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ABSTRACT 

 

With the modernization of power industry over recent decades, diverse smart technologies have 

been introduced to the power systems. Such transition has brought in a significant level of 

variability and uncertainty to the networks, resulting in less predictable electricity demand. In this 

regard, load forecasting stands in the breach and is even more challenging. Urgent needs have been 

raised from different sections, especially for probabilistic analysis for industrial applications. 

Hence, attentions have been shifted from point load forecasting to probabilistic load forecasting 

(PLF) in recent years. 

This research proposes a novel embedded feature selection method for PLF to deal with sparse 

features and thus to improve PLF performance. Firstly, the proposed method employs quantile 

regression to connect the predictor variables and each quantile of the distribution of the load. 

Thereafter, an embedded feature selection structure is incorporated to identify and select subsets of 

input features by introducing an inclusion indicator variable for each feature. Then, Bayesian 

inference is applied to the model with a sparseness favoring prior endowed over the inclusion 

indicator variables. A Markov Chain Monte Carlo (MCMC) approach is adopted to sample the 

parameters from the posterior. Finally, the samples are used to approximate the posterior 

distribution, which is achieved by using discrete formulas applied to these samples to approximate 

the integrals of interest. The proposed approach allows each quantile of the distribution of the 

dependent load to be affected by different sets of features, and also allows all features to take a 

chance to show their impact on the load. Consequently, this methodology leads to the improved 

estimation of more complex predictive densities. The proposed framework has been successfully 

applied to a linear model, the quantile linear regression, and been extended to improve the 

performance of a nonlinear model.  

Three case studies have been designed to validate the effectiveness of the proposed method. The 

first case study performed on an open dataset validates that the proposed feature selection 

technique can improve the performance of PLF based on quantile linear regression and 

outperforms the selected comparable benchmarks. This case study does not consider any recency 

effect. The second case study further examines the impact of recency effect using another open 

dataset which contains historical load and weather records of 10 different regions. The third case 
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study explores the potential of extending the application of the proposed framework for nonlinear 

models. In this case study, the proposed method is used as a wrapper approach and applied to a 

nonlinear model. The simulation results show that the proposed method has the best overall 

performance among all the tested methods with and without considering recency effect, and it 

could slightly improve the performance of other models when applied as a wrapper approach. 
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1. Introduction 

 

1.1. Electric Load Forecasting 

 

To guarantee a reliable and secure power supply, the produced electricity must constantly fulfill 

the load and system loss requirements within acceptable limits, given the inefficiency of large-scale 

electricity storage. Over decades electric load forecasting has been a critical component of power 

system operation and planning, delivering considerable benefits to both power utilities and their 

consumers. The definition of electric load forecasting is straightforward. Basically, it can be 

defined as the prediction of anticipated load for a predetermined period, ranging from a few hours 

to several years into the future. Load forecasting provides utilities with rich information on a wide 

range of decision-making processes. It can tell when, where and how electricity is demanded, and 

thus assist system operators to make decisions on different operation and planning actions such as 

adjusting output of generators, interchanging power with neighboring systems, and installing extra 

capacity to meet the increasing demand, etc. Hence, on the one hand, utilities can maximize their 

revenues under the promise of a secure system. One the other hand, the customers can benefit from 

a secure and reliable power supply. 

With the modernization of power systems over recent decades, load forecasting has grabbed 

increasing attention. New requirements arise in different sections including transmission and 

distribution planning, secure and optimal operation, and system investments [1]. Due to the 

stochastic nature of load and the presence of diverse exogenous factors like weather conditions, 

calendar effects, and others, achieving complete accuracy in load forecasting is not feasible. 

Inaccurate load forecasts can lead to an increase in cost. For example, overestimating the load will 

require extra generation, which requires increasing output or committing more units, resulting in 

augmented operational costs. Underestimating the load can cause even more severe problems. 
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Inadequate generation can lead to the failure of supplying the required reserve and stability to the 

system, which may ultimately result in a system breakdown [2]. Besides, failing to meet the demand 

will cause even more complicated impact on end users. For example, a lack of generation will force 

the utilities to buy power from the market, where the price is super expensive if it is close to the last 

minute. As per the estimates provided in [3], 1% increase in the national load forecasting error can 

cost around £10 million a year at 1984 in U.K. because of inefficient plant scheduling. As indicated 

in [4], a reduction of 1% in the load forecasting error for a 10,000 MW capacity system can 

potentially result in savings of approximately $1.6 million per year. Therefore, it cannot be 

overemphasized that accurate load forecasting is at the core of operating and planning a reliance, 

secure and economical power system. 

 

1.2. From Point Load Forecasting to Probabilistic Load Forecasting 

 

Over the past few decades, electric load forecasting has facilitated a wide range of planning and 

operation tasks for power utilities. Conventionally, most of the applications in the past relied on 

point load forecasting, such as unit commitment, load switching, economic dispatch, etc. However, 

new challenge arises from the power industry modernization. In recent decades, the widespread 

diffusion of new facilities, such as the introduction of advanced smart grid technologies and 

intermittent renewable energy resources, have brought in a significant level of variability and 

uncertainty to the networks, resulting in less predictable electricity demand and the urgent needs 

for probabilistic analysis for the industrial applications. 

A wide range of applications need probabilistic load forecasting (PLF) for the derivations of 

their probabilistic analysis. A typical one is probabilistic load flow, the well-known methodology 

used to evaluate the impact of the uncertainties on a set of electrical indices and the operational 

risks of the system. The load uncertainty is commonly modeled by a stationary statistical 

distribution based on historical records, and thus failed to construct future scenarios. To consider 

the sequence order of the system events, the calculation of time-varying load flow has seen 

increasing interests very recently [5], which takes into account the time series models of demand 

and generation. Hence, PLF can be adopted to generate a time-varying injection to benefit the 

calculation of time-varying flows and voltages for future scenarios. An extension of the power 
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flow-based application is the Volt-Var optimization (VVO), which is a control function used in 

distribution systems to keep the load voltages within the standards. From the operational planning 

perspective of distribution networks, VVO can be employed to help determine the best operation 

condition for the control equipment for a period of time in the future (e.g., 1 day ahead). To guard 

against uncertainty in the load, PLF is used to support the computation of the voltage variation and 

consequently help choose the optimal settings that are robust against load fluctuations [6]. Another 

important applicable scenario of PLF is for microgrid, where a high penetration of intermittent 

distributed resources is integrated. PLF is frequently used to quantify the upcoming uncertainties in 

the demand in the microgrid to mitigate several operation issues and support the energy 

management system. One case is to use it for the assessment of operational reliability. Variation in 

the demand is one of the main uncertain sources that impacts the reliability metrics. 

Conventionally, reliability evaluation assumes a constant distribution based on statistical data for 

the load uncertainty, which, however, could vary in an operational time frame. Hence, the 

operational reliability evaluation for the microgrid has drawn increasing attention [7], [8], which 

requires PLF to capture the time-varying probabilities of the load in the short term. Another 

important application in the microgrid is the optimal operation of the energy management system 

(EMS) under variable generation and demand [9]. A well-designed EMS can lessen the impact of 

uncertainty and facilitate the integration of distributed resources with the support of an accurate 

forecasting system. For the purpose of optimal dispatch operation, the EMS is fed with relevant 

information of the generation and demand, as well as the corresponding forecasts. To ensure a 

specific level of reliability, the forecasting system should not only give the expected value but also 

accounts for the associated uncertainty. In this case, PLF plays a critical role in the estimation of 

the future load, and thus benefiting the probabilistic analysis. 

Beyond the above-mentioned scenarios, other applications include but are not limited to 

stochastic unit commitment, probabilistic load flow, reliability planning, etc. [10], which rely on 

accurate PLF. 

Among the limited literature on PLF in the scope of technical and methodological development, 

quantile regression is widely used to directly generate probabilistic forecasts (PFs). It is usually 

combined with machine learning techniques including neural network [11], [12], random forests 

[13], etc. Another approach that can be used to directly generate PFs is kernel density 
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estimation [14]. PFs can also be indirectly generated from point forecasts, for instance, by 

modeling and simulating the residuals of the underlying point forecast [15], [16], or by feeding 

temperature scenarios to point forecasting models [17]. To manifest uncertainty, these methods 

provide PFs in the form of confidential intervals, quantiles or the whole probability density 

function (PDF), which provides more information of the predicted load than point forecasts thus 

enhancing the decision-making process in operation and planning of the system. A systematic 

tutorial review on PLF can be found in [10]. Most of the relevant works focus on establishing 

and optimizing the forecasting model, while very few attentions have been paid to the feature 

selection phase, particularly in the area of PLF. 

 

1.3. Feature Selection for Load Forecasting 

 

Feature selection is the process of selecting a subset of relevant input features when 

constructing a predictive model. It is aimed to avoid the curse of dimensionality, reduce 

modeling complexity, reduce the risk of over-fitting and improve the forecasting performance. 

A majority of the feature selection algorithms come with an evaluation metric which scores the 

selected features, thus offering better interpretability. 

From a taxonomic standpoint, feature selection techniques are typically classified into three 

groups: supervised, unsupervised, and semi-supervised feature selection. Supervised feature 

selection algorithms can further be categorized into filter methods, wrapper methods, embedded 

methods and hybrid methods [18]. A comprehensive review is given in Chapter 2. It has not 

been a long time since researchers began using various feature selection techniques for their 

predictive model construction, however, with most of the efforts made on deterministic load 

forecasting. To list a few examples, [19] proposes a hybrid filter-wrapper approach considering 

relevancy, redundancy and interaction of the candidate features for short-term load forecasting. 

A conditional mutual information-based feature selection method is developed in [20], which 

can carry out relevance and redundancy analysis. To extract the deep features from multivariate 

data, [21] incorporates an embedded feature selection process into a Long Short-Term Memory 

based network model through a hybrid ensemble approach for ultra-short-term industrial load 

forecasting. However, very few papers introduce feature selection to PLF. It is a prevalent 
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approach in the literature to employ heuristic methods such as filter and wrapper methods, 

which use a point error measure for feature selection in PLF. Specifically, features are initially 

selected based on a point error measure and subsequently employed for PLF. Nonetheless, these 

methods neglect the inherent mechanism of PLF and are not appropriate for the task. After 

conducting a thorough search, I was able to locate only two publications that have investigated 

feature selection for PLF using holistic methods. [22] proposes a wrapper method by using a 

probabilistic error measure for feature selection and compare it with method using a point error 

measure in the context of PLF. However, this method performs feature selection only for part of 

all available features, utilizing exhaustive search to explore all possible combinations of this 

subset. As a result, it fails to conduct a comprehensive evaluation of all features and does not 

demonstrate robust generalization. [23] introduces 𝐿1-norm sparse penalty to quantile regression 

model based on least absolute shrinkage and selection operator (LASSO) to select features and 

to the best of the authors’ knowledge, is the only recent paper that falls in the scope of 

embedding feature selection into a PLF model. This method uses a probabilistic error measure 

for feature selection and the error measure is consistent with the probabilistic error measure 

used for the final PLF evaluation. This approach is holistic and considers the forecasting 

process as a whole, instead of individual parts, to address the problem of feature selection for 

PLF. This method allows the selected features to vary among different quantiles, thus showing 

its potential to capture complex densities more accurately. However, this method has to go 

through a model selection process for every quantile to search for the optimal adjustment 

parameter and it is not equipped with the ability of handling sparse input feature space. In this 

regard, our proposed method is expected to be a holistic embedded method that surpasses the 

limitations of the most recent state-of-the-art, by inherently better modeling the uncertainty 

while selecting features. The capability of the proposed method is described in detail in the 

following subsection. 

 

1.4. Research Objectives and Contributions 

 

The basic objective of this research work is to propose a new embedded feature selection 

framework for PLF via Bayesian inference. The main contributions of the research are four-fold: 
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1) An embedded feature selection framework via Bayesian quantile regression is added to 

the limited literature for PLF.  

The predominant research in the field of load forecasting has concentrated primarily on 

feature selection for deterministic load forecasting models. However, the body of literature 

on feature selection for probabilistic load forecasting is quite sparse. In practical 

applications, researchers often resort to heuristic approaches such as filter or wrapper 

methods. Nevertheless, these methods rely on a point estimation error metric for feature 

selection, rendering them unsuitable for probabilistic models. To address this issue, I have 

proposed a novel embedded feature selection method for probabilistic load forecasting, 

which offers a more comprehensive approach. The framework can significantly improve the 

forecasting performance of a certain predictive model and outperforms comparable 

benchmarks. 

2) The proposed framework is capable of handling high-dimensional datasets and sparse 

feature space. 

The dummy coding scheme used for categorical variables in load forecasting models make 

the problem a high-dimensional one and introduces great sparsity to the models. Hence, we 

introduce a sparseness-favoring prior for the prior probability of the inclusion indicator 

variable. This sparseness-favoring prior is used to encourage the model to favor solutions 

that are sparser. In other words, it encourages sparsity in the model. This prior is added to 

our Bayesian model as a penalty term in the posterior distribution. By incorporating this 

penalty term, the model is less likely to overfit the data and is more likely to select the most 

relevant features, leading to a simpler and more interpretable model. 

The idea behind this prior is that in many real-world problems, the underlying true model is 

often sparse, meaning that only a small number of features or variables are relevant for 

predicting the outcome. By using a sparseness-favoring prior, the model can be induced to 

automatically identify and select the most relevant features, while suppressing the effects of 

irrelevant or noisy features. 

3) The model can estimate complex distributions more accurately. 

Through the use of Bayesian inference, the proposed approach enables selected features to 

vary across different quantiles and allows all features to take a chance to show its influence. 
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In contrast, the current state-of-the-art techniques fail to provide this capability. 

Consequently, the proposed approach achieves a higher degree of precision in estimating 

complex distributions. 

4) The proposed method can provide more meaningful interpretation of feature selection 

results. 

The proposed feature selection methodology differs from the current state-of-the-art in terms 

of interpretability. Rather than relying on importance scores to interpret the feature selection 

results, the proposed method employs inclusion probabilities to assess the relevance of all 

input features. 

To validate the effectiveness of this framework, three major parts are designed for this research, 

as described in the following: 

 Part I: In the first part, the proposed framework is applied to the quantile linear regression 

model and tested with state-of-the-art techniques including three filter methods, two 

wrapper methods, an embedded method, as well as the origin linear model and a nonlinear 

model without feature selection using an open dataset. This dataset contains historical 

records for one region. This part focuses on examining the model performance without any 

recency effect. 

 Part II: In the second part, the proposed framework is applied to the same predictive model 

used in Part I with another public dataset which contains historical records for 10 different 

zones. The main objective of this part is to examine the model performance with the 

consideration of recency effect. Besides, this part also validates that our conclusions are not 

restricted to one specific dataset or region. 

 Part III: This part extends the proposed methodology and applies the probabilistic feature 

selection results to a nonlinear predictive model. The same dataset as in Part II is used in 

this part. The simulations are designed to validate if the proposed feature selection method 

could outperform the benchmark methods when applied to nonlinear predictive models. 

 

1.5. Structure of the Thesis 

 

This thesis consists of five chapters which is briefly described as follows: 
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Chapter 1 introduces basic concepts of electric load forecasting, PLF and feature selection. The 

literature on feature selection for electric load forecasting including PLF is briefly reviewed. The 

research objective and the main contribution of this research are lastly presented in this chapter. 

Chapter 2 further discusses feature selection techniques. General background and development 

are presented. Formal definition and preliminary concepts are introduced. A comprehensive review 

of the state-of-art feature selection and PLF techniques is also given in this chapter. 

Chapter 3 presents the proposed embedded feature selection method for PLF via Bayesian 

inference. The linear quantile regression model selected for forecasting is discussed first. 

Afterward, the proposed methodology is introduced in two steps following the Bayesian inference, 

specifying the priors, and sampling from the posteriors. The techniques that are used in the 

modeling and forecasting process are introduced. The whole structure of the proposed 

methodology is summarized at the end of this chapter. 

Chapter 4 demonstrates the effectiveness of the proposed method by comparing with three filter 

methods, two wrapper methods and an embedded method using a public dataset that contains 

historical records for one zone. The simulations without considering any recency effect are 

implemented. A comprehensive evaluation criterion for PLF is introduced. Short-term PLF is 

carried out to evaluate the performance of the feature selection techniques. Feature selection 

interpretation is also discussed in this chapter. 

Chapter 5 extends the simulations of Chapter 4 by considering recency effect, which 

comprehensively examines how recency effect impacts the performance of the proposed method. 

The tests are conducted on another public dataset that contains information for 10 different zones, 

which also further confirms that our conclusions are not restricted to one specific dataset. 

Chapter 6 proposes a wrapper approach based on the proposed feature selection method. This 

chapter is designed to examine if the feature selection result of the proposed method could 

possibly improve the performance of nonlinear forecasting models. Thus, the proposed feature 

selection method plays as a wrapper, the result of which is then fed to a popular nonlinear 

probabilistic forecasting model for validation. 

Chapter 7 summarizes the thesis. 
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2. Literature Review 

 

2.1. Introduction 

 

This chapter briefly introduces the basic concepts of feature selection and PLF and reviews the 

state-of-the-art literature for both topics.  

 

2.2. Introduction of Feature Selection 

 

Over the past decades, the domain of features of the data involved in the applications of 

machine learning and data mining have expended explosively from tens to hundreds or even 

thousands of features. Serious challenges have been presented to existing learning methods due to 

the curse of dimensionality. The presence of a large set of features tend to increase the modeling 

complexity and the risk of overfitting of a learning model, thus resulting in reduced learning 

performance. To address this problem, feature selection methods have been extensively studied in 

the literature. 

Feature selection, also known as variable selection, is defined as the process of selecting a 

subset of relevant features when constructing a predictive model. Feature selection is often raised 

up together with another term, feature extraction, which is defined as the process of transforming, 

combining, and reformatting raw data or existing features into new ones. Feature selection and 

feature extraction are both known as parts of feature engineering. The difference of these two terms 

is illustrated as Figure 2.1. In practice, feature extraction is often used to transform the raw data 

into feature that a particular algorithm can understand. Sometimes we can obtain some inherent 

features directly based on our prior knowledge of the problem to be solved. These inherent features 

can again be reformatted or transformed to new features that best fit the needs of the target 
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algorithm through feature extraction. The task of feature selection is clearer, which is to select an 

optimal subset of features that best improve the performance of the model and discard the rest. 

 

 

(a) Feature extraction 

 

(b) Feature selection 

Figure 2.1 Schematic illustration of difference between feature extraction and feature selection 

 

A typical data mining analysis pipeline is depicted in Figure 2.2, as described in [24]. First, the 

raw data is reformatted and transformed into a format in preparation for analysis. In this step, the 

data is split into different sets including training set, validation set and testing set. Thereafter, the 

preprocessed data goes through a feature engineering process. This step can include either feature 

extraction or feature selection alone, or these two combined together, with the features first being 

extracted and then selected. The obtained optimal subset of features is then fed into the training 

stage. In some cases, the performance of the training can be fed back to another round of feature 
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selection, such as a wrapper method which is introduced later. Finally, the trained model is 

validated and accessed, and the knowledge is obtained for the purpose of analysis. Feature 

selection plays an essential role in the stream of a successful data analysis process. Removing 

irrelevant and redundant features in the data space will ultimately improve the performance of a 

model, while improper feature selection will significantly deteriorate the model performance such 

as that relevant features are identified as irrelevant and removed from the feature space. 

 

Figure 2.2 A typical data mining analysis pipeline 

The objectives of feature selection are manifold, with the main ones being to avoid the curse of 

dimensionality, to reduce modeling complexity, to reduce the risk of over-fitting and to improve 
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the forecasting performance, by removing the irrelevancy and redundancy in the inputs. Features 

used to train a model are not a “the more, the merrier” thing. An apparent problem brought by 

high-dimensional data is that there is a positive correlation between the number of features and the 

training time. Besides of the dimensionality of the data, having redundant features in the input data 

will also dramatically slow down the training process of a learning model. For example, it may 

take too long for the gradient descent algorithm to oscillate and converge when having many 

redundant features in the training data. More iterations will be required by the algorithm, therefore 

resulting in much longer training time. Redundant features may also deteriorate the performance of 

the learning model. Taking the multiple linear regression model as an example, if there is 

redundancy in the training data matrix, the rank of the matrix will not be full. As a result, the 

optimal estimator cannot be obtained because the inverse calculation does not exist. Another 

example is that, when an algorithm has a predefined number of iterations, the algorithm may 

terminate too early and give a model with its performance lower than expected. 

Feature selection algorithms can be basically classified into three categories, i.e., supervised, 

unsupervised and semi-supervised feature selection [25], based on whether the data is labelled or 

not. A majority of the literature fall in the scope of supervised feature selection because it is the 

earliest and most used practice. Supervised feature selection algorithms are used for labelled data. 

They identify relevant features for best achieving the goal of the supervised model by making use 

of the labeled outputs. Supervised feature selection methods can be further classified into filter 

methods, wrapper methods and embedded methods, which are introduced in detail in later sections. 

Unsupervised feature selection algorithms evaluate the features based on various criteria, such as 

entropy, variance, data structure, without needing label information. Semi-supervised feature 

selection algorithms integrate labeled data into unlabeled data as additional information to improve 

the learning performance when the data is partially labelled. A diagram of such classification is 

shown as Figure 2.3. 

 



13 

 

 

Figure 2.3 Feature selection categorization 

 

Generally, feature selection is performed in four steps [26]: 

1) Subset generation 

First, a search strategy is designed to search the feature space for a candidate subset of 

features. The search can be complete, sequential (forward or backward), random or based on 

certain algorithms. 

2) Subset evaluation 

Thereafter, the candidate subset of features obtained in the first step is evaluated based on a 

certain evaluation criterion. 

3) Stopping criterion 

A stopping criterion is predefined before the search. After going through all the generated 

subsets of features, the optimal subset is determined based on the evaluation criterion. 

4) Validation 

The final step validates the optimal subset of features based on domain knowledge or a 

validation dataset. 

Because load forecasting is a supervised learning problem, the rest of this chapter goes through 

the literature and briefly introduces the most used supervised feature selection methods. 

 

2.3. Review of State-of-Art Feature Selection Techniques 

 

In the following subsections, a brief description of the most used supervised feature selection 
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techniques and their methodological development are reviewed. A taxonomy of the methods in this 

category including filter methods, wrapper methods and embedded methods, is presented. The 

fundamentals, the main characteristics, and the advantages and disadvantages of these methods are 

reviewed. 

 

2.3.1. Filter Methods 

 

Filter methods measure the importance of each feature independently based on certain 

statistical criteria regardless of the forecasting algorithm. They examine the intrinsic 

characteristics of the features prior to the learning process. Representative filter methods 

include Fisher score [27], Relief [24], mutual information [28] and Pearson correlation 

coefficients [29], to name a few. In most cases, these methods perform the task of feature 

selection in a manner of two steps, as illustrated by Figure 2.4. First, a certain criterion is used 

to evaluate the features. The evaluation can be either univariate or multivariate. Thereafter, a 

threshold is chosen below which the features are neglected. A brief description for the 

previously mentioned filter methods is given below. 

 

Figure 2.4 Schematic representation of filter method 
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Fisher score: This method selects each feature independently based on the Fisher criterion 

[27]. The Fisher score for the 𝑖𝑡ℎ feature is given by 

𝐹𝑖 =
∑ 𝑛𝑗(𝜇𝑖𝑗 − 𝜇𝑖)

2𝐾
𝑘=1

∑ 𝑛𝑗𝜌𝑖𝑗
2𝐾

𝑘=1

 
(2.1) 

where 𝜇𝑖𝑗 and 𝜌𝑖𝑗 are the mean and the variance of the 𝑖𝑡ℎ feature in the 𝑘𝑡ℎ class respectively, 

𝑛𝑘  is the size of the 𝑘𝑡ℎ  class, and 𝜇𝑖  is the mean of the 𝑖𝑡ℎ  feature throughout the whole 

dataset. The objective of Fisher score method is to target those features that make the 

distances between data points in different classes as large as possible and the distances 

between data points in the same class as small as possible.  

Relief: This method calculates a feature score based on the estimation of feature quality 

differences between nearest neighbor instance pairs. Relief-based algorithm penalizes the 

features that give different values to neighbors of the same class, while rewards predictors 

that give different values to neighbors of different classes. An introduction to the algorithm 

can be found in [24]. As an example, the original Relief algorithm developed by [30] is given 

by the following pseudo code as Table 2.1. In this table, 𝑛 is the number of training instances. 

𝑎 is the number of features. 𝑚 is a parameter that denotes the number of random training 

instances. 𝑾 denotes the vector of the feature weights. 𝐴 denotes one certain feature. 𝑾(𝐴) 

denotes the weight of feature 𝐴. The nearest hit is defined as the nearest instance with the 

same class, and the nearest miss is defined as the nearest instance with the opposite class. 

The function 𝑑𝑖𝑓𝑓 is defined as the difference between two instances 𝐼1 and 𝐼2 in the value of 

feature 𝐴 . The definition of 𝑑𝑖𝑓𝑓  is different for continuous and discrete features. For 

discrete features, 𝑑𝑖𝑓𝑓 is given by 

𝑑𝑖𝑓𝑓(𝐴, 𝐼1, 𝐼2) = {
0       𝑖𝑓 𝑣𝑎𝑙𝑢𝑒(𝐴, 𝐼1) = 𝑣𝑎𝑙𝑢𝑒(𝐴, 𝐼2)
1                                       𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.2) 

For continuous features, 𝑑𝑖𝑓𝑓 is given by 

𝑑𝑖𝑓𝑓(𝐴, 𝐼1, 𝐼2) =
|𝑣𝑎𝑙𝑢𝑒(𝐴, 𝐼1)− 𝑣𝑎𝑙𝑢𝑒(𝐴, 𝐼2)|

max(𝐴) − min (𝐴)
 

(2.3) 
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Table 2.1 Pseudo code of the original Relief algorithm 

Original Relief algorithm 

for 𝑖 = 1, … , 𝑚 repeat 

randomly select an instance 𝑅𝑖 

find a nearest hit 𝐻 and miss 𝑀 

for 𝐴 = 1, … , 𝑎 repeat 

    𝑾(𝐴) = 𝑾(𝐴) −
𝑑𝑖𝑓𝑓(𝐴,𝑅𝑖,𝐻)

𝑚
+

𝑑𝑖𝑓𝑓(𝐴,𝑅𝑖,𝑀)

𝑚
 

end 

end 

return 𝑾 which evaluates the quality of the features  

 

Mutual information: The mutual information is a statistical index that measures dependence 

between variables. It has been extensively used in filter methods to evaluate the relevancy of 

a subset of features in predicting the response variable and identify redundant variables. The 

mutual information can be used as a score for filter methods. Given two discrete random 

variables 𝑋 and 𝑌, the mutual information between two random variables can be calculated 

by 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 (2.4) 

where 𝑝 is the probability density function. 

If the random variables are continuous, the calculation replaces the summations by integrals 

and gives the mutual information as 

𝐼(𝑋; 𝑌) = ∫ ∫ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦 (2.5) 

Mutual information is closely related to entropy. Generally, entropy measures the disorder or 

randomness of a system. For a random variable, entropy measures the associated level of 

uncertainty in it. The entropy of a random variable 𝑋 can be calculated by 

𝐸(𝑋) = − ∑ 𝑃(𝑋 = 𝑥𝑖)

𝑥𝑖∈𝑋

∙ log (𝑃(𝑋 = 𝑥𝑖)) (2.6) 

When it comes to consider two random variables together, the uncertainty is measured by the 
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joint entropy: 

𝐸(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)

𝑦𝑖∈𝑌𝑥𝑖∈𝑋

∙ log (𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑖)) (2.7) 

Given that the random variable 𝑌 is known, the conditional entropy of 𝑋 can be calculated by 

𝐸(𝑋|𝑌) = −∑ 𝑃(𝑥, 𝑦)

𝑥,𝑦

∙ log (𝑃(𝑥, 𝑦)) (2.8) 

The relation between entropy and mutual information is given by the following formulations: 

𝐼(𝑋; 𝑌) = 𝐸(𝑋) − 𝐸(𝑋|𝑌) (2.9) 

𝐼(𝑋; 𝑌) = 𝐸(𝑌) − 𝐸(𝑌|𝑋) (2.10) 

𝐼(𝑋; 𝑌) = 𝐸(𝑋) + 𝐸(𝑌) − 𝐸(𝑋, 𝑌) (2.11) 

𝐼(𝑋; 𝑌) = 𝐸(𝑋, 𝑌) − 𝐸(𝑋|𝑌) − 𝐸(𝑌|𝑋) (2.12) 

To give a more direct understanding, the relation between entropy and mutual information is 

illustrated by Figure 2.5. 

 

Figure 2.5 Relationship between entropy and mutual information 

 

Pearson correlation coefficients: In statistics, Pearson correlation coefficient is used to 

measure the linear correlation between two variables. It is widely used in feature selection to 

identify highly correlated features. Highly correlated features show more linear dependency 

between them, hence showing close impact on the dependent variable. It is a common 

practice in dependency-based feature selection method to drop highly correlated features. 

Pearson correlation coefficient is defined as the covariance of the two variables divided by 
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the product of their standard deviations. Given two random variables 𝑋  and 𝑌 , their 

corresponding Pearson correlation coefficient can be calculated by 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

(2.13) 

where 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance of the two random variables, 𝜎𝑋 and 𝜎𝑌  are the standard 

deviation of 𝑋 and 𝑌 respectively. 

Pearson correlation coefficient ranges from -1 and 1. The value reflects the direction and 

strength of the correlation between two variables, as shown by Table 2.2 below. 

Table 2.2 Interpretation of Pearson correlation coefficient 

Pearson correlation coefficient Correlation type Interpretation 

[-1,0) Negative 

When one variable changes, 

the other one changes in the 

same direction 

0 None 
The two variables have no 

correlation 

(0,1] Positive 

When one variable changes, 

the other variable changes in 

the opposite direction 

 

Filter methods are known to be very computational efficient compared to other methods and 

therefore they can be easily scale up to large dataset [25]. Filter methods are independent of any 

learning algorithms so that the bias in the feature selection process does not correlate with the 

bias in the learning process, hence preserving a better generalization property. The major 

disadvantages of the filter approaches are that they fail to consider the effect of feature 

dependencies. In other words, filter methods fail to consider the situation where some features 

may have little impact as an individual but big predictive power when they are combined 

together. More importantly, it ignores the biases of the forecasting models [18], leading to 

varied performance when the selected features are applied to different learning models. 

 

2.3.2. Wrapper Methods 
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Wrapper methods use a wide range of search algorithms to search the feature space for the 

optimal subset of features by comparing the predictive performance of a specific learning model 

using different combinations of features. The search algorithms used by wrapper methods can 

be broadly classified into three types, i.e., exhaustive search, heuristic search and random search 

[31]. 

Exhaustive search, such as breath-first search, systematically enumerate all possible subsets 

of features. The time complexity for a size of 𝑚  features is 𝑂(2𝑚)  [18]. Hence, using an 

exhaustive search strategy is prohibitive unless 𝑚 is small. 

Instead, wrapper methods often resort to heuristic methods, including sequential forward 

selection and sequential backward selection [32]. The sequential forward selection algorithm 

starts from an empty set and add the feature which best improves our model at a time until the 

required number of features are added, or the addition of a new feature does not improve the 

performance of the model. The sequential backward selection algorithm starts with the universal 

feature set and removes one feature at a time whose removal results in lowest decrease of the 

performance of the model until the required number of features are eliminated or the removal of 

a new feature does not degrade the performance of the model. It should be noted that both two 

methods are greedy algorithms that are likely to fall into local optimum [33]. Feature 2.6 depicts 

a diagram of the two sequential selection methods. 
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Figure 2.6 Diagram of sequential forward selection and sequential backward selection 

 

Random search methods [34], [35] randomly select different subsets of features which are 

then fed to an induction algorithm to evaluate the performance. Random search methods can 

avoid being trapped in local optimum. However, random search methods are performed in a 

random manner and the results are difficult to reproduce. The following steps present the 

process of a general random search method. 

1) Randomly generate an integer 𝐼 between 1 and the total number of features 

2) Randomly generate a sequence of 𝐼 integers between 0 and 𝐼 − 1 without repetition.  

3) Use the generated sequence to select a subset of features. Train the model with this subset 

of features. Validate the model and save the value that represents the model performance. 

4) Repeat the above steps based on the requirements of the algorithm. 

5) Lastly, obtain the optimal subset of features that gives the best performance score. 

Given a predefined learning model, the selection process of a wrapper method typically 

contains three parts: 
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1) searching the feature space to obtain a subset of features, 

2) evaluating the performance of the learning model using the obtained subset of features, 

3) repeating the above two steps until certain stopping criterion is met. 

The feature selection process of a typical wrapper method is shown in Figure 2.7. 

Although it has been empirically validated that wrapper methods generally outperform filter 

methods, they are criticized due to extremely high computation burden and can be intractable 

when coming across high-dimensional dataset. 

 

Figure 2.7 Schematic representation of wrapper method 
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2.3.3. Embedded Methods 

 

Embedded methods incorporate the feature selection process as a part of the execution of the 

forecasting algorithm. The basic process of an embedded algorithm is depicted in Figure 2.8.  

Embedded methods can basically be classified into three types, i.e., pruning methods, models 

with some built-in mechanisms and regularization methods [18]. Pruning methods attempt to 

remove features by setting the corresponding coefficients to zero while maintaining the 

performance of the model, such as recursive feature elimination for support vector machines 

[36]. This kind of technique begin by using the full set of features to establish a model and 

calculate a score for each feature. The model is then rebuilt after removing the least important 

feature and the feature scores are then recalculated. These steps are recursively performed until 

certain stopping criterion is met. This technique is quite efficient. However, not many models 

can be compatible with pruning methods. Also, pruning methods require that the model uses the 

full set of features at the beginning, which limits the scenarios where the methods can be used, 

such as when the number of features exceed the number of available samples. The most typical 

example of embedded method with a built-in mechanism for feature selection is decision tree-

based algorithms [37]. During the induction of a decision tree, the algorithm calculates the 

feature importance and select a feature in each recursive step of the tree growth process. Hence, 

constructing a decision tree involves calculating the best predictive subset of features. An 

outstanding advantage of this type of methods is that they consider the interactions among the 

features. Usually, tree-based techniques allow the consideration of higher-order interactions 

[38]. However, the effectiveness and efficiency of these techniques significantly declines when 

the number of features grows [38]. Hence, many applications of tree-based algorithms focus on 

low-dimensional data. Another concern is that tree-based methods cannot automatically remove 

redundant features. For instance, the presence of redundant features can deteriorate the 

performance of a random forest [39]. Regularization methods optimize an objective function 

with a penalization term which forces the coefficients of several features to be very close to zero 

or exact zero. Then, the features whose corresponding coefficients are close or equal to zero are 

removed and the rest are selected. The most common examples of regularization methods are 

the LASSO regression [40] and the ridge regression [41]. LASSO regression technique 
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performs L1 regularization that adds penalty equivalent to the magnitude of coefficients. This 

algorithm sets the less relevant to zero or almost zero to respect the constraint. Similarly, ridge 

regression technique performs L2 regularization that adds penalty equivalent to square of the 

magnitude of coefficients. Unlike tree-based methods, these methods can eliminate redundant 

features. However, there is no built-in mechanism of detecting feature interactions. To solve this 

problem, interaction terms of the features are usually explicitly added in the analysis [42].  

Embedded methods avoid the disadvantages of both the filters and wrappers as they not only 

consider the feature dependencies and the interaction with the forecasting algorithm, but also far 

more computational efficient than wrapper methods. Table 2.2 compares the commonly used 

feature selection methods. 

 

Figure 2.8 Schematic representation of embedded method 
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2.3.4. Hybrid Methods 

 

Hybrid techniques combine two or more feature selection techniques to achieve optimal results 

and have been extensively applied for feature selection. For instance, the most common hybrid 

method is the combination of filter and wrapper methods which starts with an initial filtering of 

features followed by a wrapper method for selection. Hybrid method attempts to inherit the 

advantages of multiple methods by combining their complementary strengths. Different evaluation 

criteria are used in different search stages to improve the efficiency and prediction performance. 

Table 2.3 Comparison of commonly used feature selection methods 

 Advantages Disadvantages 

Filter 

Model independent 

Computational efficient 

Better generalization 

Ignore feature dependency 

Ignore biases of the model 

Wrapper 
Consider feature dependency 

More accurate than filter 

Computational expensive 

Prone to overfitting 

Model specific 

Embedded 

Consider feature dependency 

More computational efficient than 

wrapper 

Less prone to overfitting than wrapper 

Model specific 
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2.4. Introduction of PLF 

 

The unique feature of electricity determines that it cannot efficiently stored in a large quantity. 

Hence, to ensure a secure and reliable power supply, the utilities must keep the generated power to 

meet the demand at every single time. Otherwise, the power system may be unstable which will 

have a large impact on the economic and social stability. Over decades, load forecasting has been 

widely used as a tool to help utilities to efficiently and effectively schedule and dispatch resources 

in power systems.  

Basically, load forecasting is defined as the prediction of future load for a certain period ahead 

on a given system. The expected values given by load forecasting play an essential role in the 

decision-making process of the utilities. These values are usually point ones, which in other words 

means that one single value is generated at each time step. We call this kind of forecasting method 

point load forecasting, which gives an expected value at each forecasted time step. Point load 

forecasting has been widely studied and applied to many of the applications since the early time of 

power system. In recent years, the traditional power industry has been going through a significant 

transition process to serve the modern power grid, point load forecasting cannot meet the needs of 

operation and planning any longer. It is becoming more and more unreliable because a diversity of 

cutting-edge technologies are introduced to the power system. The installation of distributed 

energy resources and distributed energy storage systems brings significant uncertainties on the 

generation side, while the rapid increasing penetration of plugin electric vehicles, and dedicated 

demand response programs designed for active consumers introduce great variety and volatility on 

the demand side. This issue is address by PLF, which has grabbed increasing attention in recent 

years. 

To manifest uncertainty, PLF methods give the prediction in the form of predictive intervals 

(PIs), quantiles or whole PDF, which are more informative than point forecasts and therefore can 

enhance the decision-making process in operation and planning of the power system. Among these 

three types of probabilistic outputs, traditional PI methods need to assume the shape of the 

predictive density in advance based on prior knowledge. This kind of method is unrobust because 

the result is affected by the seasonality and volatility of the load [43]. On the contrary, the methods 

that give quantiles as outputs do not make any assumptions on the shape of the predictive 
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distribution, which are classified as nonparametric estimation methods. On top of that, density 

forecasting methods are even more powerful because they can provide more holistic and flexible 

information compared to the former two methods by constructing the complete predictive 

distribution. Hence, density forecasting methods are considered as the most complete form of 

probabilistic forecasting method [44]. However, most density forecasting methods also need to 

predefine the shape of the predictive distribution, which, however, may lead to unreliable results 

due to improper distributional assumptions. Alternatively, the predictive quantiles given by 

quantile forecasting methods can be used to estimate the predictive distribution given that a large 

set of quantiles are calculated, or be transformed to predictive densities through nonparametric 

techniques, such as KDE, to provide more comprehensive information for the decision-making 

processes. 

Generally, PLF methods can be classified into direct methods and indirect methods. Direct 

methods, such as quantile regression and KDE, can directly generate PFs. Indirect methods 

generate PFs from point forecasts by modeling and simulating the residuals of the underlying point 

forecasts [45] or by feeding temperature scenarios to point forecasting models [12]. In the 

following subsections, a comprehensive literature review on the most widely used techniques, 

including quantile regression methods, KDE, residual simulation methods and scenario generation 

methods, is presented. 

 

2.5. Review of State-of-Art PLF Techniques 

 

The existing body of literature related to PLF is relatively restricted. The subsequent subsections 

will present a concise overview of the most commonly used techniques including quantile 

regression, KDE, residual simulation and scenario generation, along with their methodological 

progression. 

 

2.5.1. Quantile Regression 

 

Quantiles are widely used in statistics to evaluate the performance of a group. Consider a 
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physical test of a group of students. We define that the score of a student is located at the 𝑝𝑡ℎ 

quantile of all the test scores if the score is higher than the proportion 𝑝 of the whole test group and 

lower than the proportion (1 − 𝑝). For instance, the median, quartiles, quintiles, and deciles are 

some commonly used typical quantile values, which equally divide the population into two parts, 

four parts, five parts and 10 parts, respectively. As an example, Figure 2.9 plots a standard normal 

distribution showing the quartiles. The quartiles consist of three quantiles, which divide the 

distribution into four sections. Each section has the same area size. In other words, the area below 

the PDF curve is the same in the four intervals (−∞, 𝑞1), (𝑞1, 𝑞2), (𝑞2, 𝑞3), and (𝑞3, +∞). 

 

 

Figure 2.9 Quartiles of standard normal distribution 

 

Quantile regression was first introduced by [46] in 1978 to extend the idea of quantiles to 

quantile regression. Quantile regression seeks to estimate the conditional quantile functions for 

models which map the relation of quantiles of the conditional distribution of the response variable 

and the predictors [47]. It has been extensively studied and applied in economics, and successfully 

introduced and applied in different time series forecasting problems, specifically load forecasting 

to quantify uncertainties.  

To the best of the author’s knowledge, the sharp rise in the attention to PLF in the literature 

happened in the Global Energy Forecasting Competition 2014 (GEFCom2014) [11], with quantile 

regression ranking in the top entries of PLF techniques. Since then, quantile regression has been 
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playing as the core methodology in developing various PLF techniques that are based on various 

statistical and artificial intelligent models. To highlight a few, [48] applies the quantile regression 

averaging method to a set of point forecasts generated from a statistical model, the naïve vanilla 

benchmark model [49] to obtain PFs. This method paves a way for bridging point load 

forecasting and PLF. Because the input of the quantile regression averaging model can be 

directly generated from point forecasting models, this method can be generalized to be 

combined with many point forecasting models and leverage the mature development in this 

area. Quantile regression can also be combined with machine learning algorithms. For example, 

[45] proposes to use the additive quantile regression model to forecast quantiles of the 

distribution of the future load. The model is estimated using the gradient boosting algorithm 

which is a popular machine learning approach that develops an accurate model by combining 

and converting a set of weak learners and is able to handle large and complex dataset. The 

gradient boosting algorithm is widely used because of its flexibility, accessibility, and 

robustness. However, it suffers from high computational burden, especially when training 

multiple models for a series of quantiles in quantile regression problems. To make the training 

cost affordable, [50] modifies the traditional quantile regression neural network by leveraging 

deep learning techniques. These techniques include batch training, early stopping, dropout, and 

noise layers, which can significantly reduce the computational burden when dealing with large 

dataset and can also improve the learning and generality of forecasting models. In the very 

recent years, deep neural networks have achieved significant advancement and researchers have 

been trying to add this new topic to the literature of load forecasting. A very recently published 

article [44] proposes to use a deep neural network to learn a fully parametrized quantile 

function. This method parametrizes both the quantiles and the associated probabilities with the 

proposed deep neural network to retrieve the full conditional distribution of the load. 

The research proposed in this thesis is also based on quantile regression. A detailed 

discussion of the basics of quantile regression is given in Chapter 3. 

 

2.5.2. Kernel Density Estimation 

 

KDE gives a way of estimating an unknown PDF underlying a dataset. KDE belongs to the 
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family of non-parametric statistics. It is popular in density estimation because it can estimate the 

distribution of a continuous variable without relying on any parametric assumptions. As a non-

parametric estimator, KDE does not rely on any fixed structure or functional form. The density 

shape can be automatically learned based on all the sample data. 

Formally, let 𝑋1, … , 𝑋𝑛 ∈ ℝ  denote a set of random samples that are independently and 

identically drawn from an unknown distribution with a density function 𝑓. The PDF of 𝑓 can be 

estimated by KDE and given as 

𝑓 𝑛(𝑥) =
1

𝑛ℎ
∑ 𝐾(

𝑥 − 𝑋𝑖

ℎ
)

𝑛

𝑖=1

 (2.14) 

where 𝐾 denotes a smooth function which is also known as kernel function, and ℎ is a positive real 

value which denotes the smoothing bandwidth. More intuitively, a kernel function is basically a 

weighting function, and the smoothing bandwidth is the width of the kernel function. The density 

at point 𝑥 is estimated by taking the local density of the sample points within the distance ℎ. A 

specific example is that the estimated PDF will look like a histogram if the data points within the 

distance are assigned with equal weight. The kernel function 𝐾 is used to control the weights. when 

the distance between 𝑋𝑖  and 𝑥  increases, the associated weight will decrease towards zero. 

Therefore, the estimated PDF will have a large density value if the neighborhood has many 

observations, whereas a small density value is estimated if the neighborhood has only a small 

number of observations. To show the effect of the choice of kernel function on the estimation, we 

plot the shape of the estimated PDF for the same dataset using different kernel functions in Figure 

2.10. It can be directly seen from Figure 2.10 that each density curve varies slightly but overall 

comparable, except that the curve given by box kernel function is not as smooth as others. The 

smoothness of the density curve is controlled by the bandwidth through changing the value of ℎ. 

As an example, we plot three different density curves with different bandwidth values using a 

Gaussian kernel function, as shown in Figure 2.3. The optimal value for estimating a normal 

distribution is set as the default bandwidth. It can be inferred from the figure that a different 

bandwidth value can greatly affect the shape of the estimated density curve. 
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Figure 2.10 Density plot with different kernel functions 

 

 

Figure 2.11 Density plot with different values of bandwidth 
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KDE is usually used as the final step to produce PFs given a set of conditional samples. In this 

case, KDE is only used as an auxiliary unconditional estimator. For example, the outputs of 

quantile forecasts are usually discrete, which can be used by KDE as inputs to recover continuous 

density curve of the forecasts [44], [51]. Applications of conditional KDE in PLF have also been 

studied in recent years. For instance, [14] makes a comprehensive comparison of the forecasting 

accuracy of KDE methods conditional on different input features including day-of-the-week, time-

of-the-day, load of previous hours, etc. Similar works can also be found in [52], [53], which 

leverage conditional KDE to map the relation between exogenous predictors and the full predictive 

density of the load. 

 

2.5.3. Residual Simulation 

 

In the area of statistics, the residual is defined as the difference between the observed value and 

the estimated value of the response. Its definition can be easily confused with the definition of the 

term, error, which is defined as the difference between the deviation of the observed value from the 

real value, which is not necessarily observable. 

Ideally, the residuals can be represented by a random noise, the distribution shape of which is 

close to a symmetrical bell with its peak centered at zero. This indicates that the given model is a 

good fit and unbiased without any unmodeled discernible patterns. However, the situation is quite 

different and complex in practical. There may exist trends, bias or even seasonality that the model 

fails to capture. Therefore, residual analysis has gained increased attention and been extensively 

used in statistics to facilitate the works of model validation. A typical practice is to directly model 

and forecast the temporal structure of the residuals to improve the model performance. 

A majority of the research in the area of load forecasting assume the residual distribution of the 

PFs to be normally distributed. To answer a series of fundamental questions related to normality 

assumptions, [54] has carried out a comprehensive examination to investigate normality 

assumption and its implications in residual modeling for PLF. However, the simulation results 

show that none of the chosen residual series successfully passed the Kolmogorov–Smirnov test 

given certain significance level and critical value, indicating that such assumption is not reliable for 

PLF. It is also worth noting from the paper that the performance of deficient models can benefit 
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from adding residuals simulated from a normal distribution. However, this method is not suitable 

for models with more predictive power. 

In fact, load forecasting residuals do not necessarily follow any well-defined parametric 

distribution because the load and the exogenous features are correlated in a very complex manner 

[55]. Many efforts have been made in the literature to avoid relying on unverified distribution 

assumption on load forecasting residuals. A typical example of these non-parametric methods is 

using quantile regression to model the residuals. Thereafter, these residuals can be further 

integrated with point forecasts to produce PFs. A typical relevant work is [15], which leverages 

quantile regression to model the PLF residuals with the point forecasts used as an input, and then 

combines the point forecasts with the conditional distribution of the residuals together to generate 

the final PFs. 

 

2.5.4. Scenario Generation 

 

In comparison with other PLF methods, scenario generation is more commonly accepted and 

widely applied in practice due to its simplicity and interpretability. This method is basically 

implemented in a manner of two steps. First, the input variables are simulated to generate a series 

of different scenarios. Thereafter, the generated scenarios are used as inputs by a point forecasting 

model to produce several point forecasts which are then used to estimate the final PFs. A schematic 

view of this approach is illustrated in Figure 2.12. Because calendar variables (month-of-the-year, 

day-of-the-week, hour-of-the-day) are fixed and the load demand is mainly driven by weather, 

many literatures of this topic make efforts in simulating temperature information to generate 

different input scenarios. There have been many techniques in the literature which can be basically 

classified into four typical categories: fixed-date, shifted-date, bootstrap and surrogate methods 

[17], as introduced below. 

1) Fixed-date method: this method assigns the temperature profile of a past period date by date 

and then creates a temperature scenario of a future period. 

2) Shifted-date method: this method generates scenarios by shifting the temperature profile of a 

past period forward or backward by one or more days. 

3) Bootstrap method: this method divides the temperature profile of each past year into equal 
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length, and then drawn with replacement repeatedly to produce a new profile. 

4) Surrogate method: this method generates temperature profiles by taking the Fourier transform 

of the past temperature series. This method can keep the information of the distribution and 

autocorrelation of the original temperature series. 

These methods are comprehensively compared and evaluated in [17] and a practical guideline 

for model selection when using these methods is also proposed. 

Scenario 1

Scenario 2

Scenario n

...

Point 
forecasting 

model ...

Forecast 1

Forecast 2

Forecast n

Distribution

 

Figure 2.12 Schematic view of a typical scenario generation method 

 

2.5.5. Other Techniques 

 

PLF methods can generally be classified into two strands. One strand, such as quantile 

regression and KDE, can directly estimate PFs, while another strand, including residual simulation 

and scenario generation methods, extends point forecasts to PFs. 

Research is not simply constrained within these two categories. To achieve better performance, 

more efforts have been made to enlarge the PLF literature, including but not limited to developing 

hybrid models, combining multiple forecasts, or adopting new techniques. [56] develops a hybrid 

method by using residual simulation as a post-processing step to improve performance of a 

scenario generation method. The author of this thesis has also published a novel hybrid method that 

combines Bayesian inference, MCMC and ensemble learning together to generate PFs in 

distribution networks [55]. Instead of using quantile regression for one single model, [48] applies 

an averaging technique to a set of point forecasts generated from the same family of quantile 

regression models, which are obtained by varying input features via feature selection. Such 

averaging mechanism can significantly reduce the risk of making poor decisions over model 

selection, and therefore can enhance the performance of quantile forecasts. Stochastic processes are 
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well documented in the literature to address problems related to uncertainties. [57] establishes a 

nonlinear quantile regression model by integrating Gaussian process into quantile regression and 

has reached satisfactory forecasting performance. However, this method suffers from high 

computation burden brought by the random process. To reduce computation complexity, [58] gives 

a sparser solution by introducing a heteroscedastic Gaussian process model using 𝑙1/2 

regularization. In recent years, continuous and consistent efforts have been made to enrich the 

limited literature on PLF. It is believed that PLF is a timely topic for the time being and will still be 

in the future. 

 

2.6. Discussion 

 

The current literature adequately covers the individual topics of feature selection and PLF. 

However, the literature on the combination of these two topics, feature selection for PLF, is 

limited. The existing practices in this field typically rely on heuristic methods such as filter or 

wrapper methods, which use a point error measure for variable selection and may not be 

suitable for probabilistic models. To inherently capture the uncertainty while doing feature 

selection, the feature selection process should rely on a probabilistic error measure that is 

consistent with the final probabilistic error measure of the forecasting model. To address this 

gap in the literature, we propose an embedded feature selection method for PLF that overcomes 

the limitations of existing methods. Our approach facilitates the modeling of complex 

uncertainties, handles sparse feature spaces, and yields more interpretable feature selection 

outcomes. Detailed information about the capabilities of our method is presented in the 

following chapter. 

 

2.7. Summary 

 

In the first half, this chapter first briefly introduces the general concept of feature selection. 

Then, a brief review of the state-of-art feature selection techniques is provided. More efforts are 

given to the supervised feature selection methods, as load forecasting is typically a supervised 
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learning problem. Supervised feature selection methods include filter methods, wrapper methods, 

embedded methods, and hybrid methods, each of which has been discussed in detail in this chapter. 

An overall comparison between these methods is given at the end. 

In the second half, a comprehensive review of the state-of-art PLF techniques is presented. 

More efforts are made to the most widely used methods in this chapter, i.e., quantile regression, 

KDE, residual simulation, and scenario generation methods. Other practices including developing 

hybrid models, combining multiple forecasts, or adopting new techniques are also introduced with 

a few typical works highlighted. 
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3. Proposed Embedded Feature Selection Method for Probabilistic Load 

Forecasting 

 

3.1. Introduction 

 

In this chapter, the proposed embedded feature selection method via Bayesian quantile 

regression is presented. Firstly, Chapter 3.2 introduces the technical background including 

fundamentals for quantile regression, the linear model used for quantile regression, the 

corresponding features, as well as the evaluation criteria for PLF. Then, Chapter 3.3 specifies 

the proposed embedded feature selection method following the framework of Bayesian 

inference, including prior specification and posterior inference by Gibbs sampling, which is an 

MCMC technique.  

 

3.2. Predictive Model and Evaluation Criteria 

 

In the proposed method, quantile regression is adopted as the base predictive model, as it has 

been the approach of great theoretical interest as well as plenty of practical applications in the 

context of PLF, with competitive forecasting performance well documented in the literature. To 

set the scene for the following chapters, this section gives a brief description of quantile 

regression, the adopted linear model, as well as the evaluation criteria for PLF.  

 

3.2.1. Quantile Regression 

 

Load forecasting is basically a regression problem based on historical load records and relevant 
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variables (weather conditions, calendar effects, etc.). In general, the problem can be formulated by 

𝑦𝑡 = 𝑔(𝒙𝑡) + 𝜀𝑡 (3.1) 

where 𝑦𝑡 denotes the load at time 𝑡, 𝒙𝑡 is a vector of features for the observation at time 𝑡, and 𝜀𝑡 is 

the corresponding random error term at time 𝑡 with mean zeros and constant variance. In the case 

that mean regression is applied, the problem reduces to the estimation of the conditional 

expectation of the response given the assumption on the error term. The problem of PLF is 

basically the estimation of the conditional distribution of the response, which can be achieved by 

moving from mean regression to quantile regression.  

In this paper, the linear quantile regression is used as the probabilistic forecasting model to 

estimate the conditional quantiles of the load. Quantile regression has emerged as a prevalent 

technique in developing various PLF methodologies using statistical and artificial intelligence 

models. A noteworthy advantage of quantile regression is its nonparametric nature, allowing it to 

make no assumptions about the shape of the predictive distribution. Conversely, parametric 

methods rely on predefined distributions, which may not be a good fit of the data, and improper 

distributional assumptions may deteriorate the accuracy of the result. Additionally, the predicted 

quantiles can be used to retrieve the full predictive distribution through some estimation techniques 

such as kernel density estimation, enabling more comprehensive information to be available for the 

decision-making process. 

Quantiles are defined as points dividing a sample into equal-sized groups, for example, the 

median is the 0.5th quantile showing the central location of the entire sample. Formally, the 𝑝𝑡ℎ 

quantile denotes the value below which the proportion of the data points to the entire population is 

q. A quantile is a continuous value between the range [0,1], so any position of a distribution can be 

calculated given the sample and a predefined quantile. Formally, given the linear regression model 

by letting 𝑔(𝒙𝒕) = 𝒙𝒕
𝑻𝜷  in (1) where 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝐷)  is a vector of coefficients with D 

denoting the dimension of the input features and 𝛽0 being the coefficient for the intercept term, i.e., 

𝑦𝑡 = 𝒙𝑡
𝑇𝜷 + 𝜀𝑡 (3.2) 

the 𝑝𝑡ℎ conditional quantile of 𝑦𝑡 given 𝑥𝑡 can be expressed by 

𝑄𝑝(𝑦𝑡|𝒙𝑡) = 𝒙𝑡
𝑇𝜷𝑝 (3.3) 

where 𝜷𝑝 = (𝛽0𝑝, 𝛽1𝑝, … , 𝛽𝐷𝑝) is a vector of coefficients dependent on the 𝑝𝑡ℎ  quantile of the 

random error term 𝜀𝑡. The estimation of 𝜷𝑝 can be obtained by solving the following minimization 
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problem,  

𝜷 𝑝 = argmin
𝜷

∑ 𝜌𝑝(𝑦𝑡 − 𝒙𝑡
𝑇𝜷𝑝)

𝑡

 (3.4) 

where the loss function is given by 

𝜌𝑝(𝜃) =  𝜃(𝑝 − 𝐼(𝜃 < 0)) (3.5) 

where 𝐼(·) denotes the indicator function. The function 𝜌𝑝(∙) is the tilted absolute value function 

which is plot in Figure 3.1. 

 

Figure 3.1 Tilted absolute value function 

Instead of solving the above linear programming problem, this paper utilizes Bayesian inference 

as the model estimation method through which the proposed embedded feature selection technique 

is developed. The selection of Bayesian inference as the method for estimating model parameters is 

motivated by several factors. Firstly, it is through the use of Bayesian inference that our proposed 

method can integrate a feature selection process into the PLF model. This allows the selected 

features to vary across different quantiles and enables all features to be considered for their impact. 

Additionally, the selection of appropriate prior distributions removes the assumption of normality 

on the error term and provides a solution for handling sparse input feature spaces. The details are 

discussed in Chapter 3.3.  

 

 

3.2.2. The Naïve Vanilla Benchmark Model 
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This research uses a multiple linear regression model with the consideration of recency effect 

as the base predictive model. This model is an extension of naïve vanilla benchmark model, 

which was first proposed by [59] and was ranked in the top 25% among over 100 teams in the 

GEFCom2012 where it was used to generate benchmark scores. Naïve vanilla benchmark 

model takes into account the impact of local trend, temperature, calendar variables and 

interaction effects between the temperature and the calendar variables, which can be formulated 

as 

𝑦𝑡 = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑛𝑑𝑡 + 𝛽2𝑀𝑡 + 𝛽3𝑊𝑡 + 𝛽4𝐻𝑡 + 𝛽5𝑊𝑡𝐻𝑡 + 𝑓(𝑇𝑡) (3.6) 
 

𝑓(𝑇𝑡) = 𝛽6𝑇𝑡 + 𝛽7𝑇𝑡
2 + 𝛽8𝑇𝑡

3 + 𝛽9𝑇𝑡𝑀𝑡 + 𝛽10𝑇𝑡
2𝑀𝑡 + 𝛽11𝑇𝑡

3𝑀𝑡 + 𝛽9𝑇𝑡𝐻𝑡 + 𝛽10𝑇𝑡
2𝐻𝑡

+ 𝛽11𝑇𝑡
3𝐻𝑡 

(3.7) 

where 𝑀𝑡 , 𝑊𝑡  and 𝐻𝑡  denote the month-of-the-year, day-of-the-week and hour-of-the-day 

categorical variables corresponding to time 𝑡, respectively. The trend variable is defined by 

assigning a natural number to each hour in ascending order. Each component of the model is 

added for a reason, which is explained in turn as follows. 

1) Trend 

This quantitative variable is defined for the entire dataset to capture the increasing trend 

beneath it [33]. Each data point is assigned by a natural number in a natural order. For 

example, the value of the trend variable of the first hour of the whole dataset is 1, 

followed by the second hour assigned by 2, and so forth. It is usually true that when the 

local economy of a territory is in good health and the electricity service of the local utility 

is stable, there will be a mild increasing trend behind the electricity consumption of this 

territory. However, this assumption is not valid when there is a significant change in the 

economic pattern during the period, such as a great recession or a big boom in the local 

economy. Service changes, such as the merge of two utilities or the split of a utility, will 

also make this assumption invalid. In this thesis, we consider only the scenarios where 

the assumption of an increasing trend is valid. 

2) Hour-of-the-day, day-of-the-week, month-of-the-year 

Day, week and year are the three main seasonal blocks in a load series [49]. For each 

block, the treatment can be different based on the consumption behavior of a certain 

service region. Take the modeling of week as an example. One week is composed of 7 
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days, which can usually be divided into weekdays and weekends. A more precise practice 

is to have three categories, weekdays, Saturday, and Sunday, while the highest resolution 

of modeling a week is to clearly define each day of the 7 days, i.e., Monday to Sunday. 

When dealing with datasets from different countries, we need to pay attention to the local 

customs because some countries take days other than Saturday and Sunday as weekends. 

Naïve vanilla benchmark model treats all the seasonal blocks using their highest 

resolution, i.e., day being modeled by 24 hours, week being modeled by 7 days, and year 

being modeled by 12 months. 

3) Temperature 

It is well known that temperature has a large impact on electric load consumption 

patterns. Apparently, the load that is mostly affected by temperature is air conditioning 

system, which accounts for one of the largest electricity consumptions in a residential 

household. In different seasons, an air conditioning system behaves different because 

they work in different modes, heating, cooling, drying, etc., resulting in different 

consumption patterns. Besides of the direct impacts of temperature on different loads, 

temperature also implicitly changes our lifestyles. For example, in Canada, people go for 

outdoor activities in summer, while indoor activities take most of Canadians’ wintertime. 

This also determines the load profile of a service territory. In naïve vanilla benchmark 

model, temperature is modeled by 3rd ordered polynomial function. 

4) Interaction effects 

Interaction effects between the above-mentioned terms are also important factors that 

affect the load patterns. It is commonly known that an afternoon in June is much warmer 

than an afternoon in December. Also, the consumption activity during afternoons at 

weekends would be different with that during weekdays. Hence, it is important to 

consider the interaction effects among the terms, including the interaction effect between 

temperature and the calendar variables, and the interaction effect among these calendar 

variables, which are added in the naïve vanilla benchmark model. 

Illustrative plots of a public dataset are given in Chapter 4 to give an intuitive understanding 

of each component of the model. 
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3.2.3. Multiple Linear Regression Considering Recency Effect 

 

However, it has been validated that the features included in the naïve vanilla benchmark 

model does not suffice for a load forecasting problem. The model does not consider the impact 

of temperatures from preceding hours, the absence of which can cause the following 

discrepancies between the forecasts and the actual loads [59]:  

1) the model over/under-forecasts the peak loads for consecutive days in different seasons;  

2) the forecast leads/lags the actual load for consecutive hours on several days.  

In this regard, such effect is captured by including the temperatures of preceding hours in the 

naïve vanilla benchmark model, which gives a multiple linear regression model with the 

following formulation: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑛𝑑𝑡 + 𝛽2𝑀𝑡 + 𝛽3𝑊𝑡 + 𝛽4𝐻𝑡 + 𝛽5𝑊𝑡𝐻𝑡 + 𝑓(𝑇𝑡) 

+ ∑ 𝑓𝑟(𝑇 𝑡,𝑑)

𝑁𝐷

𝑑=1

+ ∑ 𝑓𝑟(𝑇𝑡−ℎ)

𝑁𝐻

ℎ=1

 
(3.8) 

𝑓𝑟(𝑇𝑡) = 𝛽6𝑇𝑡 + 𝛽7𝑇𝑡
2 + 𝛽8𝑇𝑡

3 + 𝛽9𝑇𝑡𝑀𝑡 + 𝛽10𝑇𝑡
2𝑀𝑡 + 𝛽11𝑇𝑡

3𝑀𝑡 + 𝛽9𝑇𝑡𝐻𝑡 + 𝛽10𝑇𝑡
2𝐻𝑡

+ 𝛽11𝑇𝑡
3𝐻𝑡 

(3.9) 

𝑇 𝑡,𝑑 =
1

24
∑ 𝑇𝑡−ℎ

24𝑑

ℎ=24𝑑−23

            𝑑 = 1,2, … , 𝑁𝐷 (3.10) 

where 𝑁𝐷 and 𝑁𝐻 denote the number of days and hours of the lagged temperature. 

This effect is referred to as recency effect, which is a cognitive concept that recent events, 

facts, information, impressions, or other items, are more favored than historical ones. This 

concept can also be introduced to electric load forecasting. Similarly, a load would probably 

tend to memorize recent temperatures. In other words, the temperature of preceding hours can 

have impacts on the current load. This is true because people may need time to react to 

temperature changes, resulting in a lagging between the temperature and the consumption 

activities. 

3.2.4. Converting Categorical Variables into Numerical Features 

 

In the above-mentioned model, hour-of-the-day, day-of-the-week and month-of-the-year are 

basically categorical variables. Although categorical variables are represented by numbers, 
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however, unlike numerical variables, they cannot be entered into the regression model directly 

and must be recoded. The number assigned to each variable only refers to the category it 

belongs to. There are a variety of coding methods that can be used for numerical coding of 

categorical variables, such as dummy coding, sum coding, deviation coding, etc. In the case of 

load forecasting, the calendar effects are basically nominal variables that can be well coded by 

the dummy coding scheme. Hence, the dummy coding method [60] is utilized to convert the 

calendar variables into a series of numerical features that the model can understand. 

As the simplest and most frequently used coding scheme, dummy coding method recodes a 

categorical variable into a series of dichotomous variables that only take the value of 1 or 0. 

Hence, dummy variables are also called “binary flag variables”. Before we formally introduce 

the working mechanism of dummy coding method, we should first be aware of the dummy 

variable trap, which is also called the situation of perfect multicollinearity.  

Multicollinearity happens when the model contains some predictors are correlated not only to 

the response but also to other predictors, resulting in redundancy in the predictors. 

Multicollinearity will lead to incorrect coefficients of the regression model and hence the results 

are not acceptable. Consider a multiple linear regression model that take the categorical variable 

gender as the explanatory variables which are coded with two dimensions: 

𝑦 = 𝛽0 + 𝛽1 ∙ 𝑥𝑚𝑎𝑙𝑒 + 𝛽2 ∙ 𝑥𝑓𝑒𝑚𝑎𝑙𝑒 + 𝜖 (3.11) 

where 𝑦  is the response variable, 𝑥𝑚𝑎𝑙𝑒  and 𝑥𝑓𝑒𝑚𝑎𝑙𝑒  are the explanatory variables, 𝛽0  is the 

intercept, 𝛽1 and 𝛽2 are the coefficients, and 𝜖 denotes the error term. It is obvious that the two 

dimensions 𝑥𝑚𝑎𝑙𝑒  and 𝑥𝑓𝑒𝑚𝑎𝑙𝑒  are perfected correlated because one would either be male or 

female from the biological aspect. Hence, we can replace 𝑥𝑓𝑒𝑚𝑎𝑙𝑒 with (1 − 𝑥𝑚𝑎𝑙𝑒) in equation 

3.11, yielding 

 

𝑦 = 𝛽0 + 𝛽1 ∙ 𝑥𝑚𝑎𝑙𝑒 + 𝛽2 ∙ (1 − 𝑥𝑚𝑎𝑙𝑒) + 𝜖 (3.12) 

= (𝛽0+𝛽2) + (𝛽1 − 𝛽2) ∙ 𝑥𝑚𝑎𝑙𝑒 + 𝜖  

In this way, equation 3.11 is rewritten using only one variable 𝑥𝑚𝑎𝑙𝑒, as shown by equation 3.12. 

The new regression coefficients to be estimated are now (𝛽0+𝛽2) and (𝛽1 − 𝛽2), which can be 

replaced by two new coefficients. This simple example shows the scenario of a categorical 

variable with only two categories. In the scenario of more than two categories, we can execute 
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the following steps to validate if a given dataset suffers from dummy variable trap or not. 

1) Define the given dataset as a matrix 𝑋; 

2) Obtain the transpose of 𝑋 as 𝑋𝑇; 

3) Calculate the dot product of 𝑋 and 𝑋𝑇, i.e., 𝑋𝑇𝑋; 

4) Calculate the determinant of 𝑋𝑇𝑋, |𝑋𝑇𝑋|; 

5) If the determinant |𝑋𝑇𝑋|  is zero, then the dataset will have the dummy variable trap, 

otherwise there will be no dummy variable trap in this dataset. 

Take the variable day-of-the-week as an example. Consider the following coding scheme that 

we use 7 dimensions to represent a day in a week with its associated dimension set to 1 and 

other dimensions set to 0, as shown in Table 3.1. Assume that the regression model includes an 

intercept term, and we have a dataset with 7 instances, Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday and Sunday. Performing the validation steps above yields 

 

𝑋 =

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1

 (3.13) 

 

𝑋𝑇 =

1 1 1 1 1 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 (3.14) 

 

𝑋𝑇𝑋 =

7 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1

 (3.15) 
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|𝑋𝑇𝑋| = 0 (3.16) 

The determinant is zero and the matrix is singular. Hence, the given dataset suffers from the 

dummy variable trap. 

Table 3.1 A coding scheme for day-of-the-week that will have dummy variable trap problem 

 Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 

Monday 1 0 0 0 0 0 0 

Tuesday 0 1 0 0 0 0 0 

Wednesday 0 0 1 0 0 0 0 

Thursday 0 0 0 1 0 0 0 

Friday 0 0 0 0 1 0 0 

Saturday 0 0 0 0 0 1 0 

Sunday 0 0 0 0 0 0 1 

 

To address this problem, we drop one of the categories to avoid dummy variable trap. Here is 

a simple example to show how dummy coding works in practice. Assume that a categorical 

variable has only two level of categories, say, gender with the categories of male and female. 

We can easily create a single dummy variable to represent the two categories, with the male set 

to 1 and female set to 0. When a categorical variable has three or more categories, two or more 

dummy variables are required to code these categories. Generally, a categorical variable with 𝐾 

category levels is presented by 𝐾 − 1 features. The variable at the reference level is coded as all 

0s. For all the variables that are not at the reference level, each of the variables will be replaced 

by a new recoded variable that has a value of 1 at that level and 0 for other levels. The 

eliminated category that is assigned with no dummy variable is the reference category. All 

comparisons are made in reference to this category. If the intercept is not chosen as the 

reference category, then the value of the coefficient of the intercept will reflect the mean value 

of the reference category. In practice, the reference category is strictly up to the choice of the 

researcher. The regression coefficients associated to the dummy variables are the differential 

intercept coefficients which reflect how much the value of the category with a value of 1 differs 

from the reference category. For instance, the day-of-the-week variable is encoded as shown in 

Table 3.2. 
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Table 3.2 Encoding scheme for day-of-the-week variable using dummy coding method 

 Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 

Monday 1 0 0 0 0 0 

Tuesday 0 1 0 0 0 0 

Wednesday 0 0 1 0 0 0 

Thursday 0 0 0 1 0 0 

Friday 0 0 0 0 1 0 

Saturday 0 0 0 0 0 1 

Sunday 0 0 0 0 0 0 

However, such encoding scheme introduces great sparsity to the input data when many 

categorical variables are included. The massive increase in the number of dimensions may 

deteriorate the overall performance of the model. In this regard, a sparse feature selection 

method based on Bayesian quantile regression is proposed to address the problem and will be 

discussed in Section 3.3. 

 

3.2.5. Evaluation Criteria 

 

Evaluating the forecasting accuracy of PLF requires specific numerical measures. 

Comprehensive measures include Brier score [61], Winkler score [62], ranked probability score 

(RPS) [63], continuous ranked probability score (CRPS) [64], and quantile score [65], etc. 

1) Brier score 

The Brier score is a metric that is used to assess the accuracy of PFs. It is defined as the 

mean squared difference between the forecasted probability and the real outcome. However, 

the Brier score can only be used for scenarios where the outcomes are binary and categorical 

and can be identified as true or false. It cannot be used for variables that can take on three or 

more values. Moreover, the outcomes must be mutually exclusive and assigned with 

probabilities which must sum to 1. A common formula of the brier score can be calculated 

as the mean squared error: 
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𝐵𝑟𝑖𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑(𝑓𝑡 − 𝑜𝑡)2

𝑁

𝑡=1

 (3.16) 

where 𝑓𝑡 is the probability of the forecast at time step 𝑡, 𝑜𝑡 is the outcome at time step 𝑡, 

and 𝑁 is the number of forecasting instances. It can be easily inferred from the formula 

that a smaller Brier score indicates a better result. We can also infer that the value of a 

Brier score is limited within the range of [0,1]. Here is a simple example that shows how 

the Brier score works. Imagine that we are forecasting the probability 𝑃 of that it will 

snow in October in Saskatoon, Canada. Based on equation 3.16, we can calculate the 

Brier score for the following scenarios: 

 If the prediction is 𝑃 = 1 and it snows, the Brier score is 0, which is the best score. 

 If the prediction is 𝑃 = 1 and it does not snow, the Brier score is 1, which is the 

worst score. 

 If the prediction is 𝑃 = 0.5, then no matter it snows or not, the Brier score is 0.25. 

 If the prediction is 𝑃 = 0.8 and it snows, the Brier score is 0.04. 

When a scenario requires the evaluation of multi-category prediction, the above-mentioned 

Brier score cannot work anymore. Instead, we need to use the original definition given by 

Brier as shown below: 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐵𝑟𝑖𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑ ∑(𝑓𝑡𝑖 − 𝑜𝑡𝑖)

2

𝑄

𝑖=1

𝑁

𝑡=1

 (3.17) 

where 𝑓𝑡𝑖  is predicted probability of category 𝑖  at time step 𝑡 , 𝑜𝑡  is the outcome of 

category 𝑖 at time step 𝑡, 𝑄 is the number of total categories, 𝑁 is the number of instances 

of all categories. It should be noted that for binary forecasting, the value given by the 

original Brier score is twice of the known Brier score. 

2) Winkler score 

Sometimes a probabilistic forecast can be given in the form of predictive intervals. The 

Winkler score is designed to evaluate this kind of outcome, which allows a joint assessment 

of the unconditional coverage and the width of the interval [10]. Formally, let [𝑙𝛼𝑡, 𝑢𝛼𝑡] 

denote the (1 − 𝛼) × 100% prediction interval. The Winkler score is defined as 
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𝑊𝛼,𝑡 =

⎩
⎪
⎨

⎪
⎧ (𝑢𝛼𝑡 − 𝑙𝛼𝑡) +

2

𝛼
(𝑙𝛼𝑡 − 𝑦𝑡)     𝑖𝑓 𝑦𝑡 < 𝑙𝛼𝑡

(𝑢𝛼𝑡 − 𝑙𝛼𝑡)                      𝑖𝑓 𝑙𝛼𝑡 ≤ 𝑦𝑡 ≤ 𝑢𝛼𝑡

(𝑢𝛼𝑡 − 𝑙𝛼𝑡) +
2

𝛼
(𝑦𝑡 − 𝑢𝛼𝑡)     𝑖𝑓 𝑦𝑡 > 𝑢𝛼𝑡

 (3.18) 

The score can be interpreted as follows. It is exactly the length of the interval if the 

observation falls inside the interval. If the observation falls outside the interval, the score is 

defined as the length of the interval plus a penalty term which is proportional to the distance 

between the observation and the nearest edge of the interval. It can be easily inferred that the 

smaller the Winkler score, the better the prediction. 

3) RPS 

The RPS is a discrete metric that measures the accuracy of a probabilistic forecast of a 

categorical variable which is ranked or ordered. Hence, the categories that are measured 

have a discrete nature. Formally, the RPS can be calculated by the following formula: 

𝑅𝑃𝑆 =
1

𝑟 − 1
∑(∑ 𝑝𝑗

𝑖

𝑗=1

−∑ 𝑒𝑗

𝑖

𝑗=1

)2

𝑟

𝑖=1

 (3.19) 

where 𝑟 denotes the number of total outcomes, 𝑝𝑗 is the predicted probability of the 𝑗𝑡ℎ 

outcome, and 𝑒𝑗 is the actual probability of the 𝑗𝑡ℎ outcome. When 𝑟 = 2, the RPS gives 

the Brier score. It can be easily inferred from the formula that the value of RPS lies in the 

interval of [0,1], and the smaller the value, the better the prediction. 

4) CRPS 

CRPS is used in the scenario where the observation is a scalar, and the prediction is a 

cumulative distribution function. It can be considered as a generalization of the RPS where 

the outcomes are continuous rather than discrete. Formally, the CRPS is defined as the 

integral of the difference between the cumulative distribution function 𝐹(𝑦)  of the 

predicted density and the outcome 𝑦∗, as expressed by the following formula: 

𝐶𝑅𝑃𝑆(𝐹, 𝑦∗) = ∫ (𝐹(𝑦) − 𝟙(𝑦 − 𝑦∗))
2
𝑑𝑦

+∞

−∞

 (3.20) 

where 𝟙 is the Heaviside step function. The value gives by the function is 1 if the real 

argument is non-negative, otherwise the value is 0, as expressed by equation 3.21. 

𝟙(𝑥) = {
1     , 𝑥 ≥ 0
0     , 𝑥 < 0

 (3.20) 
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A graphical illustration of the CRPS is plotted in Figure 3.2. The value of CRPS is the 

area of the shaded region. An alternative representation can be expressed by 

𝐶𝑅𝑃𝑆(𝐹, 𝑦∗) = 𝐸𝐹|𝑌 − 𝑦∗| −
1

2
𝐸𝐹|𝑌 − 𝑌′| (3.21) 

where 𝑌 and 𝑌′ are two independent random variables which have the same cumulative 

distribution function 𝐹 . As shown by equation 3.21, the CRPS generalizes the mean 

absolute error to the case of PFs. In contrast with other probabilistic forecast measures, 

the CRPS considers the PFs as a whole, rather than just focus on certain points of the 

PFs. It quantifies both the calibration and sharpness [66] of the predictive distribution and 

hence provides a comprehensive evaluation of the result. By representing 𝐹 through an 

L-ensemble 𝑦𝑖=1,…,𝐿, equation 3.21 leads to the following estimator 

𝐶𝑅𝑃𝑆 
𝑁𝑅𝐺(𝐹, 𝑦∗) =

1

𝐿
∑ |𝑦𝑖 − 𝑦∗|

𝐿

𝑖=1

−
1

2𝐿2
∑ |𝑦𝑖 − 𝑦𝑗|

𝐿

𝑖,𝑗=1

 (3.22) 
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Figure 3.2 Graphic illustration of the calculation of CRPS 

 

5) Quantile score 

Because our predictive model gives the results in the form of quantiles, quantile score is 

used as the evaluation criteria for PLF. Quantile score was first introduced in the 

GEFCom2014 [65], since when it has been widely used by the load forecasting community 

because it considers both the sharpness and resolution in the evaluation. Formally, the 

quantile score is defined as the mean of the pinball losses across all the quantiles and all the 

forecasting horizon, where the pinball loss for each quantile and each time step is calculated 

by 

𝑃𝑖𝑛𝑏𝑎𝑙𝑙(�̂�𝑡,𝑝, 𝑦𝑡 , 𝑝) = {
(1 −

𝑝

100
) (�̂�𝑡,𝑝 − 𝑦𝑡)   𝑦𝑡 < �̂�𝑡,𝑝

𝑝

100
(𝑦𝑡 − �̂�𝑡,𝑝)    𝑦𝑡 ≥ �̂�𝑡,𝑝

 (3.23) 

where �̂�𝑡,𝑝  is the 𝑝𝑡ℎ  quantile of the forecasted load at time 𝑡 . A lower quantile score 

indicates better performance. 
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3.3. Feature Selection via Bayesian Quantile Regression 

 

The proposed predictive model with embedded feature selection for PLF is constructed under 

the Bayesian framework which is introduced as the following subsections.  

 

3.3.1. Bayesian Inference 

 

To better understand the proposed framework, we first briefly introduce the Bayesian inference 

[67], which is a powerful statistical method to model random variables. Bayesian inference 

interprets probabilities as subjective believes. It aims to specify a procedure of updating one’s 

belief upon seeing the data. When estimating a model, Bayesian statistics consider the model 

parameters as uncertain and drawn from some probability distributions. The essence of Bayesian 

inference is encapsulated by Bayes’ Theorem of conditional probabilities: 

𝑝(𝝁|𝑫) = 𝑝(𝝁)𝑝(𝑫|𝝁) 𝑝(𝑫)⁄  (3.24) 

 D denotes the data. 

 𝝁 denotes the parameter vector. 

 𝑝(𝝁) is the probability of the parameters without considering the data. 

 𝑝(𝝁|𝑫) is the probability of the parameters given the data. 

 𝑝(𝑫|𝝁) is the probability of the data given the parameters. 

 𝑝(𝑫) is the probability of data given any parameters. 

Formally in Bayesian statistics, 𝑝(𝝁)  is called prior distribution, 𝑝(𝝁|𝑫)  is called posterior 

distribution, 𝑝(𝑫|𝝁)  is called likelihood function and 𝑝(𝑫)  is considered as a normalizing 

constant, which can also be called the evidence. The prior distribution is chosen based on our 

domain-knowledge of the problem to be solved and of the parameter to be estimated. This process 

is done without the knowledge of any sample data. The likelihood is calculated as the probability 

of observing the data given the prior hypothesis. The normalizing constant, 𝑝(𝑫), is used to ensure 

that the integral of the posterior distribution equals to one. However, the computation of this 

constant shows extremely high complexity. In practice, equation 3.24 is expressed in the following 

formula: 
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𝑝(𝝁|𝑫) ∝ 𝑝(𝝁)𝑝(𝑫|𝝁) (3.25) 

It can be easily seen that the posterior is proportional to the likelihood times the prior. 

A common problem that we usually need to solve is to infer an unknown distribution from a 

given observed dataset. To address this problem, the Bayesian inference first places a prior over the 

unknown distribution based on some prior knowledge, and then computes the posterior following 

the Bayes’ Theorem. A general example given below shows the procedure of doing Bayesian 

inference: 

1) First, we choose a prior distribution, say 𝑝(𝜃), based on our domain knowledge about the 

parameter 𝜃 that is to be estimated. 

2) Then, we choose a statistical model, 𝑝(𝑥|𝜃), based on our domain knowledge about the data 

given the parameters. 

3) The posterior distribution 𝑝(𝜃|𝑫) is obtained by updating the prior with the likelihood given 

the observed dataset 𝑫 = {𝑋1, … , 𝑋𝑛}. 

The posterior distribution can be expressed as below according to Bayes’ Theorem: 

𝑝(𝜃|𝑋1, … , 𝑋𝑛) =
𝑝(𝑋1, … , 𝑋𝑛|𝜃)𝑝(𝜃)

𝑝(𝑋1, … , 𝑋𝑛)
=

𝐿𝑛(𝜃)𝑝(𝜃)

𝑝(𝑫)
∝ 𝐿𝑛(𝜃)𝑝(𝜃) (3.26) 

where 𝐿𝑛(𝜃) denotes the likelihood. The normalizing constant 𝑝(𝑫) can be calculated by 

𝑝(𝑫) = 𝑝(𝑋1, … , 𝑋𝑛) = ∫ 𝑝(𝑋1, … , 𝑋𝑛|𝜃)𝑝(𝜃)𝑑𝜃 = ∫ 𝐿𝑛(𝜃)𝑝(𝜃)𝑑𝜃 (3.27) 

Furthermore, we can use mean value or mode of the posterior to give a point estimation: 

𝜃𝑛
 = ∫ 𝜃𝑝(𝜃|𝑫)𝑑𝜃 =

∫𝜃𝐿𝑛(𝜃)𝑝(𝜃)𝑑𝜃

∫ 𝐿𝑛(𝜃)𝑝(𝜃)𝑑𝜃
 (3.28) 

We can also estimate an interval. Given 𝛼 ∈ (0,1), we can find 𝑢 and 𝑣 such that 

∫ 𝑝(𝜃|𝑫)
𝑢

−∞

𝑑𝜃 = ∫ 𝑝(𝜃|𝑫)
∞

𝑣

𝑑𝜃 =
𝛼

2
 (3.29) 

Thereafter, 

𝑃(𝜃 ∈ (𝑢, 𝑣)|𝑫) = ∫ 𝑝(𝜃|𝑫)𝑑𝜃
𝑣

𝑢

= 1 − 𝛼 (3.30) 

(𝑢, 𝑣) is a (1 − 𝛼) credible interval. 

 

3.3.2. Prior Specification 
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Following the Bayesian framework, the proposed model is specified as follows. To ease the 

latter Gibbs sampling procedure, a mixture representation of asymmetric Laplace distribution 

based on exponential and normal distributions [68] is used as the prior for the random error term 

𝜀, which can be expressed as 

𝜀 = 𝜃𝑧 + 𝜏√𝑧𝛼𝑢 (3.31) 

where 𝛼 is a scale parameter, 𝑧 is a standard exponential variable and 𝑢 is a standard normal 

variable. For a given quantile 𝑞 ∈ [0,1] , it holds that 𝜃 = (1 − 2𝑞)/𝑞(1 − 𝑞)  and 𝜏2 =

2/𝑞(1 − 𝑞). To incorporate the embedded feature selection structure, an inclusion indicator 

variable 𝛾  is introduced. Letting 𝛾𝑗𝑝  be the inclusion indicator for the 𝑗𝑡ℎ  feature in the 𝑝𝑡ℎ 

quantile model, the proposed feature selection structure can be hierarchically specified by 

𝛽𝑗𝑝 ~ 𝛾𝑗𝑝𝑁(𝛽0, 𝜎𝑗𝑝
2 ) + (1 − 𝛾𝑗𝑝)𝛿0 (3.32) 

𝜎𝑗𝑝
−2 ~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝜎 , 𝑏𝜎) (3.33) 

𝛾𝑗𝑝 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑗𝑝) (3.34) 

where  𝛽0 and 𝜎𝑗𝑝
2  are the prior mean and variance respectively, 𝛿0 is a point mass at 0, 𝜋𝑗𝑝 is 

the prior probability of 𝛾𝑗𝑝 = 1. Note that 𝛾𝑗𝑝 controls the inclusion of the 𝑗𝑡ℎ feature in the 𝑝𝑡ℎ 

quantile model, with 𝛾𝑗𝑝 = 0 implying 𝛽𝑗𝑝 = 0. A value of 𝛽𝑗𝑝 = 0 means that the 𝑗𝑡ℎ feature is 

assigned a zero coefficient, resulting in the exclusion of this feature from the 𝑝𝑡ℎ  quantile 

model. To address the problem of sparseness, 𝜋𝑗𝑝 is considered random and endowed with a 

sparseness-favoring prior [69], i.e., 

𝜋𝑗𝑝 ~ 𝜌𝑗𝑝𝐵𝑒𝑡𝑎(𝑎𝜋, 𝑏𝜋) + (1 − 𝜌𝑗𝑝)𝛿0 (3.35) 

𝜌𝑗𝑝 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) (3.36) 

 

3.3.3. Posterior Inference by MCMC – Gibbs Sampling 

 

Given the above prior specifications, it is almost intractable to maintain the full posterior 

over the random variables. In practice, a typical way is draw sufficient samples from the 

distribution to approximate the target distribution. This kind of method is referred to as Monte 

Carlo sampling. Interestingly, the name Monte Carlo is named after a city in Monaco which 

owns a lot of casinos where many random stuffs happen every day.  
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However, Monte Carlo sampling is commonly used in low-dimensional scenarios and does 

not work well with high-dimensional dataset due to the curse of dimensionality. When the 

number of parameters increases, the sample space will increase exponentially. Another critical 

reason is that Monte Carlo sampling can only be strictly used in scenarios where the samples 

drawn from the target distribution can only be independent. Therefore, it cannot be applied to 

probabilistic models where the samples drawn depends on each other. To solve this problem, 

MCMC is introduced. 

Basically, MCMC can be divided into two parts: Markov chain and Monte Carlo. Monte 

Carlo is a stochastic technique that takes random samples from a probabilistic distribution and 

estimates a target quantity. On top of that, a Markov chain is a stochastic model that generates a 

random sequence of states between which the transaction follows certain probabilistic rules. 

MCMC combines these two techniques by constructing a Markov chain to draw random 

samples from the target distribution. The obtained random samples are then averaged to 

approximate the expected quantities.  

In the proposed research, the Gibbs sampling [70], which is an MCMC technique, is adopted 

to sample from the posteriors. The samples can then be used to approximate the posterior 

distribution. This is achieved by using discrete formulas applied to these samples to 

approximate the integrals of interest. The basic idea of MCMC is to do independent and 

identically distributed sampling from a target distribution Ω via a Markov chain mechanism. 

After 𝑁 samples, {𝒔(𝑖)}𝑖=1
𝑁  is obtained from the sampling procedure and the target distribution 

can be approximated by the following empirical point-mass function: 

Ω𝑁(𝒔) =
1

𝑁
∙ ∑ 𝛿𝒔(𝑖)(𝒔)

𝑁

𝑖=1

 (3.37) 

and any description of the target distribution (some expected value of a function 𝑓) can be 

computed by 

𝐸[𝑓(𝒔)]Ω ≈
1

𝑁
∙∑ 𝑓(𝒔(𝑖))

𝑁

𝑖=1

 (3.38) 

As an MCMC sampling algorithm, the Gibbs sampler updates each variable in turn by 

sampling from its posterior conditional on other variables. It constructs a Markov chain where 

the next sample is drawn according to the conditional probability given the previous sample. 
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Formally, given a D-dimensional variable vector 𝝁 = (𝜇1, … , 𝜇𝐷) and a prior distribution 𝑞0, a 

generic Gibbs sampler can be described in Table 3.3.  

Table 3.3 The Gibbs sampler 

Gibbs sampler 

set 𝑡 = 0 and initialize 𝝁(0)~𝑞0 

for 𝑡 = 1, … , 𝑇 repeat 

for each dimension 𝑖 = 1, … , 𝐷 

    draw 𝝁𝑖
(𝑡)

~𝑃(𝝁𝑖|𝝁1
(𝑡)

, … , 𝝁𝑖−1
(𝑡)

, 𝝁𝑖+1
(𝑡)

, … , 𝝁𝐷
(𝑡)

) 

end 

end 

 

Note that the sampler is initialized with random values; under this circumstance, the first few 

samples should be discarded because they may not represent the actual posterior distribution. 

Such discarded iterations are known as the burn-in period. All the rest effective samples will 

then be used to estimate the target distribution and its descriptions given by equation 3.37 and 

3.38. The samples are updated sequentially from the following conditional posterior 

distributions. 

1) Update 𝜷𝑝 with 𝜷𝑝 = (𝜷𝑝�̅�, 𝜷𝑝𝛾) 

𝜷𝑝�̅� = 0; 

for 𝜷𝑝𝛾, 

𝜷𝑝 ~ 𝑁(�̅�, S𝛽
̅̅̅̅ ) (3.39) 

S𝛽
̅̅̅̅ = (∑

𝒙𝑡𝛾
𝑇 𝒙𝑡𝛾

𝜏2𝛼𝑧𝑡

𝑇

𝑡=1

+ S𝜎
−1)−1 (3.40) 

�̅� = S𝛽
̅̅̅̅ (∑

𝒙𝑡𝛾(𝑦𝑡 − 𝜃𝑧𝑡)

𝜏2𝛼𝑧𝑡

𝑇

𝑡=1

) (3.41) 

where 𝜷𝑝𝛾 is the vector of regression coefficients corresponding to 𝛾 = 1 including the 

intercept, 𝜷𝑝�̅�  is the coefficient vector with 𝛾 = 0 , 𝒙𝑡𝛾  is the feature vector at time 

𝑡 corresponding to 𝛾 = 1, and S𝛿  is the diagonal prior variance matrix with diagonal 

element 𝜎𝑗𝑝
2  if 𝛾𝑗𝑝 = 1 and 0 if 𝛾𝑗𝑝 = 0. 
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2) Update 𝜎𝑗𝑝
2  

𝜎𝑗𝑝
−2 ~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝜎 +

1

2
, 𝑏𝜎 +

𝛽𝑗𝑝
2

2
) (3.42) 

3) Update 𝜋𝑗𝑝 

If 𝜌𝑗𝑝 = 0, 𝜋𝑗𝑝 = 0; 

If 𝜌𝑗𝑝 = 0, 

𝜋𝑗𝑝 ~ 𝐵𝑒𝑡𝑎(𝑎𝜋 + 𝛾𝑗𝑝, 𝑏𝜋 + 1 − 𝛾𝑗𝑝) (3.43) 

4) Update 𝜌𝑗𝑝 

If 𝛾𝑗𝑝 = 1, 𝜌𝑗𝑝 = 1; 

If 𝛾𝑗𝑝 = 0, 

𝑃(𝜌𝑗𝑝 = 1) =

G(𝑎𝜋 + 𝑏𝜋)G(𝑏𝜋 + 1)
G(𝑏𝜋)G(𝑎𝜋 + 𝑏𝜋 + 1)

1 +
G(𝑎𝜋 + 𝑏𝜋)G(𝑏𝜋 + 1)
G(𝑏𝜋)G(𝑎𝜋 + 𝑏𝜋 + 1)

 (3.44) 

5) Update 𝛾𝑗𝑝 

𝛾𝑗𝑝 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝛾) (3.45) 

𝑝𝛾 =
𝜋𝑗𝑝𝐿(𝑦; 𝒙, 𝛾𝑗𝑝 = 1, 𝛾(−𝑗)𝑝)

𝜋𝑗𝑝𝐿(𝑦; 𝒙, 𝛾𝑗𝑝 = 1, 𝜸(−𝑗)𝑝) + (1 − 𝜋𝑗𝑝)𝐿(𝑦; 𝒙, 𝛾𝑗𝑝 = 0, 𝜸(−𝑗)𝑝)
 

(3.46) 

where L is the likelihood of 𝑦 given other parameters and data, and 𝜸(−𝑗)𝑝 denotes the 

inclusion variable vector 𝜸𝑝 with its 𝑗𝑡ℎ element removed. 

6) Update 𝒛  

𝒛 ~ 𝐺𝐼𝐺(
1

2
, 𝑎𝑧 , 𝑏𝑧) (3.47) 

𝑎𝑧 =
𝑦𝑡 − 𝒙𝑡

𝑇𝜷𝑝

𝜏√𝛼
 

(3.48) 

𝑏𝑧 = √
2

𝛼
+

𝜃2

𝜏2𝛼
 

(3.49) 

where 𝐺𝐼𝐺(𝑣, 𝑎, 𝑏) denotes the generalized inverse Gaussian distribution [71] with a PDF 

in the form of  
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𝑓(𝑥) =
(𝑏/𝑎)𝑣

2𝐾𝑎𝑏
𝑥𝑣−1𝑒−

1
2

(
𝑎2

𝑥
+𝑏2𝑥) (3.50) 

with 𝑥 > 0, 𝑎, 𝑏 ≥ 0. 

3.4. Summary 

 

In this chapter, the proposed embedded feature selection method for PLF along with the 

corresponding fundamentals are presented. The quantile linear regression based on the naïve 

vanilla benchmark model considering recency effect is introduced as the predictive model for 

PLF. To recode the categorical variables into numerical ones for the use of the proposed 

regression model, the dummy coding method is also introduced. Thereafter, the proposed 

feature selection framework following the steps of Bayesian inference is discussed in detail, 

including prior specification and posterior inference by an MCMC sampling technique, the 

Gibbs sampling. In the first step of prior specification, a mixture representation of asymmetric 

Laplace distribution based on exponential and normal distributions is used as the prior 

distribution for the random error term to ease the Gibbs sampling procedure. Besides, a 

sparseness-favoring prior is associated with the inclusion indicator variable to handle the 

sparsity of the feature space. In the step of posterior inference, the Gibbs sampler updates each 

variable in turn by sampling from its posterior distribution conditional on other variables, and 

the final results are given through using discrete formulas applied to the samples from the 

posterior distribution to summarize our knowledge of the parameters. 
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4. Case Study I: Test on One Region without Considering Recency Effect 

 

4.1. Introduction 

 

In Chapters 4, 5, and 6, comprehensive simulations are carried out to evaluate the 

effectiveness of the feature selection techniques based on two public datasets from the 

GEFCom2012 and GEFCom2014 respectively. This chapter focuses on examining the model 

performance on short-term PLF without considering recency effect. 

 

4.2. Data Description and Test Settings 

 

This subsection discusses the data and the test settings used in this chapter. An illustrative and 

interpretative description of the data used in the case study is given in detail. The training set and 

test set, along with the error measure are also discussed. 

 

4.2.1. Data Description 

 

The data used for this case study contains historical records for one region provided by the 

GEFCom2014. The GEFCom2014 dataset contains 69 months of hourly load data from January 

2005 to September 2010 and 117 months of hourly temperature data recorded from 25 weather 

stations from January 2001 to September 2010. This dataset is used to examine the performance 

of the selected methods for one region without considering recency effect. Figure 4.1 plots the 

overall load profile from January 2005 to September 2010. Figure 4.2 plots the corresponding 

temperature. We can see a clear increasing trend in the load which might be caused by 
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economic and population growth and a periodic relativity between the load and the temperature. 

The scatter plot given by Figure 4.3 illustrates the overall load-temperature relationship of the 

whole dataset from January 2005 to September 2010. These illustrations figuratively explain the 

reasonability of adding a trend term and including temperature and calendar related features in 

the forecasting model. Further, Figure 4.4 and Figure 4.5 illustrate the scatter plot of hourly load 

and temperature for 12 months and 24 hours. It can be inferred from the plots that linear 

piecewise functions or polynomials of the temperature can be applied to model the relationship. 

It can also be seen that each subplot shows some differences, major or slight, compared to the 

others, indicating that the interaction between the polynomials of temperature and the calendar 

effects, the month, and the hour, should be modeled respectively. 

 

Figure 4.1 Overall load profile year by year from January 2005 to September 2010 

 

 

Figure 4.2 Overall temperature profile year by year from January 2005 to September 2010 
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Figure 4.3 Scatter plot of hourly load and temperature for the whole dataset 
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Figure 4.4 Scatter plot of hourly load and temperature for 12 months 
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Figure 4.5 Scatter plot of hourly load and temperature for 24 hours of the day 

 

4.2.2. Test Settings 

 

From the GEFCom2014 dataset, a two-year period hourly load and temperature data from 1 

November 2006 to 30 October 2008 are chosen as the training set. We opted to use a two-year 

period based on several considerations. Firstly, this period can effectively encompass a calendar 

year, comprising 12 months. Secondly, the two-year duration provides a twofold increase in the 

amount of information that can be learned by the model from this seasonal block when viewed 

annually, which should suffice. We avoid using longer periods, such as three years or more, due 

to the significant computational burden that they impose on several methods, especially the 

wrapper method, which makes the comparison unfeasible. The following two-week data from 1 

November 2008 to 14 November 2008 are used to determine the optimal number of features for 

filter methods and evaluate the best subset of features for wrapper method. Thereafter, the two-

week data from 15 November 2008 to 28 November 2008 are used for validating the 

performance of all the tested methods. Temperature is assumed to stay fixed within each hour. 

Encoding all the calendar variables by the proposed dummy encoding method, the total length 

of the features included in the linear model considering recency effect is 𝑁𝐹 = 1 +  1 + 11 +
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6 + 23 + 23 × 6 + (3 + 3 × 11 + 3 × 23)(1 + 𝑁𝐷 + 𝑁𝐻) = 285 + 105(𝑁𝐷 + 𝑁𝐻).  

A total of 𝑄 = 19  quantiles for a set of probabilities 𝜿 = {0.05,0.1,0.15, … ,0.9,0.95}  are 

used to form the PLF. Under these settings, the quantile score defined in Chapter 3 can be 

computed by 

𝑆𝑄𝑆 =
1

𝑄𝐻
∑ ∑ 𝑃𝑖𝑛𝑏𝑎𝑙𝑙 (�̂�𝑡,𝑝𝑞

, 𝑦𝑡 , 𝑝𝑞) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1

𝑄𝐻
∑ ∑ (1 −

𝑝𝑞

100
) (�̂�𝑡,𝑝𝑞

− 𝑦𝑡)

𝐻

ℎ=1

𝑄

𝑞=1

   𝑦𝑡 < �̂�𝑡,𝑝𝑞

1

𝑄𝐻
∑ ∑

𝑝𝑞

100
(𝑦𝑡 − �̂�𝑡,𝑝𝑞

)

𝐻

ℎ=1

𝑄

𝑞=1

    𝑦𝑡 ≥ �̂�𝑡,𝑝𝑞

𝐻

ℎ=1

𝑄

𝑞=1

 (4.1) 

where 𝐻 is the length of the forecasting horizon with 𝐻 = 24 ∗ 14 and 𝑝𝑞 = 100𝜅𝑞.  

 

4.3. Benchmarks 

 

The simulation starts with the original quantile linear regression model. To deliver a 

comprehensive comparison, three filter methods, one wrapper methods, an embedded method, 

and the original quantile linear regression as well as a nonlinear predictive model without 

feature selection are added as benchmarks. The proposed method is denoted by BQLRFS. 

1) The first filter algorithm adopted here examines the importance of each feature 

individually using an F-test and ranks the features using the p-values of the F-test 

statistics. The method is denoted by FTEST. The second filter algorithm calculates the 

feature weights using a diagonal adaptation of neighborhood component analysis, which 

is denoted by NCA. The third filter method uses the RReliefF algorithm [72] and is 

denoted by RRF. The implementation of these three methods is carried out in MATLAB, 

utilizing the functions provided by the Statistics and Machine Learning Toolbox. 

FTEST: a statistical test is a method that is used to infer if the given data support a 

specific hypothesis sufficiently. Basically, it indicates whether the difference between 

models is significant or not. For the problem of feature selection, F-test is a statistical 

test that is used to evaluate the importance of individual feature. F-test examines the 

hypothesis that the load values grouped by features are drawn from populations with the 

same mean against the alternative hypothesis that the population means are not all the 
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same. A 𝑝-value can be calculated from the test. This value describes how likely a 

particular set of observations are to be found if the null hypothesis were true. A small 𝑝-

value indicates a high importance of the corresponding feature.  

NCA: NCA is a supervised learning algorithm based on certain distance metrics over the 

data. It can be used for feature selection when solving a classification/regression 

problem by optimizing the modeling accuracy. Formally, given a training set with 𝑁 

observations {(𝒙𝒊, 𝑦𝑖), 𝑖 = 1,2, … , 𝑁} where 𝒙𝒊 is a feature vector with 𝐷 dimensions and 

𝑦𝑖 is the corresponding response value, the objective of the algorithm is to find a vector 

of feature weights that is adapted select the subset of features that optimizing the 

classification/regression model. Denoting the vector of feature weights 𝒘 = (𝑤1, … , 𝑤𝐷), 

the function measuring the distance between two feature vector samples 𝒙𝒊  and 𝒙𝒋  is 

given by 

𝐷𝒘(𝒙𝒊, 𝒙𝒋) = ∑ 𝑤𝑑
2|𝒙𝒊𝒅 − 𝒙𝒋𝒅|

𝐷

𝑑=1

 (4.2) 

Then, the probability that 𝒙𝒊 is picked as the reference point for 𝒙𝒋 is calculated by  

𝑝𝑖𝑗 =
𝑘(𝐷𝒘(𝒙𝒊, 𝒙𝒋))

∑ 𝑘(𝐷𝒘(𝒙𝒊, 𝒙𝒋))𝑁
𝑗=1,𝑗≠𝑖

 (4.3) 

Considering a regression problem such as load forecasting, let 𝑦�̂� be the predicted value 

for 𝒙𝒊 and 𝑙 be a loss function quantifying the difference between 𝑦�̂� and 𝑦𝑖 . Then the 

expected value of 𝑙(𝑦�̂�, 𝑦𝑖) can be given by 

𝑙𝑖 = ∑ 𝑝𝑖𝑗𝑙(𝑦𝑖 , 𝑦𝑗)

𝑁

𝑗=1,𝑗≠𝑖

 (4.3) 

Further, the feature selection result is given by the feature weights that minimize the 

objective function below with a regularization term added: 

𝑓(𝒘) =
1

𝑁
∑ 𝑙𝑖

𝑁

𝑖=1

+ 𝜆 ∑ 𝑤𝑑
2

𝐷

𝑑=1

 (4.4) 

For more information, see [73]. 

RRF: RRF method works with continuous features and response. It calculates the 

feature weights by rewarding features that give different values to neighbours with 

different response values and penalizing features that give different values to neighbours 
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with the same response values. This algorithm is explained in detail as follows. 

Given two nearest neighbours and the following denotations, the pseudo code for the 

RRF algorithm is described in Table 4.1 below: 

 Let 𝑤𝑑𝑦 denotes the weight of having different values for the response 𝑦. 

 Let 𝑤𝑑𝑗 denotes the weight of having different values for the 𝑗𝑡ℎ feature 𝐹𝑗. 

 Let 𝑤𝑑𝑦&𝑑𝑗  denotes the weight of having different values for the response 𝑦 and 

different values for the 𝑗𝑡ℎ feature 𝐹𝑗. 

 Let 𝑤𝑗 denotes the weight for the 𝑗𝑡ℎ feature 𝐹𝑗. 

 Let 𝑦𝑟  denote the response for observation 𝒙𝒓  and 𝑦𝑞  denote the response for 

observation 𝒙𝒒. Then, the difference in the response is denoted by Δ𝑦(𝒙𝒓, 𝒙𝒒) and 

the difference in the value of the  𝑗𝑡ℎ feature is denoted by Δ𝑗(𝒙𝒓, 𝒙𝒒). 

 Let 𝑑𝑟𝑞 denotes the distance function measuring the distance between two instances 

𝒙𝒓 and 𝒙𝒒. 

Table 4.1 Pseudo code for the RRF algorithm 

Algorithm: RRF 

set all 𝑤𝑑𝑦, 𝑤𝑑𝑗, 𝑤𝑑𝑦&𝑑𝑗 and 𝑤𝑗 to 0 

for 𝑖 = 1, … , 𝑚 repeat 

    randomly select an observation 𝒙𝒓 

    find the 𝑘-nearest observations to 𝒙𝒓 

    for each nearest neighbour 𝒙𝒒, update the following weights 

        𝑤𝑑𝑦
𝑖 = 𝑤𝑑𝑦

𝑖−1 + Δ𝑦(𝒙𝒓, 𝒙𝒒) ∙ 𝑑𝑟𝑞 

        𝑤𝑑𝑗
𝑖 = 𝑤𝑑𝑗

𝑖−1 + Δ𝑗(𝒙𝒓, 𝒙𝒒) ∙ 𝑑𝑟𝑞 

        𝑤𝑑𝑦&𝑑𝑗
𝑖 = 𝑤𝑑𝑦&𝑑𝑗

𝑖−1 + Δ𝑦(𝒙𝒓, 𝒙𝒒) ∙ Δ𝑗(𝒙𝒓, 𝒙𝒒) ∙ 𝑑𝑟𝑞 

        Δ𝑦(𝒙𝒓, 𝒙𝒒) =
|𝑦𝑟−𝑦𝑞|

max(𝑦)−min (𝑦)
 

        Δ𝑗(𝒙𝒓, 𝒙𝒒) =
|𝑥𝑟𝑗−𝑥𝑞𝑗|

max(𝐹𝑗)−min (𝐹𝑗)
 

        𝑑𝑟𝑞 =
𝑒−(𝑟𝑎𝑛𝑘(𝑟,𝑞)/𝑠𝑖𝑔𝑚𝑎)2

∑ 𝑒−(𝑟𝑎𝑛𝑘(𝑟,𝑙)/𝑠𝑖𝑔𝑚𝑎)2𝑘
𝑙=1

 

end 



72 

 

After fully updating the weights above, the feature weights 𝑤𝑗 can be calculated by 

𝑤𝑗 =
𝑤𝑑𝑦&𝑑𝑗

𝑤𝑑𝑦
−

𝑤𝑑𝑗 −𝑤𝑑𝑦&𝑑𝑗

𝑚 −𝑤𝑑𝑦
 

 

2) For the wrapper method, one greedy search algorithm, the sequential forward selection, 

which has been discussed in Section 2.2.2, is adopted, and denoted by SFS. This method 

is implemented in Python following the steps below: 

a). Initialize an empty set of features and a set of candidate features to be added to the 

feature set. 

b). Train the multiple linear regression model as mentioned in Chapter 3.2.3 using the 

training data with the empty feature set and evaluate the performance on the data given 

for evaluation. 

c). For each candidate feature not in the feature set, add it to the feature set, train a model 

with the augmented feature set, and evaluate the performance on the same data given for 

evaluation. 

d). Select the best candidate feature that improves the performance the most and add it to 

the feature set. 

e). Repeat the above steps until the desired number of features or optimal performance is 

achieved. 

f). Train the final model using the selected feature set and evaluate its performance on 

the validation dataset. 

3) To show the superiority of the proposed method, the method proposed by [23], which is 

the most recently published research on embedded feature selection for PLF, is used as 

the embedded method benchmark, denoted by QRLASSO. The full name of the method 

is least absolute shrinkage and selection operator (LASSO) based on quantile regression. 

This method estimates the parameter 𝜷𝑝  by minimizing the objective function of the 

quantile regression with an 𝐿1-norm penalty, i.e., 

𝜷𝑝
 = 𝑎𝑟𝑔 min

𝜷𝑝

∑ 𝑙𝑝(𝑦𝑡 − 𝒙𝑡
𝑇𝜷𝑝) + 𝜆𝑝||𝜷𝑝||1

𝑇

𝑡=1

 (4.5) 

where 𝑙𝑝 is the loss function and 𝜆𝑝 is the weight of sparse penalty of the 𝑝𝑡ℎ quantile, 
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respectively. The QRLASSO is similar to the strategy of the conventional LASSO method, 

except that the optimal 𝜆𝑝 is different for each quantile. In order to attain an optimum 

level of performance and a fair comparison, we undertake the same model selection 

procedure to explore the most suitable adjustment parameter  𝜆𝑝 for every quantile, as 

detailed in reference [23]. 

4) To prove the competitiveness of the quantile linear regression model for PLF, a 

nonlinear model, the quantile regression neural network (QRNN) with default setting is 

also included in the testing. The original quantile linear regression model is denoted by 

QLR, which has been introduced in Chapter 3.2.1. The QRNN algorithm is implemented 

using the QRNN package [74] designed in the R programming language and is briefly 

discussed as follows. 

QRNN simply combines quantile regression and neural network together to represent 

the nonlinear relation between features and quantiles of the response variable. A 

commonly used neural network model for time series forecasting is feed forward neural 

network, the general architecture of which is depicted by Figure 4.6. 
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Figure 4.6 General architecture of a feed forward neural network 

The following introduction to the algorithm supposes a network with two hidden 

layers and 𝐷 input variables 𝑥1, … , 𝑥𝐷. Under this setting, the output from the 𝑘𝑡ℎ hidden 

node in the first layer can be expressed as 

𝑔𝑘 = 𝑓1 (∑ 𝑥𝑑𝑤𝑑𝑘
(ℎ)

+ 𝑏𝑘
(ℎ)

𝐷

𝑑=1

) (4.6) 

and similarly, the output from the 𝑙𝑡ℎ hidden node in the second layer can be expressed 

as 

ℎ𝑙 = 𝑓2 (∑ 𝑔𝑘𝑤𝑘𝑙
(ℎ)

+ 𝑏𝑙
(ℎ)

𝐾

𝑘=1

) (4.7) 

where 𝑓1(∙) and 𝑓2(∙) are the activation functions for the first and the second hidden layer 

respectively, and 𝑤(ℎ) denotes the weights for the hidden layers, and 𝑏(ℎ) represents the 

bias of associated hidden layers. Supposing that the output layer of the network consists of 

...

Input nodes

...

Hidden nodes

...

Output nodes

Input layer Hidden layer Output layer

Bias nodes

...

...

...

...
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only one single node, the estimated 𝑝𝑡ℎ  conditional quantile for the 𝑡𝑡ℎ  instance can be 

given by 

𝑄𝑡
(𝑝) 

= 𝑓𝑜 (∑ℎ𝑙𝑤𝑙
(𝑜)

+ 𝑏
(𝑜)

𝐿

𝑙=1

) (4.8) 

where 𝑤(𝑜) denotes the weights for the output layer, and 𝑏(𝑜) is the associated bias, and 

𝑓𝑜(∙) is the activation function of the output layer. Similar to the error function of linear 

quantile regression given as (3.4), the error function to be minimized for QRNN is 

∑ 𝜌𝑝(𝑦𝑡 − 𝑄𝑡
(𝑝) 

)

𝑡

 (4.9) 

where the loss function 𝜌𝑝(∙) here is different from the one given by (3.5) and is defined as 

𝜌𝑝(𝑢) = {
𝑝ℎ(𝑢)      𝑖𝑓  𝑢 ≥ 0

(𝑝 − 1)ℎ(𝑢)      𝑖𝑓  𝑢 < 0
 (4.10) 

ℎ(𝑢) =

⎩
⎨

⎧
𝑢2

𝜉
      𝑖𝑓  0 ≤ |𝑢| ≤ 𝜉

|𝑢| −
𝜉

2
      𝑖𝑓  𝑢 < 0

 (4.11) 

where ℎ(𝑢) is the Huber function [75]. The reason for such change is that (3.5) is not 

defined at the origin and thus not differentiable everywhere. Hence, the Huber function is 

used to smooth the loss function. 

 

4.4. Technical Specification 

 

All simulations Chapter 4, Chapter 5 and Chapter 6 are run on a Linux-based, heterogeneous, 

high-performance computing cluster at the University of Saskatchewan. Plato has a total of 120 

compute nodes with an aggregate 2 000 CPU cores and 7.4 TB RAM, yielding a theoretical 64 

tera floating-point operations per second. There are 94 general-purpose nodes, 2 GPU nodes, 

and 2 large-memory nodes. The software used and the technical specification for each method is 

introduced in detail as below. 

1) The proposed method, the three filter methods, and the original linear quantile regression 

model are tested with MATLAB scripts, using the Penguin high-density nodes: 

 2 x twenty-core Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz (AVX512, AVX2, 
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AVX) 

 192 GB RAM 

 2 x 1 GB Ethernet to Cluster network 

 781 GB local storage drive (/local) 

2) The wrapper method is tested with Python script, using both the Penguin high-density 

nodes and the Dell PowerEdge R920 big memory node: 

 4 x twelve-core Intel(R) Xeon(R) CPU E7-4850 v2 @ 2.30GHz (AVX) 

 2TB RAM 

 2 x 10 GB Ethernet to Cluster network 

 1.5 TB local storage drive (/local) 

3) The QRLASSO method is tested with MATLAB script, using both the Penguin high-

density nodes and the Dell PowerEdge R920 big memory node. 

4) The QRNN method is tested with R script, using the Penguin high-density nodes. 

 

4.5. Case Studies and Results of the GEFCom2014 Dataset 

 

To make a comprehensive comparison and show the effectiveness of the proposed method, 

the overall performance, and the performance of the tested methods over a set of quantiles are 

examined in this simulation. The computational costs of the tested methods are reported. The 

interpretability of the feature selection methods is also discussed in detail. 

 

4.5.1. Result without Considering Recency Effect 

 

Table 4.2 presents the quantile score of the proposed method and all the benchmarks without 

considering recency effect. The proposed method BQLRFS has the lowest overall quantile score 

among all the tested methods and is significantly lower than the other methods. The feature 

selection benchmarks including three filter methods, one wrapper method and an embedded 

method. Compared with QLR, which is the naïve benchmark without feature selection, FTEST, 

NCA and SFS show little improvement in PLF performance. NCA has the same accuracy as 
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QLR, indicating that NCA select all features in this case. Only RRF, QRLASSO and the 

nonlinear naïve benchmark QRNN show comparable improvement, while they are still beaten 

by the proposed method.  

It is worth emphasizing that while QRLASSO is the only recently proposed method that 

integrates feature selection into a PLF model, its performance falls short of expectations and is 

outperformed by the proposed approach. This disparity can be attributed to several factors. 

Firstly, while both QRLASSO and the proposed method permit the selection of features to vary 

across quantiles, the latter approach surpasses the former by allowing all input features to 

demonstrate their impact through the utilization of Bayesian inference. By adopting Bayesian 

inference, relevant features are assigned higher inclusion probabilities, whereas less relevant 

features are less likely to be selected. Thus, all input features can potentially influence the load 

forecasting results. On the contrary, the LASSO method removes less relevant features by 

shrinking their coefficients to zero, completely erasing their impact. Another crucial factor is 

that the proposed method is better equipped to handle sparse feature spaces than QRLASSO due 

to the integration of a sparse-favoring prior over the inclusion indicator variables via Bayesian 

inference. In contrast, QRLASSO does not possess a design tailored to handle sparsity. 

Furthermore, QRLASSO requires a model selection process to determine the optimal 

adjustment parameter for each quantile, whereas the proposed method leverages prior 

knowledge to select hyperparameters for the prior distribution in Bayesian modeling, 

eliminating the need for a model selection process. 

Table 4.2 QS of all tested methods without considering recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

QS 3.645 4.464 4.451 3.921 4.403 4.133 4.451 4.083 

 

The pinball loss of each quantile averaged over the forecasted horizon for each method is 

reported in Table 4.3, with the lowest value of each row bolded. Conditional formatting is 

applied to the table cells to enhance the visualization of the data. Specifically, a color gradient is 

employed to represent the values assigned to each cell, with the degree of green or red 

saturation corresponding to the magnitude of the value. A smaller value is depicted in a greener 

hue, whereas a larger value is represented in a redder hue. BQLRFS has the lowest average 
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pinball loss across the forecasted horizon for 13 out of 19 total quantiles, while the loss of 

BQLRFS can still be considered relatively low for the rest of the quantiles compared to the 

benchmarks. It can be clearly seen from the table that the average pinball loss tends to become 

larger towards the middle range of the quantiles. Though all the methods have close and 

relatively low average pinball loss for small and large quantiles, the loss of BQLRFS is 

significantly lower and less fluctuating than that of the benchmarks regarding the middle range 

of the quantiles, indicating robust performance across all forecasted quantiles. 

Table 4.3 Pinball loss of each quantile averaged over the forecasted horizon for all methods 

without considering recency effect 

Quantile BQLRFS FTEST NCA RELIEFF SFS QRLASSO QRMLR QRNN 

0.05 1.77 1.24 1.23 1.36 1.15 1.34 1.23 1.19 

0.10 2.43 2.05 2.05 2.31 2.01 2.14 2.05 1.95 

0.15 2.98 2.74 2.75 3.04 2.70 2.78 2.75 2.73 

0.20 3.14 3.30 3.31 3.67 3.29 3.35 3.31 3.19 

0.25 3.93 3.76 3.75 4.15 3.81 3.82 3.75 3.69 

0.30 4.08 4.28 4.23 4.55 4.29 4.26 4.23 4.19 

0.35 4.27 4.65 4.64 4.76 4.69 4.59 4.64 4.65 

0.40 4.47 5.07 4.99 4.94 5.05 4.83 4.99 4.83 

0.45 4.48 5.37 5.29 5.11 5.31 5.07 5.29 5.17 

0.50 4.52 5.57 5.45 5.19 5.50 5.23 5.45 5.03 

0.55 4.34 5.71 5.57 5.10 5.56 5.22 5.57 5.56 

0.60 4.37 5.63 5.55 5.10 5.47 5.18 5.55 5.61 

0.65 4.24 5.54 5.55 4.92 5.47 5.01 5.55 5.20 

0.70 4.02 5.49 5.46 4.70 5.40 4.82 5.46 4.87 

0.75 3.95 5.46 5.50 4.41 5.33 4.68 5.50 4.42 

0.80 3.08 5.22 5.27 3.85 4.97 4.57 5.27 4.95 

0.85 3.45 4.94 4.97 3.29 4.83 4.33 4.97 4.60 

0.90 2.96 4.50 4.65 2.51 4.66 3.96 4.65 3.30 

0.95 2.76 4.29 4.37 1.43 4.19 3.34 4.37 2.47 

 

To give an intuitive comparison, the forecasted quantiles of all tested methods and the real 

load over the forecasted horizon from 15 November 2008 to 28 November 2008 is depicted in 



79 

 

separate sub figures of Figure 4.7. For all plots in Figure 4.7, 5 typical predictive intervals, the 

10%, 30%, 50%, 70% and 90% intervals are selected and plotted for better visualization, 

because the shaded area would be too dense to be distinguished if all quantiles given by 

predictive intervals are depicted. 

 

(1) BQLRFS 

 

(2) FTEST 
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(3) NCA 

 

(4) RELIEFF 
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(5) SFS 

 

(6) QRLASSO 
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(7) QRMLR 

 

(8) QRNN 

Figure 4.7 Predictive intervals of all tested methods and the real load over the forecasted horizon 
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4.5.2. Computational Cost 

 

Table 4.4 presents the computation times of all tested methods. It should be noted that the 

computation times of all filter methods include a model selection process to determine the 

optimal number of features included for prediction. The running times of this process for 

FTEST, NCA and RRF are 21224s, 22161s and 22440s, respectively, which dominate the time 

consumption. Although filter methods are the most efficient feature selection methods 

themselves, a significant amount of time needs to be spent in a model selection process unless 

subjectively predefined. The computation burden for the rest of the methods is within 

acceptable range for off-line training. 

Table 4.4 Computation time of all tested methods 

Method Computation Time 

BQLRFS 4746 s 

FTEST 21224 s  

NCA 22161 s 

RRF 22440 s 

SFS 1055 s 

QRLASSO 3847 s 

QLR 336 s 

QRNN 2313 s 

 

4.5.3. Feature Selection Interpretation 

 

The way that how feature selection is interpreted by each method is discussed in this 

subsection. 

Filter methods measure the importance of each feature independently based on certain 

statistical criteria regardless of the forecasting algorithm. For each of the filter methods tested in 

the simulation, a bar plot of feature importance scores is created and shown as Figure 4.8, 

Figure 4.9 and Figure 4.10 for FTEST, NCA and RRF, respectively. Please be noted that the 
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scores given by FTEST are the negative logs of the 𝑝-values. In MATLAB, the corresponding 

score value is set to be Inf if a 𝑝-value is smaller than eps(0), where eps calculates the floating-

point relative accuracy and eps(0) is equal to 4.9407 × 10−324. Hence, to better visualize the 

score plot, the bar plot assigns Inf values the same length as the largest finite score. The RRF 

method may generate negative feature weights, indicating that these features are not good 

predictors. The plots of the feature importance scores for the filter methods are depicted in the 

following figures.  

 

Figure 4.8 Feature importance scores given by method FTEST 
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Figure 4.9 Feature weights given by method NCA 

 

Figure 4.10 Feature weights given by method RRF 

Because the filter methods only evaluate the feature importance or weight, a predetermined 

threshold is needed to select a certain number of features. However, manually determining such 

threshold is so subjective that it may deteriorate the model performance if it is not carefully 

selected. A more convincing way is to add a model selection process to determine the optimal 
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number of features, which however, requires extra data and is quite time-consuming, as 

discussed in the previous subsection. 

The wrapper method, SFS, sequentially searches for the subset of features that best improves 

the model performance. Hence, the optimal subset of features is exactly the selected features. 

QRLASSO method introduces an 𝐿1-norm penalty term into the quantile regression model to 

penalize the unimportant features. As a result, the associated coefficients of features with low 

importance are assigned with a very small absolute value. Filters and wrappers select features 

based on point forecasting and use the feature selection result to fit a PLF model, which, however, 

is unreasonable. It indeed saves a lot of work by simply using the same selected features for all 

quantiles, but in reality, the impact of each feature on each quantile could be different. A feature 

that has little impact on median value could be important when predicting extreme quantiles. 

QRLASSO allows selected features to vary among different quantiles. Figure 4.11 illustrates the 

estimated coefficients for three selected quantiles (0.6, 0.7 and 0.8) as an example. 

 

(a) 

 



87 

 

 

(b) 

 

(c) 

Figure 4.11 Estimated coefficients for three selected quantiles: (a) 0.6, (b) 0.7, (c) 0.8 

Unlike all of the methods above, the proposed method introduces a new feature selection 

scheme that not only allows selected features to vary among quantiles, but also encourages all 

features to participate in the forecasting model with a certain probability. The results indicate 

that each quantile of the PFs is affected by different set of selected features, while the features 

selected by the filter and wrapper methods stay the same for all quantiles. For instance, an 

important feature would be selected with a high probability, while an unimportant feature might 

not be totally excluded from the model. It still could be selected but with a low probability. In 

other methods, the features are treated equally after they are selected. In the proposed method, 

the impact of each feature is controlled by the associated probability. Moreover, due to the 

mechanism of Gibbs sampling which updates each variable in turn by sampling from its 
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posterior conditional on other variables, the probability of a feature being selected is affected by 

the value of other features. This is quite true in real-world applications. For example, in extreme 

scenarios where the temperature is very high or very low, the customers tend to always keep 

their air conditioners on regardless of other conditions, which, in other words, means that the 

impact of other variables on the load would be less under this situation. Such feature selection 

scheme makes it possible to estimate more complex predictive distributions in PLF models in a 

practical perspective. As an example, Figure 4.12 illustrates the inclusion probabilities for all 

input features for three selected quantiles (0.6, 0.7 and 0.8). 

 

(a) 

 

(b) 
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(c) 

Figure 4.12 Inclusion probabilities for all input features for three selected quantiles: 

(a) 0.6, (b) 0.7, (c) 0.8 

 

4.6. Summary 

 

This chapter examines the performance of the proposed method without considering recency 

effect. An open dataset, the GEFCom2014 dataset, is used to compare the performance of the 

proposed method with several benchmarks including three filter methods, two wrapper 

methods, an embedded methods and two naïve methods without feature selection. The results of 

the first case study have been discussed, including the forecasting performance, the computation 

burden, and the feature selection interpretation of each tested method.  
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5. Case Study II: Test on Multiple Regions Considering Recency Effect 

 

5.1. Introduction 

 

The case study in this chapter is designed to examine the model performance considering 

recency effect which brings in more features. As the data used in this chapter are collected from 

multiple regions with different weather scenarios, this case study is also aimed to further 

confirm that our conclusions are not restricted to one specific load zone or dataset. 

 

5.2. Data Description and Test Settings 

 

The data used in this case study is provided by the GEFCom2012 dataset. This dataset 

contains 54 months of hourly load data of 20 regions of North California since 1 January 2004 

along with corresponding hourly temperature data from 11 weather stations. Among the 11 

regions that have weather information, one region experienced a system reconfiguration during 

the recording period. Hence, 10 regions with weather information are selected. Figure 5.1 plots 

the load profile and corresponding temperature year by year for the selected regions. It can be 

seen from the plots that the loads of these selected zones show a clear periodic pattern 

correlated to temperature and calendar effects, without significant system reconfigurations. 

Some regions show a clear slowly increasing trend, and some keep a steady load level. It can 

also be seen from the figures that there is occasionally a very few of extreme or zero values in 

the loads which could be error readings. In this case, the wrong records are replaced by the 

average value of the adjacent data points. 
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(1) Load and temperature profile of Zone 1 
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(2) Load and temperature profile of Zone 2 

 

(3) Load and temperature profile of Zone 3 
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(4) Load and temperature profile of Zone 4 

 

(5) Load and temperature profile of Zone 5 
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(6) Load and temperature profile of Zone 6 
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(7) Load and temperature profile of Zone 7 

 

(8) Load and temperature profile of Zone 8 

Jan 2004 Jul 2004 Jan 2005 Jul 2005 Jan 2006 Jul 2006 Jan 2007 Jul 2007 Jan 2008 Jul 2008
0

20

40

60

80

100

120

Jan 2004 Jul 2004 Jan 2005 Jul 2005 Jan 2006 Jul 2006 Jan 2007 Jul 2007 Jan 2008 Jul 2008
1000

2000

3000

4000

5000

6000

7000

8000

Jan 2004 Jul 2004 Jan 2005 Jul 2005 Jan 2006 Jul 2006 Jan 2007 Jul 2007 Jan 2008 Jul 2008
0

20

40

60

80

100

120



96 

 

 

(9) Load and temperature profile of Zone 9 
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(10) Load and temperature profile of Zone 10 

Figure 5.1 Overall load and temperature profile of 10 selected zones year by year from January 

2004 to July 2008 

 

From the GEFCom2012 dataset, a two-year period hourly load and temperature data from 1 

May 2006 to 30 April 2008 are chosen as the training set. The following two-week data from 1 

May 2008 to 14 May 2008 are used to determine the optimal number of features for filter 

methods. Thereafter, the two-week data from 15 May 2007 to 28 May 2007 are used for 

validating the performance of all the tested methods. Temperature is assumed to stay fixed 

within each hour. As has discussed in the previous chapter, encoding all the calendar variables 

by the proposed dummy encoding method, the total length of the features included in the linear 

model considering recency effect is 𝑁𝐹 = 285 + 105(𝑁𝐷 + 𝑁𝐻). In the case of 𝐷 = 7, 𝐻 = 12, 

the total number of features will be 𝑁𝐹 = 2280. In this case study, we consider 7 different 

scenarios with 𝐷 varying from 1 to 7 and 𝐻 varying from 0 to 12 with an increment size of 2. 

That is (𝐷, 𝐻) = {(1,0), (2,2), (3,4), (4,6), (5,8), (6,10), (7,12)}. Table 5.1 shows the mapping 

relation between the feature length and the value of (𝐷, 𝐻). 

Same as the test settings in Chapter 4, a total of 𝑄 = 19 quantiles for a set of probabilities 

𝜿 = {0.05,0.1,0.15, … ,0.9,0.95} are used to form the PLF. The error measurement stays the 

same which is given by quantile score. 
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Table 5.1 Mapping relation between the feature length and the value of (𝐷, 𝐻) 

(𝑫, 𝑯) Num. of features 

(𝟏, 𝟎) 390 

(𝟐, 𝟐) 705 

(𝟑, 𝟒) 1020 

(𝟒, 𝟔) 1335 

(𝟓, 𝟖) 1650 

(𝟔, 𝟏𝟎) 1965 

(𝟕, 𝟏𝟐) 2280 

 

 

5.3. Benchmarks 

 

For consistency, this chapter uses the same benchmarks as Chapter 4, including three filter 

methods, one wrapper method, one embedded method and two naïve benchmarks without 

feature selection. The denotations of these methods stay the same as those in the previous 

chapter. Due to the heavy computation burden of the process of determining optimal number of 

features for filters methods, the number of features included is not increased by 1 but at a step 

of 50 to reduce the computation time. Otherwise, the process may take over months. 

 

5.4. Case Studies and Results of the GEFCom2012 Dataset 

 

In this simulation, data from 10 different zones with different temperature conditions are 

tested. The overall performance, and the performance of the tested methods over a set of 

quantiles are examined, with the consideration of recency effect. The objective of this case 

study is mainly to answer the following questions: 

 Will adding recency effect to the tested models improve the forecasting performance? 

 Is the included recency effect the longer the better? 

 What is the performance difference among the tested methods? 
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 Does the conclusion drawn in the previous chapter still hold with different datasets? 

Table 5.2 – 5.11 present the simulation results of the 10 different zones, showing the overall 

quantile scores for scenarios of different recency effects. 

 

Table 5.2 Overall quantile scores of all methods for Zone 1 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 499.94 733.47 515.66 733.47 510.01 753.71 733.47 751.75 

D1H0 419.26 616.61 616.62 617.36 420.83 655.42 616.62 736.48 

D2H2 475.37 614.04 615.37 603.79 506.82 667.11 615.37 729.10 

D3H4 481.32 596.64 603.40 588.88 521.05 656.70 603.40 731.51 

D4H6 485.92 600.43 450.49 572.72 522.92 646.81 592.78 650.94 

D5H8 481.23 595.43 534.57 553.47 539.97 641.20 595.32 680.60 

D6H10 509.81 613.47 544.91 538.84 558.86 662.72 633.41 709.57 

D7H12 532.64 684.25 581.55 544.19 587.54 695.47 653.52 738.74 

 

 

Table 5.3 Overall quantile scores of all methods for Zone 2 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 2409.44 2414.75 2414.74 2348.67 2165.77 2552.53 2414.75 2607.12 

D1H0 1987.94 2002.47 2002.47 2191.71 2225.07 2088.35 2002.49 2068.41 

D2H2 2009.07 2010.37 2018.59 2321.03 2268.45 2071.89 2010.36 2155.74 

D3H4 2010.45 2016.97 2050.23 2486.45 2136.60 2085.02 2016.97 2252.23 

D4H6 2056.74 2058.12 2058.12 2058.12 2030.03 2096.16 2058.12 2299.32 

D5H8 2082.20 2067.22 2067.22 3098.53 2457.33 2082.53 2067.22 2361.98 

D6H10 2145.45 2130.05 2156.24 3043.32 2566.87 2101.63 2130.05 2592.03 

D7H12 2201.46 2347.13 2268.49 3099.47 2636.11 2204.40 2243.21 2705.78 

 

 



100 

 

 

 

Table 5.4 Overall quantile scores of all methods for Zone 3 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 2312.29 2679.81 2679.81 2592.41 2345.50 2839.53 2679.80 2933.84 

D1H0 2003.33 2519.62 2519.62 2124.41 2109.27 2526.40 2519.62 2531.97 

D2H2 2091.25 2412.09 2412.09 2595.21 2125.08 2450.52 2412.09 2586.78 

D3H4 2119.67 2431.79 2195.87 2431.79 2143.73 2344.55 2431.79 2556.32 

D4H6 2108.01 2413.40 2413.40 2413.40 2149.50 2317.11 2413.40 2609.78 

D5H8 2130.52 2236.98 2236.98 2236.98 2192.62 2201.71 2236.98 2757.43 

D6H10 2313.12 2647.41 2670.65 2647.41 2387.36 2287.94 2647.41 2809.88 

D7H12 2428.02 2777.12 2777.12 2777.12 2454.78 2513.11 2777.12 2919.82 

 

 

Table 5.5 Overall quantile scores of all methods for Zone 4 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 8.08 10.71 10.71 10.83 9.83 10.77 10.71 11.10 

D1H0 7.94 10.46 10.33 10.44 8.12 10.25 10.32 10.88 

D2H2 7.86 10.47 10.14 10.42 9.46 9.99 10.36 11.10 

D3H4 7.93 11.35 11.28 9.86 9.43 10.32 11.29 10.53 

D4H6 8.21 11.47 9.33 9.66 9.21 10.27 11.33 11.02 

D5H8 8.23 11.56 11.60 9.55 9.72 10.10 11.43 10.89 

D6H10 8.39 11.52 11.46 9.30 9.96 10.12 11.33 11.19 

D7H12 8.50 11.62 11.61 9.09 10.37 10.44 11.19 11.65 
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Table 5.6 Overall quantile scores of all methods for Zone 5 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 140.49 162.65 163.03 162.65 168.05 166.87 162.65 138.23 

D1H0 136.16 168.88 168.88 165.34 156.86 168.98 168.88 139.33 

D2H2 133.20 164.60 162.74 139.95 186.52 166.21 165.27 139.15 

D3H4 141.52 178.16 178.16 159.39 185.23 173.50 178.16 142.94 

D4H6 143.16 185.05 183.34 161.27 200.20 176.50 185.05 145.06 

D5H8 154.46 189.03 189.03 160.23 183.68 176.11 189.03 167.42 

D6H10 155.76 192.56 188.62 157.58 188.69 173.75 192.56 163.06 

D7H12 160.85 192.36 192.36 157.23 192.14 174.45 192.36 166.58 

 

 

Table 5.7 Overall quantile scores of all methods for Zone 6 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 2372.77 2404.42 2404.42 2623.13 2351.37 2574.47 2404.43 2535.98 

D1H0 2139.71 2248.42 2248.43 2458.09 2195.46 2320.53 2248.43 2290.21 

D2H2 2173.20 2272.86 2269.13 2627.13 2262.49 2289.12 2269.13 2631.40 

D3H4 2208.48 2288.86 2271.66 3089.50 2314.88 2268.02 2288.86 2461.44 

D4H6 2287.97 2265.94 2600.97 2966.41 2376.75 2262.76 2265.94 2473.99 

D5H8 2296.58 2262.71 2242.54 2657.96 2494.94 2231.84 2262.71 2689.64 

D6H10 2310.33 2288.76 2709.90 2610.20 2558.57 2241.80 2288.76 2838.48 

D7H12 2321.13 2321.80 2776.62 2851.60 2687.14 2331.42 2321.80 2998.44 
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Table 5.8 Overall quantile scores of all methods for Zone 7 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 2453.56 2929.51 2929.51 2745.63 2413.07 3079.82 2929.51 2975.72 

D1H0 2171.04 2493.42 2493.41 2384.37 2326.77 2659.54 2493.12 2638.81 

D2H2 2218.24 2517.98 2434.23 2517.98 2336.08 2650.92 2517.98 2812.34 

D3H4 2455.23 2560.89 2560.90 2560.90 2444.92 2611.61 2560.89 2828.40 

D4H6 2308.94 2576.78 2716.28 2576.78 2499.74 2622.54 2576.78 2955.01 

D5H8 2340.00 2599.69 2473.69 2599.69 2483.69 2610.00 2599.69 3161.49 

D6H10 2646.78 2887.91 2825.81 2887.91 2612.55 2661.47 2887.91 3199.09 

D7H12 2546.38 2901.24 2845.90 2901.24 2766.87 2858.11 2901.24 3225.91 

 

 

Table 5.9 Overall quantile scores of all methods for Zone 8 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 83.22 88.03 84.68 84.70 103.22 98.69 84.68 101.69 

D1H0 81.59 82.35 82.09 87.22 103.50 91.23 82.38 98.21 

D2H2 102.40 118.87 119.29 105.92 105.06 85.53 119.35 94.63 

D3H4 114.80 140.14 140.14 132.67 124.07 83.86 140.14 96.96 

D4H6 121.82 156.17 121.00 152.31 125.63 85.74 156.17 99.10 

D5H8 131.87 178.40 183.24 167.39 140.72 89.37 178.40 103.42 

D6H10 149.22 200.04 158.32 174.05 155.14 92.47 197.92 111.45 

D7H12 150.19 194.93 190.44 187.82 168.55 104.47 191.40 122.37 
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Table 5.10 Overall quantile scores of all methods for Zone 9 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 3140.45 3271.72 3346.69 3198.70 3800.67 3301.31 3173.79 3703.56 

D1H0 3095.20 3591.89 3277.18 3273.91 3626.97 3250.63 3123.95 3608.95 

D2H2 3100.32 3505.99 3261.75 3302.13 3875.40 3277.74 3141.21 3579.51 

D3H4 3166.50 3413.46 3305.25 3353.86 3951.73 3275.55 3175.82 3607.67 

D4H6 3177.68 3423.19 3292.76 3365.95 3910.90 3330.19 3259.22 3702.55 

D5H8 3263.98 3364.21 3282.85 3311.75 3864.16 3341.02 3374.85 3521.81 

D6H10 3414.73 3326.88 3308.08 3347.12 3897.66 3345.38 3599.14 3626.44 

D7H12 3620.36 3327.86 3271.53 3356.78 3962.41 3411.20 4010.33 3717.88 

 

 

Table 5.11 Overall quantile scores of all methods for Zone 10 considering different recency effect 

 BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

D0H0 1765.34 1911.03 1911.03 1911.03 1861.57 1973.05 1911.03 2477.21 

D1H0 1170.60 1274.42 1274.40 1262.52 1668.87 1365.55 1274.42 1694.75 

D2H2 1140.22 1194.84 1194.14 1225.02 1856.45 1278.42 1194.14 1491.92 

D3H4 1161.41 1203.60 1221.87 1239.41 2038.89 1278.13 1206.27 1533.22 

D4H6 1166.61 1202.37 1213.25 1300.34 2061.15 1292.48 1202.09 1745.08 

D5H8 1203.73 1255.04 1258.72 1294.19 1963.64 1232.55 1255.04 1870.89 

D6H10 1213.40 1277.41 1297.61 1266.73 2010.83 1284.82 1277.41 1754.98 

D7H12 1319.97 1397.18 1443.50 1315.72 2112.36 1389.77 1389.03 1889.92 

 

Conditional formatting is applied to the table cells for better visualization. A color gradient is 

applied to all cells of each table based on their values. The smaller/larger the value is, the 

greener/redder the color is. As a reference, the result without considering recency effect is 
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added to the first row of each table. 

At a first glance, we can see from the tables that the lowest quantile score in each column of 

each table does not locate in the first row. This result conveys the information that considering 

recency effect does improve the performance of the tested models. It can also be noticed that the 

lowest quantile score in each column does not happen in the last row, indicating that longer 

recency effect does not usually lead to more accurate results. Additionally, Table 5.12 

summarizes where the minimum quantile score happens for each zone. It is worth noting that 

D1H0 occupies 7 out of 10 minimum values and D2H2 takes the rest, indicating that in our case, 

the PLF performance could be significantly improved simply by adding a relatively short length 

of recency effect. Hence, in real practices, it is suggested that we go through a model selection 

process that tests multiple models with different length of recency effect and select the one with 

the best performance. 

Table 5.12 Where the minimum quantile score happens for each zone 

Zone ID D0H0 D1H0 D2H2 D3H4 D4H6 D5H8 D6H10 D7H12 

1 
 

√ 
      

2 
 

√ 
      

3 
 

√ 
      

4 
  

√ 
     

5 
  

√ 
     

6 
 

√ 
      

7 
 

√ 
      

8 
 

√ 
      

9 
 

√ 
      

10 
  

√ 
     

 

 

To give a deeper and comprehensive discussion on the performance of all tested methods, the 

average quantile score and the lowest quantile score given by each method for every zone is 

calculated and shown in Table 5.13 and Table 5.14. The average quantile score reflects the 
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overall model performance when handling different length of recency effect. From Table 5.13, 

we can see that the proposed method outperforms the benchmark methods in most scenarios (9 

out of 10 zones) in terms of average quantile score, while the benchmark methods show 

unstable performance when dealing with different zones. Among the benchmark methods with 

feature selection, QRLASSO is relatively better than the others. For the two naïve benchmark 

methods without feature selection, it can be noted that the nonlinear method QRNN has even 

worse performance compared to the linear method QLR. Further, it can be clearly seen from 

Table 5.14 that, in each scenario, the smallest quantile score is always given by the proposed 

method compared to other benchmarks, although the proposed method may not have the best 

performance when no recency effect is included and when other length of recency effect is 

considered in some cases. Besides, it can be noticed that even though QRLASSO has relatively 

better performance in terms of average quantile score among the benchmark methods, it shows 

worse performance when it comes to the minimum quantile score. The results suggest that while 

QRLASSO maintains relatively stable performance across various recency effect scenarios, it 

exhibits limited sensitivity to the impact of changes in feature length stemming from the 

presence of differing recency effects. This may be attributed to QRLASSO's limitations in 

addressing sparse and high-dimensional feature inputs arising from the incorporation of recency 

effects. On the contrary, the proposed method shows the best performance in terms of both 

average quantile score and minimum quantile score, confirming the effectiveness of the feature 

selection process. 

Furthermore, this result also confirms that the proposed method maintains a robust 

performance when applied to different datasets. 
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Table 5.13 Average quantile score given by each method for Zone 1 ~ 10 

Zond ID BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

1 485.69 631.79 557.82 594.09 521.00 672.39 630.49 716.09 

2 2112.84 2130.89 2129.51 2580.91 2310.78 2160.31 2117.90 2380.33 

3 2188.28 2514.78 2488.19 2477.34 2238.48 2435.11 2514.78 2713.23 

4 8.14 11.15 10.81 9.89 9.51 10.28 11.00 11.05 

5 145.70 179.16 178.27 157.96 182.67 172.05 179.25 150.22 

6 2263.77 2294.22 2440.46 2735.50 2405.20 2315.00 2293.76 2614.95 

7 2392.52 2683.43 2659.97 2646.81 2485.46 2719.25 2683.39 2974.60 

8 116.89 144.87 134.90 136.51 128.24 91.42 143.81 103.48 

9 3247.40 3403.15 3293.26 3313.78 3861.24 3316.63 3357.29 3633.55 

10 1267.66 1339.49 1351.82 1351.87 1946.72 1386.85 1338.68 1807.25 

 

 

Table 5.14 Minimum quantile score given by each method for Zone 1 ~ 10 

Zond ID BQLRFS FTEST NCA RRF SFS QRLASSO QLR QRNN 

1 419.26 595.43 450.49 538.84 420.83 641.2 592.78 650.94 

2 1987.94 2002.47 2002.47 2058.12 2030.03 2071.89 2002.49 2068.41 

3 2003.33 2236.98 2195.87 2124.41 2109.27 2201.71 2236.98 2531.97 

4 7.86 10.46 9.33 9.09 8.12 9.99 10.32 10.53 

5 133.20 162.65 162.74 139.95 156.86 166.21 162.65 138.23 

6 2139.71 2248.42 2242.54 2458.09 2195.46 2231.84 2248.43 2290.21 

7 2171.04 2493.42 2434.23 2384.37 2326.77 2610.00 2493.12 2638.81 

8 81.59 82.35 82.09 84.70 103.22 83.86 82.38 94.63 

9 3095.20 3271.72 3261.75 3198.70 3626.97 3250.63 3123.95 3521.81 

10 1140.22 1194.84 1194.14 1225.02 1668.87 1232.55 1194.14 1491.92 
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5.5. Summary 

 

This chapter examines the model performance considering recency effect. The historical 

records containing different load levels and temperature scenarios of 10 different zones are used 

to validate the effectiveness of the methods. For each zone, 7 different length of recency effects 

are tested, and the outcome without considering any recency effect is used as a reference. The 

average quantile score and the minimum quantile score are calculated and shown for a 

comprehensive comparison. This case study shows the effectiveness of the proposed method 

when recency effect is included and further confirms the robustness of the proposed method 

when it is applied to a variety of different datasets. 
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6. Case Study III: A Wrapper Approach - Applying the Feature Selection Result 

to Nonlinear Forecasting Models 

 

6.1. Introduction 

 

Rich literature exists on load forecasting, among which nonlinear forecasting models are 

more attractive as they can map the nonlinear relation between the predictors and the response. 

However, nonlinear models for PLF have a much more complex mechanism compared to linear 

models, especially those artificial intelligent methods which lack proper interpretability. This 

makes it quite difficult to design an efficient and effective feature selection process for 

nonlinear PLF models. 

In this regard, the case study in this chapter uses the proposed method as a wrapper approach, 

which is thereafter applied to a nonlinear model to validate if it could improve the performance 

of such model. 

 

6.2. Data Description and Test Settings 

 

This case study uses the same data provided by the GEFCom2012 as Chapter 5. The same 10 

zones and the historical records including load and temperature with the same start and end date 

are used in this chapter. Same as the test settings in Chapter 4 and Chapter 5, a total of 𝑄 = 19 

quantiles for a set of probabilities 𝜿 = {0.05,0.1,0.15, … ,0.9,0.95} are used to form the PLF. 

The error measurement stays the same which is given by quantile score. 
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6.3. Nonlinear PLF Model 

 

To make the results comparable, a popular quantile regression based nonlinear PLF model is 

selected for simulation. This model is a widely used tree-based method, the quantile random 

forest [76], which is introduced as follows, with a similar notation used in [77]. 

A decision tree (classification or regression tree) goes through the decisions from the top root 

down to the bottom leaf node to predict a response. A random forest uses the training data to 

grow an ensemble of decision trees. The grown of trees of a random forest is endowed with 

randomness and the final prediction is obtained by averaging over the responses of all grown 

trees. Formally, 

let 𝜗 denote the random parameters that determine the grown of a tree; 

let 𝑇(𝜗) denote the tree that corresponds to 𝜗; 

let 𝜔(𝑥, 𝜗) be the weight vector that is associated with 𝜗 and data point (𝑋 = 𝑥, 𝑌 = 𝑦); 

let 𝑘 denote the number of trees in the random forest ensemble; 

let 𝑛 denote the number of observations used in the training stage; 

Under these settings, the process of estimating the empirical conditional distribution of the 

response can be summarized as below. We do not go over the mathematical formulations of 

how the weights are calculated in detail, which can be easily found in [76]. 

1) Establish 𝑘 trees following the mechanism of growing a random forest. 

2) Drop the training observations down through all the decision trees in the ensemble. 

Compute the weight 𝜔𝑖(𝑥𝑖, 𝜗𝑡) for every observation 𝑖. Then, compute the weight averaged 

over the whole collection of trees: 

𝜔𝑖(𝑥) =
1

𝑘
∑ 𝜔𝑖(𝑥𝑖 , 𝜗𝑡)

𝑘

𝑡=1

 (6.1) 

3) Then, compute the conditional distribution for the 𝑖𝑡ℎ observation: 

𝐹 (𝑦|𝑋 = 𝑥𝑖) = ∑ 𝜔𝑗(𝑥𝑖)

𝑛

𝑗=1

𝐼{𝑌𝑗 ≤ 𝑦} (6.2) 

 

4) Thereafter, the 𝑝𝑡ℎ conditional quantile of the observation 𝑦 can be calculated by 
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𝑄𝑝(𝑥𝑖) = inf {𝑦: 𝐹 (𝑦|𝑋 = 𝑥𝑖) ≥ 𝑝} (6.3) 

 

Lastly, it is worth mentioning that random forests only keep the mean value of the observations, 

while quantile random forests evaluate the empirical conditional distribution of the response 

based on the value of all observations, which mines the information of the data to a larger extent.  

 

6.3. Case Studies and Results 

 

The case studies in this chapter focus on two comparisons. First, we compare the 

performance of the proposed method with that of the nonlinear model. The features that are 

inputted into the nonlinear model are the feature selection result given by the proposed method. 

Second, we make efforts to find out if such a wrapper approach could improve the performance 

of the nonlinear model. For each zone, we run the simulation based on the length of recency 

effect that is determined by where the minimum quantile score happens in the previous chapter, 

as given by Table 5.12. Note that in this table, random forest is denoted by RF, and feature 

selection is denoted by FS. 

It can be clearly seen from the table that, the proposed method BQLRFS still outperforms the 

nonlinear model in the cases of all 10 zones, even when feature selection is considered, 

confirming the superiority of the proposed method. This result also indicates that we might not 

always pursue the complexity of a model. Sometimes a simpler model such as a linear model 

could provide a more efficient and effective outcome. By comparing the results obtained from 

the random forest-based model with and without feature selection, we can see a slight 

improvement in the quantile scores after the feature selection method is applied. Hence, it can 

be easily concluded that the proposed feature selection method could be used as a wrapper 

approach to improve the forecasting performance of other forecasting models. 
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Table 6.1 Forecasting performance of the tested nonlinear model 

Zone ID Recency effect BQLRFS RF without FS RF with FS 

1 D1H0 419.26 520.80 514.73 

2 D1H0 1987.94 2992.81 2915.71 

3 D1H0 2003.33 3775.80 3686.33 

4 D2H2 7.86 10.34 10.28 

5 D2H2 133.20 170.86 170.49 

6 D1H0 2139.71 3909.07 3865.14 

7 D1H0 2171.04 3379.70 3293.95 

8 D1H0 81.59 140.04 141.74 

9 D1H0 3095.20 3077.83 2974.53 

10 D2H2 1140.22 1706.57 1703.69 

 

6.4. Summary 

 

In this chapter, the proposed method is used as a wrapper approach and applied to a 

nonlinear model, the quantile random forest. Two comparisons are made in the simulation. 

First, we compare the performance of the proposed method with the nonlinear model, the input 

feature of which are the feature selection result of the proposed method. Second, we also 

compare the performance of the nonlinear model with and without feature selection. This 

chapter explores a further application of the proposed method that it can be used as a wrapper 

approach. The case study validates the effectiveness of this approach. 
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7. Summary and Conclusions 

 

It is believed that in future power grids much more variability and volatility in system load 

will be seen, both temporarily and spatially. To handle and consider the corresponding high 

uncertainty, there has been increased recent interest in PLF. Most of the relevant works focus on 

establishing and optimizing the predictive model, however, with very few attentions paid to the 

feature selection phase. In fact, feature selection is quite essential to the area of forecasting as it 

is aimed to avoid the curse of dimensionality, reduce modeling complexity, reduce the risk of 

over-fitting and improve the forecasting performance. In this regard, this research intends to 

develop a novel embedded feature selection framework for PLF, which is applicable to both 

linear and nonlinear predictive models. 

Chapter 1 gives a brief introduction to electric load forecasting and the transition from point 

load forecasting to PLF. The literature on the topic of feature selection for load forecasting are 

briefly reviewed. Chapter 2 introduces the background of feature selection and briefly reviews 

the state-of-art techniques. Both advantages and limitations of these techniques, including filter 

methods, wrapper methods, embedded methods and hybrid methods, are discussed. 

Chapter 3 presents the proposed framework for feature selection and the methodology of its 

application to a linear model, the quantile linear regression, is introduced. The methodology for 

a nonlinear model, the QRNN, is still under development and will be discussed in future steps 

of this research. For the linear model, an embedded feature selection structure is incorporated to 

identify and select subsets of input features by introducing an inclusion indicator variable for 

each feature. Then, Bayesian inference is applied to the model with a sparseness favoring prior 

endowed over the inclusion indicator variables. To tackle with the problem of the computation 

of posteriors which is almost intractable, an MCMC approach is adopted to sample the 

parameters from the posteriors. Finally, we use discrete formulas applied to the samples from 

the posterior distribution to summarize our knowledge of the parameters. Bayesian inference 
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allows each quantile of the distribution of the dependent load to be affected by different sets of 

features, and therefore allows us to estimate complex predictive densities more accurately. 

Besides, it also allows the estimation of the inclusion probabilities for all input features. 

Comprehensive case studies are carried out in Chapter 4 to validate the performance of the 

proposed framework on the quantile linear regression model without considering recency effect. 

A case study is designed based on an open dataset for one supply zone. In the case study, the 

proposed method is compared with a wide range of state-of-the-art benchmarks including three 

filter methods, one wrapper methods, an embedded method and two origin models without 

feature selection. The results show that the proposed method BQLRFS has the best overall 

performance among all the tested methods. The computation complexity of each method is also 

provided. The interpretability of the tested methods is discussed at the end of this chapter. 

Chapter 5 further examines the performance of the proposed method considering recency 

effect. The case study is carried out based on another open dataset containing different load 

levels and temperature scenarios of 10 different zones. Each zone is tested with 7 different 

length of recency effects, and the outcome without considering any recency effect is used as a 

reference. The average quantile score and the minimum quantile score are calculated and shown 

for a comprehensive comparison. The result shows that the proposed method shows the best 

performance in most scenarios in terms of both average quantile score and minimum quantile 

score. This case study proves the effectiveness of the proposed method when recency effect is 

included and further confirms the robustness of the proposed method when it is applied to a 

variety of different datasets. 

Chapter 6 extends the proposed method by applying it as a wrapper approach. The output of 

the proposed method is applied to a nonlinear model to validate if it could improve its 

performance. The same data as Chapter 5 is used, and the same 10 zones and the historical 

records (load and temperature) of the same period are used in this chapter. The result shows that 

the proposed method BQLRFS still outperforms the nonlinear model in the cases of all 10 zones, 

even when feature selection is considered. However, only a slight improvement in the quantile 

scores is observed after the proposed wrapper method is applied. This indicates that although 

we could use the proposed wrapper approach to improve the performance of other models, the 

improvement may not be significant. 
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There is still plenty of room for extending our method under the background of Bayesian 

theory. Future research will mainly focus on two directions. First, the proposed methodology is 

developed based on a linear model which shows competitively outstanding performance. It is 

expected that the proposed Bayesian framework can be further extended to be integrated into 

nonlinear models to develop a new embedded feature selection method. Another prospective 

direction is to combine feature selection with deep learning techniques. The rapid development 

in deep learning over the past a few years has facilitated a wide range of research, also in the 

energy domain. The following two possible topics are assumed for future research. A 

convolutional neural network (CNN) is a popular deep learning model which consists of two 

components, feature extraction and classification. Hence, CNN has the ability of automatically 

extracting features from raw data. The first expected research under this scheme is to develop a 

proper feature selection process to select the extracted features. Another widely used deep 

learning model is long short-term memory (LSTM) networks. LSTM networks are 

predominately used for handling sequential data. This model is capable of learning varying 

impacts of the features over different time. It is expected that a novel feature selection scheme 

that considering time dependencies among features.  
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