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Abstract

Endoscopy is a procedure used to visualize disorders of the gastrointestinal (GI) lumen.

GI disorders can occur without symptoms, which is why gastroenterologists often recommend

routine examinations of the GI tract. It allows a doctor to directly visualize the inside of the

GI tract and identify the cause of symptoms, reducing the need for exploratory surgery or

other invasive procedures. It can also detect the early stages of GI disorders, such as cancer,

enabling prompt treatment that can improve outcomes. Endoscopic examinations generate

significant numbers of GI images. Because of this vast amount of endoscopic image data,

relying solely on human interpretation can be problematic. Artificial intelligence is gaining

popularity in clinical medicine. Assist in medical image analysis and early detection of dis-

eases, help with personalized treatment planning by analyzing a patient’s medical history and

genomic data, and be used by surgical robots to improve precision and reduce invasiveness.

It enables automated diagnosis, provides physicians with assistance, and may improve per-

formance. One of the significant chyallenges is defining the specific anatomic locations of GI

tract abnormalities. Clinicians can then determine appropriate treatment options, reducing

the need for repetitive endoscopy. Due to the difficulty of collecting annotated data, very

limited research has been conducted on the localization of anatomical locations by classifi-

cation of endoscopy images. In this study, we present a classification of GI tract anatomical

localization based on transfer learning and ensemble learning. Our approach involves the

use of an autoencoder and the Xception model. The autoencoder was initially trained on

thousands of unlabeled images, and the encoder then separated and used as a feature ex-

tractor. The Xception model was also used as a second model to extract features from the

input images. The extracted feature vectors were then concatenated and fed into a Convo-

lutional Neural Network for classification. This combination of models provides a powerful

and versatile solution for image classification. By using the encoder as a feature extractor

that can transfer the learned knowledge, it is possible to improve learning by allowing the

model to focus on more relevant and useful data, which is extremely valuable when there are

not enough appropriately labelled data. On the other hand, the Xception model provides

additional feature extraction capabilities. Sometimes, one classifier is not enough in machine

learning, as it depends on the problem we are trying to solve and the quality and quantity

iii



of data available. With ensemble learning, multiple learning networks can work together to

create a stronger classifier. The final classification results are obtained by combining the

information from both models through the CNN model. This approach demonstrates the

potential for combining multiple models to improve the accuracy of image classification tasks

in the medical domain. The HyperKvasir dataset is the main dataset used in this study. It

contains 4,104 labelled and 99,417 unlabeled images taken at six different locations in the

GI tract, including the cecum, ileum, pylorus, rectum, stomach, and Z line. After dataset

preprocessing, which includes noise deduction and similarity removal, 871 labelled images

remained for the purpose of this study. Our method was more accurate than state-of-the-

art studies and had a higher F1 score while categorizing the input images into six different

anatomical locations with less than a thousand labelled images. According to the results,

feature extraction and ensemble learning increase accuracy by 5%, and a comparison with

existing methods using the same dataset indicate improved performance and reduced cross-

entropy loss. The proposed method can therefore be used in the classification of endoscopy

images.
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1 Introduction

In humans, gastrointestinal tract (GI) diseases are very common and cause significant

healthcare concerns [1]. There are about 8 million deaths worldwide caused by gastrointesti-

nal diseases [2]. In the GI tract, several severe disorders can occur without obvious symptoms.

These include obscure GI bleeding [3, 4], ulcer infection [5], and benign and malignant tu-

mours [6]. Consequently, gastroenterologists often recommend endoscopic examinations of

the GI tract, especially in the elderly and high-risk people [7].

Today, most gastrointestinal diseases are diagnosed and examined by endoscopy [8, 9,

10]. There are three types of GI endoscopy: gastroscopy, colonoscopy, and wireless capsule

endoscopy (WCE). In general, each of these methods is more beneficial for a specific section

of the GI tract. Gastroscopy examines abnormalities of the upper GI tract, while colonoscopy

is used to examine lesions in the lower GI tract. Conventional endoscopy [11] approaches

(gastroscopy and colonoscopy) are also useful for routine GI screenings. A long, flexible tube

is attached to a tiny camera that allows these techniques to visualize the digestive system [12].

However, the small intestine remains inaccessible [13]. Fig. 1.1 illustrates the conventional

endocscopy.

There is the potential for capsule endoscopy (CE) to cause discomfort or harm patients;

however, they can be used to perform real-time examinations and visualize many gastroin-

testinal tract disorders. GI inspections and scanning of inaccessible areas are possible with

WCE, a non-invasive approach that can also detect lesions, which are characterized by ab-

normal changes or damage to the tissue in the small intestine between the upper and lower

GI [1]. The capsule is designed to be swallowed by the patient and then travel throughout

the GI tract. Images are continuously captured by the capsule’s camera and transmitted to a

data logger outside of the patient’s body [14]. With WCE, pains and problems with sedation

associated with conventional endoscopy may be eliminated [12]. The capsule endoscopy and

1https://medlineplus.gov/ency/presentations/100162_3.htm
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(a) (b)

Figure 1.1: a) Human GI system with the upper and lower endoscopy 1b) Conventional endoscopy
probe

how it functions is shown in Fig. 1.2.

Figure 1.2: Wireless Capsule Endoscopy2

Endoscopic examinations that involve GI imaging produce a massive number of images,

especially those involving WCE, which can produce between 50,000 and 120,000 images

during a single procedure. Because of the vast amount of endoscopic image data, it is easy

to make a misdiagnosis and decrease the level of diagnostic accuracy if we rely solely on

our human ability to interpret the data. It would also be inefficient and time-consuming

if we wanted to extract a few crucial images from a large number of endoscopic images

2https://www.gastrobh.com/contents/diagnostic-procedures/capsule-endoscopy-eso-pill
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for physicians’ consideration. As a result of these issues, computer-aided diagnosis (CAD)

systems have been developed, which provide physicians with an objective reference when

selecting, identifying, and classifying lesion images. By using these systems, lesion images

can be selected, identified, and classified automatically, increasing the efficiency and accuracy

of diagnosis in a less time-consuming manner [1].

There is a growing interest in artificial intelligence (AI) in clinical medicine, particularly

in GI tract related problems. GI endoscopy can be made more efficient and effective by using

artificial intelligence. Stress, fatigue, and limited experience can affect human brain perfor-

mance in a negative way. AI will overcome the limitations and errors of human capability,

provide higher speed, enhanced accuracy, and consistency, allowing endoscopic procedures to

be performed more efficiently and with higher quality [15].

The term artificial intelligence refers to complex computer algorithms that are able to

replicate some of the cognitive functions of the human brain, including the ability to learn

and solve problems [16]. Their capability is based on what they receive as information

and what they learn. Machine learning (ML) is the core principle behind this technology,

which refers to the process of instructing computer algorithms to recognize patterns in data.

Without being directly programmed, it allows them to learn and improve automatically [15].

By using ML, the computer learns how to understand previously unknown information and

is able to produce reliable results when applied to new data, which were not included in its

training dataset [17].

Deep learning (DL) is a derivative of machine learning that has emerged recently that is

more powerful than ML. In Fig. 1.3 the relation between AI, ML, and DL has been demon-

strated. DL extracts discriminative attributes automatically through an artificial neural

network (ANN), which is typically a convolutional neural network (CNN) with many layers

of nonlinear functions. [16, 18]. In computer-aided diagnosis systems, artificial intelligence,

machine learning, and deep learning are increasingly being integrated to improve GI disease

recognition and characterization [19]. These technologies are becoming more valuable every

day as they have many applications in medicine.
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Figure 1.3: Relationship between AI, ML, and DL

1.1 Research Objectives and Questions

This study proposes a novel method of classifying the anatomical locations of the GI tract.

In the medical field, the ability to detect the location of frames is a significant advantage.

Doctors use the location of the abnormality to determine which treatment plan is most

appropriate [20]. When performing surgery, it can be beneficial to have this information

[21]. Defining the anatomical location within the GI tract effectively reduces the need for

repetitive endoscopy procedures. It also allows the temporal tracking of abnormalities in the

GI tract. Anatomic localization can be used to send capsules containing medications for drug

delivery [6] and to automatically navigate an endoscope device to a specific location during an

examination [22]. In addition, there are diseases that more typically occur in specific regions

of the GI tract [7]. Dangerous bleeding, for example, usually originates in the stomach, small

intestine, or duodenum. It may thus reduce the amount of time and human error associated

with examinations if we provide locations along with frames, especially in high-risk anatomic

areas.

In this research, a novel classification method is proposed to classify the anatomical loca-

tions of the GI tract. Among the earlier artificial intelligence studies in this field, the most

notable flaw was the lack of properly labelled and available data. As a result, to address this
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problem, in our method, the first step is to take advantage of the vast amount of unlabeled

data, which is publicly available. This is done through transfer learning. Afterwards, to

improve the learning process, two networks extract features with different characteristics.

The final decision is based on a combination of both of the feature vectors using ensemble

learning.

Overal, the contribution of our work to the field of gastrointestinal image classification

is significant for several reasons. The method has the advantage of providing high levels of

accuracy in predictions, which are crucial when making clinical decisions using images. As

a result, our model can reliably identify the image’s location in the gastrointestinal tract,

making it useful for medical professionals.

Secondly, our paper categorizes images into six locations, which is a challenging problem

compared with previous works which categorized images into fewer categories. This work

provides a more comprehensive understanding of the gastrointestinal tract, and is a signifi-

cant advancement in medical image classification through its approach to this more complex

problem.

Third, our method uses relatively few images while achieving high levels of performance.

This is imperative due to the limited availability of labeled medical images, making it difficult

to develop accurate models. The power of transfer learning and ensemble learning allows

us to produce high levels of accuracy from a smaller number of images. This is because

we leverage a large number of unlabeled data. This makes our method more accessible to

medical professionals.

With these features in place, our work has made the following contributions:

• To develop a method for the anatomical classification of the GI tract.

• To develop a method to extract relevant knowledge from unlabelled data and use it to

enhance the learning process in the classification task.

• To develop a method for enhancing prediction accuracy through ensemble learning,

which integrates multiple learning models.

• To validate the classification method by measuring various metrics and to investigate

its performance with respect to related state-of-the-art studies.
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1.2 Thesis Organization

The structure of the thesis is as follows:

• Chapter 1: Introduction: The purpose of this chapter is to provide an overview of

our research and to demonstrate its importance and contribution to the field.

• Chapter 2: Related Work: In this chapter, several studies on localization techniques,

transfer learning, and ensemble learning are reviewed. Based on the shortcomings in

the field, we have developed a method that aims to improve the accuracy of the task.

• Chapter 3: Materials and Dataset Preparation: This chapter describes the two

main phases of data collection and preparation and the proposed anatomical classifier.

First, the dataset and its preparation steps have been comprehensively discussed. Then,

we explained the base concepts that are the building blocks of our method, including

transfer learning through a trained decoder, the ensemble learning technique which we

used to improve prediction and the Xception network architecture, which has been used

as one of the main networks. Our deep learning approach was then developed using

these concepts. As a final step, we review how the model was trained and how the

results were evaluated.

• Chapter 4: Results and Discussions: Throughout this chapter, we present the re-

sults of our work regarding the anatomical classification of the gastrointestinal tract.

We demonstrated that our method is highly accurate at classifying images into six dif-

ferent locations. As part of a comparison with state-of-the-art methods, we discussed

the proposed method’s performance using several metrics, and finally, to give an under-

standing of how our work compares to similar works, we provide a detailed comparison

with similar works.

• Chapter 5: Conclusion: The conclusions presented in this chapter outline the key

contributions of our proposed method as well as its advantages compared with previous

research. Following this, we suggest further research and improvements based on our

findings.
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2 Related Works

Reviewing the literature on two principal subjects is necessary to show how our work

contributes to current studies-the anatomic classification of the GI tract, and the use of

transfer learning and ensemble learning in AI driven tasks. The first part introduces various

methods of detecting or classifying anatomical locations that have been previously proposed.

Among them, the methods we used for comparison have also been described. Then, in the

second section, the advantages of using the main technique in this study were investigated

in various tasks by reviewing the related papers.

2.1 Endoscopic localization

Endoscopic localization methods can vary based upon the techniques used which can be radio

frequency [23, 24], magnetic [25, 12], image processing [26, 27, 28, 29, 30, 31, 32, 13, 33], etc.

Depending on the type of output they have, they can also vary. For example, the output of

[29, 30, 31, 32, 13] are predicted locations while [26, 27, 28] have estimated the median error.

For example WCE takes pictures and sends them by using RF signals. The capsule already

contains all the necessary equipment for RF-based localization methods, and this fact makes

RF-based localization worth exploring for researchers. Among the techniques investigated

are Time of Arrival (TOA), Direction of Arrival (DoA), Received Signal Strength Indicator

(RSSI), and Radio Frequency Identification (RFID)-based methods. In [23] Cramer-Rao

bounds (CRB) are derived for location estimators using measured received signal strength

(RSS). They calculate bounds on location estimators in three digestive organs: the stomach,

small intestine, and large intestine utilizing a 3-D human body model conducted with an

application of full-wave simulation software and a log-normal model for RSS propagation. The

authors analyze the factors that affect localization accuracy. The number of pills cooperating,

the topology of the external sensor array and the random variation in the transmitting

power of nodes are all included in this analysis. [24] introduces a localization technique for
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tracking capsules using RF that integrates directional-of-arrival, time-of-arrival, and inertial

measurement unit measurements using the Kalman filter. A signal is transmitted from an

emitter to the WCE, and a response is sent back from the WCE to a set of antenna arrays.

A measurement is then taken of the round-trip TOA and the DOA of the signals transmitted

from the WCE to the antenna arrays. An error of up to 10 mm is associated with their

method.

Magnetic positioning technology is another method for capsule localization which detects

the change of the magnetic intensity generated by a magnet attached to the capsule [34].

Magnetization fields are less affected by the unstructured environment of the GI than RF

signals [12]. To reduce drifting caused by geomagnetic noise, a localization system with noise

cancellation is proposed in [25]. Therefore, the initial guess will be obtained in a simple

and effective way. With the proposed system, positioning and orientation errors are lower

than those seen in prior works with the same configuration. As a result, the localization

system can be worn while the patient moves around. Furthermore, the proposed algorithm

makes positioning errors more consistent within the localization region. According to the

proposed algorithm, the average positioning error obtained from 16 digital magnetic sensors

in a volume of 380 mm by 270 mm by 240 mm is around 10 mm, and the average orientation

error is around 12 mm. The authors present a hybrid method called MagnetOFuse in [12] to

localize the capsule within the human gastrointestinal tract. A magnet and four cameras are

mounted on the side walls of the capsule. With nine three-axis Hall effect sensors, magnetic

localization determines the capsule’s global location. They have implemented low-resolution

monochromatic cameras along the capsule’s side to measure the capsule’s movement and

increase tracking accuracy. It is shown by the results that the proposed hybrid method

can compensate for the relative movement of GI tracts and has a 3.5 mm position error on

average.

There have been a number of studies on localization through image processing techniques.

This method does not require any extra equipment, so it would be a suitable way to estimate

locations. Vu et al. [26] present an efficient method of segmenting the digestive organs using

video capsule endoscopy. In this method, the colors of digestive organs are analyzed based

on their unique characteristics. As the first step, they present a color model containing

the color components of GI walls and non-wall areas. Each color component is analyzed
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according to the distribution along the time dimension of the wall regions extracted from

images. It is used to learn which colors are dominant enough to discriminate between digestive

organs. In order to detect the boundary of two adjacent regions, the strongest candidates

are combined to create a representative signal. A method for automatically discriminating

between esophageal, stomach, small intestine, and colon tissue is described in Mackiwicz et

al. [26] work. In their study, they demonstrate that adding texture and motion features

to their classifiers improves performance. To process the WCE image, they first divide it

into sub-images and reject sub-images that lack clear tissue definition. They create a feature

vector based on color, texture, and motion information from the entire image and valid sub-

images. The hue and saturation histograms are used to generate color features, which are

then compressed by an adapted discrete cosine transform and principal component analysis.

Local binary patterns are used to create a second feature that combines color and texture

information. A hidden Markov model is employed to segment videos into meaningful sections

based on support vectors or multivariate Gaussian classifiers.

An analysis of the movement of the endoscopy capsule was presented by Bao et al. [33].

A Kernel Support Vector Machine (K-SVM) is used to segment endoscopic images into sub-

regions and classify them. They used a quantized feature vector, which has a naturally

resistant characteristic to noise, to better represent the image. Furthermore, the kernel

function transforms low-dimensional feature vectors into higher-dimensional hyperplanes for

non-linear decision-making. The results of the experiment indicate an accuracy of 93% for

speed estimation and a localization error of 2.49 cm. Cunha et al. [28] presented a Bayesian

and support vector machine approach and compared to segment the gastrointestinal tract

into its four major topographic areas. Consequently, clinically relevant gastric and intestinal

sections and transit times can be automatically determined. This can reduce the time it

takes to annotate exams. Based on color change pattern analysis, Lee et al. [29] propose a

technique for segmenting WCE videos into anatomic parts using the energy of muscular con-

tractions. Basic to the concept is that different sections of the digestive system have different

patterns of intestinal contractions that can be used as features. WCE video contractions are

first characterized in the frequency domain using the energy function. The WCE video is

then segmented into events using the high frequency content function. Either an entry has

been detected in the next organ or an unusual event has been detected at the event bound-
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ary. Segmented events are classified into higher level events that represent GI locations.

Researchers report an event detection algorithm that has a recall and precision of 76% and

51%, respectively. Compressed domain color (CDC) descriptors are compared in Marques et

al. [30] with traditional full decoded images, to determine the anatomical classification of

wireless capsule endoscopy images. According to the results based on 26469 images divided

into stomach, small intestine, and large intestine, the difference in classification accuracy is

less than 1%. Moreover, these findings indicate that errors are mostly located near zone

transitions, which can be addressed with other visual descriptors like shape and motion. The

authors conclude that they can use CDC when it comes to this type of classification while

sacrificing a small amount of accuracy.

Shen et al. [31] proposed an unsupervised learning approach that employs Scale Invariant

Feature Transform (SIFT) for extracting local image features and probabilistic latent seman-

tic analysis (PLSA) for clustering data. Using the GoogleNet architecture, Takiyama et al.

[32] designed a CNN-based diagnostic program. They trained their model using an esopha-

gogastroduodenoscopy (EGD) dataset containing 27,335 images from four main anatomical

locations of the larynx, the esophagus, the stomach, and the duodenum, as well as three sub-

sequent subclassifications for stomach images, including upper, middle, and lower regions.

They have achieved overall accuracy of 97% with area under the curve (AUC) of the receiver

operating characteristics (ROC) 1.00 for larynx and esophagus images, and 0.99 for stom-

ach and duodenum images and 0.99 for the upper, middle, and lower stomach. Using 9,995

colonoscopy images, Satio et al. [13] trained a CNN, then tested its performance on 5,121

colonoscopy images that include seven different locations: the terminal ileum, the cecum,

ascending colon to transverse colon, descending colon to sigmoid colon, the rectum, the anus,

and indistinguishable parts. Their system is based on the GoogLeNet deep CNN without

any modifications. An analysis of the concordance between diagnoses made by endoscopists

and the diagnoses made by CNN was conducted. A primary objective of the study was

to measure the sensitivity and specificity of CNN for identifying anatomical categories in

colonoscopy images. By calculating the area under the curve for each location, they assessed

the performance of the constructed CNN. 0.979 was obtained for the terminal ileum, 0.940

for the cecum, 0.875 for ascending colon to transverse colon, 0.846 for descending colon to

sigmoid colon, 0.835 for the rectum, and 0.992 for anus. According to the CNN system,
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66.6% of images were correctly classified during the tests.

Table 2.1: Comparison of the previous works on the localization of the GI tract

Ref
ML

(DL)
Method

Number of

anatomical

locations

Anatomic locations

included

Performance met-

rics and results

[29] No (No)

Variation in

HSV intensity

in subsequent

frames using

event correla-

tion

4

Esophagus, stomach

(entering stomach),

small intestinal (en-

tering duodenal and

ileum), and colon

Recall: 76%; Pre-

cision: 51%; F1-

score:61%

[33] No (No)

Feature Points

Matchingfor

capsule speed

estimation

-
Speed estimation accu-

racy and location error

93% accuracy for speed

estimation and 2.49 cm

for localization error

[26] No (No)

PCA and cus-

tomized thresh-

olding approach

with color fea-

tures

2

Median error in frame

number prediction for

detecting pylorus; ileo-

cecal valve

Pylorus:105; ileocecal

valve: 319(frames)

[23] No (No)

Using

RSS, DoAor

ToA

-

average RMSE for pre-

dicting capsule loca-

tion

100 mm RMSE with

10 sensors on body sur-

face

[25] No (No)

Adding small

magnet in

capsule

-

Capsule inside a vol-

ume of 380 mm by 270

mm by 240 mm cov-

ered by 16 digital mag-

netic sensors

10 mm RMSE error

[27] Yes (No)

multivariate

Gaussian classi-

fiers with color,

texture,motion

features

3

Median error in frame

number prediction for

detecting esophagogas-

tric junction; pylorus;

ileocecal valve

Esophagogastric junc-

tion: 8; pylorus: 91;

ileocecal valve: 285

(frames)
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Table 2.1: Comparison of the previous works on the localization of the GI tract

Ref
ML

(DL)
Method

Number of

anatomical

locations

Anatomic locations

included

Performance met-

rics and results

[28] Yes (No)

SVM with color

and texture fea-

tures

3

Median error in frame

number prediction for

detecting esophagogas-

tric junction; pylorus;

ileocecal valve

esophagogastric junc-

tion: 2; pylorus: 287;

ileocecal valve: 1057

(frames)

[30] Yes (No)
SVM with color

features
3

Stomach, small intes-

tine, and large intes-

tine

85.2 % (overall accu-

racy)

[31] Yes (No)

SIFT features

matched using

random sample

consensus and

tracked using

Kanade-Lucas-

Tomasitracker

-
Robotic-assisted setup

provided for evaluation

2.70 ± 1.62 cm local-

ization error

[32] Yes (Yes) CNN 6

Larynx, esophagus,

stomach (upper,

medium, lower),

duodenum

AUC: 100% for larynx

and esophagus 99% for

stomach and duode-

num Accuracy: 97%

[13] Yes (Yes) CNN 7

The terminal ileum,

the cecum, ascending

colon to transverse

colon, descending

colon to sigmoid colon,

the rectum, the anus,

and indistinguishable

parts

AUC: 97% for the ter-

minal ileum; 94% for

the cecum; 87% for as-

cending colon to trans-

verse colon; 84% for

descending colon to

sigmoid colon; 83% for

the rectum; 99% for

the anus. Accuracy:

66%

12



2.2 Transfer Learning and Ensemble learning

A recent method of machine learning is transfer learning. This method involves reusing a

model created for one task as a basis for another [35]. It can be difficult or expensive to collect

training data in some cases. Hence, it may be necessary to train high-performance learners

using easy-to-obtain data like unlabeled images from different domains [36]. In transfer

learning, knowledge is extracted from a task in the form of parameters, features, samples,

instances, etc., which are then applied to a new task. Transfer learning can be applied

to supervised learning, unsupervised learning, and reinforcement learning. In unsupervised

transfer learning, which is usually a form of clustering or dimensionality reduction [35],

knowledge is used in order to improve the learning of the target predictive function. During

training, no labelled data is present in either the source or target domains [37].

Several studies and applications have demonstrated the benefits of transfer learning in the

gastrointestinal tract. A major benefit of transfer learning in the area of the gastrointestinal

tract is the ability to improve accuracy and performance during diagnostic procedures. An

example of transfer learning in practice is the use of pre-trained deep learning models that are

fine-tuned based on smaller datasets of endoscopic images. In comparison with training from

scratch, this approach improves classification accuracy significantly. Transfer learning also

reduces computational costs and time in the field of the gastrointestinal tract. By utilizing

pre-trained models, the low-level features in the data are already known, so they can be

fine-tuned for the new task rather than having to learn them all over again. Moreover, this

process transfers knowledge, helping to improve accuracy and performance without requiring

extensive training data.

Sometimes, depending on the problem we are trying to solve and the quality and quantity

of the available data, one classifier is not enough in machine learning. Using only one classifier

can result in errors or shortcomings because it can only reflect one aspect. The classification

can be improved if multiple learners work together. A stronger classifier can be created using

ensemble learning [37]. In the field of the gastrointestinal tract, ensemble learning has been

widely used to predict various outcomes, such as the risk of disease, the severity of disease,

and the response to therapy. Ensemble learning has been shown to consistently improve the

accuracy of predictions compared to individual models. It can also increase the stability of the
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final prediction by reducing the variance of individual models. This can be especially useful

in the field of the gastrointestinal tract, where the prediction of disease outcomes is often

complex and subject to a high degree of variability. Another benefit of ensemble learning

is to improve the robustness of the predictions of outliers by combining the predictions of

multiple models that have different sensitivities to outliers.

The aforementioned benefits make transfer learning and ensemble learning attractive ap-

proaches for researchers and practitioners working in the field of the gastrointestinal tract.

Our anatomical classifier for the GI tract was developed using transfer learning and ensem-

ble learning. These two methods of machine learning and their benefits for related tasks are

reviewed in the following paragraphs.

Using the K-Vasir capsule endoscopy data set, [38] evaluated how transfer learning affects

gastrointestinal disease classification in wireless capsule endoscopy images. Fine-tuning the

pre-trained ResNet50 is the basis of the proposed method. The pre-trained model ResNet50

is fine-tuned via transfer learning in order to extract deep features from WCE images. With

the modified deep convolution neural network ResNet50, deep features from HSV images

are extracted and then fed into a softmax classifier for gastrointestinal disease detection.

As a result of their approach, high accuracy was observed when classifying wireless capsule

endoscopy images into either ulcer, polyp, and normal.

A convolutional neural network and transfer learning type fine-tuning are used in [39] to

aid medical diagnostic processes for diseases and anomalies related to the gastrointestinal

tract. The proposed method mainly relies on transfer learning via fine-tuning the VGG16

convolutional neural network, which has been trained with ImageNet datasets. It was possible

to achieve high-level representations of endoscopy images by learning from natural images and

transferring that knowledge to the medical field. The Kvasir dataset was used to evaluate the

proposed strategy and achieved 94.6% accuracy. As a result, machine learning and transfer

learning remain promising alternatives for supporting fast and accurate medical decisions.

Using deep learning techniques, Qiaosen et al. [40] seek to demonstrate the potential for

detecting GI diseases. Using WCE image data, this study confirms that their method which

is based on convolutional neural networks can detect GI diseases using integrated frameworks

for convolutional neural networks. In this study, transfer learning techniques are used, which

have been shown to enhance the learning abilities of models. An ensemble learning technique
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is also used in this technique, which improves the performance of single classifiers. Three

convolutional neural networks serve as the underlying backbone for predicting images, which

are also known as independent base classifiers. Using pre-trained weights, the backbone net-

works use transfer learning to accelerate model convergence. After training the model on a

broader training set, it is migrated, applied to a smaller, more specific model, and modified

as necessary. The classification results are then used to feed into an integrated classifier

containing a number of fully connected layers in order to obtain the final prediction. The

process is an example of ensemble learning, which improves the prediction performance of a

single model by training multiple models and combining their predictions. In general, the

prediction performance of a multiclassifier system will be better than that of an indepen-

dent classifier system. This is because the error of the independent classifier is likely to be

compensated for by the other classifiers. A 94.9 percent accuracy rate is achieved with the

proposed methods on the test dataset.

Ghosh et al. [41] presents a computer-aided diagnostic tool for the automated analysis of

CE images. In this tool, abnormalities of the small intestine are detected, particularly bleed-

ing. The tool is based on a CNN deep learning framework, which uses a pre-trained AlexNet

neural network to train a transfer learning CNN to identify bleeding and non-bleeding CE

images. The bleeding zones within the bleeding images are also identified using a deep

learning-based semantic segmentation technique, which leverages the SegNet deep neural

network. The performance of the proposed tool was evaluated using two publicly available

clinical datasets. Compared to manual inspection and annotation of CE images by a physi-

cian, the proposed framework reduces annotation time and human labour costs, increases

detection accuracy, and provides additional benefits such as bleeding zone delineation.

Almanifi et al. [42] used ensemble methods to aid in diagnosis by using three pre-trained

models. The models were trained on an 8000-image Kvasir dataset, which consisted of eight

classes of different parts of the GI tract along with different diseases. ResNet50, MobileNetV2,

and Xception, three popular pre-trained CNNs were used. Compared to other studies that

utilized the same dataset, the ensemble method significantly increased the prediction accuracy

of all three models. It demonstrates how the ensemble method has great potential in medical

machine learning. Based on the model’s performance, 99.2% accuracy, 0.9977 AUC, and

99.29% F1 score were achieved.
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Nadeem et al. [43] present a model for classifying gastrointestinal abnormalities using

endoscopic images. A dataset was provided by the MediaEval Benchmarking Initiative for

Multimedia Evaluation for the purposes of training and testing. Machine learning, ensemble

learning, and multimedia content analysis were used for classification in the study. Consid-

ering the composite nature of features, they train separate models using logistic regression

and kernel discriminant analysis using spectral regression for each one. Predictions were then

made using the ensemble technique. Based on the ensemble method, logistic regression was

found to give the best results using six different features, including Local Binary Patterns

and Haralick textures. On testing data, it achieved an accuracy of 94% with an F1-score of

0.76 and an MCC of 0.73.

Vieira et al. [44] discuss a two-step procedure for automatically detecting tumours in

WCE based on the region of interest selection and classification. Automatic segmentation

based on a Gaussian Mixture Model is used in the first step to separate abnormal from

normal tissue. As a second step, they propose an ensemble system with a partition of the

training data and a new training scheme for the ensemble system. This paper contributes

to the ensemble-based classification module, which guarantees no significant loss of diversity

during incremental training by using data partitioning and ensemble structures. Results

from experiments demonstrate the superiority of the proposed algorithm over state-of-the-

art methods in three main areas: feature extraction, tissue separation, and classification.

It was found that the proposed feature set and classification module improved accuracy by

1.7% and 1.2%, respectively.

Khan’s research [45] aims primarily to detect diseases and abnormalities in the Gastroin-

testinal Tract with the use of multimedia data. A traditional colonoscopy is used to collect

this data. To extract information from visual data, multimedia content analysis techniques

have been applied, as well as machine learning techniques for classification. In this study,

the VGG 19 model is used to extract plentiful visual concepts by using pre-training data

from the ImageNet challenge and retraining of the last 2 layers with medical images. Based

on the features that have been extracted, logistic regression, random forest, and extremely

random tree classifiers are trained. Pre-computed texture features and VGG features, the

features extracted from VGG19 pre-trained models, were included in the feature set. As

a result of ensemble training, the final model utilizes weighted majority voting among all
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independent models. Using majority voting of logistic regression, random forest, and extra

trees classifiers, 98% accuracy, 0.76 F1, and 0.75 MCC are achieved on testing data.

Rezaei et al. [46] aim to predict the probability of gastric cancer occurrence and deaths

associated with it. Their ensemble method combines multiple machine learning methods to

achieve this goal, such as logistic regression, random forest, gradient-boosted decision trees,

and deep neural networks. Using ensemble methods, they aim to minimize prediction errors

for a large number of patients’ features. Their results demonstrated the superiority of the

ensemble method in predicting gastric cancer and deaths associated with it compared with

other machine learning-based methods. It has been proven again that ensemble learning is

feasible and effective in the gastrointestinal field.

The literature review concludes that gastrointestinal tract location classification is impor-

tant for medical purposes. It has highlighted the range of methodologies employed, their

level of achievement, and the advantages of ensemble and transfer learning. There has been

evidence that applying transfer learning and ensemble learning to this field improves the

performance of models. On the basis of these findings, we will present a novel method of pre-

dicting gastrointestinal anatomical locations using transfer learning and ensemble learning in

the next chapter. In contrast to previous methods, we propose a method that overcomes chal-

lenges faced in previously classified GI tract locations, including limited labelled images and

the use of private datasets, low prediction rates, and having fewer categories. We achieved

high accuracy while classifying six locations by using transfer learning and ensemble learning

techniques, surpassing the number of categories in most related works’ classifications with

much less labelled data. As a result of the application of these techniques, a more efficient

and accurate method has been developed, providing significant benefits to the field. With

further research and development, these approaches can be refined to improve localization

accuracy and enhance the effectiveness of medical diagnosis.
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3 Materials and Dataset Prepration

This study proposes a method to classify gastrointestinal tract locations using ensemble

transfer learning. To improve prediction performance, we have taken advantage of thousands

of unlabelled data and an encoder for the purpose of transfer learning. Therefore, the encoder

extracts the most relevant features and the final result is based on two different models using

ensemble learning. This project was developed with Google Colab Pro, Python 3, and the

TensorFlow 2.11.0 framework, along with the Keras 2.11.0 high-level API. Using a GPU

provided by Google Colab, deep learning models were trained.

3.1 Dataset

This study uses the HyperKvasir dataset [47] as its main dataset. In this database, 10,662

labelled images have been stored using the JPEG format that has been classified by their

location within the GI tract and the type of finding identified. The dataset also contains an

additional 99,417 unlabeled images. Of the 10,662 labelled images, 4,104 have been labelled

with their associated locations, while the remainder has been labelled with their respective

diseases. For the purposes of this study, the 4,104 labelled images and the unlabeled portion

of the dataset were utilized. Additionally, the dataset contains videos from the GI tract,

although they were not used in this study. During endoscopic procedures, landmarks are

characteristics of the GI tract that help with orientation. Additionally, they serve to confirm

a thorough examination. Lower GI tract landmarks can be identified in the terminal ileum,

colon, and rectum. Upper GI tract landmarks include the esophagus, stomach, and duode-

num. These locations are demonstrated in Fig. 3.1 as well as a few image samples from the

Kvasir dataset in Fig. 3.2.

The images and videos were collected using standard endoscopy equipment manufactured

by Olympus (Olympus Europe, Germany) and Pentax (Pentax Medical Europe, Germany) at

the Department of Gastroenterology, Bærum Hospital, Vestre Viken Hospital Trust, Norway
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[47]. The dataset documentation indicates that the study took appropriate steps to ensure

the ethical use of the data. Specifically, the data was fully anonymized and approved by the

Privacy Data Protection Authority.

In the Table 3.1, further description of the dataset used in this study is shown. Our study

used a well-known dataset that has been widely used in previous studies. We acknowledge,

however, that the dataset contains some noise and similar images, which we removed by care-

fully reviewing and removing duplicates. A number of validation measures were conducted

to ensure the dataset’s quality and validity. Detailed information about the pre-processing

steps used to get better quality data will be presented in the following sections.

Table 3.1: Description of the labelled dataset used in this study

Position Number of images before preprocessing Number of images after preprocessing
Cecum 1009 164
Ileum 9 52
Pylorus 999 234
Rectum 391 87
Stomach 764 172
Z line 932 162
Total 4104 871

Overall, the dataset used in this work contains 4,104 labelled and 99,417 unlabeled images

taken at six different locations in the GI tract, including the cecum, ileum, pylorus, rectum,

stomach, and Z line which is the anatomical junction between the squamous epithelium of the

esophagus and the columnar epithelium of the stomach. The table 3.1 shows that the Ileum

class has fewer images than the other locations. A few other images were collected from this

location and added to the dataset to balance this number. In the second dataset [48], images

and videos were captured by endoscopy cameras at 10 different anatomical locations within

the GI region of patients. Approximately 80-110 distinct patients were used to produce

the image dataset, which consists of both CE and WCE frames. As part of another study

[49] we conducted on the anatomical classification of the GI tract, the same dataset was

used with a few-shot learning technique. This machine-learning technique involves training

models to identify new classes of objects based on very few data examples. Few-shot learning

algorithms can learn from just a few examples of each new class, unlike traditional supervised

learning methods, which require large amounts of labelled data. Several applications of few-
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shot learning have shown promising results, including computer vision, natural language

processing, and robotics, and it is a rapidly evolving field.

Figure 3.1: Anatomical locations covered in the Kvasir dataset and this study

It is possible for images to contain noise as well as useful information. Existing noise

in an image reduces clarity and introduces misleading information. These artifacts make

classification more complex [50]. An ideal denoising result would be an image that preserves

only essential information. Some images in the main dataset contain noise, including black

corners, green boxes and texts. These items will be considered inputs by the network while

they should not have any effect on the predictions. Mispredictions will be more likely if

they only appear in some categories as well. If we have a specific artifact in just one of
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Figure 3.2: Several image samples from the Kvasir labelled dataset. From the top row to the bottom,
images of the cecum, ileum, pylorus, rectum, stomach, and z-line have been illustrated, respectively.
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the categories, it will produce features that the model relies on rather than the real useful

features from the textures, colors, etc. This has been prevented here by cropping the images

and removing all the artifacts.

Images were resized to 128×128 pixels to have the same size. A high degree of similarity

was observed between images on the dataset, according to experiments. Similar images in

a dataset introduce bias into the dataset, increasing the likelihood of deep neural networks

learning specific patterns based on those images. This prevents the model from generalizing

to new images from other datasets. Using the differential gradient hash (D-hash) Algorithm

[51], similar images have been detected and removed from the dataset. D-hash is a hashing

algorithm that compares the difference in gradient between adjacent pixels, generating a 64-

bit image signature (a matrix with eight rows and eight columns). It is resilient to the aspect

ratio, image size, brightness, and contrast differences and can be used to compare images

with each other for similarity. By comparing two peak signal-to-noise ratio (PSNR) values of

two distinct images from the dataset, a threshold was established, and images that showed

similarity beyond that threshold were removed.

The amount of labelled data available for specialized image and video classification tasks

is often insufficient. This is especially true in the medical industry, where privacy concerns

restrict access to data. The goal of image augmentation is to increase the size and diversity

of the training data by applying various transformations to the original images. It is another

way that model overfitting can be reduced by increasing the amount of training data with

information exclusively from the training data. It is not a new field, and a variety of data

augmentation techniques have been used to solve specific problems. Here, we used some

traditional image augmentation methods [52]. Image augmentation techniques that we uti-

lized in this work include rotating, flipping, zooming in, and zooming out. Rotating involves

rotating the image by a certain degree to increase the robustness of the model to rotations.

Flipping involves flipping the image horizontally or vertically. Zoom in and zoom out involve

changing the scale of the image, either by enlarging or reducing its size, and shading with a

hue changes the colour intensity of the image. These techniques can be applied individually

or in combination to produce a diverse set of augmented images. These augmentation tech-

niques help to prevent overfitting and improve the generalization performance of the model

on unseen data.
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After dataset preprocessing, which includes noise deduction, similarity removal, and image

augmentation, 871 labelled images remained for the purpose of this study.

3.2 Proposed Pipeline

A brief description of basic concepts is provided in this section, followed by an explanation

of the proposed method based on the information provided.

3.2.1 Transfer Learning: using an encoder trained on unlabelled GI tract images

Data representation or features heavily influence the performance of machine learning meth-

ods [53]. As an input to a supervised predictor, a good representation is very useful and

can improve predictions. While it is undeniable that the efficacy of a representation learned

from data is heavily dependent on the task for which it is to be used, some representations

have properties that can be applied simultaneously to many real-world problems [54]. Since

there are not enough labelled images, learning useful representations from a vast amount of

unlabeled data without supervision can be helpful for solving artificial intelligence problems,

including classification problems. This combination of learning can be achieved through

transfer learning. By transferring knowledge across tasks, a learning algorithm can exploit

commonalities between them and share statistical strength across them. This makes it easier

to extract useful information when building classifiers or other predictors in a supervised

manner.

An autoencoder is an unsupervised learning algorithm that employs backpropagation for

training. Its schematic is shown in Fig. 3.3. For a given network configuration, an au-

toencoder learns efficient embeddings of unlabeled data. In an autoencoder, two parts are

involved, an encoder and a decoder. Using an encoder, we compress data from a higher

dimension into a lower dimension referred to as latent space and conversely, the decoder

converts data from a lower dimension to a higher dimension again. Using the decoder, we

are able to ensure that the latent space captures most of the beneficial information from the

dataset. This is because the decoder tries to output the information that was originally input

to the encoder as accurately as possible.

Additionally, autoencoders can be used to improve the quality of data. Data quality

has a significant impact on the outcomes of data-driven approaches. There is a strong
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Figure 3.3: The block diagram of an auto encoder

correlation between better features and better results. Because the data contains unnecessary

and redundant information, data quality can’t always be guaranteed. Information that is not

useful will not only decrease detection accuracy but also increase processing time. As long

as it eliminates useless information and keeps as much influential information as possible,

dimension reduction may improve classification accuracy [55].

The entire encoder-decoder architecture is continuously trained on the loss function in

order to ensure that the input is reconstructed at the output. The loss function is therefore

defined as the mean square error between the encoder input and the decoder output. It is

intended to use a very low-dimensional latent space so that maximum compression can be

achieved at the same time as minimizing errors. However, there are no limits on the values

of the latent space, but information will be lost if its dimensionality is reduced beyond a

certain point. Any dimension can be used in the latent space as long as the decoder function

can reconstruct the input.

The encoder section of an auto-encoder can be split from the encoder-decoder architecture

and used as a feature extractor in another network to apply transfer learning. A more

discriminating feature is obtained by an encoder, they can have the clearest boundary among

the categories, and improve the process of classification [56]. Fig. 3.4 shows how the

knowledge can be transferred from a trained encoder to another network. The summary of

the designed autoencoder in this study and its layers has also been illustrated in table. 3.2
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Figure 3.4: Transferring knowledge from the trained auto-encoder to another task

Table 3.2: A summary of the layers for the designed autoencoder. The number of trainable parameters
are 134,724,995 and the number of non-trainable parameters are 0.

Layer (type) Output Shape Param #
img in (InputLayer) [(None, 128, 128, 3)] 0
conv2d (Conv2D) (None, 128, 128, 128) 3584
max pooling2d (MaxPooling2D) (None, 64, 64, 128) 0
conv2d 1 (Conv2D) (None, 64, 64, 128) 147584
max pooling2d 1 (MaxPooling2D) (None, 32, 32, 128) 0
conv2d 2 (Conv2D) (None, 32, 32, 64) 73792
max pooling2d 2 (MaxPooling2D) (None, 16, 16, 64) 0
flatten (Flatten) (None, 16384) 0
dense (Dense) (None, 4096) 67112960
dense 1 (Dense) (None, 16384) 67125248
reshape (Reshape) (None, 16, 16, 64) 0
conv2d 3 (Conv2D) (None, 16, 16, 64) 36928
up sampling2d (UpSampling2D) (None, 32, 32, 64) 0
conv2d 4 (Conv2D) (None, 32, 32, 128) 73856
up sampling2d 1 (UpSampling2D) (None, 64, 64, 128) 0
conv2d 5 (Conv2D) (None, 64, 64, 128) 147584
up sampling2d 2 (UpSampling2D) (None, 128, 128, 128) 0
conv2d 6 (Conv2D) (None, 128, 128, 3) 3459
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3.2.2 Xception: the second network used for extracting features

In 2017, Chollet proposed a convolutional neural network architecture based entirely on

depthwise separable convolution layers called Xception [57]. In the Xception architecture, 36

convolutional layers are used to extract features from images, followed by a logistic regression

layer for the purpose of image classification. The 36 convolutional layers can be divided

into 14 modules, with linear residual connections around them, except for the first and last

modules. First, the data passes through the entry flow, then it passes through the middle flow,

which is repeated eight times, and then it passes through the exit flow. Batch normalization

follows all Convolution and Separable Convolution layers.

As an alternative to classical convolutions, depthwise separable convolutions are more

efficient in terms of computation time. First, there is a depthwise convolution layer that

filters the input, and second a 1×1 convolution layer named point-wise convolution layer that

creates new features by combining these filtered values. Combining depthwise and pointwise

convolutions creates a ”depthwise separable” convolution block. Convolution blocks with

depth wise separables perform the same function as traditional convolution blocks, but they

are much faster.

On our dataset, Xception performed the best in terms of accuracy after training and

evaluating several CNN models. ResNet-50 [58] had results similar to Xception among

the other CNN models. Nevertheless, we decided to use Xception in our proposed method

because it has a number of advantages. A major benefit is that it has a faster training time, so

we could experiment more quickly. Furthermore, Xception converges faster, requiring fewer

epochs to achieve high accuracy. In situations where computational resources are limited or

where training time is important, this can be beneficial. We believe that Xception is the

right choice for our proposed method because of its superior performance and faster training

time.
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The depthwise separable convolution block has been shown in figure 3.5

Figure 3.5: Depth wise Separable Convolution Block 1

1[7]
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The Xception architecture is illustrated in figure 3.6.

Figure 3.6: Xception architecture 2

2[57]
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3.2.3 Ensemble Learning: predicting by multiple learners working together

Ensemble learning has drawn increasing attention over the past decade, and researchers

have made significant contributions to the field. An ensemble learning approach efficiently

integrates various machine learning algorithms into a unified framework. Hence, the com-

plementary information provided by each algorithm is effectively utilized to improve overall

performance [59].

In ensemble methods, multiple learners work together to solve a problem. Instead of con-

structing a single learner from training data, ensemble methods aim at creating a collection

of learners and then combining them. Ensembles often generalize better than base learners.

Besides ensemble learning, committee-based learning or multiple classifier systems learning

are also terms used to describe ensemble learning [60]. Fig. 3.7 illustrates a typical ensemble

architecture.

We call these individual learners weak learners. Weak learners are models that can be

used to obtain a meta-model. In this ensemble learning architecture, inputs are passed to

each weak learner and each of them extracts feature vectors. We can use the combined

features to build a more detailed feature to be fed into our last classifier. Features can be

extracted differently based on weak learners, and this is one of the main reasons for improved

prediction.

Figure 3.7: Ensemble Architecture
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3.2.4 Proposed Method

An introduction to the proposed method is presented here, followed by detailed discussions

of each module. To make the image ready for the system, a pre-processing stage has been

performed. The resulting images are then fed into the model so that the anatomical locations

of the GI tract can be determined. In the following, we describe how the classification

methodology works.

An image classification problem can be solved using the convolutional neural network,

one of the deep learning frameworks. In order to extract useful features from an image,

convolution is employed. To overcome the problem of the small number of samples in the

dataset, the proposed architecture uses the transfer learning paradigm for feature extraction.

In the feature extraction block, two pre-trained models are utilized: encoder and Xception.

The encoder is not trainable, and both models’ top layers are omitted. Xception is a powerful

convolutional neural network trained on the ImageNet dataset [61] There are a limited number

of images labeled with GI tracts anatomical locations, and expanding this dataset will take

specialists a lot of time and effort. There are, however, a significant number of images that

are unlabeled. A new approach is proposed to take advantage of this extensive dataset. With

an unsupervised method, a model is trained on an unlabeled dataset. To detect locations,

trained weights are then used in the main model. With this approach and using transfer

learning, we can utilize both labelled and unlabeled data. As part of this work, an auto-

encoder is developed and trained to encode and reconstruct the image from the encoded data.

The auto-encoder is composed of two networks, the encoder and the decoder. After training

the auto-encoder, the encoder has been separated from the auto-encoder and has been used

as a transfer learning tool. An encoder can learn the most informative GI tract image features

since all the image information should be preserved during the encoding process. We use this

encoder in our model as a pre-trained network for feature extraction.

At this point, the two models are working together and extracting features from the data.

Depending on the model, features can be extracted differently, and a concatenation of all

extracted features is used in the proposed model. Afterward, a fully connected layer with

64 neurons is added after the final convolution layer has been flattened. Following this, we

transform these 64 neurons into 6 final neurons, each representing a different location using

softmax activation. A softmax layer produces a probabilistic output for each class. Based on
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the value associated with the higher probability class, a prediction is also derived. Fig. 3.8

shows the proposed pipeline, including the preprocessing section as well. The different steps

of the proposed method have also been listed in Algorithm. 1

Algorithm 1 Proposed Anatomical Classifier

SETUP

Tensorflow and the required libraries initialization

Load the datasets

unlabeled dataset, labeled dataset

Method

Train the Autoencoder on the large unlabeled dataset

autoencoder = train autoencoder(unlabeled dataset)

Separate the encoder part of the Autoencoder

encoder = extract encoder(autoencoder)

Use the encoder part as a feature extractor

autoencoder features = extract features from encoder(labeled dataset)

Use Xception model as a feature extractor

xceptionfeatures = extract features from xception(labeled dataset)

Concatenate the feature vectors obtained from the encoder and Xception

final features = concatenate features(encoder features, xception features)

Feed the final feature vector to a CNN model and classify images

CNNmodel.classify(final features)
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Figure 3.8: The proposed pipeline
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3.3 Model Training and Performance Evaluation

In Machine Learning, the loss function represents how accurately your ML model can predict

the expected outcome. The loss value is high if our model did not perform well while the low

loss value indicates that our model performed well. In order to train an accurate model, it

is crucial to select the right loss function. Depending on the loss function, your model may

learn differently as each loss function has a specific property. In this study, for training the

autoencoder, Mean Squared Error (MSE) has been used. MSE is calculated by squaring the

difference between your model’s predictions and the ground truth, which in this case should

be the same image, square it and then average it over the entire dataset. It is formally defined

by 3.1:

MSE =
1

N

N∑
i=1

(yi − ŷj)
2 (3.1)

Where N is the number of samples.

The Xception model was pre-trained on the ImageNet dataset. For its training process,

we used the sparse categorical cross entropy loss function. Based on how far the prediction

is from the actual expected value, a loss is calculated for each probability of the predicted

class. Due to the logarithmic nature of the cost, large differences lead to large costs, while

small differences tend to receive small costs. When a model is perfect, it has zero sparse

categorical cross-entropy loss. Its equation is provided in 3.2:

LSCCE = −
N∑
i=1

tilog(pi) (3.2)

Where N is the number of samples, ti is the true label of the i
th sample, and pi is the predicted

label of the ith sample.

Minimizing the cost function is important because it describes the difference between the

true value and the predicted value. An optimization technique minimizes the cost function

by adjusting parameters. The optimization technique used here is the Adam optimization

method [62]. Several deep learning applications in computer vision and natural language

processing are now using the Adam optimization algorithm as an extension to stochastic
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gradient descent. In stochastic gradient descent, the learning rate remains constant for all

weight updates. In contrast, Adam calculates adaptive learning rates based on estimates of

the first and second moments of gradients for different parameters. The Adam optimizer is

initially configured with a learning rate of 0.001 and a decay rate of 1e-6. A learning rate

determines the step size during each iteration of the optimization process, while a decay rate

determines how fast the learning rate should decay over time. Depending on the particular

problem and data set being trained, the learning rate and decay rate will vary. To find the

optimal values, these values have been tuned through experimentation.

We evaluated the proposed network with the 10-fold stratified cross-validation method

using the stratified K-fold [63]. For the multiclass problem, along with the accuracy, the

precision, recall, F1-score and the AUC are reported. AUC is a performance measurement

to check and visualize multi-class classification, and additionally specifies the degree of sep-

arability. The higher the AUC, the better the model is at distinguishing between classes.

The accuracy of a model is not the only metric that can be used to evaluate its perfor-

mance. Other metrics are also included in the evaluation process to explain the classification

results. In the following paragraphs, they will be discussed.

Precision is defined in 3.3:

TruePositive

TruePositive + FalseNegative
(3.3)

In other words, stated to determine how accurate and precise your model is when compared

with the predicted positives. The number of actual positives is stated. If there is a high cost

associated with false positives, precision can be an effective and useful measure.

On the other hand, when we are more concerned with false negatives, recall can be used to

select the most appropriate model. Using recall, we calculate how many of the Actual Posi-

tives in our model were correctly labelled as Positive. The formula is illustrated below in 3.4:

TruePositive

TruePositive + FalsePositive
(3.4)

In the context of medicine, recall can be an important metric, when the aim is to identify

as many real positive cases as possible [64]. This means that if a sick patient is identified as
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negative (false negative) and does not receive treatment, the cost is much higher.

F1 which is a function of Precision and Recall is described in 3.5:

2 (Precision ∗ Recall)
Precision + Recall

(3.5)

When comparing two different classifiers, the F1 score can be used as the most appropriate

measure, since it gives a balance between recall and precision by taking their harmonic mean.

Furthermore, it helps with comparisons when there is an uneven distribution of classes. If

the problem is multi-class classification, the F1-score for the entire model can be calculated

by taking the arithmetic mean of the F1-scores of all the classes.
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4 Results and Discussion

This section discusses the performance of the proposed pipeline, which includes the data

preprocessing steps and the anatomical classifier of the GI tract using ensemble learning. A

numerical and visual representation of the results illustrates the contribution of the feature

extractor network to the analysis. Also, a comparison between the proposed method and

other studies utilizing different types of classifiers is made to see whether the proposed method

is more accurate.

4.1 Experimental Results

First, we discuss the preprocessing step used to prepare the dataset, and then we analyze the

network’s performance.

4.1.1 Data preprocessing

The collected dataset consists of images taken at six different locations in the GI tract. In

order to improve the performance of the network, image samples were processed for noise

removal. A few samples have been shown in Fig. 4.1.

Figure 4.1: A few image samples before and after pre-processing steps. The top row illustrates
images with some existing noises that may mislead the network’s training process.
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In addition, there was a high level of similarity between images within each category. As

a result, some images could receive more weight in the training step, or the network might

perform incorrectly when it comes to validation. In order to address this issue, image hash-

ing was used to detect and remove similar image samples from the dataset. After removing

similarities, we compared the original dataset with the resulting data samples. We have

developed a differential gradient hash to detect similar images. Based on the distance (dif-

ference) of each hash with the rest of the image samples of the same category (location), an

array has been created. The lower the value of the differences, the more similar the images

are. As a result, a dataset with less similarity has a smaller distribution around the lower

values. The distribution of this array for each location is demonstrated in Fig. 4.3 with the

mean and standard deviation of the values. Once similar images are removed, the mean of

the hash differences between image samples increases.
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Figure 4.2: The distribution plot of the hash distances of each location image samples. From (a)
to (f), 3 locations of the cecum, ileum, and pylorus, before and after similarity removal, have been
illustrated. Their mean and standard deviation have also been reported.
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Figure 4.3: The distribution plot of the hash distances of each location image samples. From (g)
to (l), 3 locations of the rectum, stomach, and z-line before and after similarity removal has been
illustrated. Their mean and standard deviation have also been reported.
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4.1.2 The proposed network performance

In order to classify GI tract locations anatomically, an image dataset containing 871 images

was used in which 164, 52, 234, 87, 172, and 162 samples are available for the cecum, ileum,

pylorus, rectum, stomach, and Z-line locations, respectively. A total of 80% of each category

is used for training, while 20% is excluded as a test set. In order to train CNN models,

fixed-size images must always be used. Therefore, in order to demonstrate the performance

of the model on variant input data, the GI tract images have been resized into 128 x 128 × 3.

The learning rate is adjusted to 0.0001. After the network has been trained, its performance

is evaluated and presented in Table. 4.1

Table 4.1: Statistical performance of the proposed method

Category Accuracy Precision Recall F1-score
Cecum 0.97 0.91 0.97 0.94
Ileum 0.80 0.89 0.80 0.84
Pylorus 0.98 0.98 0.98 0.98
Rectum 0.94 1.0 0.94 0.97
Stomach 1.0 1.0 1.0 1.0
Z line 0.97 0.97 0.97 0.97
Total 0.97 0.97 0.97 0.97

An overall accuracy of 97% was achieved by the proposed method. A summary of each

category’s results is also provided.

Other metrics have also been calculated and recorded in Table 4.1 along with accuracy.

Stomach has an accuracy, precision, recall, and F1-score of 1.0. Pylorus and Z line have the

next highest performances with 0.98 and 0.97 for all of the measures. Accuracy, precision,

recall, and F1-score for the cecum are 0.97, 0.91, 0.97, 0.94, respectively. The performance of

the rectum and illeum is 0.94, 1.0, 0.94, 0.97, and 0.8, 0.89, 0.8, 0.84 for accuracy, precision,

recall, and F1-score.

The learning and validation curves are illustrated in Fig. 4.4 which shows the network took

40 epochs to achieve 97% accuracy. To stop the learning process, early stopping has been

used.
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Figure 4.4: (a) and (b) show the loss curve, and (c) and (d) demonstrate the accuracy curves of the
learning and validation process for the proposed method. To better illustrate the improvements in
learning during the past epochs, a magnified view of the learning loss curve has also been presented.
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For the purpose of checking or visualizing the performance of a multiclass classification

problem, we use the AUC of the ROC, an effective metric for evaluating classification models’

performance. The ROC - AUC measures the discriminative ability of classification models.

ROC graphs were first developed for radar signal detection. In [65], it was first suggested

that ROC analysis be applied to medical research.

AUC is a measure of how well the model distinguishes between categories, and the higher

the AUC, the more accurate the model is at predicting classes. Considering that the goal of

this study is to classify the anatomical locations of the GI tract, the higher the AUC, the

better the model can distinguish between them.

Plotting ROC curves for each category in a multiclass model can be accomplished using

the One vs ALL methodology. As shown in Fig. 4.5, there are 6 ROC curves related to 6

different anatomical locations of the GI tract. An optimal discriminatory model would have

a ROC curve that starts from point (0,0) and goes to point (0,1), and then from this point

to point (1,1). From the figure, it is evident that the ROC curve of each location has the

optimal plot curve with an AUC of 1, meaning it has the best measure of separability.

This network was also trained on the same dataset without using ensemble learning to

evaluate the effectiveness of using the trained encoder on 99,417 unlabeled images as a feature

extractor. The results in Table 4.2 demonstrate that using feature extraction enhances

prediction by 5% when compared with no feature extraction.

Table 4.2: The effect of using trained encoder as the feature extraction

Method Accuracy Loss
Xception network without feature extraction 92% 0.24

Xception network with feature extraction using the trained encoder 97% 0.1

Confusion matrix is another performance measurement for classification problems. It is

highly beneficial to create a confusion matrix in order to provide the needed data to calculate

quantify metrics including Recall, Precision, Specificity, Accuracy, AUC-ROC curves, etc.

Table 4.3 shows the confusion matrix of the proposed model and the network with no feature

extraction. By comparing these two confusion matrixes we can estimate the effectiveness of

using the encoder for feature extraction for each individual anatomical location. According

to the table, we achieved 13, 7, 18, 3, 4 percent improvement in accuracy for the locations
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The proposed network recognized the anatomical location of gastro-intestinal endoscopy
images very accurately with area under the curve (AUC) values of 1.00 for all the locations (cecum,
ileum, pylorus, rectum, stomach, z line).
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of the ileum, pylorus, rectum, stomach, and Z line respectively. The highest improvements

are 18 and 13 percent related to the locations of the rectum and ileum. These two locations

contained fewer image samples than other locations. This indicates that, in classification

problems with less labeled images, feature extraction and ensemble learning improve results

efficiently.

Table 4.3: Comparison of the proposed method’s confusion matrix with the network without feature
extraction and ensemble learning. Top table is for the proposed method and the bottom table illustrates
the result for the network without ensemble learning.

Predicted label

T
ru
e
la
b
el

Locations Cecum Ileum Pylorus Rectum Stomach Z line
Cecum 0.97 0.03 0 0 0 0
Ileum 0.2 0.8 0 0 0 0
Pylorus 0 0 0.98 0 0 0.02
Rectum 0.06 0 0 0.94 0 0
Stomach 0 0 0 0 1 0
Z line 0 0 0.03 0 0 0.97

Predicted label

T
ru
e
la
b
el

Locations Cecum Ileum Pylorus Rectum Stomach Z line
Cecum 0.97 0 0.03 0 0 0
Ileum 0.33 0.67 0 0 0 0
Pylorus 0.02 0 0.91 0 0.02 0.04
Rectum 0.12 0.06 0 0.76 0 0.59
Stomach 0.02 0 0 0 0.97 0
Z line 0 0 0.07 0 0 0.93
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In deep learning, interpretability is an influential concept. For intelligent systems to be

integrated meaningfully into our everyday lives, transparent models must be built that can

explain their reasoning toward the prediction process they have. It is usually difficult to

balance accuracy with interpretability. Deep models employ complicated non-interpretable

modules that deliver superior performance. Interpreting these models is difficult due to

their complexity. However, to be reliable, AI systems need to be understood and have clear

justifications for their decision-making process. To have a further look at how the proposed

model detects the anatomical locations of the GI tract, a heatmap map from the CNN model

is drawn. A heatmap map from the CNN model is drawn to further investigate how the

proposed model detects the anatomical locations of the GI tract. Heatmap is also known as

class activation map, resulting from gradients of any particular concept flowing through the

last convolutional layer. This is done to identify the most crucial regions in the image for

the predicting procedure [66].

By understanding which components of an image belong to a particular class, we can more

efficiently localize images. Fig. 4.6 shows the above-mentioned map.

As can be seen from the heatmap, the colours represent different confidence scores that

GradCAM has calculated through the computation of gradients. The red colour signifies

the regions having the highest confidence in classifying the related image into the correct

location. In contrast, the blue region indicates the less effective regions for prediction. This

technique can also indicate that the proposed model does not make predictions based on

noise or external objects as they have no impact on the decision-making process.
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Figure 4.6: Visual explanation of decisions to highlight the important regions in the input images
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In most medical-related problems, the main challenge is the lack of enough labelled images.

This challenge can be overcome in two ways: collecting more samples for training the model

or designing architectures that can learn from fewer samples and predict accurately based

on them. It is not always feasible to collect more labelled data in this field; however, there

can be a great deal of unlabelled data that the network can take advantage of. An encoder

has been trained on unlabelled images and used as a feature extractor in the network, and a

total number of 840 labelled images from 6 different locations, cecum, ileum, pylorus, rectum,

stomach, and Z line have been used for the training process.

In Table 4.4, a comparison of the proposed method’s results with those from existing

studies is presented. These studies performed the same tasks as the proposed method, clas-

sification and labelling of GI tract anatomic locations.

In summary, Lee et al. [29] implemented a system for detecting 5 locations of the esoph-

agus, stomach, duodenal, ileum and colon based on colour changes observed in consecutive

video frames and achieved a 61% F1-score; no machine learning or deep learning approaches

were utilized in their work. The proposed approach outperforms their result by 36% con-

cerning F1-score.

Marques et al. [30] used colour features and SVM for the stomach, small intestine, and

large intestine (3 locations) to classify WCE frames, achieving an overall accuracy of 85.2%.

Shen et al. [31] used SIFT local feature extraction on WCE images and unsupervised learning

based on clustering for localization of the stomach, small intestine, and large intestine (3

locations). They achieved an overall accuracy of 97.6%.

In their work, the accuracy is 0.6% higher than ours, but the number of locations classified

is only three. The problem becomes more complex when there are more classes. In other

fields, such as anomaly detection, expanding the number of classes is also investigated. A

study conducted by Mohammed et al. [67] demonstrated that adding classes caused the

problem to become more complex and that performance decreased. On the other hand, a

method’s efficiency increases as it predicts more locations, which makes it more precise when

defining locations.

Saito et al. [13] achieved an overall accuracy of 66% when applying a CNN to standard

colonoscopy images, including the terminal ileum, the cecum, ascending colon to transverse

colon, descending colon to sigmoid colon, the rectum, and the anus (6 locations). Takiyama
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et al. [32] were pioneers who used standard endoscopy images for training a CNN to classify

input images as either the larynx, esophagus, stomach (upper, medium, and lower part) or

duodenum (6 locations). They achieved 97% accuracy with an AUC more than 99%. While

they have the same accuracy as our work, in our proposed method, the number of images

used for training is significantly lower than that employed in theirs. They utilized 27,335

image samples for the training process while our network achieved an accuracy of 97% with

840 labelled image samples.

Another experiment has been conducted in order to compare several methods including

the base methodology of some studies presented in Table 4.4 with the proposed method

based on feature extraction and ensemble learning. According to this table, [32] and [13] em-

ployed CNN, and [31] employed unsupervised data clustering with SIFT. The same dataset

has been applied to all of them and the results are illustrated in Fig. 4.7. In this exper-

iment, the proposed method has been compared with the Xception network which is the

main architecture used in this study, Resnet-50, VGG-15, simple CNN, and SVM with Scale

Invariant Feature Transform (SIFT) features. By using the processed dataset, which includes

840 labelled images from HyperKvasir, the proposed method outperforms the other models

in all categories.

While we were unable to make a direct comparison of our proposed method’s complex-

ity with the state-of-the-art due to the lack of their source codes and materials, we can

report the effectiveness of our approach in terms of its complexity. Specifically, our method

achieved a mean validation accuracy of 0.97 with a total of 40 epochs. It was trained on

Google Colab Pro with its provided GPU in approximately 85 seconds. A model’s training

time is directly proportionate to the computational resources required to train it, thereby the

proposed method is considered computationally efficient. In addition, our method offers a

number of unique advantages, such as requiring fewer labeled data while categorizing images

into six different locations.
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Figure 4.7: Different methods’ performance on the same dataset
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Table 4.4: Comparison between the proposed method and other research works
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5 Conclusion and Future Works

5.1 Conclusion

A novel classification method was developed in this study to classify the anatomical locations

of endoscopic images of the GI tract. In order to accurately follow up on an GI tract

abnormality, treat it, or perform surgery, the accurate location of any abnormality must

be precisely determined. Computer-aided intelligence systems can help better navigate the

challenges associated with the anatomical classification of GI tract images. To address this

challenge, having lots of well-labelled data is typically essential, but the quality and quantity

of labelled medical images, especially endoscopic images, are not yet sufficient. A major

objective of our method was to overcome this lack of properly labeled and available data. As

a result, we employed two different machine learning methods to accomplish this goal. The

first step in our method is to use transfer learning and take advantage of the vast amount

of unlabeled data that is publicly available. Following that, two networks extract features

with different characteristics to improve the learning process. With ensemble learning, both

feature vectors are considered in the final decision.

In the first part of our solution an auto-encoder is trained on 99,417 GI tract unlabeled

images from the Kvasir dataset to learn efficient embeddings of GI tract unlabeled data. The

encoder section of this auto-encoder is then separated from the encoder-decoder architecture

and used as a feature extractor in the main network to transfer the extracted knowledge. As

all the information in the GI tract image should be preserved during encoding, this knowledge

includes the most informative GI tract image features. By employing this technique, a more

discriminating feature can then be obtained. For the second part of our solution, we integrate

two machine learning models into a unified framework to improve the final predictions. This

prediction is based on a concatenation of the features extracted from both models, the trained

encoder and the Xception network. Preprocessed and filtered Kvasir labelled images from 6

different anatomical locations of the gastrointestinal tract are included in the data for this
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part’s training and testing procedure.

The suggested technique yields an F1-score, AUC, and overall accuracy of 97%, 100%,

and 97% respectively. To evaluate the effectiveness of these machine learning techniques, the

network was also trained on the same dataset without transferring knowledge and ensemble

learning. It is demonstrated that the use of feature extraction and ensemble learning improves

prediction by 5% over the absence of these techniques. According to the analysis of each

category separately, there is a significant improvement of 18 and 13 percent in the location

of the rectum and ileum. Compared to other locations, these two had fewer image samples.

The results indicate that feature extraction and ensemble learning are efficient approaches

to improving results in classification problems with less labeled images.

Various studies have been carried out to demonstrate the significance of the proposed

method. A detailed comparison shows our work’s advantage over previous works. Research

works can be analyzed through a variety of metrics including accuracy, number of locations,

and number of labeled images. While having fewer than a thousand labeled images, our

method achieved higher accuracy than other prior studies. A further improvement over most

previous approaches is that our method is able to categorize more anatomical locations than

previous studies. It is important to note that as more classes are added, the problem becomes

more complex, making classification more difficult.

5.2 Future Works

The proposed method of predicting gastrointestinal tract locations using transfer learning and

ensemble learning has shown promising results in overcoming challenges faced by previous

methods. There are, however, some avenues for further research in this field. These future

works could significantly contribute to the advancement of medical science by providing more

accurate and efficient solutions.

There is a potential direction for future work in the field of gastrointestinal image classifi-

cation that involves addressing the limitations of labeled data. The challenge arises from the

fact that most datasets in this field are private and there are not enough appropriately labeled

images to build effective machine learning models. The development of medical technology,

such as capsule endoscopy, offers opportunities for the collection of large volumes of images

that can be annotated by medical professionals. Therefore, we are able to not only propose
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novel architectures that are more flexible and effective for classifying images into multiple

categories, but also demonstrate their generalizability on a variety of datasets. The future

of research in this area could therefore focus on developing new techniques for efficiently

collecting and annotating large amounts of image data generated by medical devices such as

capsule endoscopy.

The incorporation of additional medical data, imaging modalities, and patient features

into image classification is another promising area of future research. In order to guide

the classification process, we could use patient history data, such as medical conditions,

medications, and lifestyle factors. Furthermore, other medical imaging modalities, such as

MRI or CT scans, may provide complementary information that can enhance our model’s

accuracy. Our model could also be improved by incorporating extracted patient data, such

as age, gender, and genetic information. The development of an algorithm that receives

all of these data sources and makes predictions based on them could be one avenue for

future research in this area. Especially in complex cases, such as patients with multiple

comorbidities, this approach could be useful for improving the accuracy and interpretability

of our model. Rather than a model ensemble between different architectures, we could also

use a model ensemble between different data sources.
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Appendix A

Wireless Capsule Endoscopy

Both traditional endoscopy and wireless capsule endoscopy may be enhanced with the pro-

posed image classifier. The interpretation of images captured by wireless capsule endoscopy

can, however, be challenging due to noise and artifacts, which make it difficult to accurately

categorize images into different anatomical locations or identify specific features. As it al-

lows for non-invasive visualization of the entire digestive tract, wireless capsule endoscopy is

a promising technology for the diagnosis and monitoring of various gastrointestinal disorders.

Given the importance of capsule endoscopy, using AI solutions to enhance its capabilities is

one of the key components of this study. Fig. A.1 shows a few images taken by capsule

endoscopy.

Figure A.1: A few samples captured by capsule endoscopy
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The use of an image classifier in wireless capsule endoscopy can assist in interpreting

videos and images captured by the capsule. Typically, capsules are equipped with cameras

that capture images and videos as they travel through the digestive system. These images

and videos can then be used to detect and analyze various gastrointestinal conditions. There

are a variety of types of endoscopic capsules available on the market, as shown in Fig. A.2.

Figure A.2: Different types of endoscopic capsules on the market and their information 1

Real-time analysis of wireless capsule endoscope images using image classifiers involves the

application of machine learning models to the real-time images and videos captured by the

capsule endoscope while they are being transmitted to a device. Having immediate feedback

during a procedure can allow the clinician to adjust the intervention in real-time based on the

analysis of the images. Detecting bleeding or other urgent abnormalities through real-time

image analysis can be especially useful in situations where immediate action is needed.

1https://igniteoutsourcing.com/healthcare/capsule-endoscopy-technology/
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