on

minimizing the GHG emissions in green supply chain management, environmental consider-

ations are not the main focus of supply chain design problems, and governmental emission

reduction regulations such as cap-and-trade are considered as a hindrance that work against

maximizing the utility. Furthermore, the ripple effect, as one of the main disruption elements,

is rarely considered in resilient supply chain design studies.

The papers that have studied the ripple effect have mainly considered resilience strategies

in their general form, such as pre-disruption and post-disruption schemes; specific resilience

strategies such as safety stock and backup suppliers have rarely been studied. In other

words, resilience strategies are more studied based on pre- or post-disruption classification,
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Table 2.2: Literature review summary

Authors
Network
stages

Multi-
period

Green
supply chain

The ripple
effect

Uncertainty Resilient strategies Disruption effects

Kamalahmadi and Mellat-Parast (2016) 2 Others Contingency plans Supply disruption

Fattahi et al. (2017) 3 Two-stage SP
Contingency and
mitigation(general)

Facility capacity

Mohammed et al. (2017) 3 SP

Rezapour et al. (2017) 3 Deterministic
Emergency stock at retailers,

backup capacities at
suppliers, multiple sourcing

Supplier disruption

Pavlov et al. (2017) 4 FO
Badri et al. (2017) 3 Two-stage SP
Amiri-Aref et al. (2018) 3 Two-stage SP
Zahiri et al. (2018) 3 FO
John et al. (2018) 1 Deterministic
Liao (2018) 2 Deterministic

Ni et al. (2018) 1 Two-stage SP
Backup facilities, safety stock,

idle capacity reserve
Demand

Jabbarzadeh et al. (2018) 2 SP
Backup suppliers, production

capacity expansion
Supply disruption

Sawik (2019) 2 Two-stage SP
Darestani and Hemmati (2019) 3 RO
Hosseini and Ivanov (2019) 2 Others
Hosseini-Motlagh et al. (2019) 3 Others

Zhang et al. (2019b) 2 FO
Backup manufacturer, multiple

distributor
Supply disruption

Hosseini et al. (2020) 2 SP Supplier disruption

Tucker et al. (2020) 3 SP
Configuration of suppliers and
manufacturers, safety stock

Supply disruption

Mohebalizadehgashti et al. (2020) 3 Others

Özçelik et al. (2021) 2 RO

Hasani et al. (2021) 3 RO
Backup suppliers, facility

dispersion, facility fortification
Supply disruption

Yılmaz et al. (2021) 3 Two-stage SP Temporary facilities Supply disruption

Foroozesh et al. (2022) 4 FO
Multiple sourcing,

horizontal collaboration,
coverage radius

Supply disruption

This study 4 Two-stage SP

Backup suppliers, multiple
sourcing, temporary
facilities, blockchain,

safety stock, stockpiling

Supply, demand

SP=Stochastic programming, RO= Robust optimization, FO=Fuzzy optimization

and the details of particular strategies like temporary facilities and safety stock are neglected.

Regarding the uncertainty control approaches, most of the papers have used robust (RO) or

fuzzy optimization (FO) and stochastic programming (SP); few studies consider multi-stage

stochastic programming to handle uncertainty. The literature related to this study is limited

to the general form of disruption and rarely studies the areas of the supply chain affected by

disruptions. To the best of our knowledge, there is no study that considers both upstream

and downstream propagation of disruptions in a supply chain.

The fifth chapter of this thesis studies the ways to mitigate the ripple effect and de-

mand uncertainty by developing a multi-period, multi-stage green resilient supply chain. We

consider six resilience strategies to keep the supply and demand side of the supply chain

in control. We deploy a two-stage stochastic optimization approach as an effective way of

controlling parameter estimation uncertainty and ripple effect.

25



3. A robust optimization model for green

supplier selection and order allocation in a

closed-loop supply chain considering

cap-and-trade mechanism

3.1 Background

Due to increasing air pollution, which is a consequence of the environmental effects of

production in various industries, green supply chain management (GSCM) has attracted the

attention of both scholars and practitioners. Green supplier selection is an important problem

in GSCM and seeks to satisfy a firm’s environmental goals as well as its economic targets. In

this chapter, for the first time, a green supplier selection problem considering both green and

non-green evaluation criteria in a closed-loop supply chain is studied, and a cap-and-trade

mechanism as a way of controlling the air pollution caused by manufacturers is proposed. To

solve this particular problem, we propose a multi-objective robust optimization (RO) model.

This specific model is an effective approach to handle uncertainty. A numerical example using

randomly generated data, accompanied by subsequent discussion of the proposed approach,

is deployed to validate the model. The results prove that the developed model for green

supplier selection is able to effectively enhance the decision-making process of the experts.

By illustrating the trade-off in robustness between the model and proposed solutions, as well

as the effect of the deviation penalty on the closeness of results to the achieved solution, we

Most of the context in this chapter have been published in Mirzaee, H., Samarghandi, H., Willoughby,
K. (2022). A robust optimization model for green supplier selection and order allocation in a closed-loop
supply chain considering cap-and-trade mechanism. Expert Systems With Applications (under review).
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show how firms can make optimal decisions when assigning the parameters. Furthermore,

analyses show that decreasing the allowance amount (cap) and increasing the allowance

prices in the cap-and-trade system escalate the firms’ costs, but lower the amount of carbon

released. Finally, we show that the cap-and-trade mechanism results in a better solution in

terms of the total utility of the supply chain compared to the penalty-based system for a

specific range of carbon allowance.

3.1.1 Robust optimization

We need to consider the intrinsic uncertainty of the parameters, since incorrect estimation

of parameter values may lead to colossal losses in an uncertain environment (Wang et al.,

2021). Obviously, this requires an effective approach to handling such uncertainty. To the

best of our knowledge, RO has been rarely applied to solve the problems in the literature on

green supplier evaluation. In this chapter, RO is employed because it handles infeasibility

efficiently deals with data uncertainty and efficiently deals with data uncertainty. Moreover,

it does not limit uncertain parameter values to point estimates (Jeyakumar et al., 2014),

while assigning a cost to infeasibility. Other popular approaches are capable of controlling

uncertainty, but may be unable to address the situation of solution infeasibility. The expected

cost of infeasibility can be significant and must be considered.

Unlike deterministic methods that feature a specific value for the parameters, RO consid-

ers various parameter values and obtains solutions under all possible scenarios. Mulvey et al.

(1995) introduced RO as a new approach for uncertain problems. This method performs a

trade-off between two kinds of robustness; namely, model robustness (i.e., the obtained solu-

tion yields the least infeasibility in all scenarios), and solution robustness (i.e., the solution

is as close to the optimal value as possible in all scenarios). Simply put, the goal of RO is to

achieve a robust solution that ensures all the real scenarios are nearly optimal and feasible.

Mulvey et al. (1995) assumed x and y as design variables (in which their optimal value

is not dependent upon the real value of the uncertain parameters), and control variables (in

which their optimal value depends on the value of the uncertain parameters). Correspond-

ingly, there are two groups of constraints: control constraints, and structural constraints.
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The former are those that include noisy parameters, while the latter feature the constraints

with no uncertain parameters. The basic structure of the RO model is presented below.

Min cTx+ dTy (3.1)

Ax = b (3.2)

Bx+ Cy = e (3.3)

x, y ≥ 0 (3.4)

where A and b are deterministic parameters, and B and C are uncertain parameters. In other

word, equations (3.2) and (3.3) convey the structural and control constraints, respectively.

There are a finite set of scenarios s defined for the RO problem with the probability Prs for

each scenario. Then, the model formulation transforms to the following:

Min σ(x, y1, ..., ys) + ωρ(δ1, ..., δs) (3.5)

Ax = b (3.6)

Bsx+ Csy + δs = es (3.7)

x, ys ≥ 0 (3.8)

in which δs indicates the permitted infeasibility in constraint (3.7) under scenario s. The

objective function includes two parts. The first part represents the solution robustness, and

the second part is a measure of model robustness. As the value of the penalty of infeasibility,

ω helps to make a trade-off between model robustness and solution robustness. The first

part of the presented objective function can be reformulated as follows:

σ(x, y1, ..., ys) =
∑
s

Prsξs + λ
∑
s

Prs

(
ξs −

∑
s′

Prs′ξs′

)2

(3.9)

where λ is the penalty for solution variance and takes positive values. ξs is the value of the

objective function in each scenario. In this equation, the first part shows the average value

of the objective in different scenarios, and the second part indicates the objective variance.
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Furthermore, equation (3.9) can be written in the following form:

σ(x, y1, ..., ys) =
∑
s

Prsξs + λ
∑
s

Prs | ξs −
∑
s′

Prs′ξs′ | (3.10)

Yu and Li (2000) state that, due to non-linearity, this equation is very complicated and

time-consuming to solve. To overcome this challenge, they propose the following formulation

to linearize the equation.

σ(x, y1, ..., ys) =
∑
s

Prsξs + λ
∑
s

Prs

[(
ξs −

∑
s′

Prs′ξs′

)
+ 2θs

]
(3.11)(

ξs −
∑
s′

Prs′ξs′

)
+ θs ≥ 0 ∀s (3.12)

θs ≥ 0 ∀s (3.13)

The variable θs is used to prevent ξs −
∑

s′ Ps′ξs′ from being negative. According to the

above new formulation, the objective function can be written as follows.

Min
∑
s

Prsξs + λ
∑
s

Prs

[(
ξs −

∑
s′

Prs′ξs′

)
+ 2θs

]
+ ω

∑
s

Prsδs (3.14)

where ω is defined as the weight of the trade-off between model robustness and solution

robustness. The weight ω is a number without a unit, which indicates the penalty assigned

to infeasibility; if ω increases, the probability of obtaining an infeasible solution decreases.

3.2 Model Architecture

In this section, a multi-objective, multi-product, multi-supplier, and multi-period robust

model for green supplier selection and order allocation in a closed-loop supply chain is pre-

sented. Two groups of criteria are presented for supplier evaluation: green and non-green.

The non-green criteria are cost, quality, and delivery time, while green criteria are divided

into two categories: quantitative (carbon emission amount), and qualitative (environmental

management system level, recyclability level, green product level, product toxicity level).
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In this closed-loop supply chain, the manufacturer sells its products to the customer,

but some products may be rejected due to such problems as low quality. Moreover, the

manufacturer tends to use second-hand products in the production process to benefit from

their low costs. Second-hand products must be collected from the customers. A percentage

of the collected and rejected products are usable. The remainder of the second-hand products

are disposed. Therefore, the input material and component parts include products purchased

from suppliers, reusable parts or material collected from the final consumer market and usable

parts from rejected products (see figure 3.1). Other assumptions of the model are presented

below.

Assumptions

• Shortage is allowed and will be back-ordered. A penalty will be charged for each unit

of shortage.

• The supply chain operates under cap-and-trade regulations. Accordingly, each man-

ufacturer is allowed to emit a predetermined amount of carbon. Any extra quantity

of carbon emission must be purchased from other manufacturers in a trade market.

Conversely, manufacturers can sell their unused carbon emission allowance to decrease

costs. Note that a carbon tax system allocates a price to carbon emission and puts

it on the market to find the emission reduction mechanism. On the other hand, cap-

and-trade assigns an emission level to the manufacturers and allows the market to

find the allowance price. Therefore, in the cap-and-trade mechanism, the buyers and

sellers offer their desired prices, which can be different based on their utility level. The

manufacturer considers the maximum offer for selling its allowance and the minimum

offer for buying extra allowance.

• Uncertain parameters include demand, cost of products purchased from suppliers, per-

centage of the returned products, percentage of the collected second-hand products,

percentage of reusable collected products, percentage of usable rejected products, and

delivery delay.

• Carbon emission is a function of CO2 released in the production process as well as CO2

30



released during material and product transportation. Purchased products from a sup-

plier can be transported by either the manufacturer’s trucks (buyer) or the supplier’s

trucks. The manufacturer is responsible for the carbon emission during the transporta-

tion process only if the manufacturer’s trucks are employed. Using the manufacturer’s

truck for transportation is less expensive but increases the amount of carbon released

by the manufacturer.

• Different kinds of trucks exist for transporting the procured materials and products

according to the weight or volume of the loads.

• A constant interest rate is applied to all of the costs through time.

Figure 3.1: Closed-loop supply chain structure

Indices

i: products (i = 1, · · · , I)

j: suppliers (j = 1, · · · , J)

t: periods (t = 1, · · · ,T )

k: vehicles (k = 1, · · · ,K)

n: echelons in supply chain (n = 1, 2) (n = 1 and n = 2 show the supplier and buyer,

respectively).
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m: set of prices offered by buyers or sellers at the carbon emission trading market

s: scenarios (s = 1, · · · ,S)

Parameters

Prs: probability of scenario s

Cs
ijt: cost of product i purchased from supplier j in period t under scenario s

ir: interest rate

hit: holding cost of product i in period t

fit: backorder cost of product i in period t

Ls
jt: number of days in which products purchased from supplier j in period t under scenario

s received after the specified time

Gijt: penalty for each day of late delivery of product i purchased from supplier j in period t

esit: percentage of product i rejected in period t under scenario s from the customer due to

low quality

us
it: percentage of usable parts after disassembly of product i rejected by customer in period

t under scenario s

psit: percentage of used product i collected in period t under scenario s from the customer

vsit: percentage of reusable parts after disassembly of product i collected as used product in

period t under scenario s

Oijt: manufacturer’s loss caused by rejected product i purchased from supplier j in period t

SPm
t : price offered by seller m in the carbon emission allowance market in period t

BPm
t : price offered by buyer m in the carbon emission allowance market in period t

DCit: disassembly cost for product i in period t

RCit: remanufacturing cost of product i in period t
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DPit: disposal cost of product i in period t

TCjtkn: transportation cost of products purchased from supplier j in period t by truck type

k belonging to the nth echelon of supply chain

DEs
it: customers’ demand for product i in period t under scenario s

dj: distance of supplier j from the producer

CETjtkn: the amount of carbon emitted per kilometer of transportation from supplier j in

period t by truck type k belonging to nth echelon of supply chain

CEPijt: amount of carbon emitted during production using product i purchased from sup-

plier j in period t

CERit: amount of carbon emitted during remanufacturing or recycling product i in period

t

EMijt: environmental management system score assigned to supplier j from which product

i in period t is purchased. This score is determined by experts at the manufacturer’s firm

evaluating the performance of the suppliers regarding environmental policies (e.g. possession

of an ISO 14001 certificate).

GPijt: green product score of supplier j from which product i in period t is purchased. This

is the manufacturer’s strategy to purchase products with minimum environmental effects

during their life cycle.

REijt: recyclability score of product i purchased from supplier j in period t

PTijt: toxicity score of product i purchased from supplier j in period t

CAPt: the amount of carbon emission determined by the government as an upper bound for

the manufacturer in period t

Mk: breaking point of loads for each kind of truck used for transportation

Decision variables
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xijt: number of product i purchased from supplier j in period t

rit: number of remaining product i at the end of period t

bit: number of back-ordered product i at the end of period t

αt: allowance of carbon emission the manufacturer needs to buy from the market in period t

βt: allowance of carbon emission the manufacturer wants to sell to the other manufacturers

in period t

τt: the best price for the manufacturer to buy carbon allowance in period t

ϕt: the best price for the manufacturer to sell carbon allowance in period t

qjtkn: binary variable, equals 1 if the buyer places an order to supplier j in period t trans-

ported by truck k belonging to nth echelon; 0 otherwise

Wjtkn: auxiliary continuous variable to determine the amount of load from supplier j in

period t transported by truck type k belonging to nth echelon

δs+ijt : under-fulfillment (shortage) of product i purchased from supplier j in period t

δs−ijt : over-fulfillment (storage) of product i purchased from supplier j in period t

According to the criteria introduced, three objectives are defined. The first objective, ξs1,

is cost, which is a measure of non-green criteria. This cost includes uncertain parameters
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and is formulated as:

ξs1
s∈{1,2,...,S}

=
∑
j

∑
t

Ls
jt

∑
i

Gijtxijt +
∑
i

∑
t

esit
∑
j

Oijtxijt +
∑
i

∑
j

∑
t

xijtC
s
ijt

+
∑
i

∑
t

rithit +
∑
i

∑
t

bitfit +
∑
i

∑
t

esit
∑
j

xijtDCit

+
∑
i

∑
t

psit
∑
j

xijtDCit +
∑
i

∑
t

esitu
s
itRCit

∑
j

xijt

+
∑
i

∑
t

psitv
s
itRCit

∑
j

xijt +
∑
i

∑
t

esit(1− us
it)DPit

∑
j

xijt

+
∑
i

∑
t

psit(1− vsit)DPit

∑
j

xijt +
∑
j

∑
t

∑
k

∑
n

TCjtknqjtkn

−
∑
t

αtτt +
∑
t

βtϕt

(3.15)

In this equation, the first term calculates the penalty for rejected items. It is an indication

of the quality of the products. The second term is the cost of delay. The remaining terms

calculate other features including purchasing cost, holding cost, back-order cost, disassembly

cost of rejected and collected products, remanufacturing cost for the usable parts obtained

from collected and rejected products, disposal cost of the unusable parts, and revenue/cost

of selling/buying carbon emission allowance. Of note, three different kinds of criteria (cost,

quality, and delivery performance) are included in this objective, all of which are combined

in the cost function ξs1.

The second objective is the amount of carbon emission, which is a measure of quantitative

green criteria. Due to parameter uncertainty, ξs2 is written as:

ξs2
s∈{1,2,...,S}

=
∑
j

dj
∑
k

∑
t

CETjtk2qjtk2 +
∑
i

∑
j

∑
t

xijtCEPijt

+
∑
i

∑
t

(esitu
s
it + psitv

s
it)CERit

∑
j

xijt

(3.16)

The first term of the equation (3.16) calculates the amount of carbon released during the

transportation of purchased products from supplier j by trucks belonging to the manufac-
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turer. The second term measures the carbon emission during the production phase, and the

third term calculates the carbon released during the remanufacturing or recycling process fed

by components and parts obtained from disassembling the collected and rejected products.

The third objective is a measure of qualitative green criteria. This objective function

does not include uncertain parameters, and is defined as:

z3 =
∑
i

∑
j

∑
t

LCijtxijt +
∑
i

∑
j

∑
t

ERijtxijt +
∑
i

∑
j

∑
t

REijtxijt

+
∑
i

∑
j

∑
t

TSijtxijt

(3.17)

The robust model of the described problem is therefore formulated as:

Min z1 =
∑
s

Prsξ
s
1 + λ1

∑
s

Prs

[(
ξs1 −

∑
s′

Prs′ξ
s′

1

)
+ 2θs1

]

+ ω
∑
s

Prs

(∑
i

∑
j

∑
t

(
δs

−

ijt + δs
+

ijt

)) (3.18)

Min z2 =
∑
s

Prsξ
s
2 + λ2

∑
s

Prs

[(
ξs2 −

∑
s

Prs′ξ
s′

2

)
+ 2θs2

]

+ ω
∑
s

Prs

(∑
i

∑
j

∑
t

(
δs

−

ijt + δs
+

ijt

)) (3.19)

Max z3 (3.20)(
ξs1 −

∑
s′

Prs′ξ
s′

1

)
+ θs1 ≥ 0 ∀s (3.21)

(
ξs2 −

∑
s′

Prs′ξ
s′

2

)
+ θs2 ≥ 0 ∀s (3.22)
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∑
j

dj
∑
k

CETjtk2qjtk2 +
∑
i

∑
j

xijtCEPijt

+
∑
i

(esitu
s
it + psitv

s
it)CERit

∑
j

xijt ≤ CAPt − αt + βt ∀t, s
(3.23)

τt = max
∀m

BPm
t ∀t (3.24)

ϕt = min
∀m

SPm
t ∀t (3.25)

us
ite

s
it

∑
j

xijt + vsitp
s
it

∑
j

xijt +
∑
j

xijt + bit + rit−1 +
∑
j

δs−ijt

= DEs
it + rit + bit−1 +

∑
j

δs+ijt ∀i, t, s
(3.26)

∑
i

xijt =
∑
k

Mk

∑
n

Wjtkn ∀j, t (3.27)

Wjt1n ≤ qjt1n ∀j, t,n (3.28)

Wjt(k+1)n ≤ qjt(k+1)n + qjtkn ∀j, t,n; (k = 1, · · · , (K − 1)) (3.29)

WjtKn ≤ qjt(K−1)n ∀j, t,n (3.30)

∑
k

qjtkn = 1 ∀j, t,n (3.31)

∑
k

Wjtkn = 1 ∀j, t,n (3.32)

0 ≤ Wjtkn ≤ 1 ∀j, k, t,n (3.33)

Cs
ij(t+1) = Cs

ijt(1 + ir) ∀i, j, t, s (3.34)

hi(t+1) = hit(1 + ir) ∀i, t (3.35)

fi(t+1) = fit(1 + ir) ∀i, t (3.36)

Gij(t+1) = Gijt(1 + ir) ∀i, j, t (3.37)
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Oij(t+1) = Oijt(1 + ir) ∀i, j, t (3.38)

DCi(t+1) = DCit(1 + ir) ∀i, t (3.39)

RCi(t+1) = RCit(1 + ir) ∀i, t (3.40)

DPi(t+1) = DPit(1 + ir) ∀i, t (3.41)

TCj(t+1)kn = TCjtkn(1 + ir) ∀j, t, k (3.42)

Equation (3.18) aims to minimize the costs while trying to obtain the highest utility in the

carbon emission trading market. Due to defining different scenarios, this objective is written

as a robust objective to obtain the closest solution to all scenarios while keeping infeasibility

at the lowest level. Equation (3.19) is another robust objective aiming to minimize carbon

emission. Note that equations (3.18) and (3.19) go in opposite directions. In other words,

the first and second objectives restrict each other. Therefore, the optimal solution is found

through a trade-off between these two objectives. The third objective maximizes quality by

choosing the suppliers with the best qualitative performance. Suppliers’ qualitative scores

are defined by experts on a scale of 0− 10.

Equations (3.21) and (3.22) transform the first and second objectives to linear functions.

These equations ensure that the deviation of each scenario from the average objective value is

a positive amount. Equation (3.23) adheres to the manufacturer’s carbon emission allowance,

yet makes it possible to buy or sell the allowance. Buying and selling price are defined in

equations (3.24) and (3.25), where the maximum and minimum offered price is selected to

sell and buy the allowance, respectively. Equation (3.26) balances the inventories.

Equations (3.27) to (3.33) confirm that the purchased products from each supplier are

assigned to a specific truck category based on their size. For instance, if three different kinds

of trucks are classified by their load size, and the order from a specific supplier fits on the first

category, the variable xijt will be a linear combination of first and second breaking points.

Hence, qjt1n will be equal to 1 and variables Wjt1n and Wjt2n will be positive. Equations
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(3.34)-(3.42) refer to the interest rate applied to the prices.

3.2.1 Solution procedure

To solve the proposed RO model, we follow a two-step procedure. In the first step, each

of the three objectives is independently solved, i.e., the model is solved three times; each

time, one of the objectives is considered and the other two objectives are removed from the

model. This way, the optimum value of each objective is found in the absence of the other

objectives. Obviously, in multi-objective models, the value of each objective (in the presence

of the other objectives) is worse than or equal to their global optimal value. Thus, there

is always a deviation between objective function values in multi-objective models and their

global optimal values; the goal is to minimize this deviation, which will be done in the second

step. In the second step, the model is reformulated as a single objective mathematical model

whose objective function is minimizing the normalized deviation of the objectives from their

optimal values. Assume that the values of the first, second, and the third objective are

demonstrated as z1, z2, and z3, respectively; and the optimal values are illustrated as z∗1 , z
∗
2 ,

and z∗3 . Then, the objective function is as follows.

Min ztotal =

[
z1 − z∗1

z∗1
+

z2 − z∗2
z∗2

+
z∗3 − z3

z∗3

]
(3.43)

In equation (3.43), z1 and z2 are minimization objectives and their values will be greater

than or equal to their optimal values, z∗1 and z∗2 , respectively. On the other hand, z3 is a

maximization objective and its value will be smaller than or equal to its optimal value, z∗3 .

As the deviation of an objective from its optimal value cannot be negative, equation (3.43)

is written such that it remains positive (z1 − z∗1 ≥ 0; z2 − z∗2 ≥ 0; z∗3 − z3 ≥ 0).

3.3 Results and Discussions

In order to validate the described RO model for green supplier evaluation, we present

results of various instances of the model. The experiments were conducted based on the

data set of table 3.1, which was generated randomly using uniform distributions. The data
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generated to validate the model is not derived from real-world scenarios. Instead, logical

values for the parameters have been considered based on the existing literature. Note that

the parameters related to price were generated for the first period, and the next periods

were calculated according to model constraints. Also, three different scenarios were consid-

ered, namely pessimistic, most realistic, and optimistic. The presented data set includes

a probability associated with each scenario, whereby the scenario with the highest proba-

bility is deemed the most realistic. The pessimistic scenario involves parameters that can

potentially lead to a deterioration of optimal utility. For instance, the purchasing cost of a

product from the supplier is higher in the pessimistic scenario, which is more expensive for

the manufacturer, than in the optimistic scenario. Moreover, the carbon allowance buying

price is set higher than its selling price to prevent manufacturers from engaging in brokerage.

The pessimistic scenario involves a higher demand than the other two scenarios, posing a

challenge for manufacturers to satisfy customer demands. Additionally, the data set includes

three truck categories based on their transportation capacity for the purchased loads from

suppliers. The presented mathematical model is solved using DICOPT solver of the GAMS

software on an 11th generation IntelTM CoreTM i7-1165G7 CPU with 2.80 GHz clockspeed,

and 12 GB of RAM.

3.3.1 Experimental Results

Table 3.2 presents the results obtained by solving the model, which determines the best

suppliers and the optimal order allocations. Specifically, the table shows the number of units

of each product that the manufacturer should order from each supplier in each period, based

on the defined criteria. For instance, the entry X112 = 2617 indicates that the manufacturer

should place an order for 2617 units of product 1 to the first supplier in the second period.

In addition, the table provides information on the optimal shortage and storage amounts,

which are calculated based on the optimal orders. The over-fulfillment and under-fulfillment

values indicate the extent to which the manufacturer’s orders exceed or fall short of the

actual demand, respectively. These values reflect the trade-off between achieving the best

possible solution and meeting customer demand, which is captured in the manufacturer’s

utility function.
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Table 3.1: Data for numerical example

Sets and Scenarios Amounts
parameters

i 4
j 5
t 4
k 3
s 3
m 3
ir 0.04
λ1 15
λ2 15
ω 50
Prs 1, 2, 3 0.2, 0.6, 0.2
Cs

ij1 1, 2, 3 U(10, 23), U(11.5, 26), U(13, 30)
hi1 U(28, 35)
fi1 U(33, 41)
Ls
jt 1, 2, 3 U(0, 5)

Gijl U(6, 12)
esit 1, 2, 3 U(0.03, 0.092), U(0.035, 0.126), U(0.04, 0.145)
psit 1, 2, 3 U(0.02, 0.08), U(0.023, 0.092), U(0.027, 0.105)
us
it 1, 2, 3 U(0.6, 0.9),U(0.62, 0.93), U(0.63, 0.94)

vsit 1, 2, 3 U(0.6, 0.9),U(0.72, 0.93),U(0.73, 0.94)
Oij1 U(5, 11)
SPm

t U(4000, 4020)
BPm

t U(3980,4000)
DCi1 U(4,7)
RCi1 U(10,17)
DPi1 U(3,5)
TCj1kn TCj111 = U(28, 37), TCj112 = U(29, 38), TCj121 = U(35, 40)

TCj122 = U(36, 41), TCj131 = U(39, 52), TCj132 = U(40, 53)
DEs

it 1, 2, 3 U(2500, 4600), U(2930, 4760), U(3070, 4990)
dj U(3, 7)

CETjtkn CETjt1n = U(0.29, 0.37), CETjt2n = U(0.33, 0.46)
CETjt3n = U(0.41, 0.49)

CEPijt U(0.006, 0.012)
CERijt U(0.006, 0.012)
EMijt U(1, 10)
GPijt U(1, 10)
REijt U(1, 10)
PTijt U(1, 10)
CAPt U(170, 200)
Mk 3000, 6000, 14000
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Furthermore, the table includes information on the optimum carbon trade quantity in

each period, which indicates how much carbon allowance the manufacturer should buy or

sell. The results indicate that the optimal quantities for purchasing carbon allowance are

96.939, 64.684, 88.764, and 134.056 in periods 1, 2, 3, and 4, respectively. This information is

critical for managers in making informed decisions on how much to order from each supplier

while considering the defined criteria and the impact of carbon emissions. The values of

objective functions 1, 2, and 3 shown in table 3.2 present the score of the selected suppliers

based on non-green, quantitative green, and qualitative green criteria, respectively. It should

be noted that the importance of an objective value cannot be solely determined by its

magnitude. For example, in certain supply chain management scenarios, the second objective

may hold greater significance even if its value appears to be the lowest among the three

objectives. Therefore, we have normalized the objectives to ensure that their magnitude does

not influence reader’s perceptions of their relative importance. zTotal, represents the overall

utility of the manufacturer by taking into account the three aforementioned objectives, and

considering the optimal operational decisions made by the decision-makers. These objective

functions, along with the total utility function, will be utilized to perform a sensitivity

analysis in the subsequent five sections of this chapter.

To analyze the model and check the sensitivity of its objectives to parameters, we per-

formed several analyses. These analyses were chosen based on their relevance to decision-

making and their impact on the utility and objective function. Specifically, the parameters

λ and ω were analyzed to provide decision-makers with insight into setting the importance

level of infeasibility and optimality based on their preferences. Additionally, in view of the

significance of carbon emission allowance, and the fact that the optimal solution to the prob-

lem is achieved based on the current cap level, an investigation into the effects of cap changes

on the utility function and decision variables is warranted to prepare for forthcoming peri-

ods. Furthermore, as the allowance price may be uncertain, an examination of its potential

impacts on decision-makers’ operational decisions is required. The study also compares the

applied carbon emission regulation with a penalty-based mechanism to determine which is
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Table 3.2: Results of numerical example

Variables Results
Xijt X112 = 2, 617 X141 = 1, 825 X142 = 2, 506 X152 = 1, 627

X153 = 4, 091 X211 = 2, 558 X212 = 381 X214 = 3, 121
X231 = 126 X243 = 810 X252 = 2, 340 X253 = 1, 908
X311 = 2, 962 X312 = 2, 756 X343 = 2, 813 X412 = 2, 861

X414 = 2, 690 X421 = 3, 382
rit 0
bit b14 = 4, 243 b34 = 3, 056 b43 = 3, 657 b44 = 3, 937
αt α1 = 96.939 α2 = 64.684 α3 = 88.764 α4 = 134.056
βt 0
δs+ijt δs+111 = 178 δs+112 = 159 δs+124 = 202 δs+153 = 147

δs+214 = 123 δs+222 = 101 δs+243 = 106 δs+251 = 92
δs+312 = 97 δs+313 = 113 δs+341 = 126 δs+354 = 145
δs+432 = 103 δs+441 = 143 δs+443 = 174 δs+454 = 105

δs−ijt δs−111 = 184 δs−114 = 212 δs−123 = 150 δs−142 = 164
δs−221 = 94 δs−232 = 104 δs−253 = 109 δs−254 = 127
δs−314 = 153 δs−321 = 131 δs−322 = 99 δs−343 = 117
δs−411 = 148 δs−412 = 105 δs−443 = 183 δs−444 = 107

z1 640, 743
z2 43, 627
z3 1, 133, 472

zTotal 1.699

more effective in mitigating emissions in this context. It is worth noting that a wide range

is selected for the sensitivity analysis to capture extreme situations, and to elucidate trends

more clearly, if they exist. The results will be discussed in the following sections.

3.3.2 Sensitivity analysis on ω

Robust models rely on the parameter to balance optimality and feasibility, where infea-

sibility is defined as over- or under-fulfillment. Over-fulfillment increases warehousing costs,

while under-fulfillment leads to lower customer satisfaction. Increasing the penalty for infea-

sible solutions reduces the risk of infeasibility but also decreases model optimality. Therefore,

there is always a trade-off between model infeasibility and optimality. Understandably, it

is not easy for decision-makers to determine the exact value of ω. Consequently, a suitable

way to investigate this issue is to measure different values of the objectives and the amount

of model infeasibility when distinct values for ω are considered. Afterward, an analysis of

the results enables the decision-makers to manipulate the preferred value of ω.

By increasing the value of ω, due to the imposed penalty, the model tries to decrease the
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infeasibility. Therefore, as depicted in figure 3.2(a), when ω increases, infeasibility, which is

defined as the amount of over-fulfillment and under-fulfillment (this is shown in the y axis),

decreases. This shows that by increasing the importance of infeasibility, the model responds

well to the changes and tries to decrease the chance of infeasibility. As it is depicted in

section b of the mentioned figure this task proves to be costly. As shown in figure 3.2(b), by

increasing the value of ω, firms will be penalized more for infeasibility; in this situation, first

and second objective functions, which are formulated as robust equations, will deteriorate,

and consequently, zTotal will become worse.

By scrutinizing these results, decision-makers can assign a precise value to ω based on

the goals defined by the firm. For instance, if the objective values are more important, a

lower weight for model robustness should be set. On the other hand, if customer satisfaction

is more critical, more penalties must be in place for infeasibility (higher values for ω), which

leads a worsening of the objective value.

Furthermore, in figure 3.2(b), a comparison is performed between the values of robust

and deterministic models. The figure depicts that for a large domain of ω values (ω > 25) the

objective function of the deterministic model is better than the robust model. This occurs

due to the penalty imposed on the robust model for deviation and infeasibility, i.e., there

is more restriction on the objective function. Regardless, by handling uncertainty, robust

models are able to achieve solutions that are closer to real-world scenarios. This enhances

their applicability.

Figure 3.2: Sensitivity analysis on ω
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3.3.3 Sensitivity analysis on λ

Another crucial aspect includes the impact of the penalty on the deviation of scenarios

from the expected value of the objective. Note that the model considers various scenarios,

and one cannot be certain which one will happen. Hence, the solution method seeks to

achieve a solution that is the closest possible value to the optimum of all scenarios. In this

sense, λ is the weight parameter that refers to the importance of solution closeness to all

possible scenarios. A larger value for λ implies a higher level of importance for deviation

from the average; consequently, the objective value deteriorates due to the increased penalty.

This is illustrated in figure 3.3, which demonstrates the impact of varying the importance

of deviation of the first and second objectives from their optimal values, represented by λ1

and λ2 respectively; both of these objectives are subject to uncertainty. As displayed in

figure 3.3(a), by increasing the value of λ1, the deviation between the objective value in each

scenario and the average objective value (y-axis) decreases. On the other hand, according to

figure 3.3(b), the value of the first objective function (y-axis) increases. In other words, the

first objective function value exacerbates as it is a minimization objective. Consequently,

the total objective value deteriorates.

The same occurs for λ2, but since in this chapter the values of the second objective

are significantly smaller than the first objective, λ2 has a negligible effect on the deviation

of the objective function (see table 3.3). It does not mean that the second objective is

not important, because the total objective is normalized using equation (3.43) to avoid

overestimating the importance of objectives with large values. However, the deviation is

fixed on a small amount (11.148) compared to the first objective (486,736), and adding the

value of λ2 does not have an impact on the deviation, although the second objective function

worsens (figure 3.3(c)). Therefore, it is recommended to set the value of λ2 to a small number

to avoid deteriorating the second objective, which represents the amount of emission.

In other words, putting more penalty on the diversion of objective values in different

scenarios reduces deviation, but worsens the objective values. This provides a road map for

the decision-makers to choose values of λ1 and λ2 according to their goals.
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Figure 3.3: Sensitivity analysis on λ

Table 3.3: Effect of λ2 on Deviation of Second Objective Value

λ2 zTotal z1 z2 z3 δ Deviation from Second Objective
0 12.557 486,736 43,182 1,170,111 4,283 11.148
2 12.56 486,736 43,193 1,170,111 4,283 11.148
5 12.572 486,736 43,237 1,170,111 4,283 11.148
10 12.587 486,736 43,291 1,170,111 4,283 11.148
15 12.602 486,736 43,346 1,170,111 4,283 11.148
22 12.623 486,736 43,422 1,170,111 4,283 11.148
23 12.626 486,736 43,433 1,170,111 4,283 11.148
24 12.629 486,736 43,444 1,170,111 4,283 11.148
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3.3.4 Sensitivity analysis on CAP

As mentioned in introduction section, governments usually reduce the assigned cap in the

cap-and-trade mechanism each year to decrease air pollution1. In certain cases, setting a high

value for the emission cap by the government may lead to higher greenhouse gas emissions,

rendering it an ineffective strategy for controlling emissions. Therefore, an analysis of cap

reduction is required to predict the probable effects of this restriction and make the right

actions toward the change.

Figure 3.4(a) shows a reverse relationship between objective values and carbon cap. It

indicates that by decreasing the carbon allowance cap, the cost objective function (×105)

increases, thus worsening the total objective value. This matter can be investigated from

different perspectives. From the government’s point of view, the total utility decreases

by decreasing the cap, but it results in less carbon emission, which can be deemed as a

positive result for the government due to health- and environmental-related costs. From the

manufacturer’s point of view, decreasing the cap is not an ideal option, because they are

forced to purchase more allowance, or they will make less money for not being able to sell

as much allowance, or they will have to upgrade to more expensive green technologies.

In addition, this restriction affects the amount of allowance to buy or sell. As displayed in

figure 3.4(b), while the cap decreases, the amount of total carbon allowance the manufacturer

needs to buy (sell), increases (decreases). This is the main driver of the increased cost.

Furthermore, according to figure 3.4(c), changing the cap does not have a discernible

impact on the optimal amount of carbon emission (z2); no trend can be verified in this

figure. Based on the parameter values used in this study, reducing the cap does not have

a substantial effect on the carbon emissions of manufacturers as they perceive the carbon

allowance market as a potential source of profit. Essentially, manufacturers focus on their

cost function and attempt to comply with the carbon emission regulations. These findings

can assist the regulator in determining the appropriate carbon emission cap and minimizing

1As an example, see the cap-and-trade mechanism of Ontario, Canada (accessed March 13, 2020): https:
//www.ontario.ca/page/cap-and-trade.
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the impact on manufacturers in terms of emission costs. The lack of a discernible trend in

tableau c may be due to defining an inappropriate level of the cap, which only influences

the first objective function and has no significant effect on the emission level. Further

investigations are required in future research to explore this phenomenon.

Figure 3.4: Sensitivity analysis on CAP† †Values on the x-axis show cap reduction. For
example, -0.1 means cap is decreased by 10%.
†Values on the x-axis show cap reduction. For example, -0.1 means cap is decreased by 10%.

3.3.5 Sensitivity analysis on cap-and-trade market prices

Buying and selling prices are critical parameters in the cap-and-trade system with a direct

impact on the amount of carbon allowance being traded by firms. Establishing a low price for

emission allowances may lead to a rise in greenhouse gas emissions. Therefore, it is crucial to

examine the behavior of manufacturers in response to varying allowance prices. According to
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table 3.4, by increasing the selling price, the values of the first and total objectives decrease.

This can be traced to the growth in the optimal value of the amount of sold allowance.

As shown in table 3.4, when BP > SP the manufacturers turn into brokerages. In

this case, firms can buy allowance in the market and sell it at a higher price for a profit.

Therefore, the optimal values of variables that control buying and selling allowances in the

market will be positive in the same period. To avoid this situation, government can restrict

the carbon market price such that BP is always less than SP in carbon trading markets or

restrict the companies from buying and selling allowance at the same time.

Table 3.4: Results of sensitivity analysis on carbon market prices

Parameter Price change (%) zTotal z1 z2 z3 α β
BP -20 13.24 847,973 40,670 1,365,767 296 0

-10 12.783 728,194 40,670 1,365,767 296 0
-5 12.9 555,835 43,466 1,147,220 377 0
0 12.602 486,736 43,346 1,170,111 387 0
5 10.108 39,832 40,497 1,396,833 5,343 5,085
10 -0.306 1,363 3,684 5,571,751 3.9×108 3.9×108

SP -10 -0.307 1,363 3,681 5,568,767 9.9×107 9.9×107
-5 -0.307 1,363 3,688 5,605,797 135,493 136,376
0 12.602 486,736 43,346 1,170,111 387 0
5 12.602 486,736 43,346 1,170,111 385 0
10 12.602 486,736 43,346 1,170,111 387 0
20 12.602 486,736 43,346 1,170,111 387 0

3.3.6 Cap-and-trade versus paying penalty to the government

We can also investigate the forcing of manufacturers to pay a penalty to the government

for carbon emissions once a certain cap is exceeded. This policy does not allow formation

of a carbon emission trading market. As shown in figures 3.5(a)-3.5(c), for the cap changes

below 40 percent, the cost of pollution is less in cap-and-trade compared to the penalty-

based mechanism. However, the amount of carbon released under the cap-and-trade policy

is more than the emissions in the government penalty regulation. Therefore, in case there

is a high priority on the carbon reduction objective, government must decrease the cap in

the C&T mechanism to a value which is less than 40% of the original amount. Also, zTotal

in cap-and-trade is lower in the given range. In other words, cap-and-trade performs better
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than the penalty-based system for manufacturers. Namely, cap-and-trade derives a better

total utility; thus, it is preferred to the penalty-based approach.

If the cap is lowered more than 40 percent, no superiority exists between the two mech-

anisms. This occurs since the cap is decreased below the 40 percent mark, the amount of

allowance the manufacturer needs to buy (or the amount of penalty the manufacturer should

pay to the government) will be positive; and the quota to sell will gradually tend to zero.

In other words, the manufacturer will not be able to generate profit by selling emission al-

lowance. Hence, the gap between the cap-and-trade mechanism and the penalty system will

vanish. The above result represents an important insight for the governments when assigning

effective values for the cap according to the defined emission targets.

Based on the presented results, cap-and-trade culminates in better outcomes in terms

of total model utility, although with higher carbon emission which is the result of assigning

equal weights to economic selection criteria, green selection criteria, and carbon emission

level. Obviously, assigning more weight to carbon emission levels translates to solutions

with less carbon emission.

The cap-and-trade mechanism allocates a constant carbon emission permission to the

entire market. Therefore, the manufacturers buy the allowance of the other players in the

carbon trading market, while the total allowed carbon emission is a fixed value. As a result,

if the firms choose not to sell their allowance in the market, or if they consume all of their

own allowances, other firms will no longer be able to place orders.

Conversely, although there is a cap determined by the government in penalty-based sys-

tems, the total amount of carbon released can exceed the cap because manufacturers can

emit as much carbon as they need by paying the penalty to the government. Therefore,

the total carbon released by manufacturers may be more in this system. Note that this

argument cannot be confirmed by the results of this chapter because we would require data

from all of the manufacturers in the market to audit the total amount of carbon emission.

Consequently, this topic is left for study in future research efforts.
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Figure 3.5: Cap-and-trade vs. penalty-based

3.4 Summary

To support decisions related to outsourcing in a green supply chain and to help with

procuring the best materials from the best suppliers in an uncertain environment encom-

passing both green and traditional criteria, a multi-objective robust optimization model is

generalized in this chapter. The cap-and-trade mechanism is considered to evaluate the

role of this pollution control system. A numerical example is presented to analyze different

aspects of the generalized model and the solution approach.

The optimal activity levels of a firm to achieve the maximum utility while meeting the

environmental goals are obtained. The proposed model enables the decision makers to work

with a more flexible decision support system due to the analysis done on ω and λ. The

results show the effect of cap amount and the trade prices on the firm’s objective. Therefore,
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manufacturers will be well-informed about selecting the best suppliers, the amount of orders

to place with each of the selected suppliers, and trading in the allowance market to meet their

objectives. Additionally, the superiority of cap-and-trade mechanism compared to penalty-

based system regarding the total utility of supply chain from a micro-economic perspective

is shown in this chapter.

52



4. A three-player game theory model for carbon

cap-and-trade mechanism with stochastic

parameters

The cap-and-trade (C&T) mechanism is a widely used tool by governments to reduce

the emission of greenhouse gases. Naturally, businesses operating under a C&T scheme

adopt strategies to ensure utility maximization and emission minimization. Effectiveness of

such strategies depends on mutual interaction of external and internal factors. This chapter

develops a stochastic game theoretical model consisting of a manufacturer, a third-party

carbon emission verifier, and the government to study the necessary trade-offs to optimize the

stated objectives. The proposed model is validated using a numerical example. Furthermore,

it is demonstrated that the proposed model maximizes social welfare by finding the best

penalty for bribery and violating the assigned carbon emission quota through advising a

re-verification strategy to detect possible collusion between the manufacturer and verifier.

The major steps of the proposed model are depicted in Figure 4.1. The following sub-

sections provide a detailed overview of the developed model.

4.1 Background

In the C&T mechanism, governments must assess manufacturers’ carbon emissions to

allocate the proper amount of allowance and penalize companies in case of excess emissions

Most of the context in this chapter have been published in Mirzaee, H., Samarghandi, H., Willoughby, K.
(2022). A three-player game theory model for carbon cap-and-trade mechanism with stochastic parameters.
Computers Industrial Engineering, 108285.
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Figure 4.1: The proposed model’s major steps

(Pan et al., 2019). Accordingly, a third-party verifier may be deployed to assess and verify the

emission data reported to the government by the manufacturers (Bai et al., 2016). However,

the manufacturer and verifier may collude to submit a fake report. In this situation, the

manufacturer may propose a bribe to conceal the actual carbon emission amount, which

the verifier may accept (Khalil and Lawarree, 1995). In other words, bribery is one of

the manufacturer’s strategies to hide the real GHG emission levels. Other options exist

by which the manufacturers can reduce their emissions. One possible alternative involves

upgrading to a green production technology. Although technology upgrade can be costly, it

decreases the emissions (Xu et al., 2017). Hence, the extra emission allowance can be sold
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in the C&T market; furthermore, the manufacturer will not have to conceal its emissions to

avoid governmental penalties. Another option for reducing carbon emission is subcontracting

one or several parts of the manufacturing process to suppliers. Subcontracting lowers the

emission for the manufacturer because another company takes the responsibility of a part of

the manufacturing process and uses its quota for production. However, this option may prove

costly as a result of profit sharing with another company. Therefore, in the present chapter,

three possible ways that manufacturers can choose to decrease their reported emission level

and make more utility are bribe, green technology upgrade, and outsourcing. On the other

hand, there are two strategies for verifier when manufacturer proposes a bribe: accept or

decline the bribe. Alternatively, the government may do a random re-verification to detect

the probable collusion between the other two parties in the C&T mechanism. However,

the re-verification process is costly due to the related human resource expenses; hence, the

government needs to decide whether to intervene. In case re-verification confirms collusion

between a manufacturer and verifier, the two parties will be charged a penalty. The penalty

price ought to be greater than the utility gained from concealing the real emissions (Pan

et al., 2019).

The players involved in the game include the manufacturer, verifier, and government. In

this game, customer sensitivity to greenness, and supplier’s delivery lead time are treated

as stochastic parameters. Also, it is assumed that late delivery from the supplier leads to

lost sale with its associated costs for the manufacturer. Another assumption of the model

is that product demand is a function of its greenness, and impacts the carbon price in the

C&Tmarket. Another parameter that is affected by customer preferences is the government’s

“rigor index” toward carbon generating companies. This index refers to government pressure

applied to manufacturers to adopt greener initiatives. In this chapter, the objective of the

model is to minimize the overall game costs while maximizing social welfare. The social

welfare measure used in this chapter is the product greenness, which can be achieved by

minimizing the total emission levels. The strategies that each player can select are presented

as follows.

• Manufacturer: alternatives to reduce the costs associated with carbon emission and
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allowance are: 1) outsourcing the products or producing them in-house; 2) upgrading

to an environmentally-friendly production technology (there exist different levels of

green technology with different costs), or remaining on the current technology and

buying more emission allowance in the C&T market, if needed; 3) offering a bribe to

the verifier to provide a fake report to government.

Compared to in-house production, outsourcing all or part of the manufacturing process

to suppliers usually increases the final product costs. This is referred to as the cost

of outsourcing and includes tangible and intangible items such as transportation cost,

ordering cost, supplier’s profits, loss of control over the manufacturing process, and so

on (Arya et al., 2008). On the other hand, outsourcing decreases the cost of purchasing

emission allowance or the penalty costs since the suppliers will be responsible for carbon

emissions. Also, while upgrading the production technology is costly, it reduces the

emission level. Therefore, the upgrade may prove worthwhile.

Furthermore, collusion between the manufacturer and verifier is probable and should

be considered. If the firm proposes a bribe and the verifier accepts it, the firm will

report lower emissions, and consequently, will benefit from lower allowance costs either

by not having to purchase extra emission allowance in the C&T market or by selling

unused allowance to other companies. However, if caught by the government, both the

manufacturer and the verifier will be fined.

• Verifier: The third-party verifier’s alternatives are accepting or rejecting the bribe, if

one is offered. If the bribe is accepted and not detected by government re-verification,

it will generate utility for the verifier. If collusion is confirmed through re-verification,

fines will be levied; it will also generate future loss of goodwill for the verifier.

• Government: It needs to decide whether to seek re-verification. Re-verification is

costly for the government due to the expenses of hiring the experts (Pan et al., 2019).

If collusion is detected between the other two players, the government will receive a fine

from the manufacturer and the verifier which can cover all or part of the re-verification

costs. However, re-verification is not always successful; a probability is assigned to

successful detection.
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The general procedure and the strategies of each player in the game are described in

figures 4.2 and 4.3. Figure 4.2 shows the players’ decisions, which are considered as the game

variables. Figure 4.3 describes these decisions and their outcomes by showing all the possible

decisions for each player and how these decisions impact total game utility. For instance,

if government decides on re-verification and detects bribe, it will fine the manufacturer and

verifier for their collusion; but if there is no collusion between the manufacturer and verifier,

government will have to bear the cost of re-verification. Also, the possible scenarios of the

game are illustrated in figure 4.4. The game consists of 16 different scenarios, each requiring

a utility function for the players. Note that some of the scenarios are impossible to happen,

and hence, will not be analyzed. For instance, if the manufacturer decides the “no bribe”

branch, the verifier cannot accept the bribe. Section 4.2.3 describes all the possible scenarios

as well as their respective utilities.

The described model has real-world applications as the cap-and-trade system is enforced

in some countries. For instance, China has implemented a C&T mechanism (Chen et al.,

2021), in which the verification process of emission reports is performed by Shenzhen’s cap-

and-trade system (Pan et al., 2019). The European Union is another major jurisdiction

which has implemented a C&T market (Yang et al., 2021).

Figure 4.2: The game strategies†
†Note that the described game is non-cooperative and non-sequential.
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Figure 4.3: The game levels

4.2 Model Architecture

4.2.1 Notations

The following indices are deployed in this model:

i ∈ {1, 2, . . . , I}: the type of technology used in production process; i = 1 means that

the old technology is used.

j ∈ {1, 2, 3}: refers to the manufacturer, verifier, and government, respectively.

k ∈ {1, 2, . . . , 16}: refers to the kth strategy of the players.

The parameters include (all the costs are in thousands of dollars):

Ui: cost of upgrading the manufacturing system to the ith technology level.

Lc: cost of lost sales.

Dd: the duration of time from ordering date to delivery due date for products purchased

from the supplier (days).
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Figure 4.4: Strategies tree

Pr: probability of late order delivery.

µLT : mean of lead time (days).

σ2
LT : variance of lead time.

µh1i : customer sensitivity to the ith technology used in the manufacturing process.

µh2i : customer sensitivity to greenness level of the raw material used in the production

process when upgrading technology to ith technology level.

σ2
h: variance of customer sensitivity to greenness.

Dci: difference in the final product cost when produced in-house using technology i as

opposed to outsourcing.

AEi: actual emission rate per product when using technology i (kg).

REi: reported emission rate per product when using technology i (kg).

ai: actual emission amount when technology level i is used (kg).

ri: reported emission amount when technology level i is used (kg).
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Ci: concealed emission amount when using ith technology level (kg).

fij: fine levied to player j for concealing real emissions under the condition that the

manufacturer is using technology i.

nj: penalty coefficient for player j.

b: amount of bribe manufacturer offers to verifier.

Rc: re-verification cost.

ξ ∈ [0, 1]: emission restriction index.

ρ: probability of successful re-verification.

D: demand.

D1: demand of customers who are not sensitive to product greenness.

D2i: demand of customers who are sensitive to product greenness, when product is

manufactured using technology i.

x1: the percentage of customers who are not sensitive to product greenness.

x2: the percentage of customers who are sensitive to product greenness.

q: emission quota allocated to the manufacturer (kg).

P : price of emission allowance the C&T trading market.

The following variables are features in the model:

X: a continuous variable showing the decision of the manufacturer to outsourceX percent

of its production; X = 1 means that all the products are procured by the supplier.

W : a binary variable presenting the strategy of the manufacturer for bribery; W = 1

means the manufacturer proposes a bribe to the verifier.

βi: a binary variable showing the level of technology upgrade the manufacturer chooses;

β1 = 1 means the manufacturer will not upgrade its current technology. Note that
∑

i βi =
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1.

Y : a binary variable to demonstrate the strategy of the verifier; Y = 1 means the verifier

accepts the bribe.

Z: a binary variable which highlights the strategy of the government; Z = 1 means the

government will re-verify.

4.2.2 Mathematical Equations

This section presents the relationships among the parameters.

ai = AEiD ∀i (4.1)

ri = REiD ∀i (4.2)

Equations (4.1) and (4.2) show the actual and reported emission amount, respectively.

Ci = ai − ri = D (AEi −REi) ∀i (4.3)

Equation (4.3) indicates the amount of concealed emission in case of collusion between

the manufacturer and verifier. Accordingly, equation (4.4) calculates the amount of fine the

government charges the players when it detects collusion.

fij = njPCi ∀i, j (4.4)

The government can force carbon-generating companies to reduce their emission by re-

stricting their carbon emission allowance. The overall amount of quota distributed to all

companies in the C&T market can be determined by a rigor index. This index represents

the pressure the government puts on manufacturers for producing greener products. Equa-

tion (4.5) calculates the quota the manufacturer receives according to the emission restriction
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index.

q = ξD (4.5)

As the assigned quota of the manufacturer increases, the carbon allowance price in the C&T

decreases. It is assumed that, as shown in equation (5.6), the relationship between allowance

price and quota is non-linear.

P = Ke1/q = Ke
1

ξD , (4.6)

in which K is a constant. Following the work of Nouira et al. (2014) it is assumed that the

customers are either “non-sensitive” or “sensitive” to product greenness. If the percentage

of non-sensitive and sensitive customers is represented by x1 and x2, and their demand is

denoted by D1 and D2, respectively, the following equations ensue.

Dtotal = D1 +
∑
i

βiD2i ∀i (4.7)

D1 = x1.D (4.8)

According to Letmathe and Balakrishnan (2005), there is a linear relationship between

customers’ demand and their sensitivity to greenness. If hi represents the sensitivity index,

equation (4.9) is inferred.

D2i = x2.hiD ∀i (4.9)

To measure customer sensitivity to product greenness, hi, two factors are considered: 1)

technology used in the manufacturing process (0 ≤ µh1i ≤ 1); and 2) greenness level of the

material used in production process (0 ≤ µh2i ≤ 1). Please be advised that the level of

sensitivity to greenness can be measured on a spectrum, as opposed to being considered a

binary variable. It is assumed that these parameters are equally as important and are both
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normally distributed. Therefore:

hi = 0.5(µh1i + µh2i) ∀i (4.10)

Furthermore, assume that the lead time of the products purchased from a supplier is

normally distributed. Consequently, equations (4.11) and (4.12) calculate the probability of

late order delivery, as well as number of lost sales.

Pr ≤ p

(
z ≤ µLT −Dd

σ2
LT

)
(4.11)

L = Pr.D (4.12)

4.2.3 Game theory model

Table 4.1 shows the utility of the players of the game under each scenario.

Table 4.1: The payoff table

Re-verification No re-verification
Accept Reject Accept Reject

Bribe
Supplier C1 C3 C2 C4

Manufacturer C5 C7 C6 C8

No bribe
Supplier C9 C11 C10 C12

Manufacturer C13 C15 C14 C16

In this table, the first column displays manufacturer’s strategies and the first row shows

the combination of verifier and government strategies. Accordingly, table 4.1 determines the

payoff values for each combination of all three players’ strategies in a two-dimensional table.

There are some scenarios that are infeasible to obtain including C9, C10, C13, and C14.

Equations below describe players’ utilities in each scenario. For instance C1M , C1V , and

C1G represent manufacturer’s, verifier’s, and government’s utility in case 1, respectively.
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Manufacturer:

C1M = C2M = C3M = C4M = C9M = C10M = C11M = C12M

=
∑
i

(AEi.D.P −Dci.D) βi − Pr.D.Lc
(4.13)

C5M =
∑
i

(AE1 − AEi)D.P .βi − b−
∑
i

ρ.fi1.βi −
I∑

i=2

βi.Ui

+(1− ρ)
∑
i

(AEi −REi)D.P .βi

(4.14)

C6M =
∑
i

(AE1 − AEi)D.P .βi − b−
I∑

i=2

βi.Ui +
∑
i

(AEi −REi)D.P .βi (4.15)

C7M = C8M = C13M = C14M = C15M = C16M =∑
i

(AE1 − AEi)D.P .βi −
I∑

i=2

βi.Ui

(4.16)

Verifier:

C5V = b−
∑
i

βi.ρ.fi2 (4.17)

C6V = b (4.18)

The verifier’s utility in all other cases is zero.
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Government:

C1G = C3G = C7G = C9G = C11G = C13G = C15G = −Rc (4.19)

C5G = −Rc+ ρ
∑
i

βi(fi1 + fi2)− (1− ρ)

(∑
i

(AEi −REi)D.P .βi

)
(4.20)

C6G =
∑
i

(AEi −REi)D.P .βi (4.21)

The government’s utility in all other cases is zero.

The players’ goal is to maximize their utility, which is not always attainable due to the

conflict between their actions. As such, the second best choice is finding a cell in table

4.1, which optimizes the entire game. In the described game, the optimal point is one from

which no player desires to move. In other words, all the other strategies generate less or

equal amount of utility for the players. This point is called the Nash equilibrium.

4.2.4 Solution Procedure

After developing the game theory model in section 4.2.3, it is possible to investigate the

existence of an optimal solution. In other words, one is tasked to find the best strategy

for players considering the conflicts between their utilities. Since the problem is a non-

cooperative game, the Nash equilibrium is applied to find the optimal solution, i.e., the

cell in the payoff table where the players will not acquire more utility if they select other

strategies. Hence, in Nash equilibrium players are not willing to change their chosen strategy.

Assume that Sk
j is the kth strategy of player j, S is the combination of players’ strategies

(S = [Sk
1 ,S

k
2 , . . . ,S

K
J ]), and S−j is the combination of the strategies of all players except
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player j (S−j = [Sk
1 , . . . ,S

k
j−1,S

k
j+1, . . . ,S

k
J ]). Also, assume that Uj(S) is the utility of player

j from its chosen strategy. Also, assume that Uj(S
k
j ,S−j) is the utility of player j when all

other players keep their strategy and player j changes its decision to strategy k. Hence, the

following equation can be used to find the Nash equilibrium.

Uj(S
∗) ≥ Uj(S

k
j ,S−j) ∀j (4.22)

According to equation (4.22), the optimal strategy for player j is a strategy where, if

player j changes its strategy while all other players do not change their decisions, player j’s

utility function will not improve. Thus, the objective of this model can be written as follows.

Max Uj(S
k
j ,S−j) (4.23)

To solve this problem, a full enumeration algorithm is performed. In other words, the

total utility of players corresponding to the set of all possible combinations of strategies is

calculated. The Nash equilibrium is the strategy combination that generates the highest

utility.

4.3 Results and Discussion

To validate the proposed game theory model for the C&T mechanism, a numerical exper-

iment is performed in this section, using Python programming language. The experiments

were conducted based on the data presented in table 4.2. Since the presented problem in

this chapter is an extended version of the problem proposed by Pan et al. (2019), the data

set in table 4.2 is simulated according to Shenzhen’s cap-and-trade system presented in their

paper. Specifically:

• We consider four levels for production technology greenness. Hence, there are three

values for the cost of upgrading, plus a zero cost for deciding to not upgrade the current

technology.
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• Customer environmental sensitivity, a stochastic parameter, has four values for each

level of green technology.

The first three values for µh1i and µh2i are less than one, meaning that when the

production technology is not green, demand for the product declines. The ascending

order of µh1i and µh2i values in this matrix indicates that customers are more willing

to buy green products.

• Following the assumption of Pan et al. (2019), Dci increases when the employed tech-

nology is greener. In other words, in-house production is more expensive after upgrad-

ing the technology, which results in a higher difference between in-house and outsourc-

ing production costs.

• The actual emission rate (AEi) is greater than the reported emission rate (REi) in

case a bribe is offered.

• nj values demonstrate that when the government detects collusion, the manufacturer

and verifier are fined twice and three times more than their realized utility from collu-

sion.

Table 4.2: Data set

Parameters Values Parameters Values

Ui [0,80,100,140] Lc 0.05

Dd 4 µLT 3.75

σ2
LT 0.05 x1 0.6

σ2
h 0.25 x2 0.4

µh1i [0.9, 0.94, 0.99, 1.05] K 1.2

µh2i [0.85, 0.92, 0.97, 1.04] Cs 1.1

R 0.5 Dci [1.2, 1.3, 1.45, 1.65]

b 28 AEi [4, 3.3, 2.5, 1.5]

Rc 25 REi [3.5, 2.7, 2.1, 1.1]

ξ 0.75 nj [2, 3, 0]

ρ 0.8 D 10000

The results of the experiment are shown in table 4.3. According to the results, although

there are multiple solutions with the same utility for the problem, it can be inferred that
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the best strategy for the manufacturer is outsourcing (X = 1), which negates the need for

proposing a bribe (W = 0). When the production is outsourced, the manufacturer will not

generate any emission. Hence, a bribe is not offered and the verifier does not have any

decisions to make, which is translated as rejecting the bribe (Y = 0). Furthermore, the best

strategy for the government is no re-verification (Z = 0).

All the presented solutions in this section were equal and resulted in the total utility

U = 34, 143.81 for the players. This amount of utility is maximized when β1 = 1. That is,

the manufacturer is recommended to withhold upgrading its technology since the supplier

generates the products. Table 4.3 also shows the utility of the players for the optimal strategy.

Notice that, for this special example, the manufacturer’s utility is 31, 143, and the other two

players’ gain is 0 for they do not take an action.

Table 4.3 demonstrates that demand decreases as the customer sensitivity to product

greenness increases. Furthermore, as the government strives to lower the carbon emissions,

the allowance granted to the manufacturer is less than the required allowance for satisfying

the demand, which leads to technology upgrade and using more environmentally friendly

material. Ultimately, lowering the quota impacts the price of carbon in the C&T market.

The presented model and solution approach identify the best strategies for the C&T

parties and its respective total utility. The optimal strategy for each player can only be

detected once the possible decisions of the other players are taken into consideration. Also,

the impact of the customer sensitivity on market demand is contemplated. Naturally, the

presented model confirms that increasing the market’s sensitivity to greenness elevates the

demand for green products. In other words, the players must realize market’s sensitivity to

greenness to maximize their utility; they must also remain under the emission quota deter-

mined by the government. Therefore, by leading the C&T players to their best strategies and

maximizing their utility while adhering to the emission quota, the presented model results

in a more powerful C&T enforcement mechanism while promoting production of more envi-

ronmentally friendly products. The following sub-sections are devoted to sensitivity analyses

to illustrate the impact of uncertainty in parameter values on game utility. Although the

employed stochastic optimization method controls parameter uncertainty, deviation between
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predicted values and the real data is still possible. Hence, hi and LT, the uncertain param-

eters in this study, are chosen for sensitivity analysis. Accordingly, decision makers observe

the trend in the objective function, and therefore, can devise alternative scenarios in case

real data does not follow the predictions. Furthermore, analyzing the emission restriction

index, ξ, and re-verification policy provides insight for the government in case intervention

in the market is required.

Table 4.3: Results of the numerical experiment

Variables Values

P 1.200168

Dtotal 9500

q 7125

f1j [11401.6, 17102.4, 0]

f2j [13681.92, 20522.88, 0]

f3j [9121.28, 13681.92, 0]

f4j [9121.28, 13681.92, 0]

Total game utility when β1=1 34143.81

Utility of players 1, 2, and 3 when β1=1 [34143.81, 0, 0]

Total game utility when β2=1 25796.44

Utility of players 1, 2, and 3 when β2=1 [25.796.44, 0, 0]

Total game utility when β3=1 17758.4

Utility of players 1, 2, and 3 when β3=1 [17758.4, 0, 0]

Total game utility when β4=1 30404.00

Utility of players 1, 2, and 3 when β4=1 [30404.00, 0, 0]

Optimal solution with reference to table 4.1; C2, or C4, or C10, or C12all the following result in the same total utility

4.3.1 Sensitivity Analysis on hi

To analyze the generated model and solution method and check for the robustness of the

results, several sensitivity analyses were conducted. First, it was hypothesized that manu-

facturers may use advertisements to impact customer discretion toward product greenness.

For instance, a firm which has upgraded its technology to a greener one may aggressively
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advertise to inform customers about the upgrade and the importance of purchasing envi-

ronmentally friendly products. This increases sensitivity to product greenness and elevates

the sales of the green products. Hence, the effect perturbing hi was analyzed. Since hi is

a stochastic parameter, a 95% confidence interval, as per equation (4.24), was used for the

analysis.

ĥi ∈
[
hi −

z0.05/2 ∗ σh√
n

,hi +
z0.05/2 ∗ σh√

n

]
= [hi − 0.25,hi + 0.25] (4.24)

In this equation, it is assumed that n = 16 customers were interviewed and σh = 0.51.

Results are displayed in table 4.4.

Figure 4.5: Sensitivity analysis on hi

As shown in table 4.4 and figure 4.5, changes in hi have a positive correlation with

product demand and manufacturer’s utility, but they are negatively correlated with carbon

allowance price. Since the total utility is positively correlated with hi, the manufacturer can

increase the utility by satisfying the customers who are sensitive to product greenness.

Note that for the studied data set, when hi increases, demand declines, because it is more

profitable to maintain the current production technology. Thus, increasing greenness sen-

sitivity changes demand, and consequently, impacts emission quota and emission allowance

70



Table 4.4: Sensitivity analysis on hi

Changes in hi Utility Optimal solution Demand Carbon price (P )

-0.25 30550.395 No change 8500 1.20019

-0.2 31269.08 No change 8700 1.20018

-0.15 31987.76 No change 8900 1.20018

-0.1 32706.44 No change 9100 1.20018

-0.05 33425.12 No change 9300 1.20017

0 34143.81 No change 9500 1.20017

0.05 34862.49 No change 9700 1.20016

0.1 35581.17 No change 9900 1.20016

0.15 36299.85 No change 10100 1.20016

0.2 37018.53 No change 10300 1.20016

0.25 37737.22 No change 10500 1.20015
The row specified in bold font corresponds with the solution presented in table 4.3

price. When hi changes are extreme, the optimal solution of the game may change. Note

that although the game utility function changes as the value of hi is altered, the optimal

solution remains the same in the interval specified in equation (4.17). Therefore, the optimal

solution presented in table 4.3 is robust within the mentioned 95% confidence level.

4.3.2 Sensitivity Analysis on LT

A similar analysis was performed on the supplier’s lead time (LT), with a 95% confidence

interval for LT presented in equation (4.25).

L̂T ∈
[
µLT −

z0.05/2 ∗ σLT√
n

,µLT +
z0.05/2 ∗ σLT√

n

]
= [3.64, 3.86] (4.25)

Table 4.5 and figure 4.6 demonstrate the result of sensitivity analysis on LT. Once again,

the optimal solution presented in table 4.3 was proven to be reliable within the created

95% confidence interval for LT. Also, as table 4.5 highlights, although the probability of

lost sales due to elongated lead times changed from 5.37% to 26.56%, the effect on utility

was marginal. Regardless, effective management of lead times is crucial to prevent shortage

and satisfy customers, because as the lost sales probability increases, customer loyalty may

decrease, which negatively affects the company’s bottom line in the long term. In the
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proposed model, the manufacturer may enhance the game utility and customer satisfaction

by selecting the best suppliers considering the lead time and the rest of the game objectives.

Supplier selection, investigating suppliers’ impact on the cap-and-trade players’ relationships,

and how supplier selection increases customer loyalty is an interesting topic for future studies.

Table 4.5: Sensitivity analysis on LT

LT Probability (%) Utility

3.64 5.37 34180.89

3.66 6.42 34175.91

3.68 7.62 34170.2

3.7 8.99 34163.72

3.72 10.52 34156.41

3.74 12.25 34148.23

3.75 13.18 34143.81

3.76 14.16 34139.16

3.78 16.26 34129.17

3.8 18.55 34118.27

3.82 21.04 34106.45

3.84 23.71 34093.76

3.86 26.56 34080.23

The row specified in bold font
corresponds with the solution
presented in table 4.3

Figure 4.7 reveals that hi fluctuations have more prominent impacts on the manufacturer

utility compared to lead time oscillations. Thus, the manufacturer must control hi variations

more diligently.

4.3.3 The government’s impact on the cap-and-trade market

From another perspective, the government is interested in reducing the cost of managing

the C&T market and decreasing the overall carbon emission rate of the industries. Analyzing

the proposed model specifies guidelines regarding these objectives.

One important factor for the government to determine in this game is nj, i.e., the penalty
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Figure 4.6: Sensitivity analysis on lead time

index on other players in case of a collusion. Although perturbing nj based on the defined

scenarios of table 4.2 has an impact on the total utility, it does not alter the optimal so-

lution. This is due to the fact that the manufacturer outsourced production to suppliers.

Consequently, the manufacturer was not seeking to hide its emissions or collusion with the

verifier. Knowing this, the government can decrease the frequency of costly re-verifications

to detect collusion.

Another lever the government can use to influence the game is ξ or emission restriction

index. The emission quota assigned to the manufacturer is determined by the value of

ξ. Generally, this value is determined based on customer preference for environmentally

friendly products (Li et al., 2018b). In other words, as the customers become more sensitive

to environmental issues, the value of ξ is decreased to restrict carbon emission.

As shown in table 4.6 and figure 4.8, ξ and carbon allowance price are negatively corre-

lated. This is an expected result since, according to equation (5.6), decreasing the value of

ξ causes the price of carbon allowance in the market to rise exponentially. Higher carbon

allowance prices lead to growing total utility for the manufacturer; due to outsourcing, the

manufacturer can sell its unused emission quota in the market at higher prices. Figure 4.8
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Figure 4.7: Comparing the impact of hi and lead time perturbations on the manufacturer’s
utility

depicts that carbon price change curve is almost flat until the value of ξ is decreased to

0.7. In other words, government can influence the manufacturer’s decision on technology

upgrading in a way that carbon price is not heavily disturbed.

From the game theoretical standpoint, it can be inferred that the government’s decision

regarding the carbon cap touches all the players, because restricting carbon emission results

in less carbon allowance and pollution, yet elevates the allowance price and reduces the

game’s utility. Hence, the government ought to perform a trade-off between taking customer

preferences into account and game utility, i.e., the players’ utility.
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Table 4.6: Sensitivity analysis on ξ

ξ Utility Carbon price (P )

0.05 34233.51 1.202529

0.1 34185.43 1.201264

0.15 34169.42 1.200842

0.2 34161.41 1.200632

0.25 34156.61 1.200505

0.3 34153.41 1.200421

0.35 34151.12 1.200361

0.4 34149.42 1.200316

0.45 34148.07 1.200281

0.5 34147 1.200253

0.55 34146.13 1.20023

0.6 34145.41 1.200211

0.65 34144.79 1.200194

0.7 34144.26 1.20018

0.75 34143.81 1.200168

0.8 34143.41 1.200158

0.85 34143.05 1.200149

0.9 34142.74 1.20014

0.95 34142.46 1.200133

1 34142.21 1.200126

The row specified in bold font
corresponds with the solution
presented in table 4.3
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Figure 4.8: Analysis of the impact of the government’s intervention/emission restriction
index on cap-and-trade market

4.3.4 Re-verification policy

In this study, the re-verification strategy is a decision variable; for the presented data

set, the optimal re-verification rate by government is 0%, as depicted in the results table.

It is important for government to know the behavior of other cap-and-trade game players

before deciding on what re-verification rate should be considered for the market. Therefore,

sensitivity analysis is performed on parameter Z to find its impact on collusion, which is

demonstrated by the amount of concealed carbon emission, Ci, under each technology level.

When the manufacturer employs the first or second level of technology, the optimal

policy is to outsource the entire manufacturing process, which leads to no collusion due to

not having any emissions. For the third and fourth level of green technology, the optimal

solution changes and the manufacturer chooses in-house production. Therefore, there is a
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chance of collusion between the manufacturer and verifier, which is shown by the amount of

concealed carbon emission.

As shown in figure 4.9, when government increases the re-verification rate, concealed

emission decreases, which leads to enhanced social welfare. This reduction is the same in

both levels, i.e., the amount of concealed emission in both third and fourth levels is the

same. On the other hand, total game utility in both third and fourth green technology

levels decreases as re-verification rate increases. As it is evident from figure 4.9, higher re-

verification rates reduce total game utility. Hence, generally speaking, smaller values for

re-verification are preferred.

In other words, government must perform a trade-off between game utility and envi-

ronment protection: higher re-verification rates curb concealed emission but reduce total

game utility; lower re-verification rates elevate the amount of concealed emission, but lead

to increased total game utility.

Figure 4.9: Analysis of the impact of re-verification policy on game utility and emission
reduction

4.4 Summary

This chapter proposed a model to optimize the strategies of the players who are exposed

to the uncertainties of a cap-and-trade market. The uncertainties include carbon allowance

price, demand, and customer preference regarding product greenness. The study tends to

support government’s decisions regarding re-verification strategy, and help the manufacturers

develop an effective production process and procurement plan such that all players achieve
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their best desired utility. The chapter establishes grounds for finding the optimal game

strategy for each player to maximize their utility while implementing an effective supervision

mechanism.

The developed model’s validity and robustness were investigated using a numerical ex-

ample. The results certified that the proposed model is reliable in the presence of uncertain

parameters such as customer sensitivity to product greenness (hi) and supplier’s lead time

(LT ). Also, sensitivity analysis of government’s emission restriction index (ξ), penalty coef-

ficient (nj), and the impact of government’s regulations on the game utility provides helpful

information for the legislator in assigning the best values to these parameters and minimizing

the chance of collusion.
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5. Resilient green supply chain design to

mitigate the ripple effect: A two-stage

stochastic optimization model

Disasters and disruptions such as the COVID-19 pandemic can significantly interrupt

supply chains and industries. To control these disruptions, decision-makers must focus on

supply chain resiliency. This chapter proposes a multi-stage, multi-period green supply chain

design model and six resilience strategies, with downstream and upstream disruptions taken

into account to analyze both the ripple and bullwhip effect, respectively. To control the

mentioned disruptions and handle the uncertainties of parameter estimations, a two-stage

stochastic optimization approach is devised. The objectives are to minimize the total cost of

disruption, and CO2 emission under the cap-and-trade mechanism as a government-issued

emission regulation. The proposed decision-making framework and solution approach are

validated using a numerical experiment followed by sensitivity analysis. The results show

the optimum structure of the supply chain and the best resilient strategies to mitigate the

ripple effect. Moreover, the effect of a decline in capacity of facilities on the optimal solution

and the applied resilient strategies is investigated. This study provides managerial insights

to help governments set the proper amount of cap, and supply chain managers to predict

the demand behavior of essential and non-essential products in the event of disruptions.

Most of the context in this chapter have been published in Mirzaee, H., Samarghandi, H., Willoughby, K.
(2022). Resilient green supply chain design to mitigate the ripple effect: A two-stage stochastic optimization
model. Journal of Cleaner Production (under review).
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5.1 Background

Disruptions caused by natural or human-made disasters affect supply chains in different

aspects including transportation delays, labor unavailability, and supply-side shortage. A

supply chain disruption announcement decreases a firm’s stock returns by 20% on average

after six months (Hendricks and Singhal, 2005). Various examples demonstrate the challenges

the firms face when trying to recover from a disruption: six months after Japan’s tsunami

in 2011, Toyota faced disruption in its supply network, and due to a shortage of parts,

idled some of its plants in North America (Kim et al., 2015). More recently, the COVID-19

pandemic outbreak caused long-term negative impacts on supply chains and revealed their

vulnerabilities (Liu et al., 2022a). These examples showcase the importance of adaptability

and resiliency of supply chains in surviving new conditions in case of a sizeable disruption,

which has recently gained attention among scholars and practitioners (Ivanov and Dolgui,

2022).

One type of interruption to scrutinize for improving supply chain adaptability is the ripple

effect, which is described as the propagation of disturbances that arise from the disruption of

supply chain elements (Ivanov et al., 2016). The adverse impacts of the ripple effect spread

downstream in the supply chain (Monostori, 2021). Real-world examples emphasize that

controlling the ripple effect is crucial for supply chain managers. For instance, in June 2020,

Mercedes-Benz ceased production of an off-road vehicle in Alabama as a result of a shortage

in components imported from its European suppliers during the global COVID-19 pandemic

(Reuters, 2020).

The desirable approach for efficient recovery from the impact of ripple effect is construct-

ing intrinsic supply chain resiliency. Having contingency plans such as backup suppliers or

temporary facilities at the supply chain design stage is helpful in controlling the ripple effect

(Ivanov et al., 2015). In other words, appropriate strategies must be considered during the

design stage to mitigate the crunch in the aftermath of inadmissible events such as supply

delay, demand hike, or capacity contraction (Sharma et al., 2022). The auspicious design

strategies include, but are not limited to, considering backup suppliers, capacity expansion

and multiple assignments (Gholami-Zanjani et al., 2021).
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Another important factor in designing a supply chain is attention to the environmental

aspects as they bring competitive advantages for the firms (Boskabadi et al., 2022). Devising

emission abatement schemes, producing recyclable products, and using green technologies

are some of the elements that lead to a greener supply chain (Mirzaee et al., 2022).

On another note, inaccurate estimation of the design parameters may result in colossal

losses in uncertain environments (Wang et al., 2021). Ergo, uncertainty in the forecast values

of the parameters is another factor that negatively impacts the supply chain performance,

which necessitates adopting an appropriate approach. The three most common uncertainty

control methods are stochastic optimization, robust optimization, and fuzzy optimization

(Tordecilla et al., 2021), among which stochastic optimization is the most popular technique

in the ripple effect literature.

Stochastic optimization takes into account disruptions by using scenario-based modeling

(Oksuz and Satoglu, 2020), while robust optimization, despite its several advantages, focuses

directly on the worst-case scenario, which is not always relevant (Ivanov et al., 2019). Con-

versely, fuzzy optimization prevents considering some scenarios regarding the ripple effect

(Özçelik et al., 2021). Moreover, it requires deep knowledge about the problem’s parameters

to develop a membership function, which is not always applicable (Memon et al., 2015b).

Henceforth, to provide the best strategic and operational decisions, this chapter adopts a

two-stage stochastic optimization approach to control uncertainty.

5.1.1 RGSCD model formulation

Problem statement

The resilient green supply chain design problem can be stated as follows: there are four

stages represented by sets of I, J , K, and M , i.e., suppliers, manufacturers, warehouses, and

retailers, respectively. Raw material is procured to manufacturers by suppliers (Xs
ijt). After

producing products, they are kept in warehouses (T s
jkt) to be sent to retailers (Zs

kmt). There

are L different transportation modes to move the materials and products between the supply

chain echelons. T time periods are defined for this problem to make sure the right decisions
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are made considering long-term planning period. Different levels of the ripple effect are shown

by S possible scenarios. Backup suppliers, and temporary manufacturing and warehousing

facilities are considered as extra sources in the event of disruption. In order to satisfy a

predetermined service level, these backup suppliers and facilities are reserved to be utilized

when the ripple effect emerges in the supply chain. The supply chain structure is depicted

in figure 5.1. The objective is to minimize the costs of supply chain operational decisions,

strategic resilient decisions, and total CO2 emission during production and transportation

process of a product. It is assumed that a cap-and-trade mechanism is in place as an emission

abatement mechanism.

Figure 5.1: Supply chain structure

The developed model in this chapter is formulated based on the following assumptions:

• CO2 is emitted as a result of transportation as well as production processes in the

supply chain.

• The amount of CO2 emission is restricted by government.

• Different possible scenarios are considered for the uncertain parameters to show the

disparate levels of disruptions.

• The manufacturers are allowed to have shortage, which will be back-ordered.

• All temporary manufacturing centers and warehouses are identical in terms of produc-

tion and storage capacity.

The resilient green supply chain design problem can be statedMsj: Setup cost of opening

temporary manufacturing center j ∈ {j = J + 1, · · · , J ′}
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Wsk: Setup cost of opening temporary warehouse k ∈ {K + 1, · · · ,K ′}

So: Setup cost of establishing an information sharing system

St1ijl: Saved ordering time due to using the information sharing system for an order placed

by manufacturer j to supplier i, per order

St2jkl: Saved ordering time due to using the information sharing system for an order placed

by warehouse k to manufacturer j, per order

St3kml: Saved ordering time due to using the information sharing system for an order placed

by retailer m to warehouse k, per order

Dc: Delay cost per order per day

Tr: Training cost of employees to operate the information sharing system

Micsj : Inventory cost per product for manufacturer j under scenario s

Mscsk: Shortage cost per product for manufacturer j under scenario s

Ds
mt: Demand received by retailer m in period t under scenario s

Mcj: Production capacity of manufacturer j

Wck: Capacity of warehouse k

Spp: Extra cost of stockpiled products

Sm: Minimum number of suppliers

Cepj: Carbon emission of manufacturer j during production process per product

Cet1ijl: Carbon emission of transportation from supplier i to manufacturing center j using

transportation mode l, per product

Cet2jkl: Carbon emission of transportation from manufacturer j to warehouse k using trans-

portation mode l, per product

Cet3kml: Carbon emission of transportation from warehouse k to retailer m using trans-
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portation mode l, per product

Rce: Reduced amount of carbon emission per unit of product shipped due to using informa-

tion sharing system

Capt: Maximum allowed carbon emission in period t

rsj : Reduced capacity ratio of manufacturer j under scenario s due to the ripple effect

r
′s
k : Reduced capacity ratio of warehouse k under scenario s due to the ripple effect

M : A large positive number

Prs: Occurrence probability of scenario s

First stage decision variables

XXijtl: A binary variable showing material flow between manufacturer j and supplier i in

period t using transportation mode l; XXijtl = 1 means an order is received by manufacturer

j from supplier i

Y Yjktl: A binary variable showing product flow between manufacturer j and warehouse k

using transportation mode l in period t; Y Yjktl = 1 means product flow between manufacturer

and warehouse

ZZkmtl: A binary variable showing product flow between retailer m and warehouse k using

transportation mode l in period t; ZZkmtl = 1 means product flow between warehouse and

retailer

Second stage decision variables

Xs
ijtl: An integer variable showing the number of products transported from supplier i to

manufacturer j in period t using transportation mode l under scenario s

Y s
jktl: An integer variable showing the number of products transported from manufacturer j

to warehouse k in period t using transportation mode l under scenario s

Zs
kmtl: An integer variable showing the number of products transported from warehouse k
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to retailer m in period t using transportation mode l under scenario s

MIsjt: The jth manufacturer’s inventory at the end of period t under scenario s

MSs
jt: The jth manufacturer’s shortage at the end of period t under scenario s

MSSs
jt: The amount of jth manufacturer’s safety stock in period t under scenario s

SP s
jt: The number of ordered stockpiled products by manufacturer j in period t under

scenario s

Mathematical formulation

This section presents a two-stage stochastic optimization model with two objectives. The

first objective introduces all the supply chain costs; the second objective belongs to the CO2

emissions. The first stage considers the deterministic variables, which are not dependent to

the uncertain parameters. The second stage takes the uncertain variables into account. In

this chapter, uncertainty is handled by considering different possible scenarios that may occur

due to disruption. The first stage optimizes the channel through which the raw materials

transform to the final product. In the second stage, s scenarios are defined for the uncertain

variables. The optimal solution of the presented model is obtained based on all possible

scenarios in accordance with their occurrence probabilities.

The supply chain costs are as follows:

C1 =
∑
i,i′∈I

∑
j,j′∈J

∑
t∈T

∑
l∈L

∑
s∈S

XXijtlDc(T l1sijl − St1ijl)

+
∑
j,j′∈J

∑
k,k′∈K

∑
t∈T

∑
l∈L

∑
s∈S

Y YjktlDc(T l2sjkl − St2jkl)

+
∑

k,k′∈K

∑
m∈M

∑
t∈T

∑
l∈L

∑
s∈S

ZZkmtlDc(T l3skml − St3kml)

(5.1)

Equation (5.1) shows the cost of transportation delay between different supply chain
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echelons.

Cs
2 =

∑
i,i′∈I

∑
j,j′∈J

∑
t∈T

∑
l∈L

∑
s∈S

Xs
ijtlTc1

s
ijl +

∑
j,j′∈J

∑
k,k′∈K

∑
t∈T

∑
l∈L

∑
s∈S

Y s
jktlTc2

s
jkl

+
∑

k,k′∈K

∑
m∈M

∑
t∈T

∑
l∈L

∑
s∈S

Zs
kmtlTc3

s
kml

(5.2)

Equation (5.2) refers to the transportation cost throughout the supply chain. Equations

(5.3) and (5.4) indicate the cost of holding inventory and the cost of shortage at the end of

each period, respectively.

Cs
3 =

∑
j,j′∈J

∑
t∈T

∑
s∈S

MIsjtMicsj (5.3)

Cs
4 =

∑
j,j′∈J

∑
t∈T

∑
s∈S

MSs
jtMscsj (5.4)

The amount of CO2 emission during the transportation and production processes is

calculated by equation (5.5).

Es =
∑
j,j′∈J

∑
k,k′∈K

∑
t∈T

∑
l∈L

∑
s∈S

Y s
jktlCepj +

∑
i,i′∈I

∑
j,j′∈J

∑
t∈T

∑
l∈L

∑
s∈S

Xs
ijtlCet1ijl

+
∑
j,j′∈J

∑
k,k′∈K

∑
t∈T

∑
l∈L

∑
s∈S

Y s
jktlCet2jkl +

∑
k,k′∈K

∑
m,m′∈M

∑
t∈T

∑
l∈L

∑
s∈S

Zs
kmtlCet3kml

(5.5)

In the two-stage stochastic optimization model, the objective functions are formulated

as follows:

MinZ1 = C1 +
∑
s∈S

Prs(Cs
2 + Cs

3 + Cs
4) (5.6)

MinZ2 =
∑
s∈S

PrsEs
(5.7)

The first objective function (5.6) minimizes the total cost of supply chain; the second

objective (5.7) minimizes total CO2 emission. In these objective functions the optimal value
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of uncertain variables are obtained based on all possible scenarios.

Constraints

Constraints (5.8)-(5.10) specify which supply chain partners are used.

Xs
ijtl ≤ XXijtlM ∀i, j, t, l, s (5.8)

Y s
jktl ≤ Y YjktlM ∀j, k, t, l, s (5.9)

Zs
kmtl ≤ ZZkmtlM ∀k,m, t, l, s (5.10)

Constraints (5.11)-(5.13) guarantee that one transportation mode is used to ship a batch

of product between different echelons.

∑
l∈L

XXijtl ≤ 1 ∀i, j, t (5.11)

∑
l∈L

Y Yjktl ≤ 1 ∀j, k, t (5.12)

∑
l∈L

ZZjktl ≤ 1 ∀k,m, t (5.13)

Constraints (5.14), (5.15), and (5.16) show the inventory balance of manufacturers, ware-

houses, and retailers, respectively.

∑
i,i′∈I

∑
l∈L

Xs
ijtl +MIsjt−1 +MSs

jt =
∑

k,k′∈K

∑
l∈L

Y s
jktl +MIsjt +MSs

jt−1 ∀j, t, s (5.14)

∑
j,j

′∈J

∑
l∈L

Y s
jktl =

∑
m,m

′∈M

∑
l∈L

Zs
kmtl ∀k, t, s (5.15)

∑
k,k′∈K

∑
l∈L

Zs
kmtl = Ds

mt ∀m, t, s (5.16)
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Constraint (5.17) enforces the defined CO2 emission cap to the manufacturers.

∑
j,j′∈J

∑
k,k′∈K

∑
l∈L

∑
s∈S

Y s
jktlCepj +

∑
i,i′∈I

∑
j,j′∈J

∑
l∈L

∑
s∈S

Xs
ijtlCet1ijl

+
∑
j,j′∈J

∑
k,k′∈K

∑
l∈L

∑
s∈S

Y s
jktlCet2jkl +

∑
k,k′∈K

∑
m,m′∈M

∑
l∈L

∑
s∈S

Zs
kmtlCet3kml ≤ Capt ∀t

(5.17)

Constraint (5.18) describes the minimum number of suppliers that must be selected when

multiple sourcing strategy is applied.

∑
i,i′∈J

XXijtl ≥ Sm ∀j, t, l (5.18)

Constraints (5.19) and (5.20) calculate the capacity of manufacturers and warehouses

under normal condition as well as under disruption.

∑
j,j′∈J

Y s
jktl ≤

∑
j,j′∈J

Mcj(1− rsj) ∀j, t, l (5.19)

∑
k,k′∈K

Zs
kmtl ≤

∑
k,k′∈K

Wck(1− r
′s
k ) ∀j, t, l (5.20)

5.1.2 Resilient strategies

Backup suppliers

The backup supplier strategy examines the case of hiring extra possible suppliers. Al-

though hiring extra suppliers imposes higher costs to the supply chain, these suppliers will

be available with a higher probability in case of a disruption. By considering this strategy,

the range of index i expands to {1, 2, · · · , I, I + 1, · · · , I ′}, where regular suppliers are rep-

resented by {1, 2, · · · , I}, and suppliers {I + 1, I + 2, · · · , I ′} portray the backup suppliers.

In the event of a disruption, which may cause delay in suppliers’ orders or reduction of their

capacity, backup suppliers may curtail interruption.
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Multiple sourcing

Multiple sourcing diversifies the suppliers, so the supply chain does not heavily rely on a

limited number of suppliers, as they may be unavailable when a disruption occurs. Adding

constraint (5.21) to the model conduces this resilient strategy to our RGSCD problem.

Equation (5.21) ensures that a minimum number of suppliers are selected to procure the

required raw material.

∑
i,i′∈I

XXijtl ≥ Sm ∀j, t, l (5.21)

Safety stock

Bearing safety stock is another risk management strategy that ensures capability of the

supply chain in immediately responding to customer requests, even if delays happen while

transporting raw material or final products between different supply chain echelons. Keeping

safety stock is accomplished via two adjustments to the original model. First, a maintenance

cost for the safety stock equal to
∑

j,j′∈J
∑

t∈T
∑

s∈S MSSs
jtMicsj is added to the inventory

costs. Furthermore, the extra inventory held as safety stock in form of final product in each

time period is added to equation (5.14) to update the manufacturers’ inventory balance.

After applying this strategic decision to the model, equation 5.14 is updated as follows.

∑
i,i′∈I

∑
l∈L

Xs
ijtl +MIsjt−1 +MSs

jt +MSSs
jt−1 =

∑
k,k′∈K

∑
l∈L

Y s
jktl +MIsjt

+MSs
jt−1 +MSSs

jt ∀j, t, s
(5.22)

Stockpiling

Stockpiling is an undertaking in which, during the disruption, the manufacturers respond

to a proportion of demand using the inventory which had been produced and held before the

disruption occurred. This strategy lowers the chance of shortage and is extremely valuable,

but incurs additional costs including considerably higher holding costs. Generally, stockpiling

does not provide measurable benefits prior to disruptions. Using the stockpiling system adds

89



a cost equal to
∑

j∈J
∑

t∈T
∑

s∈S SP
s
jtSpp to the cost function. Also, the manufacturers’

inventory balance constraint, equation (5.14), changes as follows.

∑
i,i′∈I

∑
l∈L

Xs
ijtl +MIsjt−1 +MSs

jt +MSSs
jt−1 + SP s

jt =
∑

k,k′∈K

∑
l∈L

Y s
jktl +MIsjt

+MSs
jt−1 +MSSs

jt ∀j, t, s
(5.23)

Temporary facilities

Temporary facilities expedite the supply chain’s recovery from a structural disruption

(Yılmaz et al., 2021). When needed, possible temporary facilities including manufacturing

centers and warehouses act as emergency response centers. To employ this option, domains of

indices i and j expand to {1, · · · , I, I+1, · · · , I ′} and {1, · · · , J , J+1, · · · , J ′}, respectively.

This strategy is useful when the capacity of facilities is diminished, which is commonly

observed during disruption events.

Information sharing system

One of the main consequences of disruptions is delay. Using an efficient system to share

the information between all supply chain members is crucial. For instance, a manufacturer

can monitor the demand received by retailers to check the possible spikes, and avoid delays

by increasing its production capacity and providing more vehicles to transport the final

products. Even though using this information sharing system is costly, it helps the supply

chain decrease the cost of delay. Applying this system in our model adds XXijtl(So+Tr) to

the cost function, but reduces transportation delay between different echelons in the amounts

specified by St1ijl, St2jkl, and St3kml.

5.2 Numerical experiment

Data

To investigate the impact of disruption on supply chain and find the best strategic de-

cisions to control the ripple effect, a numerical experiment was performed using Python
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programming language and the data extracted from Ghomi-Avili et al. (2018). Note that

since some parameters of the proposed model do not exist in the models presented by Ghomi-

Avili et al. (2018), their values were simulated as will be discussed below. This table (click

on the rectangle) summarizes the data. Four scenarios were considered to represent different

levels of disruption in the model. The first scenario belongs to the normal situation; the rest

of the scenarios epitomize three disruption levels, from weak to strong. Three backup sup-

pliers, as well as three temporary facilities for the manufacturing stage and warehouses were

considered to be used in the event of a disruption, which is destined to increase the trans-

portation costs, delays, inventory and shortage costs, demand for essential products, and

decrease the capacity of manufacturers and warehouses. It is assumed that the government

gradually decreases the emission cap through time.

Safety stock VS. stockpiling

Stockpiling and safety stock were both used to handle the ripple effect as well as demand

spikes. Although from different sources, these two strategies are considered to be identical

in controlling disruption effects by procuring the needed products. Thus, they are compared

so the managers can choose the best strategy to minimize the costs. Using the presented

data set, the developed model was solved considering either the stockpiling or the safety

stock strategies under different levels of manufacturers’ capacity disruption. The results

show that safety stock is a better option when the manufacturers’ production capacity drops

below 44%. Figure 5.2 depicts the conditions under which each one of the two mentioned

strategies are dominant. As it is shown in figure 5.2, by decreasing the manufacturers’

capacity, the optimal amount of safety stock the manufacturers should keep increases, which

is helpful for decision-makers in their pre-disruption strategy preparations.

Backup supplier VS. Multiple sourcing

Two other beneficial pre-disruption strategies in controlling the ripple effect are using

backup suppliers and multiple sourcing. Backup suppliers, though costly, prepare the supply

chain for disruption in the supply side, and help with procuring raw material and component

parts by lowering the level of risk. Multiple sourcing strategy achieves the same results by
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Figure 5.2: Stockpiling vs. safety stockpiling

diversifying the suppliers and avoiding reliance on a limited group of suppliers. The multiple

sourcing strategy decreases the supply chain risk, but it has certain disadvantages such as

higher costs, lower material quality, and longer lead time due to involvement of secondary

suppliers alongside the best selected suppliers in procuring the required material for the

manufacturers. In this section, these two strategies are compared to find the optimal and

most resilient strategy. Based on figure 5.3, using backup suppliers outperforms multiple

sourcing in achieving a higher total utility.

Results of the final model

After comparing similar strategies and determining the dominant game plans using the
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Figure 5.3: Multiple sourcing vs. backup supplier

presented data set, a comprehensive RGSCDmodel is solved based on four resilient strategies:

a) safety stock; b) backup suppliers; c) temporary facilities; and, d) information sharing

system. As presented in table 5.2, the best combination of supply chain partners, optimal

product flow between different supply chain echelons, and desired amount of manufacturers’

safety stock, inventory, and shortage in each period are determined. ZTotal shown in table

5.2 is the best total utility obtained under all scenarios. This objective is derived from

a combination of strategies that help supply chains recover themselves from disruptions.

Manufacturers are allowed to produce extra products as long as they have enough storage

space. Also, they are allowed to have shortage and respond to that shortage in the future

periods. In this regard, the optimum amount of manufacturer’s storage and shortage at

the end of each period are achieved. For instance, for the presented test problem, MSS1
31

indicates that under scenario 1, manufacturer 3 should hold 73, 874 safety stocks to be well

prepared for demand fluctuations. Furthermore, the table determines backup suppliers that

should be used and temporary facilities that should be opened to maintain the service level

during disruptions. The last three rows of the table specify the optimal product flow between

suppliers and manufacturers, manufacturers and warehouses, and warehouses and retailers.

93



T
ab

le
5.
1:

O
p
ti
m
al

re
su
lt
s
of

th
e
p
ro
p
os
ed

m
o
d
el

94



To validate the proposed model and solution approach, and to investigate the supply

chain behavior, further analyses are conducted as follows.

Behaviour of essential and non-essential products

Distinguishing the supply chain’s products between essential and non-essential is crucial

for the managers. As it was evident during the COVID-19 pandemic, essential products ex-

perienced a large spike in demand, which was mostly non-present for non-essential products.

To measure the impact of demand change on the optimal solution of the designed model

a sensitivity analysis was designed. For this purpose, different rates of demand fluctuation

were considered and the results were analyzed. Demand increases can be interpreted as the

fluctuation of demand for essential products; demand decrease represents the market un-

certainties for non-essential products. Figure 5.4 demonstrates that demand intensification

calls for expanding the adoption of temporary facilities for manufacturers and warehouses.

Also, based on figure 5.4, elevation of demand induces higher need for product flow between

temporary facilities, which indicates a desired response to disruptions via activation of the

temporary facilities.

The effects of carbon abatement regulation

An array of carbon emission regulations are employed in various countries to restrict

supply chains from harming the environment. One way to restrict the emission levels is to

place a cap on the manufacturers’ emission. Accordingly, the proposed model assumes that

a cap-and-trade regulation is enforced, where the cap is gradually decreased by governments

to reduce total CO2 emissions and to allow manufacturers to adapt to the regulation require-

ments. Hence, we analyze the impact of cap modifications on the supply chain in this section.

As it is shown in figure 5.5, reducing the cap imposes enormous costs to the supply chain

for CO2 emissions; the model reacts by reducing the emission level, which results in total

utility contraction. After reducing the cap to 76% of its original amount, the model becomes

infeasible. In other words, reducing the cap beyond a certain threshold makes it impossible

to respond to customers’ demand, while adhering to the maximum emission requirements.

Therefore, the government is advised to recognize supply chain limitations before setting
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Figure 5.4: Sensitivity analysis on demand fluctuation for essential and non-essential prod-
ucts

the cap amounts. The other methods of reducing the emission levels without decreasing the

production level is discussed in Mirzaee et al. (2022).

Capacity decrease effect

Ripple effect usually impacts the capacities of manufacturers and warehouses (Monos-

tori, 2021), which calls for an appropriate risk management strategy, such as responding

to customers’ demand by keeping more safety stock. A sensitivity analysis is conducted

to assess the correct strategies when the capacities are decreased. As figure 5.6 illustrates,

decreasing the capacity of the supply chain facilities deteriorates the objective function value

for it forces the model to responds to demand by keeping more safety stock, which is more
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Figure 5.5: The effect of carbon abatement regulations

expensive to carry. Decreasing the capacity beyond a certain threshold causes infeasibility as

the limited capacity makes it impossible to handle the realized demand. Consequently, the

supply chain managers must consider keeping an appropriate amount of temporary facilities

available to prevent service level degradation.

5.3 Summary

This chapter proposes a resilient green supply chain design to mitigate the ripple effect

of pandemic disruptions such as COVID-19. The study tends to find the best strategies

in designing a supply chain to alleviate the ripple effect. There are six resilient strategies

applied in the designed supply chain to minimize the risk of a decrease in service level.

Also, a two-stage stochastic optimization approach is applied to control the ripple effect

and parameter estimation uncertainty. This study provides a decision making framework

for supply chain managers to use the best transportation channel for the materials and final

products, enhance service level, and control uncertainty of estimated model parameters and

disruptions.

To check the validity of the designed model and proposed solution approach, a numer-

ical example was presented. The results confirm the selected resilient strategies help the

supply chain mitigate the ripple effect in the presence of stochastic parameters and possi-
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Figure 5.6: Capacity effect

ble disruptions. Demand and facilities’ capacity analysis helps the supply chain managers

make the best possible strategic decision for their procurement and production plans before

facing disruptions. Moreover, the sensitivity analysis of the carbon cap reveals that govern-

ments should provide a proper amount of carbon allowance for manufacturers, and shows

the optimal interval for the cap.
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6. Conclusion and Future Works

6.1 Conclusion

To decrease the harmful effects of the production process, it is vital to control manufac-

turers’ environmental behavior by encouraging them to update their technologies to a greener

alternative, and use environmentally friendly materials. One of the activities manufacturers

can do to decrease their emission level is selecting the most proper suppliers. To optimize the

manufacturer’s objectives while considering governmental-issued restrictions such as C&T,

this research proposed a multi-objective robust optimization. Also, in order to optimize the

interactions between C&T parties, a three-player stochastic game theory model is developed.

A numerical example is presented to analyze different aspects of the generalized model and

the solution approach.

The present study grants optimal actions a firm can take to minimizes its cost while

meeting environmental guidelines. The GSS problem is modeled and makes a flexible decision

support system for decision makers. The analysis done on the RO model parameters indicates

that cap amount and the trade prices affect the firm’s objective. Therefore, manufacturers

will find the best suppliers to select, and a proper amount of orders to place with each of

the selected suppliers.

Based on the results and sensitivity analyses presented in chapter 3, manufacturers can

make informed decisions about the appropriate weighting of their model infeasibility and

deviation from various scenarios. Moreover, the managerial insights derived from the analyses

of emission cap and allowance prices can assist governments in selecting an appropriate

cap for the cap-and-trade scheme, resulting in reduced emissions. Additionally, the study

demonstrates that the cap-and-trade mechanism is superior to the penalty-based system in
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terms of the overall supply chain utility from a micro-economic perspective.

Also, an analysis to validate the developed model on the interactions between C&T play-

ers is done. The results indicated that the developed model is reliable in the presence of

uncertain parameters. The sensitivity analyses conducted on the game utility offer valuable

insights to governments in determining the optimal values for the rigor index and assigning

the appropriate emission quota to manufacturers. Additionally, the analyses provide guid-

ance on setting the re-verification rate to minimize the risk of collusion. For supply chain

managers, a sensitivity analysis is performed on lead time and customer sensitivity to green-

ness to prepare them for potential fluctuations in the uncertain parameters of the model and

forecast the impact on objective functions. Armed with this information, they can develop

a contingency plan to manage the potential uncertainties.

This study also proposes a resilient green supply chain design to decrease the disruption

effects of pandemics by finding the best strategies in designing a supply chain to alleviate the

ripple effect. A two-stage stochastic optimization approach is applied to control the ripple

effect and parameter estimation uncertainty. This model provides a decision-making frame-

work for supply chain managers to use the best transportation channel for the materials and

final products, enhance service level, and control uncertainty of estimated model parameters

and disruptions.

Chapter 5’s sensitivity analyses offer insights for supply chain managers to anticipate

the performance of essential and non-essential products during a disruption, enabling them

to create contingency plans to meet the demand for essential products while reducing non-

essential product inventory to free up storage space and decrease holding costs. Furthermore,

this chapter recommends that the government relax its regulations during disruption periods

to aid the supply chain in its recovery.

6.2 Future works

Since this study is one of the first to consider cap-and-trade mechanisms in the green

supplier selection, more research in this area can be pursued. For instance, this research
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analyzes the cap changes and their effects on the objectives from the manufacturer’s point of

view. Accordingly, a motivating topic for future research is finding the optimal value of the

cap assigned by the government to reduce the adverse environmental effects of production

industries, while remaining business friendly. One could explore a pricing study to find a rea-

sonable range for the allowance prices according to different factors. Specifically, decreasing

the cap will leave all of the manufacturers with less allowance for carbon emission. Therefore,

the manufacturers will have less allowance to offer in the trade market, resulting in elevated

trading prices. In this case, some manufacturers may decide to simply sell their allowance

to generate utility. This presents a challenge from the existing problem’s perspective.

In this study, we explored the difference between the cap-and-trade system and the

penalty-based mechanism to control air pollution from the manufacturer’s point of view. If

one has access to data about the total amount of carbon released by all manufacturers in the

market, one could study the differences between the two particular pollution control regimes

from the government’s perspective.

This work pioneers the analysis of a three-player game with the interaction between

players’ decisions in a stochastic environment under cap-and-trade regulations. Given the

emerging nature of this field, more research is required. One interesting topic for future work

is including all the manufacturers that operate in a C&T market in the analysis. In this

case, striving for customer satisfaction leads to competition between these rivals, and may

impact their technology upgrade decisions or usage of environmentally friendly materials in

the production process.

Also, given that the carbon allowance price is affected by various factors, it is worth-

while to predict the exact value of this parameter. Hence, researching the price of carbon

allowance is another inspiring topic for future work. Furthermore, investigating the effect

of customer sensitivity to product greenness on the government restriction index represents

another interesting topic for future studies. Such analysis enhances the model’s ability in

governmental and industrial decision-making.

Furthermore, this research employs game theoretical analysis to find the best strategy
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for the cap-and-trade players as a single decision. However, players’ strategies may be

dynamic, i.e., the players update their selected strategy for the next periods by analyzing

the consequences of their decisions. Evolutionary game theory is a method to find a stable

strategy for all the players by considering the dynamic environment of decision-making. Since

two players hide their bribery-related actions from the government, the data that lead to the

government’s best strategy based on the costs and benefits of the re-verification decisions

will be scarce. As a result, developing an approach to overcome this issue by redesigning the

cap-and-trade mechanism is an interesting topic for future research efforts.
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