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ABSTRACT 

The healthcare industry is a complex system with numerous stakeholders, including patients, 

providers, insurers, and government agencies. To improve healthcare quality and population well-

being, there is a growing need to leverage data and IT (Information Technology) to support better 

decision-making. Healthcare information systems (HIS) are developed to store, process, and 

disseminate healthcare data. One of the main challenges with HIS is effectively managing the large 

amounts of data to support decision-making. This requires integrating data from disparate sources, 

such as electronic health records, clinical trials, and research databases. Ontology is one approach 

to address this challenge. However, understanding ontology in the healthcare domain is complex 

and difficult. Another challenge is to use HIS on scheduling and resource allocation in a sustainable 

and resilient way that meets multiple conflicting objectives. This is especially important in times 

of crisis when demand for resources may be high, and supply may be limited. 

This research thesis aims to explore ontology theory and develop a methodology for constructing 

HIS that can effectively support better decision-making in terms of scheduling and resource 

allocation while considering system resiliency and social sustainability. The objectives of the thesis 

are: (1) studying the theory of ontology in healthcare data and developing a deep model for 

constructing HIS; (2) advancing our understanding of healthcare system resiliency and social 

sustainability; (3) developing a methodology for scheduling with multi-objectives; and (4) 

developing a methodology for resource allocation with multi-objectives. 

The following conclusions can be drawn from the research results: (1) A data model for rich 

semantics and easy data integration can be created with a clearer definition of the scope and 

applicability of ontology; (2) A healthcare system's resilience and sustainability can be 



 

iii 

significantly increased by the suggested design principles; (3) Through careful consideration of 

both efficiency and patients' experiences and a novel optimization algorithm, a scheduling problem 

can be made more patient-accessible; (4) A systematic approach to evaluating efficiency, 

sustainability, and resilience enables the simultaneous optimization of all three criteria at the 

system design stage, leading to more efficient distributions of resources and locations for 

healthcare facilities. 

The contributions of the thesis can be summarized as follows. Scientifically, this thesis work has 

expanded our knowledge of ontology and data modelling, as well as our comprehension of the 

healthcare system's resilience and sustainability. Technologically or methodologically, the work 

has advanced the state of knowledge for system modelling and decision-making. Overall, this 

thesis examines the characteristics of healthcare systems from a system viewpoint. Three ideas in 

this thesis—the ontology-based data modelling approach, multi-objective optimization models, 

and the algorithms for solving the models—can be adapted and used to affect different aspects of 

disparate systems. 
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1.1 Background and motivation 

The healthcare industry is viewed as a complex system that involves various stakeholders, such as 

patients, healthcare providers, insurance companies, and government agencies. The effective 

management of this system is crucial for the delivery of quality healthcare services and the overall 

well-being of the population. In recent years, there has been a growing recognition of the 

importance of leveraging information technology (IT) to support better decision-making in 

healthcare management. This includes the further development of healthcare information systems 

(HIS) that can facilitate the storage, processing, and dissemination of healthcare data (Wager et al., 

2021; Davenport & Kalakota, 2019; Sun & Medaglia, 2019). 

One of the main challenges with HIS is the need to manage large amounts of data, including so-

called big data in a way that supports decision-making on improving the quality of healthcare 

services. One key challenge is the integration of data from a variety of sources, including electronic 

health records, clinical trials, and research databases. It is widely agreed in academia that the 

approach to tackling this challenge is to use ontology, which can be defined as a formal 

representation of fundamental1 knowledge about a specific domain. By structuring and classifying 

 
1 The fundamental here follows the so-called information relativity principle (Zhang, 1994). 
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medical concepts, diseases, treatments, and other relevant information, ontology is expected to 

facilitate the integration and interoperability of data from different sources, enabling the 

development of more accurate and reliable information systems (Kiourtis et al., 2019; 

Subramaniyaswamy et al., 2019; García-Díaz et al., 2020). However, contemporary, understanding 

of ontology remain diverse with multiple perspectives, which has further contributed to the 

difficulty of understanding ontology in the healthcare domain and the complexity of developing 

an ontology model for the HIS and its applications.  

Another challenge with HIS is complexity in decision-making especially for scheduling and 

resource allocation in a way that meets multiple conflicting objectives, which reflect common real-

life situations, in a sustainable and resilient manner (Ordu et al., 2021; Halawa et al., 2020). The 

scheduling problem, focused on in this thesis, refers to better allocating resources (e.g., time, 

personnel, equipment) to reduce patient waiting time, to minimize travel distances, and to 

maximize resource utilization. The resource allocation problem, focused on in this thesis, is to 

allocate medical resources, such as COVID test kits, in a way that is effective as well as efficient. 

While efficiency may be more apparent, effectiveness refers to social sustainability, resilience, and 

so forth. Decisions on such a resource allocation can be particularly important in times of crisis 

when the demand for certain resources may be very high and the supply may be constrained.  

On a general note, this thesis puts much emphasis on the resilience and social sustainability of 

healthcare systems, as these two properties are less discussed in the literature. In brief, system 

resiliency refers to a system's ability to maintain or recover its primary function following partial 

damage subject to external and/or internal disturbances or attacks, such as soaring demand or 

power blackouts (Zhang & Lin, 2010). Improving the resilience of a healthcare system will help 
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to maintain the continuity and quality of healthcare services (Haldane et al., 2021). Social 

sustainability refers to the ethical and social acceptability of a system, which includes factors such 

as patient privacy, equity, and accessibility (Robards et al., 2019; Abimbola et al., 2019). It may 

be clear that these two properties of healthcare systems, namely resilience and sustainability, have 

become more important than ever before to our society today amid the COVID-19 pandemic. 

1.2 Objectives and scopes 

To tackle these challenges, researchers have proposed various ideas along with approaches, such 

as the use of big data, the development of ontologies and semantic models, and the adoption of 

multi-objective optimization methods (Aceto et al., 2020; Schwalbe & Wahl, 2020; Qadri et al., 

2020). However, there is a need for more research to identify practical and theoretically grounded 

approaches that can effectively support better decision-making in HIS. This thesis aims to 

investigate ontology theory and to develop a methodology for building HISs that support decision-

making on scheduling and resource allocation while taking system resiliency and social 

sustainability into account. This research can help to improve the efficiency, effectiveness, and 

sustainability of healthcare services, ultimately leading to better outcomes for patients. 

The specific objectives of this thesis are: 

• Objective 1: To advance our understanding of ontology in data, and to develop a methodology 

for building a data model for constructing healthcare management systems to support decision-

making. 

• Objective 2: To advance our understanding of the resiliency and social sustainability of a 

healthcare system, resulting in a comprehensive definition of these in the context of healthcare 
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systems and suitable to decision making for scheduling and resource allocation. 

• Objective 3: To develop a methodology for scheduling with multiple conflicting goals, such 

as reduction of both patient’s waiting time and reduction of patient’s travel time.  

• Objective 4: To develop a methodology for resource allocation, such as COVID-19 test kits 

distribution with multiple conflicting goals, which particularly addresses resiliency and the 

sustainability along with performances. 

1.3 Thesis organization 

This thesis is organized in a semi-manuscript-based style. Chapters 2, 3, 5, and 6 are presented in 

the form of published or submitted manuscripts, while Chapter 4 runs in a different way. In Chapter 

4, first the concept of resilience and sustainability in the context of healthcare service is clarified, 

and after that, how the resilience is applied to privacy protection is discussed, which is in the 

format of a published manuscript. At the beginning of each of the manuscript-based chapters, a 

brief introduction is included to describe the relationship between the manuscript and the 

objectives of this thesis. The status of each submitted manuscript is also provided. To give the 

thesis a coherent form, all the manuscripts are reformatted. 

The remainder of the thesis is organized as follows: Chapter 2 presents a comprehensive review 

pertinent to the four objectives proposed in Chapter 1: ontology-based system modelling, 

implementation of equity and system resiliency in healthcare, scheduling problems, and resource 

allocation problems. Chapter 3 proposes a unified definition of ontology in information systems 

and presents a methodology for building a deep model for constructing HIS. Chapter 4 discusses 

the concepts of healthcare system sustainability and resilience through a case study on the 
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implementation of privacy design principles. Chapters 5 and 6 examine two typical problems in 

which a HIS is utilized for decision-making: scheduling and resource allocation. In these two 

problems, new problem models are developed, and multi-objective optimization methods are 

applied to enhance the efficiency, effectiveness, and sustainability of healthcare systems. 

Conclusions and several proposed future studies in the context of this thesis are discussed in 

Chapter 7. To further support our definition of ontology, an introduction of ontology-related 

concepts are given in Appendix A. A list of published and prepared manuscripts is given in 

Appendix B, and the copyright permissions of all published manuscripts used in this thesis are in 

Appendix C. 

1.4 Contributions of the primary investigator 

It is observed that all published or prepared manuscripts are co-authored. Nonetheless, all authors 

agree that Wenjun Lin, as the first author, is the principal investigator. The contributions of the 

other authors are restricted to an advisory and editorial role. 
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This chapter presents a review of three main topics in the field of healthcare information systems: 

ontology-based system modelling (Objective 1), implementation of equity and system resiliency 

in healthcare (Objective 2), scheduling and resource allocation problems (Objectives 3 and 4). As 

noted, these three topics correspond to the four objectives presented in Chapter 1. Therefore, the 

discussion helps to further justify the need for research related to the proposed objectives. The 

literature review provides a comprehensive overview, identifies knowledge gaps in these areas, 

and thus serves as a guide for the work in the remaining chapters. The literature review was 

formatted as a manuscript as "Ontology-based resilient and sustainable resource allocation and 

scheduling in healthcare systems: a review" to Enterprise Information Systems in 2023 (under 

review). 

Abstract 

The healthcare system in ageing societies such as Canada is currently facing a heavy burden due 

to the outbreak of COVID-19, leading to a shortage of labour and supplies. This calls for decision-

makers to develop policies that better result in sustainable and resilient healthcare. To establish 

such policies, decision makers need to take a system’s view of healthcare and consider the goals 

of social equity and resilience, along with the efficiency of a healthcare system's operations. This 

review covers three aspects: (1) information modelling of a healthcare system, focusing on an 

Chapter 2 – 
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ontology-based approach to information modelling, (2) concepts of system sustainability and 

resiliency, along with their measurements and applications in healthcare; and (3) computational 

approaches for resource allocation and scheduling. This review highlights the knowledge gap in 

each aspect and suggest future work to close the gap. At the end of this review, there is a discussion 

on the buzzwords of today in the field of information and knowledge systems, digital twins and 

big data, and their potential to add value to developing a resilient and sustainable healthcare 

system, which is the focus of this review. 

2.1 Introduction  

Healthcare burden is one of the world's major social and economic problems, particularly in an 

ageing society. This leads to tremendous health expenses and constrained labour resources. The 

COVID-19 pandemic further strained already stretched healthcare resources. Healthcare service 

providers are having trouble obtaining essential healthcare resources, such as testing equipment, 

beds, and personal protective equipment. As the additional resource is not available immediately, 

the solution lies in making the best use of existing resources. 

It is essential to have an effective healthcare information system in order to integrate all resources 

and services into one decision-support system. This system should be able to: (1) capture all 

relevant data in the healthcare system completely, precisely, and securely; (2) evaluate the system's 

performance comprehensively; and (3) provide tools to support management operations, such as 

resource and service allocation tools and scheduling tools, with consideration of the system's 

sustainability and resilience. 

The term “sustainability” here, in its original definition, refers to the balance between the resources 
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available and/or their generation and the resource consumption (or demand generation). From its 

original definition, sustainability in this thesis refers to social sustainability (more clarification is 

presented in later discussions). For instance, during the COVID-19 pandemic, many hospital's 

resources, e.g., ICU beds, were insufficient to handle the increasing number of patients. The 

sustainability of a system is heavily influenced by the equitable access each individual patient has 

to healthcare resources. This equity ensures that sustainability is guaranteed on an individual basis. 

The term "resilience" here is related to a system’s ability to recover after disruptions. This ensures 

that the system can maintain a balance between its resources and consumption, even in unexpected 

circumstances. 

This review investigates three topics related to the information system: 1) modelling of healthcare 

information systems; 2) concepts of healthcare equity and system resiliency and their 

measurements in healthcare resource optimization problems; 3) modelling of healthcare resource 

optimization problems, including allocation and scheduling, and their optimization algorithms. 

The primary objective of this chapter is to provide a comprehensive overview of the current state 

of healthcare information systems and their related operations management tools. Subsequently, a 

list of suggestions to advance the knowledge and methodologies in this area is presented. 

This chapter is structured as follows. Section 2.2 provides an overview of data modeling2  of 

information systems, focusing on the concepts, applications, and tools of ontology-based 

modelling. Section 2.3 explores sustainability and resilience in healthcare systems, as well as 

methods to measure them. Section 2.4 discusses optimization techniques for resource allocation 

and scheduling problems and summarizes the current state of optimization algorithms. Finally, 

 
2 Throughout this thesis, modeling always refers to data modeling rather than mathematical modeling.  



 

11 

Section 2.5 examines potential areas that need further work to improve our understanding and to 

develop new technologies on the three topics.  

2.2 Ontology and its role and usage in information system modelling 

2.2.1 Ontology of information systems 

Healthcare information systems contain an extensive variety of data, including patients' medical 

records, treatment solutions, and test results, which are gathered from numerous medical 

departments and agencies over time. To ensure secure and efficient communication of such data, 

along with enabling higher-level decision-making among organizations, healthcare organizations 

must develop specific terminologies and formats within their system (Sillence, 2019). The 

modelling of healthcare information systems' ontology is one way to achieve this difficult task.  

Ontology is the branch of philosophy that deals with the nature of existence (Merriam Webster. 

n.d.), or a part of philosophy that studies what it means to exist (Collins. n.d.). In the world of 

information technology, ontologies are used to facilitate communication between humans and 

between data systems. Computers can exchange semantics along with syntax via the concepts 

provided in the ontologies. For decades, many studies have used ontology to define their 

information systems.  

Many studies have used ontology in information system modelling, but they often seem to have 

different definitions (Cai et al., 2017; Lin & Zhang, 2001, 2004). Various definitions can be 

categorized into two kinds. The first category of definitions believe that ontology is essentially a 
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work domain3 model, or a special form of it (O'Leary 2010; Sanderson et al. 2019; Singh et al. 

2021; Östberg et al., 2022; Wang, Liu, and Kara, 2022). For example, O'Leary (2010) described 

ontology as a domain that provides a basis for a common understanding of the domain. Sanderson 

et al. (2019) developed an ontology model for an adaptive production system. The ontology model 

represents in their work the system's function, structure, and behaviour, all key components of a 

work domain model. Wang et al. (2016) used these two terms interchangeably in their work. Singh 

et al.'s (2021) study also found a similar definition, where ontology was used to build a work 

domain model for managing databases of an information system. 

The second category of definitions of ontology describes it as a conceptual model. Gruber notes 

(1993): “Ontology is the explicit specification of the conceptualisation.” Borst extends this 

definition as (1997): “Ontology is the formal explicit specification of shared conceptualization.” 

This definition has been adapted in some other studies (West, 2006; Galton & Worboys 2011; 

Henderson-Sellers, 2011; Wong et al., 2012; Guan et al., 2013; Ismail, 2017; Tiwari, 2020; 

Fernández-Cejas et al., 2022). Henderson-Sellers (2011) suggested that ontology in computer 

systems is a conceptual structure of a domain, while Guan et al. (2013) used ontology to capture 

and model conceptual knowledge of a domain. Fernández-Cejas et al. (2022) saw ontology as a 

conceptual model providing a unifying framework, aiding in knowledge sharing and 

communication among computer systems within a domain. 

The definitions in the above two categories either take ontology as a form of domain model or a 

conceptual model in a domain. Both definitions associate ontology with a given domain. However, 

some other studies claim that ontology can be completely independent of a domain, referred to as 

 
3 In this thesis, domain always refers to the domain of a work, or work domain.  
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top-level ontology. Examples of such ontologies include Bunge’s ontology (Bunge, 1977), Sowa’s 

upper-level ontology (Sowa, 1999), General Ontological Language (GOL) (Degen et al., 2001), 

and IEEE Standard Upper Ontology (SUO) (IEEE, 2003). Popular top-level ontologies that have 

been implemented include CYC (Lenat & Guha, 1990), WordNet (Miller, 1990), and Generalized 

Upper Model (Bateman et al., 1994). It is believed that the purpose of top-level ontology is to act 

as a framework that describes general, domain-independent categories of reality, which can then 

be used to create domain-specific ontology (Degen et al., 2001). 

Ontology definitions can also vary in terms of their generality or formality. Nguyen summarized a 

multi-level ontology definition (2011) that includes a top-level ontology and a domain level 

ontology. The domain ontology was specific to a domain of interest and specified its concepts and 

their relationships. Sometimes, a mid-level ontology was used to serve as a bridge between 

conceptual level and domain level ontologies (Wong et al., 2012). However, such a multi-level 

ontology definition might harm the implementation of ontology. Different interpretations of each 

level of ontology can result in different ontology models, leading to incompatibilities. This can 

lead to obstacles when merging ontology models built on different levels of ontologies. 

2.2.2 Applications of ontology modelling in healthcare 

Despite differing definitions of ontology, researchers generally agree that its purpose is to enable 

machines to better comprehend concepts. This, in turn, facilitates communication and 

understanding between information systems. In the past decade, research on ontology-based 

healthcare information systems has seen exponential growth. Various ontology models have been 

proposed for various applications. We can divide these models into three levels: patient level, 

organizational level, and regional level. This chapter will review and compare each study's main 
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research goal, modelling method, and contributions. 

Research on patient-level studies mainly focuses on utilizing patients' personal data, such as 

Electronic Health Record (EHR), to improve service delivery, such as personalized medication and 

homecare. For example, Mukasine (2014), Rahimi et al. (2012), Riano et al. (2012), Ismail et al. 

(2017), and Tiwari & Abraham (2020) have described ontology models that integrate healthcare 

data related to chronic diseases. These models help patients or healthcare providers monitor health 

data at a higher frequency in a home setting. The other research focus is on the classification of 

diseases, which has been conducted by several authors, such as Bertaud-Gounot et al. (2011), 

Forbes et al. (2012), and Romero-Tris et al. (2009). They developed ontology models that could 

represent patient conditions under a specific disease class based on diagnostic criteria. Their 

research showed that operational definitions of diseases can be represented using ontology models 

and that real patient cases can be classified accordingly. 

For organizational level studies, Vyas & Pal (2012), Ramadoss (2014), Lasierra et al. (2014), and 

Spoladore & Pessot (2021) have all used ontology models to develop data management systems. 

These systems provide healthcare providers with quick access to specialized healthcare services 

and up-to-date patient health data, thereby increasing the usability and reliability of the 

information. Ontologies in these studies enable high scalability in searching, extracting, 

maintaining, and generating information. Another type of organizational level study related to 

healthcare management is proposed by Dias et al. (2012). They proposed a method to study 

organizations and their processes to identify non-value-added transactions. These processes were 

modelled using an enterprise ontology model and redesigned for improving healthcare 

management. 



 

15 

Research goals at the regional level often involve the processing of large amounts of data. For 

instance, Sunitha & Babu (2014), Spoladore & Pessot (2021), and Cameron et al. (2015) developed 

healthcare knowledge base systems that contain various domain concepts such as diseases, 

environments, and locations. This system produces semantically integrated data, which resolves 

interoperability and reusability issues across different health applications. White et al. (2014) 

attempted to reduce the effort necessary to identify healthcare quality indicators and to ascertain 

areas for future computer-interpretable quality indicator development. To this end, they created an 

ontology model with a catalogue of quality indicators. This ontology when integrated was found 

to be beneficial to clinical auditing communities, quality indicator developers, and organizers of 

quality indicators. Moreover, it was concluded that the ontology reduces the effort required for 

healthcare quality monitoring. 

Table 2.1 indicates that most of the ontology modelling studies have been centred around the 

patient level. This includes gathering patient data from a variety of sources, such as EHRs, 

wearable devices, and Internet of Things devices. At the organization level, there is an emphasis 

on integrating patient information with other hospital information systems, such as patient activity 

recognition, safety monitoring, and building management. Regarding the regional level, most of 

the work is on creating a centralized knowledge database. The challenge at the regional level is 

data management, such as data integrity, data extraction, transformation, and privacy protection. 

A common theme among all works is that many existing studies work on separate existing systems 

that have already been developed with their own individual ontology models. To integrate these 

information systems, a new ontology model must be built from scratch. This is a laborious and 

time-consuming process since it requires both domain experts and information technology 

specialists to be involved in the definition of the knowledge to be modelled. 
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Table 2.1 Recent publications on healthcare ontology modelling 

System-

level 
Author Research goal Contribution 

Patient 
Mukasine 

(2014) 

Chronic diseases remote 

supervision 

Improved diabetic home patient self-management 

capability 

Patient 

Bertaud-

Gounot et al. 

(2011) 

Disease classification A diagnostic classification of real patient cases 

Patient 
Forbes et al. 

(2012) 

Primary care and Patient 

Practitioner Interview 

Improved communication between the patient and 

healthcare provider by classifying diseases based 

on phenotype for Indigenous communities 

Patient 
Ismail et al. 

(2017) 

Store maternal and child 

health data for effective 

exchange 

An improvement in service delivery and 

availability of reliable health data 

Patient 
Rahimi et al. 

(2012) 

Chronic disease 

management 

A framework representation to translate data into 

the desired quality outcome 

Patient 
Riano et al. 

(2012) 

Chronic disease 

management 

Developed a decision support tool for chronically 

ill patients 

Patient 
Romero-Tris 

et al. (2009) 

A diagnostic guide for 

medical practitioners 
A knowledge-based homecare model 

Patient 

Tiwari & 

Abraham 

(2020) 

Monitor patients in real-

time with IoT 

Developed a quality assessment approach to 

analyze the quality of the proposed ontology model 

Organizati

onal 

Dias et al. 

(2012) 

Improve healthcare 

operational process 

Reduction of the high failure rate of healthcare 

systems. Removal of waste to improve flow time. 

Improving healthcare operational processes. 

Organizati

onal 

Ramadoss 

(2014) 

Provide a systemic view 

of patient and patient 

care 

Development of a knowledge-based case profile 

healthcare ontology 

Organizati

onal 

Lasierra et 

al. (2014) 

Improve healthcare 

resources management 

Developed an ontology-driven solution that 

organizes and describes knowledge related to the 

usage of medical items 

Organizati

onal 

Vyas & Pal 

(2012) 
Decision support system 

Development of an electronic healthcare system to 

improve healthcare services 

Organizati

onal 

Spoladore & 

Pessot 

(2021) 

Decision support system 
Provided some reference insights for multiple 

ontology system integrations 

Regional 
Sunitha & 

Babu (2014) 

Healthcare information 

system integration 

Development of a centralized semantic knowledge 

base for healthcare 

Regional 
Cameron et 

al. (2015) 

Mobile healthcare 

knowledge base 

Discover the gaps in research and between 

research and practice 

Regional 
Duncan et 

al. (2015) 

Healthcare information 

system integration 

Development of a new ontology in a public health 

system 

Regional 
White et al. 

(2014) 

Healthcare Quality 

Monitoring 

Use of several ontologies for proper data analysis 

and integration 
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2.2.3 Tools for ontology modelling 

Many tools have been created to assist with the implementation and integration of ontology 

models. Semantic-based languages are one type of tools for representing ontology models. 

Resource Description Framework (RDF) (Bicer et al., 2005) in conjunction with Web Ontology 

Language (OWL) (Bodenreider, 2004) is often regarded as a de facto standard (Dimitrieski et al., 

2016) for semantic web and linked data technologies and serves as a foundation for defining 

healthcare ontologies. Additionally, eXtensible Markup Language (XML) technology and 

relational databases are also frequently utilized, largely due to the availability of good validation 

tools and support from major manufacturers. 

Many languages focus on EHR data, its structure, and system implementation. For example, Health 

Level Seven International (HL7) is a non-profit organization with the goal of increasing the 

interoperability of healthcare information systems through the development of healthcare 

standards. Part of HL7 is the Clinical Document Architecture (CDA) document markup standard, 

which defines the structure and semantics of "clinical documents" for exchange between healthcare 

providers and patients. It employs XML to define documents such as discharge summary, imaging 

report, admission & physical, pathology report, and more. 

HL7 has published the Fast Healthcare Interoperability Resources (FHIR) (www.hl7.org/fhir/), one 

of the latest developments in ontology language. This open standard enables new apps and legacy 

systems to better exchange data than previously. FHIR's strong focus on implementation and its 

simple implementation process provides a good foundation for data integration between different 

standards. In FHIR, basic data is described as resources. Various predefined and customized 

resources can be defined to describe real-world clinical and administrative data. This has led to its 
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wide acceptance among major tech firms such as Apple, Microsoft, Google, Amazon, IBM, Oracle, 

and Salesforce. 

The other type of tools are ontology editors. It is important to have good editing software in order 

to construct ontologies in an efficient and standard way. Ontology editors allow users to visually 

manipulate, inspect, browse, code, and maintain ontologies. Some of the most popular editors 

include Protégé, Swoop, Apollon, etc. Below, we discuss a few popular editors and their features. 

Protégé (Noy et al., 2003; Tudorache et al., 2008; Sivakumar & Arivoli, 2011) is a free, open-

source platform that provides users with a suite of tools to construct domain models and 

knowledge-base applications with ontologies. It supports the creation, visualization, and 

manipulation of ontologies in various languages, with OWL being the default. Its extensibility is 

one of the platform's key advantages. This allows for visualization, ontology merging, version 

management, inference, and remote collaboration. 

Swoop (Kalyanpur et al, 2005 & 2006) is an open-source ontology editor, based on OWL, that 

provides validation, various syntax views and reasoning support. It also allows users to compare, 

edit and merge entities and relationships from multiple ontologies. To aid integration, Swoop has 

a deep learning-based search algorithm that combines entities based on keywords. It can also 

support plug-ins for collaborative annotation and importing external ontologies. 

Apollo (Lee et al., 2009; Hogan et al., 2016) is a knowledge modelling application that enables 

users to create ontologies with basic primitives, such as classes, instances, functions, and relations. 

It uses a hierarchical structure for organizing ontologies, which can be inherited from other 

ontologies. However, Apollo does not include graph view, information extraction, or multi-user 
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capabilities. Instead, it provides type consistency checking, storing ontologies as files, and the 

ability to import/export ontologies in various languages. 

Despite the various tools available, their adoption in healthcare organizations has been slow. This 

is due to two main reasons. Firstly, the integration and exchange of data between systems 

implementing two different standards is time-consuming and labour-intensive. Secondly, these 

tools are mainly focused on EHR data. A set of predefined resources is provided to facilitate the 

integration of patient data, restricting its implementation to the patient level. For studies like 

healthcare resource management and healthcare quality monitoring, users must define customized 

resources. Even using the same tool, different resources can be created to describe the same thing, 

leading to incompatibilities between different ontology models created by the same tool. This can 

reduce the effectiveness of the data integration these tools provide. 

2.2.4 Discussion 

Based on the review above, we can identify three knowledge gaps: (1) a lack of a unified definition 

of ontology in the field of healthcare information systems; (2) repeated efforts required from both 

domain experts and information technology specialists when integrating ontology-based 

information systems; and (3) current ontology modelling tools not being able to ensure ontology 

model compatibility, particularly when dealing with data outside EHR. Of the three, the first is the 

most fundamental. It may influence the other two either directly or indirectly. Therefore, we 

recommend that future studies should have a more comprehensive understanding than existing 

studies based on a unified definition of ontology and ontology modelling in information systems. 



 

20 

2.3 Sustainability and resilience in healthcare systems  

2.3.1 Concept of sustainability and resilience in healthcare systems  

Recently, researchers in the healthcare sector have been paying attention to systematically 

considering sustainability and resilience through policy development and decision making. This 

lens promotes long-term thinking about the quality of healthcare, which considers the trajectory of 

indicators related to the domain to identify risks, build resilience, and ensure that policy choices 

are contributing to higher quality now and in the years to come, without sacrificing future 

generations. While this lens is intended to bring a long-term perspective to all dimensions, a subset 

of relevant dimensions, including social sustainability and system resilience, should be given 

priority when preparing for future health risks. 

Sustainability is a term used mainly in ecology, with a specific meaning of "conserving an 

ecological balance by avoiding depletion of natural resources" (Oxford Dictionary of English, 

2003). "Sustain" also means to support or maintain (Oxford Dictionary of English, 2003). In other 

words, sustainability is the capacity of systems or processes to maintain balance and endure. When 

applied to healthcare, the term "endure" is used to refer to the continuous provision of healthcare 

services to the public. 

Resilience is defined as the ability to “withstand or recover quickly from difficult conditions” 

(Oxford Dictionary of English, 2003). In the ecological context, it refers to the capacity of a system 

to absorb disturbance, while maintaining its structure and viability. According to Folke (2006), 

individuals or systems must be prepared for any surprises or disturbances that may arise. In the 

healthcare context, resilience refers to the ability of a system to sustain or restore its performance 

in the event of one or multiple system failures (Alemzadeh, 2020). 
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Several studies have investigated the sustainability and resilience of healthcare systems (Vorsters 

& Van Damme, 2018; Achour & Price, 2010; Cristiano et al., 2021; Matin et al., 2022; Goodarzian 

et al., 2022). Vorsters & Van Damme (2018) assessed four scenarios of HPV (Human 

Papillomavirus) immunization programmes and analysed their sustainability and resilience. They 

found that the response to crises was slow due to a lack of political leadership and a crisis 

mitigation plan. To address this, they suggested proper monitoring of the programme. Cristiano et 

al. (2021) conducted a systems-thinking-based assessment of a Sudanese hospital with the aim of 

understanding its efficiency, resilience, and sustainability. They recommended larger, 

transdisciplinary efforts to optimise resources, including social and systems studies. Goodarzian 

et al. (2022) developed a healthcare supply network that incorporated sustainability and resiliency 

concepts. Simulation case studies showed that their network was resilient to changes in 

transportation costs, demand for medicines, hospital waste, and financial crises. Similarly, Matin 

et al. (2022) argued for the importance of considering sustainability and resilience in healthcare 

supply chain planning. They highlighted that during unexpected events such as natural and man-

made disasters, a sustainable and resilient healthcare resource supply system is essential. 

2.3.2 Discussion on the health system sustainability & resilience  

Most of the existing work has treated sustainability and resilience as two distinct concepts. For 

example, Crowther et al. (2016) argued that resilience is an element of difficulty that is responded 

to either by holding steady or by quickly resuming a normal state. It differs from the definition of 

sustainability, such as an appropriate balance of economic, environmental, and social aspects of a 

supply-demand system (Goodarzian et al., 2022). Even for studies that explore both sustainability 

and resilience simultaneously (Cristiano et al., 2021; Matin et al., 2022; Goodarzian et al., 2022), 

no explanation of the relationship between the two has been provided. 
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Sustainability and resilience both serve the same goal: providing sufficient services. In the example 

of a healthcare system, it should provide sufficient services under both short-term rapid 

disruptions, such as disease outbreaks, and long-term significant trends, such as global warming. 

The capability to handle the short-term rapid disruptions is system resiliency, and the capability to 

handle the long-term significant trends is sustainability. These two capabilities are interdependent 

and should not be considered separately. 

The United Nations' Sustainable Development Agenda for 2030 (2022) outlines three main pillars 

of sustainability: economic, environmental, and social. Most studies related to sustainability 

concentrate on the economic and environmental pillars. This review focuses on the social pillar, in 

particular on the issue of health equity, in response to the heightened awareness of Equity, 

Diversity, and Inclusion (EDI) in our society. 

2.3.3 Health equity measurement 

Matin et al. (2022) have pointed out that measuring system equity and resilience is a major 

challenge in healthcare systems. The concept of health encompasses both moral and legal 

elements. The primary aim of many healthcare systems is to ensure health equity among all 

populations, which is defined as the lack of systematic disparities in health across social, economic, 

geographical, power, and prestige status (Braveman, 2003). To achieve this, healthcare must be 

made accessible, and any socially unjust disparities within healthcare must be addressed (Asthana 

& Gibson, 2008). 

When measuring health equity, researchers typically need to determine a set of variables and 

indices. Variables are usually specific to the study in question, while indices tend to be more 
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general and can be adapted to various problems. For example, in the study of measuring fair 

allocation of human and material healthcare resources to people across regions in Ethiopia 

(Woldemichael et al., 2019), the authors used four variables including the annual outpatient visits 

per capita, the proportions of immunised children, and the under 5 child mortality rates, and infant 

mortality rates. For comparing those variables among regions, three indices, including the Theil L 

(θL), Theil T (θT) and Gini index (Gini) were calculated. The θL and θT can be calculated using the 

following mathematical expressions: 

 
𝜃𝐿 =

1
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∑
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where n represents the number of regions, Pi is the population proportion of the ith region, and Yi 

is the proportion of a given distribution of the ith region. The Gini was calculated using the 

following mathematical equation: 

 
𝐺𝑖𝑛𝑖 = 2 ∑ 𝑌𝑖𝑃𝑖𝑅𝑖 − 𝜇

𝑛

𝑖=1

 (2.3) 

where μ is the mean value of the overall distribution, n is the number of regions, Yi is the value of 

a distribution in the ith region, Pi is a region’s population share and Ri is the relative rank of the ith 

region. By using those variables & indices, the authors measured the inequity in healthcare 

workforce, infrastructure, and outcomes. It was discovered that Gini is an efficient means of 

recognizing regional inequity, though the limited number of regions could lead to an 
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underestimate. 

In this part of the review, we are focusing on the calculation of indices due to their wider usability 

in related studies. Gini, also known as the Gini coefficient, is one of the most commonly used 

approaches for the calculation of healthcare equity (Goddard, 2010; Hara, 2017; Wagner, 2009; 

Zhang, 2017; Smoyer-Tomic, 2004). It is used as a measure of statistical dispersion to represent 

income or wealth inequality within a nation or a social group (Gini, 1936). The Gini index is 

calculated as the ratio of the area between the perfect equality line and the Lorenz curve (A) 

divided by the total area under the perfect equality line (A + B), as shown in Figure 2.1. The Lorenz 

curve (Lorenz, 1905) has an abscissa is the cumulative normalized rank of income (or healthcare 

resource in our case) from the lowest to the highest (x), and an ordinate is the cumulative 

normalized income (or healthcare resource) from the lowest to the highest (y).  

 

Figure 2.1 Lorenz cure and Gini index calculation (Sitthiyot & Holasut, 2020) 
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Table 2.2 Other commonly used indices for health equity calculation 

Name Formula Features 

Regression and 

Correlation Analysis 

(RCA) (Truelove 

1993; Roeger et al., 

2010) 

√
1

𝑛 − 1
∑ (𝑌𝑖 − 𝑌̂𝑖)

𝑛

𝑖=1
 

Where Y is the observed variable while 𝑌̂ is the 

estimated variable from a regression 

Suitable when there is a clear 

connection between variables 

under the interests, such as 

available resources, and needs 

such as population 

Spatial 

Autocorrelation 

(SpA) (Smoyer-

Tomic & Hewko, 

2004; Bowen et al, 

1995 ) 
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Where Y is the observed variable while 𝑌̂ is the 

estimated variable from a regression, w is the 

spatial weights matrix which depends on the 

influence between two groups. 

Suitable for spatial equity 

problems which influence 

between groups under 

investigation can be observed. 

For example, if two areas have 

a shared border or not.  

Concentration Index 

(CI) 

(Witthayapipopsakul 

et al., 2019; Wagstaff 

et al., 2007; Gan et 

al., 2015) 

2

𝑁𝜇
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𝑛
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where hi is the resource variable, μ is its mean, 

and ri =i/N is the fractional rank of individual i in 

the living standards distribution, with i = 1 for the 

poorest and i = N for the richest 

Depends only on the 

relationship between the 

resource variable and the rank 

of the need related factors and 

not on the value of the factors 

themselves. 

Corrected 

Concentration Index 

(CCI) (Bonfrer et al., 

2014 ) 
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with 𝑥𝑘̅̅ ̅  and 𝑧𝑗̅  representing the means of xk, , 

need related variable, and zj non-need related 

variable, respectively, and CI(xk) and CI(zj) are 

their concentration indices, GC is a residual term. 

Suitable for a mix of need 

related variables and non-need 

related ones. Can be used with 

correlation analysis to identify 

the underlying drivers of 

inequity.  

Atkinson Index (AtI) 

(De Maio, 2007; 

Sitthiyot, & Holasut, 

2020) 
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where yi denotes the individual variable, 𝑦̅ 

denotes the average, N is the number of 

populations or groups, and ε is a sensitivity 

coefficient. 

Has a sensitivity coefficient (ε) 

that varies in the weight given 

to inequity in different groups. 

As ε increases, more concern is 

given to the lower end of the 

health resource distribution. In 

practice, ε values of 0.5, 1, 1.5 

or 2 are used. 

Generalized Entropy 

(GE) index 

(Mussard, Seyte, and 

Terraza 2003; 

Dagum 1997) 

1

𝛼(𝛼 − 1)
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1

𝑁
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𝛼

𝑁
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where yi denotes the individual variable, 𝑦̅ 

denotes the average, N is the number of 

populations or groups, and α is a sensitivity 

coefficient. 

Has a sensitivity coefficient (α) 

that varies in the weight given 

to inequity in different groups. 

The more positive α (typically 

=−1, 0, 1 or 2) is, the more 

sensitive GE(α) is to inequity at 

the top of the resource 

distribution. 

Robin Hood Index 

(RH) (Sohler et al, 

2003; Omrani-Khoo 

et al., 2013) 

1

2

∑ |𝑥𝑖 − 𝑥̅|𝑁
𝑖=1

∑ 𝑥𝑖
𝑁
𝑖=1

 

where xi denotes the individual variable, 𝑥̅ 

denotes the average. 

It measures the maximum 

vertical distance from the 

Lorenz curve to the 45° line of 

equity. 
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Other common indices are Regression and Correlation Analyses, Spatial Autocorrelation, 

Concentration Index, Corrected Concentration Index, the Atkinson Index, Generalized Entropy 

index, and Robin Hood Index. Their formula and explanations of parameters are given in Table 

2.2. 

RCA evaluates whether the distribution of resources is related to need. The higher the correlation, 

the more equitable the distribution. For example, if the number of patients per subsidised physician 

has a strong positive correlation with the number of physicians per district, subsidised physicians 

are distributed based on one measure of need. The issue lies in defining an appropriate correlation 

coefficient between them. 

SpA pays special attention to the spatial properties of the problem. The results are highly affected 

by whether the areas under investigation are geographically close to each other. A positive SpA 

indicates that nearby areas have similar levels of the healthcare resource variable, while a negative 

SpA indicates that areas with high levels of the resource are adjacent to areas with low levels of 

the resource. 

CI is defined based on concentration curves. These curves plot the cumulative percentage of the 

resource distribution variable against the cumulative percentage of the population, both ranked by 

need-related factors. The CI is then defined as twice the area between the concentration curve and 

the line of equality (the 45-degree line). A CI of zero indicates no inequality. A negative CI implies 

a disproportionate concentration of health resources among the poor, while a positive CI means 

the opposite. 

CI was designed specifically to measure healthcare equality and was widely used in related studies. 
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However, researchers began recognizing its limitations. CI is dependent on the mean of the health 

resource variable, making comparison between CIs in regions with varying health levels difficult. 

Furthermore, CI is unsuitable for use with qualitative based health resource variables. To address 

these issues, Erreygers (2009) proposed the CCI, which is suitable for a combination of need 

related and non-need related factors. Positive CCI values indicate a disproportionate concentration 

of the resource among the wealthy, and negative values indicate the opposite. 

Gini is popular in literature due to its ability to present the inequity of resource distribution with a 

single statistic value between 0 and 1. However, it has been found that a region with a lower Gini 

index does not always have a more equal distribution of resources than another region with a higher 

Gini index. This is due to their Lorenz curves intersecting, reflecting different resource 

distributions. To counter this limitation, Atkinson (2014) devised the social welfare-based index, 

AtI. This index uses a sensitivity parameter (ε) ranging from 0 to infinity. A lower parameter 

indicates that the researcher is unconcerned about the nature of resource distribution, whereas a 

higher parameter indicates that the researcher is more concerned about the lower end of the health 

resource distribution. 

In order to circumvent the social welfare assessment, which is determined by the sensitivity 

parameter (ε) in AtI, an array of GE indices were employed as alternatives when the Lorenz curves 

of the two regions intersect. The parameter α impacts the sensitivity of the index to inequalities at 

the top of the distribution (Bellù and Liberati, 2006). This value is usually -1, 0, 1 or 2. GE(1) is 

often referred to as the Theil index (Conceição & Ferreira, 2000). The exact specification of the 

GE(α) index is contingent on the value of α, thus making it hard to contrast the resource inequity 

across disparate regions. 
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RH, or Hoover Index, is the maximum vertical distance from the Lorenz curve to the 45° line of 

equity (Kawachi I, Kennedy, 1997). It is interpreted as the proportion of resources that need to be 

transferred from those above the mean to those below the mean to achieve an equal distribution 

(Kondor, 1971). A higher RH value indicates a more unequal society, meaning a larger share of 

resources needs to be redistributed. Compared to the Atkinson and GE indexes, RH does not 

incorporate a sensitivity coefficient, which makes it easier to use. 

2.3.4 Discussion on health equity measurement 

In summary, there are three types of equity indices: correlation-based, concentration curve-based, 

and Lorenz curve-based. Correlation-based indices, comprising RCA and SpA, assume that certain 

independent factors, such as population, are correlated with a resource distribution variable, such 

as the number of physicians. Thus, the resource distribution variable can be estimated from the 

independent factors. The discrepancies between the estimated variable and the actually observed 

variable determine the equity indices; the larger the difference, the greater the disparity in resource 

distribution. For systems with a clear correlation between independent factors and the resource 

distribution variable, correlation-based indices are the optimal choice. 

The second type of equity indices, including CI & CCI, are based on concentration curves. Those 

indices are related to the rank of the independent factors, rather than their value. These factors 

could be either need-based or non-need-based, making them suitable for measuring equity in 

healthcare. 

The third type of equity indices, based on the Lorenz curve, comprises AI, GE, and RH. The Lorenz 

curve is determined only by the resource distribution variable and its rank, with no independent 
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factors being considered. This feature makes them potentially more suitable for complex system 

analysis, where independent factors are hard to determine. 

Most of the equity indicators reviewed originate from the economy, designed to measure the 

difference between reality and a perfect equality situation. Equality and equity are terms often used 

interchangeably, yet they have different meanings. Equality involves treating everyone the same, 

regardless of individual differences or circumstances. Equity, however, is the idea of fairness and 

providing people with what they need to be successful, considering individual differences and 

circumstances.  

In healthcare, equity is more suitable than equality because care should be tailored to the individual 

needs of the patient. For example, different care should be provided to someone with a mental 

health condition than to a person with a physical health condition. Furthermore, people with 

different backgrounds, cultures, and experiences require different approaches to care. Equity 

acknowledges these differences and ensures everyone receives the care they need. Given that most 

measurements are designed for equality, future studies should explore their usability in healthcare 

equity related applications. 

2.3.5 Health system resilience measurement 

Resilience Index (RI) (Liu et al., 2017; Retit et al., 2013), or resilience metric (Watson et al., 2014; 

Panteli et al., 2017), is a tool for measuring the resilience level of systems. A proper evaluation of 

resilience leads to effective and rational resilience enhancement strategies, such as advanced 

techniques to improve the resilience of infrastructure (Baghaee et al., 2019; Afshari et al., 2020; 

Raeispour et al., 2020). By using appropriate resilience measurement techniques, weak and strong 
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areas of a system can be identified, allowing for the proposal of resilience enhancement strategies 

(Watson et al., 2014). However, quantifying resilience is difficult and requires a widely accepted 

metric and associated computation algorithm. 

In the literature, there is no general agreement about the necessary capabilities, measurement 

method, and relation to desired outcomes for RIs. In the past, many reviews have classified RIs 

into categories that usually follow a certain hierarchy and contain multi-level sub-categories. For 

example, Raoufi et al. (2020) used a five-level hierarchy to classify RIs, resulting in over a dozen 

sub-categories at the lowest level. This makes the classification of an RI tedious and unnecessarily 

complicated. Therefore, instead of classifying RIs into categories, we developed a five-

dimensional framework to describe any RI, as shown in Table 2.3. This framework does not require 

all dimensions to be applied to every RI. Rather, it provides insights into how a RI can be measured 

and what other angles can be considered. New RIs can be developed by using other choices from 

the same dimension, and/or adding another dimension. 

Table 2.3 The five dimensions framework for RIs 

Dimension Methods 

Research Qualitative; Quantitative 

Perspective Subjective; Objective 

Variable Capacity; Outcome 

Timing Deterministic; Probability; Simulation 

Calculation 

Area under curve;  

Expected impact of disasters;  

Margin and sensitivity  

 

Research is the first dimension. Two methods are typically used: qualitative and quantitative. 

Qualitative research, which tends to assess system resilience without numerical descriptors (Ungar, 
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2015; Sarre et al., 2014), is conducted through observation, interviews, focus groups, etc. (Mash 

et al., 2008; Witter et al., 2017; Raven et al., 2018; Brooke-Sumner et al., 2019; Thude et al., 2019). 

This type of research provides insight into resilience but lacks a quantitative value. Quantitative 

research, on the other hand, gathers quantifiable data to represent resilience (Paterson et al., 2014; 

Gizelis et al., 2017; Sochas et al., 2017; Kozuki et al., 2018; RayBennett et al., 2019). Its numerical 

nature makes it more suitable for system resilience measurement and comparison. 

The second dimension of RI is perspective, which has two methods: objective and subjective. 

Objective methods are independent of judgement based on the subjects being evaluated (Cohen, 

Manion, & Morrison, 2002). In the context of resilience, objectivity refers to the range of steps in 

the measurement process, such as choosing definitions and frameworks, collecting data, and 

quantifying resilience. For example, most measurement toolkits rely on frameworks for resilience 

that are based on expert-elicitation or academic literature (Schipper & Langston, 2015). These 

approaches are largely objective, in that resilience is externally defined and those being measured 

have little or no say in determining what constitutes resilience. In contrast to objectivity, subjective 

methods take a different view. Rather than relying on external judgement, subjective approaches 

consider the individual in question to understand their own circumstances (Nguyen & James, 

2013). Subjective resilience relates to an individual's cognitive abilities and their personal 

assessment of a system’s capabilities in responding to risk (Jones & Tanner, 2017). Subjective 

methods are usually conducted in the form of questionnaires or interviews (Béné, Al-Hassan, et 

al., 2016; Claire et al., 2017; Jones & Samman, 2016). 

The third dimension is variable, with two methods: capacity and outcome. The capacity method, 

also referred to as functionality (Panteli et al., 2015; Landegren et al., 2016) or quality (Reed et 
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al., 2009; Attoh-Okine et al., 2009), is the direct measurement of a system's resource. Examples of 

capacity RIs include the number of beds, available labour, and equipment. On the other hand, the 

outcome method focuses on the effect of the system on society, such as equity, the number of areas 

affected, and loss of life (Watson et al., 2014; Shinozuka et al., 2004). If the system is well 

understood, an outcome RI can be computed using capacity RIs. 

Timing is the fourth dimension of RI. Three methods are typically used to measure resilience: 

deterministic, probabilistic, and simulation. The deterministic method is often used in empirical 

research, where researchers directly observe phenomena and measure them (Lei et al., 2018; Ji et 

al., 2017; Shao et al., 2017). As an example, Bruneau et al. (2003) proposed a static metric for 

measuring the resilience loss of a community to an earthquake, based on four aspects of the 

community before and after the earthquake. The probabilistic method accounts for the stochastic 

behavior of systems and uses the expected value or probability distribution of disruptions based 

on some intended disruption scenarios (Shinozuka et al., 2004; Johnson et al., 2020; 

Krishnamurthy et al., 2016; Chang & Shinozuka, 2004). This method is better suited to repeated 

disruption events like extreme weather. The simulation method forecasts system behavior using 

simulation models (Shinozuka et al., 2004; Carvalho et al., 2012; Panteli et al., 2015). Carvalho et 

al. (2012) used discrete event simulation to assess the resilience of a supply chain, by calculating 

the additional inventory required, as well as the extent of the disrupted transportation system under 

six different scenarios. 

The last dimension is calculation. This dimension is only applicable to quantitative RIs, as it 

provides a quantitative means to assess resilience. RIs under this dimension usually compare 

system performances under two states: an initial state (the system's ideal performance) and a real 
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state (the system's performance under disruption scenarios). The real state can be divided into three 

stages: absorb, where system performance declines due to disruptions; response, where from 

disruption stops until recovery starts; and recover, where a restoration strategy is in place to recover 

system performance. Many computational methods belong to this dimension, and here three of 

them are described in detail. 

The Area Under Curve (Panteli et al., 2015; Bie et al., 2017; Li et al., 2017; Attoh-Okine et al., 

2009) is a widely used method for measuring the difference between a system's performance under 

disruption and its ideal performance. This is represented by the area between the initial and real 

states. The Composite Resilience Index (Ayyub et al., 2014; Francis et al., 2014; Panteli et al., 

2015) multiplies the recovering speed with the ratio of system performances in the real state to 

those in the initial state. The Expected Impact of Disasters (Panteli et al., 2015; Panteli et al., 

2017; Ciapessoni et al., 2016) method compares a system's real performance with and without 

considering resilience strategies. The Margin and Sensitivity method (Landegren et al., 2016) 

uses a pair of two RIs to measure a system's resilience. This includes the initial drop in functionality 

and the time required to restore desired functionality. By considering disruption scenarios of 

increasing severity, a margin plot and a sensitivity plot are created. Different from the other 

methods, which are based on a given disruption scenario, the Margin and Sensitivity method 

investigates system resilience under different levels of disruption. 

Most of the studies above focus on the areas of environmental science, ecology, and engineering. 

In the healthcare system, most of the work uses deterministic and qualitative RIs. Some have tried 

to improve the measurements by adding quantitative ones (Farley et al., 2017; Ammar et al., 2016; 

Fukuma et al., 2017). In 2016, Ammar et al. (2016) studied Lebanon's health system during a 
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refugee crisis. They reported on the difficulty of not having a unified definition of health system 

resilience, indicating that "the literature lacks a rigorous and scientifically validated method for 

measuring and providing resilience in health systems." To address this, they decided to use an 

input-process-output model to measure the capacity of the health system and its performance. 

In addition, subjective RIs are widely used in systems related to health workforce and community 

perspective (Falegnami et al., 2018; Patriarca et al., 2018; Raven et al., 2018; Cohen et al., 2019; 

Alonge et al., 2019; Andrew et al., 2016). Kruk et al. (2017) seek to assess multiple aspects of 

resilience, such as awareness, diversity, self-regulation, integration, and adaptability. Morse et al. 

(2021) proposed a framework for health workforce resilience, evaluating the state of the ill facing 

profound, devastating, and rapid life-threatening changes. This framework identifies protective, 

compensatory, and coping strategies that health workforce can use. This trend demonstrates that, 

in a complex system involving humans, both objective and subjective perspectives are necessary 

to gain a comprehensive understanding. As subjective RIs can reveal underlying human factors, 

they should be integrated with objective RIs in system resilience estimations. 

2.3.6 Discussion on resilience measurement  

From our reviews on resilience measurement, four things are worth mentioning. Firstly, 

approaches to measuring resilience are disparate, considering different types and classes. 

Compared to existing ways of classification, the five dimensions proposed in this work could better 

describe the characteristics of RIs and provide more inspiration for developing new ones. 

Secondly, most resilience measurements are made in the areas of environmental science, ecology, 

and engineering. Amongst these works, only those in engineering take a systematic view on the 

problem. Thirdly, most studies in engineering focus on the strategy of maximizing system 
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capability in the event of disruptions. To complement this, system resilience optimization at the 

planning stage should also be investigated. Simulation-oriented RIs for planning are missing from 

the literature. Lastly, in the healthcare area, most of the existing work uses deterministic RIs. They 

focus on measuring system resilience before and after a disturbance. A systematic view is missing 

from the work. 

In light of the reflections on Sections 2.3.4 and 2.3.6, we conclude that measurements of healthcare 

system sustainability and resilience remain novel. This is due to the recent recognition of their 

importance and the need to measure them, in order to identify areas for improvement. This is 

especially pertinent in the face of the unprecedented challenges posed by the pandemic. 

In order to improve the measurements, several key steps can be taken. Firstly, definitions and 

indices should be developed more clearly, so that the system can be measured accurately and 

reliably. Secondly, a common framework for assessing sustainability and resilience should be 

established, allowing different healthcare systems to be compared and evaluated. Thirdly, 

healthcare systems' sustainability and resilience should be estimated at the planning stage, in order 

to identify and address areas of weakness earlier. Finally, more focus should be put on using data 

to inform decisions and strategies for improving healthcare systems, helping them to become more 

sustainable and resilient in the face of future challenges. 
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2.4 Resource allocation and scheduling 

Healthcare optimization problems have attracted much attention in recent years in order to provide 

more appropriate services at a lower cost (Fei et al., 2010; Rais et al., 2011). Healthcare sectors, 

unlike most other industries, work around the clock. This prolonged and irregular work schedule 

can lead to job dissatisfaction and, consequently, can affect patient satisfaction. Additionally, the 

increasing population and population longevity have caused an increase in demand for medical 

services (Rais et al., 2011; Batun et al., 2013). The absence or shortage of healthcare, combined 

with higher demand, has put patients' lives at risk, raised infection rates, and caused overcrowding 

of patient flow (Oueida et al., 2020). As such, improved planning and scheduling of healthcare 

resources are vital in order to better address this problem. Such a system is important in reducing 

costs, increasing resilience, and enhancing accessibility to the healthcare system (Gupta et al., 

2008). In this review, we will examine separately the modelling techniques for planning and 

scheduling problems and discuss the optimization algorithms that can be used to solve them. 

2.4.1 Patient scheduling 

The Patient Scheduling (PS) problem is a complex combinatorial problem (Bilgin et al., 2012) 

with the aim of scheduling patients in certain time slots to maximize management competency, 

patient comfort and safety, as well as enhance medical care in hospitals. This involves assigning 

patients to specific departments in a way that meets the patients' needs and respects all relevant 

medical restrictions. Usually, a centralized admission office is responsible for this assignment, 

though some hospitals do not have this and leave the admission responsibility to the various 

departments. PS can support decision makers at various levels, such as the long term (strategic 

level), mid-term (tactical level), and short-term (operational level) in healthcare institutes (Lusby 



 

37 

et al., 2016), as explained in the following section. 

Scheduling problem levels 

At the strategic decision level, Robinson and Chen (2010) compared the performance of a pre-

scheduled policy, which schedules patients in advance of their appointment days, with that of an 

open-access policy, which schedules patients on the same day they call for an appointment. Their 

numerical analysis assumed the number of appointments was given, the service time was 

deterministic, and the arrival of patients was punctual. Results indicated the open-access policy 

can significantly outperform the pre-scheduled policy in terms of patients’ waiting time, doctors’ 

idle time, and doctors’ overtime. Dobson, Hasija, and Pinker (2011) also compared the two 

policies. They found that when there were a lot of urgent walk-in patients, the open-access policy 

performed better. The literature also discusses online and offline problems (Wang and Gupta 2011; 

Weiner et al. 2009; Kuiper et al. 2015). Kuiper et al. (2015) compared the two approaches and 

found the offline approach had better performance in reducing patient waiting time and staff idle 

time. The offline scheduling system collects patient requests electronically (e.g., via email or a 

web-based portal), then advises their appointment time using text messages, becoming more 

efficient with the use of personal mobile devices and instant messages. 

At the tactical decision level, Klassen and Yoogalingam (2009) demonstrated that the most 

efficient pattern of appointment lengths was a plateau-dome structure, which breaks one day’s 

schedule into three sections. In the first section (e.g., morning), appointment lengths increase over 

time, the middle section (e.g., afternoon) features the same appointment lengths, creating a plateau, 

and the last section sees appointment lengths decrease until the end of the day. They found that 

this pattern results in the least waste of capacity. Nguyen, Sivakumar, and Graves (2015) proposed 
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a network flow model to determine the optimal allocated capacity based on different patient 

groups. Their study considered patients on their first visit and return visits, with differing 

appointment lengths. Zhou et al.’s (2019) work generalized this idea, taking into account 

uncertainties in patients’ lengths of stay. They argued that when maximizing hospital revenue, it is 

important to allocate resources to multiple types of patients and uphold service equity. 

At the operation decision level, there are two main streams of studies. One focuses on allocating 

clients (patients) to services and the other on determining the appointment time. Most studies on 

allocating patients assumed that all services are identical. For example, Zheng et al.’s (2015) study 

proposed an overbooking scheduling model. Their goal was to maximize the expected profit by 

optimizing the number of overbooked patients in multiple-provider clinics. Other studies used 

various factors to differentiate services. Balasubramanian et al. (2014) developed a model that 

factored in the importance of continuous care. Their study showed that significantly higher revenue 

was earned when a primary-care provider saw one of his/her own patients, as opposed to breaking 

the continuity of care. In determining the appointment time, Chakraborty et al. (2013) found that, 

compared with a slot scheduling method (slot time is predetermined), scheduling patients at any 

time in the consultation session can be more efficient. However, this is less attractive in practice 

as the resulting appointment time has no particular pattern, making it difficult for patients to follow. 

To address the same problem, Liu and Geng (2020) proposed an ordinal optimization strategy. 

Rather than controlling the appointment time directly, their approach was to determine the 

sequence in which a list of patients should be scheduled. This aimed to efficiently utilize the limited 

medical resources while still guaranteeing the quality of service for patients. 

In practice, an outpatient scheduling approach usually covers two or three of the decision levels 



 

39 

mentioned above. For example, Li et al. (2019) used an open-access policy (at the strategic 

decision level) to focus on appointment time optimization (at the operation decision level). From 

the literature, four remarks can be made. Firstly, offline scheduling is becoming more popular due 

to the accessibility of scheduling systems to patients via mobile phones. Secondly, scheduling 

models are often designed for a single type of scheduling policy. Thirdly, most studies consider 

only waiting time within healthcare units. Lastly, most of these studies have a single optimization 

objective. 

Scheduling variables & constraints 

In the past few decades, various scheduling methods have been developed to automate the search 

for an optimal schedule through different problem models. These models possess unique objective 

functions due to the distinctiveness of their problem definitions and healthcare systems. Examples 

of such objective functions are health equity and system resilience, as discussed in Section 3. Given 

that there are many versions of problem definitions and various problem variables, we attempt to 

identify commonalities between them by summarizing their types and corresponding constraints. 

The constraints can be applied to these variables as either hard or soft constraints (Hall et al., 

2012). Hard constraints reject solutions that cause violations, while soft constraints tolerate the 

solution and add a penalty to the objective functions. Table 2.4 illustrates some principal variables 

and their typical constraints.  
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Table 2.4 Principal variables in PS problems and their typical constraints 

Variable Definition Examples Typical constraints 

Patient need 
Types of healthcare resources 

required 
Gender, type of illness Gender policy 

Patient 

condition 
Patient priority Urgency level Delay, waiting time 

Length of 

treatment 

Duration required for the 

treatment 
Test duration; day of stay (No direct constrain) 

Resource 

specialty 

Types of resource that meets 

patient needs 

Type of treatment; levels 

of specialists 
Patient-room suitability 

Resource 

capacity 
Amount of resources available 

Number of beds, number 

of rooms 

Overcrowd rate; idle 

room capacity 

Resource cost 
Capital and time required for 

consuming resource 
Labour cost; material cost Maximum overtime 

The top three variables in Table 2.4 are related to patients, who require healthcare resources for a 

predetermined duration. "Patient need" describes the type of treatment needed and the patient's 

preferences; these preferences and needs can be met with varying levels of resources. For example, 

a patient who needs a bed may be assigned to a single, twin, or ward room. In some cases, 

constraints such as gender policies may be implemented to ensure that a room is shared only with 

same-gender patients (Ceschia et al., 2016). "Patient condition" indicates the urgency of the 

patient's situation. Patients with different urgency levels are usually treated with different plans 

and waiting time targets, which are often considered as constraints in some problems (Ceschia et 

al., 2012; Demeester et al., 2010; Kamran et al., 2018; Addis et al., 2016). Lastly, "length of 

treatment" describes the number of healthcare resources required by the patient. This variable is 

determined by data concluded from history or generated by researchers following set patterns, 

instead of relying on constraints. 

The bottom three variables in Table 2.4 are related to resources, which provide healthcare services 

either a person or equipment. "Resource specialty" specifies the type of healthcare resource 
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available and is closely related to patient needs. Constraints such as patient-room suitability could 

be implemented (Ceschia et al., 2012). "Resource capacity" describes the quantity of resources 

available and is often grouped by resource specialty (Demeester et al., 2010). Constraints related 

to resource capacity focus on the utilization rate, such as the maximum rate of idle patient rooms 

(Ceschia et al., 2016). Lastly, "resource cost" is frequently used to quantify the economical aspect 

of a scheduling problem; its related constraints include maximum overtime cost (Zhu et al., 2020) 

and total operation cost (Xiang et al., 2015). 

2.4.2 Resource allocation 

The Resource Allocation (RA) problem is the placement of a set of new facilities in an area of 

interest in order to minimize the transportation cost from facilities to customers, and to satisfy 

customer demand. It was first brought up by Cooper (1963) and has been widely adapted to solve 

problems in many areas, including hospitals, schools, warehouses, and industries. This review 

provides an overview of the most notable principal variations in this class of problems. To explain 

their roles in RA problems, a few examples are given that are considered as primary RA problem 

models. Table 2.5 shows general variable names, such as distance and flow, which are used in the 

discussion of RA problems. In actual healthcare applications, these variables could be replaced by, 

for example, travel time, transportation cost, or amount of samples to be tested. Furthermore, some 

practical applications in healthcare are described.   
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Table 2.5 Principal variables in RA problems and their example in healthcare 

applications 

Variable Definition 
Example of variables in healthcare 

applications 

dij The distance between location i and j travel time, transportation cost 

fij The flow between location i and j 
number of patients, amount of test samples to 

be transported. 

rj The requirement of demand point j number of patients that need to be treated. 

n The total number of demand points The total number of cities 

qi The capacity of the facility i 
number of tests/operations can be performed 

every day 

cij 
The connection between facility i and 

demand point j 
Patient-hospital assignment 

m The total number of facilities The total number of hospitals 

{Xi, Yi} Coordinates of the facility i Location of hospital 

A list of primary RA problem models is presented in Table 2.6 along with their respective objective 

functions and constraints. The flow model, in particular, focuses on determining the flow from 

facilities to demand points. Provided the locations, number of facilities, and demand points are 

known, the model seeks to minimize the cost of the flow, while satisfying the requirements of 

demand points and capacities of facilities. The base version of the model, as proposed by Balinski 

(1961), involves flow only from facilities to demand points, or only from demand points to 

facilities. Variations of the model, as suggested by Klibi et al. (2010) and Chorley et al. (2013), 

limit transportation capacity by restricting the maximum flow. Some extended flow models 

consider flow between demand points and between facilities (Arabani et al., 2012; Ojaghi et al., 

2015). For instance, resources required by demand point B can be transported from facility I 

through demand point A. This extension increases the flexibility of the solutions and potentially 

enhances their efficiency. 
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Table 2.6 Primary RA problem models with their objective function and 

constraints in their base forms 

Model 

name 
Objective function Constraints 

Flow model 

 

∑ ∑ 𝑑𝑖𝑗𝑓𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

∑ 𝑓𝑖𝑗

𝑛

𝑗=1

≤ 𝑞𝑖 

∑ 𝑓𝑖𝑗

𝑚

𝑖=1
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𝑁

𝐴
 

The capacity model (McAllister et al., 1976) assigns capacity to each facility when the number 

and location of facilities and requirements of demand points are given. The model decides the 

connections between facilities and demand points which consequently determines facility’s 

capacity: 𝑞𝑖 = ∑ 𝑐𝑖𝑗
𝑛
𝑗=1 𝑟𝑗. The base form model only considers discrete 𝑐𝑖𝑗 ∈ {0, 1}. When 𝑐𝑖𝑗 =

1, it means that facility i supplies demand point j; and when 𝑐𝑖𝑗 = 0, it means that the supply does 

not exist. A natural extension (Tsou et al., 2005) to the base form is to consider continuous 𝑐𝑖𝑗 

which ranges from 0 to 1.  

The location model proposed by Kulin et al. (1962) seeks to determine how to best locate facilities 

in order to meet the predetermined requirements of demand points. The model's base form 

considers only a single centralized facility and assumes that the flows directed away from this 

central facility are known in advance. Furthermore, the model assumes that the travel costs are 

proportional to the linear distances between locations. The location model has two variations 

(McAllister et al., 1976, Scott, 1969): one considers the location of a facility in discrete space, and 
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the other considers it in continuous space. It has been extended to consider more than one facility, 

with or without a predefined total number of facilities (Blanco et al., 2014). This extension has 

broader applications but is mathematically more challenging. In some studies (Roca-Rivada et al., 

2011; Mittal et al., 2013), the model was further extended to include the addition of new facilities 

to an existing system. In this extension, the locations of some facilities are predetermined. A more 

sophisticated model (DeVerteuil, 2000) even considers changes in flows in the existing system as 

part of the cost.  

Healthcare-related RA problems often require the combination of multiple primary problem 

models to accurately reflect the complex nature of healthcare resource planning. For example, 

Shariff et al. (2012) employed a model that combines the location and flow models, both of which 

feature discrete variables. This model was used to plan healthcare facilities in Malaysia, taking 

into account the limitations of facility capacity. Another example of a combined model is from 

Syam et al. (2012). They developed a combined model based on the location and capacity models, 

that optimized specialized healthcare services. In addition to the base models, the work added 

further constraints, such as multiple patient priority levels, multiple service level mandates by 

priority, and facility utilization targets by acuity. Zhang et al. (2016) also applied application 

specific constraints to their problem model, including a constraint on the total capacity, which 

should not exceed the population growth in the region. 

Rahman and Smith (2000) categorized the RA models by their hierarchy into two types: single 

level models and multi-level models.  Single-level models are used to determine the best locations 

for healthcare system facilities using a single model, as demonstrated by Zceylan et al. (2017), 

who optimized pharmacy warehouse locations to cover larger areas of pharmacies and hospitals.  
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Multi-level models involve problems with both upper and lower level facilities, such as in Şahin, 

Süral & Meral’s work (2007), which includes a regional blood center (upper level), blood station, 

and mobile unit (lower level). 

There are several limitations to existing models. Firstly, the spatial interaction between demanders 

and facilities is relatively simple; for instance, few models have employed realistic accessibility 

measurement when considering travel time, instead opting to calculate distance using coordinates 

and assuming the journey time is proportional to the distance, ignoring geographical limitations 

and the availability of public transportation. Secondly, models merely determine the location of 

facilities, without determining the number of resources to be allocated. This may result in a 

secondary step that limits optimization performance and lacks flexibility in implementation. 

Lastly, it does not account for the dynamic nature of resource availability, nor does it provide 

alternative solutions in the event of disturbances. 

2.4.3 Optimization algorithm 

PS and RA problems both utilize the same categories of optimization algorithms, as they often 

possess conflicting objectives. Complexities are caused by conflicting objectives, such as optimal 

efficiency, equity, resilience, and cost, which must be considered jointly (Mokarram et al., 2018; 

Ok et al., 2008). Therefore, this optimization can be characterized as a multi-objective optimization 

(MOO) problem, in which conflicting objectives must be optimized at the same time over a feasible 

set decided by constraint functions (Coello et al., 1999). 

When solving MOO problems, one must consider a trade-off between objectives (Drummond et 

al., 2005; Levitin et al., 2006). This set of solutions that represents the best possible trade-off is 
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called the Pareto optimal set. In other words, a solution is Pareto optimal if no other solution that 

is better or equal to all objectives. The set of function vectors generated by this set is referred to as 

the Pareto front (Yu et al., 1974). Finding the Pareto optimal set is a difficult task. Thus, many 

MOO algorithms have been developed to address this problem. We presented state-of-the-art 

algorithms by comparing their characteristics in three aspects: hyper-parameter control, solution 

selection, and new solution generation (Table 2.7). The comparison provides insights on choosing 

the proper type of algorithms for a specific optimization problem. 

Table 2.7 State-of-the-art optimization algorithms with their characteristics 

Algorithms 
New solution 

generation 
Solution selection 

Hyper-

parameter 

control 

Suitable problem 

Tabu search (TS) Perturbing 
Minimize 

objectives 
Pre-determined 

Continuous; avoid 

local minima 

Genetic Algorithm 

(GA) 

Combining & 

perturbing 

Objectives & 

probability-based 
Pre-determined Discrete 

Non-dominated 

Sorting Genetic 

Algorithm (NSGA) 

Combining & 

perturbing 

Non-dominated 

sorting 
Pre-determined 

Discrete; diverged 

pareto optimal set 

Particle swarm 

optimization (PSO) 

Combining & 

perturbing 

Minimize 

objectives 
Pre-determined 

Continuous; large 

searching space 

Simulated Annealing 

(SA) 
Perturbing 

Difference & 

probability-based 
Iteration-based 

Continuous; time 

sensitive 

TS was designed to help with searching difficult regions of a search space and escaping local 

minima. It uses a move operator and a tabu list (Glover et al., 1989; Glover et al., 1990). The move 

operator generates candidate solutions by slightly perturbing a current solution. Then, these 

solutions are evaluated using a weighted sum of objective functions, and the one with the lowest 

sum is chosen for the next iteration. Additionally, the tabu list stores the most recent moves to 

prevent searching in those directions for a certain number of iterations. Lastly, hyper-parameters 

such as objective weights, perturbing variance, and number of recent moves are usually 

predetermined by researchers. 
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GA is a common heuristic algorithm used to solve engineering problems (Miettinen et al., 1999). 

It encourages the search toward the Pareto front while preserving the diversity of the population 

(Fonseca et al., 1998). New candidate solutions are generated through a process of combining and 

perturbing, called crossover and mutation, respectively. Crossover involves exchanging parts of 

solutions between two candidates, whereas mutation involves making random changes to one 

candidate. Candidate solutions are then selected through stochastic methods such as roulette-wheel 

selection and stochastic universal sampling, based on their objective functions and some random 

number (Konak et al., 2006). In GA, hyper-parameters, such as population size and 

crossover/mutation rate, are generally predetermined by researchers. 

NSGA takes a different approach than GA. It uses Goldberg's non-dominated sorting procedure 

(Golberg et al., 1989; Deb et al., 2002) to select candidate solutions. In addition, NSGA uses a 

rank-based sorting procedure and a fitness sharing niching method to maintain sub-populations 

across the Pareto front (Brownlee et al., 2011). This adaptation makes NSGA and its variations, 

such as NSGA-II & NSGA-III (Deb et al., 2014; Jain et al., 2014), suitable for many MOO 

problems. The sorting procedure requires a hyper-parameter that is determined by researchers. The 

application of the NSGA-III algorithm is growing in various contexts, as pointed out by Tavana et 

al. (2016), due to its advantageous qualities. 

PSO is similar to GAs in terms of their use of combining and perturbing to create new candidates, 

and their manipulation of a set of potential solutions. However, there is one major distinction: PSO 

combines existing solutions by adding them in a vectorized space, while GA treats solutions as a 

string and exchanges parts of them. This difference is based on the assumption that PSO is 

searching in a continuous solution space and GA operates in a discrete problem space. Particles, 
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which are candidate solutions, move iteratively through the search space and improve the objective 

value based on a given quality measure (Hare et al., 2013). The quality measure and population 

size are researcher defined hyper-parameters. PSO includes a range of algorithms with similar 

characteristics such as the Whale Optimization Algorithm (Mirjalili et al., 2016a), the Polar Bear 

Algorithm (Połap et al., 2017), and the Dragonfly Algorithm (Mirjalili et al., 2016b). These 

algorithms have the potential to provide efficient results in comparative studies and form the basis 

for future work by the authors. 

SA algorithm mimics the annealing process in material science (Kirkpatrick et al., 1983). Adapted 

in a multi-objective framework, it has a unique way of controlling hyper-parameters (Suman et al., 

2006). Based on iterations and some acceptance criteria, SA uses an initial set of hyper-parameters 

to maximize efficiency, gradually tuning them for better effectiveness. This feature also enables 

SA to be combined with other algorithms, such as GA (Zhao et al., 2006; Mahfoud et al., 1995), 

PSO (Sudibyo et al., 2015), TS (Katsigiannis et al., 2012; Lin et al., 2016), etc., to control their 

own hyper-parameters. Since the first multi-objective SA proposed by Serafini (1994), several 

improved algorithms have been developed (Suppapitnarm & Parks, 1999; Ulungu & Teghem, 

1999, Suman, 2005). 

Overall, the choice of algorithm for solving a multi-objective optimization problem depends on 

the specific problem. For example, a RA problem can be presented in a continuous solution space, 

so PSO and SA may be more suitable, depending on the scale and application. Conversely, PS 

problems are often discrete, so GA or NSGA is more suitable. However, PS solutions are often 

represented as a sequence, which might not be compatible with solution combination steps such 

as crossover, implying that a new algorithm may need to be developed. Additionally, factors such 
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as the number of objectives, variables, the type of constraints, and the complexity of the objective 

functions should be taken into consideration when choosing the algorithm. 

2.4.4 Discussion 

When solving an optimization problem such as PS or RA, one must carefully consider various 

factors, including the problem level, variables, constraints, and optimization algorithms. This 

review provides a guideline on how to make these choices. First, the problem level should be 

determined based on the complexity of the problem, the type of manageable resources, and the 

desired output. Second, variables and constraints should be chosen depending on the parameters 

of the problem and the desired output. For example, if the goal is to reduce the cost of resource 

distribution, the variables may include transportation costs and the flow between facilities, while 

the constraints may include time, budget, and facility capacity. Finally, the optimization algorithm, 

whether continuous or discrete, should be chosen based on the problem space. When the settings 

of hyper-parameters cannot be determined from expert knowledge, tuning methods such as SA 

could be considered to improve the algorithms’ efficiency. 

Based on the guideline, there are several potential opportunities for future studies. The first is to 

create a multiple objective scheduling method with a flexible scheduling policy. The second is to 

develop a comprehensive RA model, taking into account dynamics in patient demand, such as 

travel time, and changes in resource availability, such as manpower shortages and resource 

distributions. Lastly, a dedicated optimization algorithm specifically suitable for PS problems 

should be developed. PS problems often involve temporal, precedence, and resource constraints, 

which may not be manageable through conventional optimization algorithms.  
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2.5 Conclusion and future opportunities  

In the post-pandemic era, an effective healthcare information system is essential for optimizing 

constrained healthcare resources. This system should have the capability to comprehensively 

capture all the data from the healthcare system, accurately and securely. It should also be able to 

assess system performance, and provide tools for operational management, such as resource and 

service allocation tools, and scheduling tools for sustainability and resilience. 

In this review, three main topics surrounding healthcare information systems are discussed. The 

first topic is system modelling, for which we reviewed ontology-based system modelling methods 

and their applications in the healthcare sector. We noticed that the definition of ontology is still 

daunting, especially when it comes to information system modelling. This creates obstacles to 

communication among different ontology-based information systems. Therefore, a unified 

definition of ontology in the field of information systems is essential for advancing knowledge in 

this area. As for the applications, information system integration is often time-consuming due to 

the involvement of both domain experts and information technology specialists. This opens up the 

possibility of developing a modelling tool that integrates information systems using various 

ontology models with minimal effort from experts. 

In the second topic, we explored the current implementation of equity and system resiliency in 

healthcare. We divided existing equity indices into three types: correlation-based, concentration 

curve-based, and Lorenz curve-based. Because most of these indices were designed to measure 

equality rather than equity, we believe that future research should investigate their applicability to 

healthcare equity and evaluate their performance. Furthermore, we proposed a five-dimensional 

classification for categorizing existing resilience related indices. Future studies could use this 
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classification to develop new indices by exploring new variances in each dimension. With the 

development of equity and resilience related indices, a common framework should be established 

that allows comparisons among different healthcare systems. Additionally, it has been observed 

that most studies in healthcare utilize a deterministic approach to investigate system performance. 

With the advancement of data gathering and analysis, system performance can be evaluated in the 

planning stage. In the future, a systematic view of healthcare should be taken to identify and 

address areas of weakness before implementation. 

In the third topic, we provided a comprehensive guideline on modelling the scheduling and 

allocation problems related to healthcare resource optimization. This guideline includes the main 

components of the problem models: problem level, variables, constraints, objective functions, and 

optimization algorithms. It compares the primary choices within each component and provides a 

detailed explanation of their applications. Consequently, one can use the guideline to create an 

ideal problem model with a suitable optimization algorithm for a specific optimization problem. 

The guideline also enables future opportunities for developing a comprehensive healthcare 

resource model that considers the dynamics of patients’ demands and resource availabilities. 

In the field of information systems, two buzzwords have become highly popular: digital twin and 

big data. They are both key elements of the digital transformation of the healthcare industry, with 

the potential to add value to the development of a resilient and sustainable healthcare system. 

Digital twin is a virtual model of a physical asset that can be used to simulate and predict the 

performance of physical assets. In healthcare, it can be utilized to simulate system status, evaluate 

its performance, and forecast the outcomes of various disruptions. This technology also has the 

potential to reduce risk, enhance patient outcomes, and streamline operations, making healthcare 
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more efficient and cost-effective. Big data, on the other hand, is the use of large volumes of data 

to identify patterns and trends. This can be used to understand patients’ needs and increase the 

equity of healthcare. It can also provide insights into how healthcare systems can be improved, 

such as in terms of cost-effectiveness and patient satisfaction. Based on both technologies, a list 

of opportunities to enhance healthcare information systems has been identified. These include: (1) 

identifying underserved communities and mapping out the best way to reach them with healthcare 

services; (2) monitoring patient health and providing better care through predictive analytics, 

allowing healthcare professionals to better anticipate and manage patient health outcomes; (3) 

providing healthcare providers with real-time data to inform decisions, thus improving the 

effectiveness of care; (4) streamlining processes, such as appointment scheduling and patient 

record management, resulting in improved efficiency; and (5) delivering patient-specific health 

information, allowing for more personalized care and improved patient engagement. 
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This chapter presents the research for Objective 1, in short, to study the theory and methodology 

for ontology-based information system modelling. Based on the review in Chapter 2, it can be 

concluded that the definition of ontology in information system modelling is still daunting. This 

has created obstacles in communication and integration among different ontology-based 

information systems. Therefore, in this chapter, a unified definition of ontology is proposed, along 

with its modelling tools. The work was documented as a manuscript entitled "Ontology in the 

Modern Computer Era" submitted to Information Science in 2023 (under review). 

Abstract 

For decades, the concept of ontology has been daunting in literature. Many misconceptions exist 

regarding its definition. In this chapter, these confusions are cleared up. A unified definition and 

understanding of ontology is established, which also helps to distinguish ontology, work, and work 

domain. Indeed, prior to the emergence of the computer, ontology was primarily related to physics 

and philosophy, which does not have much terminology confusion. Now, in the era of modern 

computers and informatics, ontology is connected to the computer along with the computer’s 

language or data (information and knowledge), which leads to confusion, as now ontology is across 

the human and computer. The fundamental reason for the confusion is the lack of understanding 

of this change, in particular the relationship between ontology and data model. This chapter 

Chapter 3 – 

Ontology in the Modern Computer Era  
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explores this relationship, which makes it possible to define the so-called data model of ontology 

(or ontology model for short), and further to define the data model of work and the data model of 

the work domain. Finally, this chapter examines data modelling techniques for ontology modelling, 

work modelling, and work domain modelling. Throughout this chapter, healthcare systems are 

used to facilitate discussions.  

3.1 Introduction  

Ontology is the branch of philosophy that deals with the nature of existence (Merriam Webster 

2022), or a part of philosophy that studies what it means to exist (Collins 2022). Ontology is thus 

used to unify people’s view of the physical world – its origin and meaning of existence. Ontology 

can be said to be foundational for the communication among humans. The emergence of the 

computer has changed the role of ontology from communication among humans to communication 

between humans and computers. Such ontology may be coined as computer ontology or data 

ontology. This chapter discusses the data ontology. Without much confusion, throughout this 

chapter, ontology and data ontology are used interchangeably. 

Since the invention of the computer, different starting points for viewing ontology have emerged: 

original ontology and data ontology. Yet, even in the data ontology, one can see diverse definitions, 

as discussed in Section 2.2.1. Without a unified understanding and definition, it is hard to evaluate 

different products based on diverse understandings and definitions of ontology. This chapter 

attempts to provide a unified understanding and definition of ontology or data ontology. In 

addition, the data model of ontology is defined in relation to the data model of work and the data 

model of work domain. Finally, this chapter examines data modelling techniques for ontology 

modelling, work modelling, and work domain modelling. Throughout the chapter, healthcare data 
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systems are used for illustration of our idea and for demonstration. 

3.2 Common Confusions on Ontology 

Many studies used ontology in data modelling but confused it with other terms such as work 

domain model (Cai et al. 2017; Lin, Zhang, and Watson 2001; Lin & Zhang 2004). For example, 

Sanderson, Chaplin, and Ratchev (2019) developed the so-called ontology model for an adaptive 

production system. The ontology model in their study represents a system’s function, structure, 

and behaviour without their relationships. While the definition of the function, structure, and 

behaviour of a system is considered as work domain modelling in the work of (Cai et al., 2017). 

In the work of Wang et al. (2016), the ontology model was confused with the work domain model. 

The authors considered the ontology model and work domain model identical and thus used them 

interchangeably. A similar phenomenon can be found in the work of Singh et al. (2021), where the 

so-called ontology is used to build a work domain model for managing work databases. 

There is, however, a common understanding of the role of ontology, i.e., sharing and integration 

of information within a system. For instance, Fern´andez-Cejas et al. (2022) proposed a 

methodology to create an ontology model that describes the key elements of a system, their 

characteristics, and the associations among them. The ontology they defined is the data ontology. 

The main problem with their study is that their definition of ontology misses the notion of 

semantics. According to Zhang (1994), semantics is a body of knowledge about the meaning of a 

symbolic representation that is created based on specific rules (syntactics) and in a specific context; 

the meaning is thus strongly context sensitive. The ontology model in Fern´andez-Cejas et al. 

(2022)’s work did not include the notion of context. Consequently, when communicating concepts 

as well as their relationships to different parties that are in different contexts, concepts with the 
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same name may mean differently, and relationships among concepts may no longer make any 

sense. 

The notion of contexts is not unfamiliar to computer specialists, though a comprehensive definition 

of this notion may refer to Zhang (1994), Zhang and Wang (2016) and Zhang, Wang, and Lin 

(2019), where for specific data (an entity or a relationship among entities), a context is a 

background that contributes to the meaning of the data along with the syntax of the data. 

Unfortunately, there is no study, to our best knowledge, that explicitly describes the notion of 

context along with an ontology model.  

It is worth mentioning that the context here is different from the context-aware computing for 

ontology reasoning in the work of Wang et al. (2004) and Gu et al. (2020). In this study, context is 

a way of defining ontology and facilitating data integration across different sources. Context is 

used to specify the meaning and scope of both concepts and their relations in an ontology. Context-

aware computing, on the other hand, is a way of selecting and presenting data based on the current 

situation of the user. Some examples of the activities include a tablet computer that switches the 

orientation of the screen with the user’s current orientation and a phone that switches on the 

backlight when used in the dark. More details about context-aware computing and ontology 

reasoning can be found in Appendix A. 

3.3 A Unified Definition of Ontology 

The data ontology is a common understanding of a subject regardless of different computer or data 

languages, and its role is therefore to facilitate communication among humans and between the 

computer and human, and as such, to facilitate the integration of data (information and knowledge). 
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The ontology is analogous to a dictionary for human, a generalized dictionary for computers in 

this case. In the human dictionary, there are words along with their meanings and illustrations of 

their usage. In this generalized dictionary (or dictionary for computer), there are words and groups 

of words, among which relationships among words are a special type of groups, constructed by 

following specific syntactic or grammatical rules. Further, in the generalized dictionary or the 

ontology, the context is explicitly specified for any word and the relationship among words. The 

importance of context in defining the meaning of words and relationships cannot be overstated. 

For example, the word “fan” could be an instrument for producing a current of air in the context 

of a device. It could also mean an enthusiastic devotee in the context of a sport or an art. 

The proposed definition of ontology is further built upon five ideas. The first idea is that 

knowledge in nature is an instance. The second idea is that information in nature is a class. As 

previously stated, information is a concept that can be generalized using a set of attributes. On the 

other hand, knowledge is unique, and it is specific to given concepts. For example, information 

such as patient and HCP (Healthcare Professional) are classes, that contain attributes such as name, 

sex, age, etc. Knowledge like how HCPs treat patients is very specific to an individual HCP and 

patient.  

The third idea is related to so-called information relativity (IR). The notion of IR was first coined 

by Zhang (1994) and Li, Zhang, and Tso (2000) in describing a data repository. A data can be taken 

as a type, an attribute, a class, or an instance, depending on how the data is used. For example, 

“patient” is viewed as a class, which has an attribute called “diagnosis”. However, “diagnosis” 

could be taken as a class if it represents a set of diagnosis variations or instances. 

The fourth idea is that semantics are determined by context. As knowledge is very specific, a 
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context is necessary to define situations that apply to the knowledge. For example, the knowledge 

“patients follow advice” should be applied only in the context “patients follow advice from HCPs”.  

The fifth idea is that constructs can be instances (knowledge), classes (information), and 

relationships. In this connection, Chen’s (1976) definition of “entity” is expanded. In Chen’s work, 

an instance is defined as a thing that can be distinctly identified. The concept of entity is expanded 

with the first four ideas above. Based on the notion of IR (the third idea), a class could also be a 

construct. It depends on using either an element’s view or a system’s view. Based on the notion of 

semantics (the fourth idea), a relationship could be a construct as well. For example, the 

relationship “marriage” can be viewed as an instance under a certain context. 

3.4 Data Model in Big Data  

Big Data enables organizations to evolve their decision-making processes from classic stationary 

data analysis (Abelló et al., 2013) (e.g., transactional) to situational data analysis (Löser et al., 

2009) (e.g., social networks). These situational data often come in the form of data streams 

provided by third-party data providers (e.g., Twitter or Facebook). They use web services, or APIs 

(Application Programming Interface) to allow external data analysts to incorporate part of their 

data into big data analysis pipelines. Web services (Pautasso et al., 2008) offer providers flexible 

ways to share data, typically in unstructured or semi-structured forms, such as JSON (JavaScript 

Object Notation). However, this flexibility can be a disadvantage for analysts. Unlike machine-

readable contracts from structured data, such as data from relational databases, data from web 

services typically do not publish such information. Consequently, analysts must carefully study 

the documentation and adapt their processes to the particular schema provided. In addition to the 

complexity imposed by web services, data providers frequently evolve their data formats. This 
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necessitates that analysts must continually adapt their dependent processes to accommodate such 

changes. 

Integrating an ever-evolving and heterogeneous set of data sources is a challenging problem, 

referred to as the data variety challenge (Horrocks et al. 2016). Traditional data integration 

techniques are unable to address this problem. A data model of ontology is one approach to dealing 

with it. It contributes to addressing the data variety challenge by providing a conceptual view of 

the data and assisting in the creation of a data model that facilitates data sharing and integration. 

Therefore, the data model of ontology (or ontology model, for short) becomes a key concept that 

needs to be defined. Before we discuss the ontology model, the concepts of data and data model 

should be discussed. According to Zhang (1994), data is a vehicle to carry information and/or 

knowledge. Information is concepts, e.g., the earth revolves around the sun. It is usually based on 

observation or interpretation. Knowledge is a causal relation among concepts, e.g., gravitational 

force causes an apple to fall. Knowledge is usually related to a purpose. For example, to explain 

why an apple falls to the ground. 

A data model is a language for communication between humans and computers. For the purpose 

of being understood by computers and by humans, the data model naturally has two layers: a 

physical layer and a human layer. The data model at the physical layer is suitable for computers 

(i.e., the structure of the computer), and the data model at the human layer is suitable for humans, 

which is close to natural language. The human layer of the data model is also called the semantic 

data model. 

A data model has a set of constructs and rules for the constructs (Wang et al., 2014; Ter Bekke, 

1992; Yu et al., 2021). For instance, in the Entity-Relationship (E-R) data model (Chen, 1976, 
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2002), there are three core constructs: (1) Entity, (2) Attribute, and (3) Relationship. One rule is 

that a relationship connects two entities. 

3.5 Ontology Model, Work Model, and Work Domain Model 

Based on the definitions of ontology and data model, it can be concluded that a data model at the 

human layer is an ontology. In comparison, a data model at the physical layer is not an ontology, 

as it doesn’t directly facilitate communications between humans. Therefore, we define an ontology 

model as an ontology of a data model at the human layer. The ontology model provides a set 

of constructs for humans to describe data (information and knowledge) in a computer system.  

Under the definition of ontology model, we further define: 

• Data model of work is a description of a work using a data model as its language.  

• Data model of work domain is a description of the scope of a work by defining its 

components and variations of those components. An ontology model can be used as a 

language for the description.  

The definition of data model of work domain is further explained by the following three 

understandings.  

The first understanding is about the concept of work. Work is a human-machine system. To an 

automated system, the work is machine. To a human system, the work is human. Under the 

definition of a data model, such as a healthcare system, the work involves both humans and 

computers (machines). 
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The second understanding is about the concept of domain. Domain evolved from the concept of 

variables. If X is a variable, the domain of X defines its scope or bound, which means that X can 

only take values that are within the scope or bound. The domain D of X is thus {x1, x2, ….}. This 

then comes up with the description of the domain. 

The third understanding is about the concept of work domain, which is the information that gives 

the scope or bounds of the work. In another word, a work has variations. For example, if a thing is 

a length of bed, say 200 mm, then it has variations from 180 mm to 240 mm. In this case, the 

domain of the length of the bed is 180–240 mm. In addition, a compound work has multiple 

primitive things. For example, a bed is a compound work that has primitive things, include length, 

weight, height, etc. The bed has variations, such as {s1, s2, ....}, and its primitive things have their 

own domains, such as the domain of length, the domain of weight, and so on. 

The fourth understanding is that a compound work can be decomposed in different ways. For 

example, when we are investigating a healthcare call center, we can use FCBPSS (Function-

Context-Behavior-Principle-State-Structure) (Zhang & Wang, 2016) to decompose the work, as 

shown in Figure 3.1. The work is decomposed into structure, state, behaviour, etc. The structures 

are patients, general public, healthcare professionals, and equipment. The states include the 

physical and mental states. The function is to plan healthcare resources according to demand. The 

behavior is the casual relationship among physical and mental states of people. 
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Figure 3.1 The structures are patients, general public, healthcare 

professionals and equipment. 

3.6 Techniques for Ontology Modelling, Work Modelling, and Work 

Domain Modelling 

Based on the requirements outlined in the working definition of ontology, we propose a set of 

ontology modelling tools as pre-defined constructs. Note that people may refer ontology modelling 

tools to modelling languages or editors that create ontology models. Those tools are for applying 

ontology models in people’s mind into a written form. In contrast, our tools are for creating models 

at a conceptual level at where hierarchies and relationships among data are defined. This makes 

them very flexible in applications, where it can be incorporated into any existing languages such 

as OWL (Web Ontology Language) and used in any editor, such as Protégé (Noy et al. 2003). 

Compared to the existing modelling tools, which were formed by evolution and interaction, our 

tool was developed based on the so-called design thinking (Zhang & Wang, 2016). 

Three ontology modelling constructs are proposed: (1) context-of, (2) mono-directional 

relationship, and (3) bi-directional relationship. The concept map of these blocks is shown in 
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Figure 3.2 and their semantics and notations are discussed in detail below. 

(1) Context-of: The relation of concepts is constrained by its context. When the context 

changes, the relation has to change its behavior accordingly, although its concepts may 

never have changed. For example, in the context that patients have trust in a healthcare 

system, patients follow their HCP’s advice, as shown in Figure 3.2. In the other context 

that patients have lost trust in a healthcare system, patients ignore their HCP’s advice. 

Diagrammatically, we use a plain association with an unfilled circle at the receiver to 

denote it. Note that in the existing ontology representation, it is possible to replace context-

of with constraints such as range or domain. However, the ontology model becomes more 

semantic by using an explicit construct as the context-of. 

(2) Mono-directional relationship: Cause-effect relationships are directional relationships, 

such as a child of, take care of. We use a plain association with one arrow pointing at the 

receiver of the relationship, as shown as HCP belongs to a healthcare system in Figure 3.2. 

(3) Bi-directional relationship: When it comes to presenting bi-directional relationships, such 

as equal to and co-related with, diagrammatically, current ontology approaches use two 

sets of mono-directional relationships. Such approaches are redundant and implicit. 

Instead, we use a plain association with arrows at both ends to denote it, as shown patient 

and HCP collaborate with each other, in Figure 3.2.  
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Figure 3.2 An example of ontology model for a healthcare system. 

The ontology modelling constructs facilitate data integration among structured data and semi 

structured data. In a case of integrating doctor advice from two data sources, one can refer to the 

ontology model in Figure 3.2 and understand that the “Advice” data must be integrated together 

with “Patient” data, due to the mono-directional relationship “complianceWith”. In addition, the 

construct “context-of” illustrates the necessity of referring to “HCP” data. Using this construct, 

“Advice” can be classified by the type of “HCP”. Regardless of the data, structured or semi 

structured, the ontology model determines that “Patient” data and “HCP” data must be integrated 

alongside “Advice” data for a meaningful data analysis.  

3.7 Conclusion 

This chapter presents a working definition of ontology and its corresponding modelling tool. The 

purpose of this study is to clarify some of the most common confusions in ontology-related 

literature. Our definition of ontology is built on ideas about information, knowledge, information 
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relativity, and context. Three ontology modelling constructs are proposed, including context-of, 

bi-directional relationship, and casual loop. Those constructs help build a more semantic ontology 

model compared to existing languages. 

About ontology, data model and domain model, this study has the following conclusions: Ontology 

is for communication, such as a natural language for human. A data model is needed for human 

communication that involves computers, which describes the ontology of a work along with its 

domain. Data models facilitate the integration and analysis of data in the era of big data. They 

enable organizations to make informed decisions based on a comprehensive understanding of 

available information. Domain frameworks such as FCBPSS help describe a system along with its 

domain.  

The following are the contributions of this chapter: (1) provision of a working definition of 

ontology, particularly from a relativistic standpoint; (2) elaboration of its distinct feature; (3) 

clarification of the definition of data model, and its relationship with working modelling and 

domain modelling; and (4) development of a new tool for modelling it, along with a discussion of 

the unique feature of this new tool as opposed to tools such as OWL.  

In conclusion, the proposed definition of ontology clarifies its scope and applications. Featuring 

relativity, context view, and design thinking, the corresponding modelling tool can describe 

information and knowledge in a more semantic way. 
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4.1 Introduction  

Section 2.3.2 pointed out that, even though sustainability and resilience are studied in healthcare 

system-related research, the connections between these two concepts have never been made clear. 

In short, resilience refers to a system's ability to handle short-term disruptions, while sustainability 

refers to a system's ability to maintain its performance over time. In this chapter, definitions of 

resilience and sustainability of healthcare systems, along with their connections, are discussed 

comprehensively, as per Objective 2. Additionally, privacy is examined using a set of design 

principles and a case study as an example to illustrate the application in healthcare. It is noted that 

the discussion in this chapter gives a background for the work presented in Chapter 5 and Chapter 

6, respectively. 

4.2 Definitions of resilience & sustainability of healthcare systems 

Based on the previous discussion in Section 2.3.2, the proposed definitions of resilience and 

sustainability are revisited as follows: 

• The resilience of a healthcare system is its ability to provide sufficient healthcare services or 

to meet its demands when facing unexpected short-term disruptions. 

Chapter 4 – 

Understanding resilience and sustainability of healthcare systems 
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• The sustainability of a healthcare system is its ability to provide sufficient healthcare services 

to accommodate ever-changing demands in a long term. 

Healthcare services encompass not only those that directly serve patients, but also those that 

support the service. For example, society's access to, acceptance of, and satisfaction with the 

services. The service demands extend beyond service provisions, demanding a socially and 

culturally compatible process (expecting that patients are free from anxiety, uncertainty, and fear). 

Examples of such demands are service accessibility, patient equity, and security in terms of 

protecting patient privacy. It is worth mentioning that both resilience and sustainability should be 

evaluated under constraints such as cost and time. 

Based on the proposed definitions, the connections between the concepts of resilience and 

sustainability are concluded in the following: 

1. Both concepts focus on a healthcare system’s abilities to provide sufficient healthcare 

services to meet demands, whether in short or long term. 

2. The healthcare service could be jeopardised by either internal events, such as the lack of 

service supplies and rising demands, or external ones, such as natural disasters.  

3. A certain event, like COVID-19, could have an impact on a healthcare system's 

sustainability and resilience at the same time. 

4. Any procedures or actions that enhance one concept should consider how they can affect 

the other. The development of remote healthcare during COVID-19 (resilience), for 

instance, has an impact on how individuals obtain healthcare in the post-pandemic era 

(sustainability). 
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In the following of this chapter, we will use the security (i.e., protection of privacy) as an example 

of resilience to illustrate its application in HIS design. This work was published as Wenjun Lin et 

al. “Privacy, security and resilience in mobile healthcare applications” on Enterprise Information 

Systems in 2021, which is documented in Sections 4.3 and 4.4, respectively. It is noted that the 

subsequent chapters (Chapter 5, Chapter 6) present works to illustrate the application of both 

resilience and sustainability to healthcare operation management.   

4.3 Design principles of the protection of patient privacy in HIS 

4.3.1 Background 

The provider-centric healthcare has been criticized for excessive waiting times. Patients have 

expressed dissatisfaction with the lack of availability of appointment slots and the inconvenience 

thus caused, particularly to patients requiring urgent care. Indeed, in emergency departments, this 

long waiting time can become a fatal issue. Thus, there is an urgent need to cope with the long 

waiting time in the Canadian healthcare system today. 

Mobile applications, also known as “apps”, have seen rapid growth with the release of affordable 

smart devices (e.g., smartphones, tablet computers). Mobile systems are seen to provide a 

promising infrastructure to contribute to the reduction of patient waiting time, besides their 

essential promise in improving the efficiency and quality of healthcare services (Aceto, Persico, 

and Pescap´e 2020; Lancharoen, Suksawang, and Naenna 2020; Li et al. 2019). 

However, mobile systems also raise additional concerns including security, privacy, usability, 

resilience, and so on (Hathaliya and Tanwar 2020; Al-Muhtadi et al. 2019). Since health 

information (e.g., phenomena, health conditions, and emergencies) is highly sensitive to patients 
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in the Canadian healthcare system, any inappropriate disclosure of patients' health information 

may violate patient privacy (Liang et al. 2012; Rahmadika and Rhee 2018). Patients may also be 

concerned about tampering with their critical health data when it is stored on untrustworthy cloud 

servers (Zhou et al., 2013; Loft et al., 2021). In addition, the mobile device is usually operated in 

a wireless environment, and different devices have different hardware and operating systems 

(OSs), which may have compatibility issues and thus cause problems such as data loss and single 

points of failure (Tawalbeh et al. 2015). 

To cope with the issues or problems above more effectively, we treat mobile apps, operating 

systems, databases, and their related communication services as a whole, termed the mobile 

network system (MNS) because they together affect the quality of healthcare services, including 

privacy protection. The infrastructure-substance (I-S) framework (Zhang and Lin 2010; Zhang and 

Van Luttervelt 2011; Zhang, Wang, and Lin 2019) along with a general modelling methodology 

for a system ontology (Zhang and Wang 2016; Wang et al. 2014; Cai et al. 2017) will be employed 

to build the MNS system for healthcare, in which an individual’s privacy is protected in a resilient 

manner. 

4.3.2 The I-S framework of MNS 

According to the I-S framework, a general service system includes an infrastructure layer and a 

substance layer. In the MNS, the infrastructure layer includes computer terminals and backend, 

and the substance layer includes signal and data. Video, audio, messages, etc. are used to fulfill the 

system function and provide user data (both information and knowledge) (Zhang 1994). In another 

word, the infrastructure processes the substance and allocates the data (Figure 4.1). For example, 

a cellphone station and its related infrastructure transmit voice message flow between two mobile 
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phones to fulfill the function of a real-time voice call. 

 
Figure 4.1 The I-S frameworks for MNS 

 

Figure 4.2 The I-S view of the relationship among Privacy, Security, and 

Resilience for MNS 

Figure 4.2 The I-S view of the relationship among Privacy, Security, and Resilience for MNS 

illustrates the relationship of Privacy, Security, and Resilience (PSR) in the MNS from an I-S 

framework perspective. Privacy in MNS is related to the data that can be used to identify an 

individual entity; for example, a person, or a group, and the data owned by one entity should not 

be shared with another entity. Besides, security in this study is specific to the protection of privacy, 

which is stored in the substance system as data and processed by the infrastructure system. 

Therefore, security is one of the functions of a system (e.g., MNS). Further, the system's resilience 
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means that once a system’s security function is partially damaged, the system can recover it in an 

allowable time and at an allowable cost by itself. Finally, to make the MNS run, energy or power 

must be available, which is an external resource to a service system (e.g., MNS), as well as external 

signals (or data), which represent the semantics of privacy. 

4.3.3 Design principles for security in MNS 

Based on Figure 4.2, we discuss the design principles of MNS for security from three aspects: the 

infrastructure, substance, and energy. Further, the design principles are represented in the form of 

rules. 

Infrastructure aspect: 

Rule I-1: Fulfill the functional and constraint requirements with well evaluated, and widely 

accepted options. 

Rule I-2: Evaluate and test new algorithms before implementation. 

Rule I-3: Choose an adaptive app style based on the function and security requirements. 

Rule I-4: Evaluate a platform, at local servers or clouds, with both security and functional 

requirements. As both service and data storage of mobile apps are moving toward 

the clouds, the security obligation needs to be transferred as well due to different 

cloud platforms having different service requirements. 

Substance aspect: 

Rule S-1: Identify and classify privacy information into two categories: attribute and 

relationship. The attributes refer to those that define an entity. The relationship refers 

to information that links one entity to another entity or others. 
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Rule S-2: Specify the responsibilities of users and systems to determine forms to enhance. 

There are two forms: legal binding and non-legal binding. Legal binding involves 

terms and conditions that require some effort to establish. Non-legal binding often 

depends on some preliminary understanding and evolves based on experience and 

best practices. 

Rule S-3: Minimize the information required from users. More information has a higher cost 

of losing privacy information. 

Rule S-4: Determine appropriate techniques and algorithms for the security of private 

information, for example, encryption and certificate verification. 

Rule S-5: Plan for both data storage and data processing security strategies. There is a trade-

off between data storage security and processing efficiency. Local storage has a 

higher degree of security but may have insufficient data processing power. While 

cloud storage may have advantages of data processing efficiency, but it might have 

a higher risk of a data breach. 

Rule S-6: Balance among encryption, authentication, authorization, usability, storage strategy, 

encryption, and computational capability for an acceptable security expectation. 

Rule S-7: Develop a life-time management strategy against privacy abuse. Besides the 

techniques, human and cultural factors need to be taken into considerations. 

Energy aspect: 

Rule E-1: Check the energy (e.g., battery or backup generator) level before running any critical 

process, like, heavy encryption, heavy algorithm calculation, or mass data transfer. 

The system should be designed to alert users of situations such as battery failure. 

Rule E-2: Monitor the status of the energy source closely considering environmental factors 
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such as battery temperature to facilitate a pro-active energy plan. 

4.3.4 Design principles for resilient security in MNS 

In MNS, resilience refers to the system’s ability to keep the functions of the system at an acceptable 

level, subject to perturbations or mishaps. To provide resilience to the security functions designed 

based on the rules in Section 4.3.3, five design axioms are proposed in the following (notice: each 

of them is further further broken down into several rules for ease of use). 

Axiom 1: Redundant resources for critical security components.  

Resources for MNS include function, capacity, and infrastructure. 

Rule R-1: Identify critical functions and design redundancy. For instance, data transportation 

is a crucial function for a mobile app. The tunnel for data transportation can be either 

4G (4th Gen cellular network) or 2G (2nd Gen cellular network), and this forms a 

redundancy. 

Rule R-2: Arrange the redundant capacity for the critical functions. Capacity refers to the 

availability of electricity, computation, storage, or bandwidth. Take data storage as 

an example. In addition to a remote database, redundancy of storage capacity would 

include a local database as a backup safeguard against data loss. 

Rule R-3: Design redundant infrastructure for critical functions. Multiple back-end services 

are involved in a mobile app-based system. They include the clouds, web servers, 

database servers, and cellular telephone network equipment. Their redundancy is to 

ensure a reliable and robust service. 

Axiom 2: Effective management of redundancy.  
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A resilient MNS needs to decide when and how to reconfigure a system for a lost function or 

replace a failed sector with redundant resources. In other words, a mechanism to manipulate the 

redundant resources is required. 

Rule R-4: List the attributes, types, and availability status of redundant resources. 

Rule R-5: Create clear instructions, like algorithm or management rules, about how and when 

to replace the resources as well as how to work with the re-configured system. 

Axiom 3: Monitoring of system performance. 

Rule R-6: Keep monitoring key system status that concerns security functions. For example, 

Mozilla introduced a web API, “navigator.battery”, to enquire system’s battery 

charge level and whether the device is charging. In this way, it is possible to decide 

whether or how to run a program regarding battery status. Further, necessary status 

information is recorded for forecasting system errors. 

Axiom 4: Error forecasting and handling mechanism.  

Mobile app errors are a combined result of design, coding, operation, and resource utilization. 

Suppose that an app has a low success rate in accessing a remote database due to uncontrollable 

factors. The remote database login operation should be treated as a separate procedure. By 

decoupling the login procedure, other functions can be operated with improved robustness. 

Rule R-7: Forecast and locate possible vulnerabilities from algorithms, logical procedures, 

and the relationships between different system components. 

Rule R-8: Countermeasures for error situations should be defined ahead of time. 

Axiom 5: Software version control for system evolution. 
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Rule R-9: Update software, like a mobile app, as a countermeasure against external attacks. 

By updating, the old, vulnerable program is replaced by a new, robust one. To 

effectively manage the updates, a version control mechanism needs to be 

implemented in the app. 

4.4 Case study 

To explain how these design principles can be applied into the design of an MNS that processes 

healthcare information, a mobile app is demonstrated here. The app is developed for outpatients to 

make doctor appointments based on the previous work in the authors' group (Dai 2016). Functions 

are added in this work to improve the system’s resilience and security. Note that although only one 

mobile app design is illustrated, the whole MNS system includes the needed software, OS, 

hardware, communication system, database, etc. 

The app is developed on a laptop with Windows 10 OS. The primary development platform is 

Eclipse which is integrated with JDK (Java Development Kit) and Android SDK (Software 

Development Kit). The app is expected to operate in a wireless environment like 2G/4G or WiFi 

(Wireless Fidelity). On the same device, the Google Map android app is also required. 

4.4.1 Conceptual design 

The app is to help patients make doctor appointments based on their symptoms and available 

hospital resources in the area. The goal is to set up an appointment with the minimum patient 

waiting time at the hospital chosen by the patient. Figure 4.3 is the app’s operational procedure. A 

patient should first register in the app with the healthcare information. The information is then 

transferred via the wireless connection and authenticated by a remote server, which is owned by 
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the corresponding healthcare database management authority. Once the input information matches 

an entry in the healthcare database, a brief description of the symptom needs to be provided by the 

patient. With that, the app lets the patient choose from several candidate hospitals. After having 

received the decision, the app will again access the healthcare database for authentication and 

record the appointment. At the same time, a navigation option is initiated by OS through the 

Google Map navigation service. 

 
Figure 4.3 Program flow of the mobile app 
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4.4.2 Application of the design principles 

Infrastructure aspect: 

Application of Rule I-1 (choose matured options): AndroidManifest.xml is an entrance file to 

define the operational status and references for the app. First, set “allow-Backup” to “false” to 

avoid an unauthorized copy of the application data by enabling the USB debugging option. Second, 

set “Debuggable” to “false” to reduce the likelihood of stealing users’ login credentials or 

accessing data by bypassing an authentication process. Figure 4.4 is a program fragment intended 

to get the value of “Debuggable”. 

 

Figure 4.4 Code for the value of the “Debuggable” 

Besides, the Native Development Kit (NDK) is chosen to implement app’s codes in native C++ 

and C. These languages are extremely resistant to decompilation. This reduces the risk of source 

code disclosure, which could lead to an app crack. In our app, C++ was chosen with the NDK to 

realize crucial functions, like the login module in Figure 4.5 and the user registration module. 

Application of Rule I-2 (choose an adaptive application style): A soft keyboard provides safe 

inputs for sensitive data in the process of login and registration. Users are required to input the 

password during those processes. There may be a risk of password leakage using a third-party 

input method. As a result, the app includes a custom keyboard. As illustrated in Figure 4.5, the 

randomly distributed keyboard ensures the security of password input. 
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Figure 4.5 Screenshot of the app at login screen with (right) and without (left) 

a soft keyboard 

Substance aspect: 

Application of Rule S-1 (identify privacy information): Figure 4.6 shows an E-R model for patients 

and hospitals in the context of appointment registration. Patients’ attributes, such as the patient’s 

telephone Number (Tel.), name, address (Addr.), personal health number (No.) and personal 

geographical location (PGL) are captured. The attributes of the action (Register) include 

symptoms, time, and location that a patient requests an appointment. The last attribute is marked 

as registration geographical location (RGL). For hospitals, attributes such as hospital identity (ID), 

hospital geographical location (HGL) and address are identified. 

Application of Rule S-3 (minimize information required): The PGL in Figure 4.6 is being monitored 

by the app when it is running. According to rule S-3, PGL should not be stored or transmitted 

because it is closely related to personal identity. In contrast, personal location information about 
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registration (RGL in Figure 4.6) can be stored in local storage or transferred to remote servers and 

databases as evidence of registration. This helps to avoid potential issues like data compromise 

from transferring privacy data like the patient’s location. 

 

Figure 4.6 Entity Relationship between patients and hospitals 

One of the most critical issues is what part of the location-related data should be transferred and 

stored to avoid compromising personal privacy. According to Rule S-3, PGL should not be stored 

or transferred as it is closely related to personal identity. By contrast, the personal location 

information regarding registration, i.e., RGL in Figure 4.6, can be stored either in local storage or 

transferred to a remote server and database, as evidence of registration. 

Application of Rule S-5 (management for data storage, use and transfer): A choice among local 

storage, remote servers, and the clouds is made considering security, communication efficiency, 

and cost. For instance, patients’ personal health numbers and symptom descriptions are stored 

locally. This avoids the risk of patients’ private information being leaked from a centralized 
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database. 

Further, two management rules are established. First, only the data owner or device owner has 

access to the data, following the authentication strategy and technique. Data access should not be 

permitted without the owner’s formal consent. Second, for the data stored remotely, tools such as 

the identity shielding technique are applied. This technique makes the breach of information 

through the data mining technique difficult. 

Application of Rule S-6 (Authentication and certification): Authentications are established with 

the patients’ health numbers and credentials like a password and fingerprint. When the app 

transfers the health number and credentials to the server, the communication is secured by the 

HTTPS (HyperText Transfer Protocol Secure) protocol. The protocol encrypted data with 

certifications. In the app, the public/private key pairs and certificates are managed by Keytool from 

JDK. 

Energy aspect: 

Application of Rule E-1 and E-2 (Energy monitoring): The OS’s attribute “ACTION BATTERY 

CHANGED” is used to monitor the state of a system, in particular, the real-time battery charge 

level. The app can use this attribute to decide whether to disable some high-energy-consumption 

services, such as Google Maps navigation. 

System resilience: 

Application of Rule R-1 (Identify critical functions and design redundancy): Critical information 

such as patients’ current geographic data, symptom descriptions, and the designated hospital have 

dual backups, i.e., one copy in a cloud database and one copy in a local database. 
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Application of Rule R-6 (Monitoring the state of the system function): The OS’s “enableNetwork” 

method to monitor whether the Internet is connected or not. The result triggers the app to choose 

which redundant resource to use. For example, to load critical information from the local database 

when the Internet is not available. 

Application of Rule R-7 (Error forecasting): Potential errors are estimated as follows: (1) an error 

occurs while requesting a database connection; (2) users forget login credentials; (3) the app fails 

to launch; and (4) there is insufficient power while performing a critical process. 

4.5 Conclusion 

In this chapter, resilience and sustainability are defined in terms of healthcare systems. The 

definitions provide details about the scope of services and demands. Based on the definitions, 

patient equity, service accessibility, and privacy security are used as examples of demands. In 

particular, the privacy protection is used to demonstrated how to consider resilience in HIS design. 

The patients’ privacy will be compromised to a large extent if a system’s security and resilience in 

security is not adequate. In general, the systematic consideration of the privacy protection is 

lacking in the development of a mobile app.  

The main contribution of this study is advancing the understanding of privacy, privacy security, 

resilience in security, and their relationships. A set of mobile app-based system design principles 

are proposed for comprehensive privacy protections. Also, a mobile healthcare app is developed 

to demonstrate how to reduce patients' waiting time and keep their privacy protected using the 

design principles. 
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Several future endeavors may be carried out. (1) An analysis could be performed on the 

relationship between PSR and other attributes such as scalability, usability, and system 

performance. Analysis strategies for balancing those attributes in various implementation contexts 

could also be investigated. (2) A detailed guide for testing and evaluating PSR in mobile app-based 

systems could be developed. Once a system is developed, an applicable and affordable way is 

needed to test and evaluate all its attributes. (3) Human factors in PSR need attention, especially 

how cultural factors may affect its performance. 
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This chapter is an application of sustainability as patient accessibility in healthcare decision-

making, as per Objective 3. It targets one of the gaps identified in Section 2.4.4, which calls for a 

multiple objective scheduling method with a flexible scheduling policy and a dedicated 

optimization algorithm for the method. This chapter was submitted as Wenjun Lin et al. "A Novel 

Scheduling Method for Reduction of Both Waiting Time and Travel Time of Patients to Visit 

Health Care Units in the Case of Mobile Communication. Enterprise Information Systems" to 

Enterprise Information Systems in 2022 (published). 

Abstract 

This chapter presents a novel encoding method that is suitable for various Genetic Algorithms 

(GA) for a multi-objective scheduling problem. The problem has two objectives: patient waiting 

time and patient travel time. The patient waiting time starts from the time that patients desire a 

healthcare service outside of healthcare units, e.g., in an office, to the time that the patients receive 

the service. Patient travel time refers to the amount of time patients spend travelling from their 

home to a healthcare facility. The motivation to define this new problem is the scheduling of patient 

tests (e.g., the COVID-19 test). Experiments were carried out based on generalized situations, and 

results demonstrated the effectiveness of the proposed encoding method and its corresponding GA. 

Chapter 5 – 

A Novel Scheduling Method for Reduction of Both Waiting Time 

and Travel Time of Patients 
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The encoding method required 17% fewer optimization iterations compared to conventional 

methods. For specific examples in the experiments, the GA reduced the total waiting time by up 

to 58.2% and the travel time by up to 89.3%. There are two main contributions of this chapter: (1) 

a new scheduling problem that considers waiting time outside healthcare units and travel time to 

healthcare units, and (2) a novel encoding method for evolutionary computation algorithms, 

especially suitable for the scheduling problem. 

5.1 Introduction 

Long waiting time for appointments and extensive travel time are two of the major barriers for 

out-patients to access healthcare services (Allen et al. 2017; Ahmed et al. 2001; Leung et al. 2020). 

Outpatients must wait for hours or days before getting healthcare services in some regions and 

countries. Examples of such services are patient tests such as e.g., COVID-19 tests, imaging tests, 

colonoscopy examinations, etc. (Puzhko, 2017; Bobrovitz, Lasserson & Briggs, 2017; Gudivada, 

Philips, and Tabrizi, 2020). It has been found that excessive waiting time is an important reason 

for outpatient dissatisfaction (Clague et al,. 1997). Waiting time is a non-value-added time in the 

health service system (Barlow, 2002; Khanra et al., 2020); besides, a longer waiting time may 

complicate outcomes for patients (Kaushal et al., 2015; Zhuang et al., 2020; Zhan et al., 2021). 

During the ongoing Covid-19 pandemic, the waiting time problem has worsened, because of the 

reduced resources available for non-contagious patients (Jeffery et al., 2020). Elsewhere, the 

increase in non-value-added time may increase the total cost of a service or manufacturing 

organization significantly (Adeyemi, Ogbeyemi, and Zhang, 2021). 

In addition, travel between a patient’s location (i.e., home, office, etc.) to a healthcare unit is an 

important factor for patients to access proper healthcare services. In the past, scheduling problems 
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only considered patient wait time and overlooked patient travel time due to potential conflict 

between those two. Smith et al. (Smith et al., 2003; Pereira Detro et al., 2020) found that greater 

travel time for accessing services can result in a reduced number of physician visits, increased 

rates of attrition, and inadequate management of chronic conditions. Prolonged travel time is 

considered a major barrier to healthcare access. It doesn’t only involve time consumption but is 

also related to cost, public transit availability and safety, vehicle access, etc. (Syed, Gerber, and 

Sharp, 2013). Although telemedicine can eliminate some of these problems (Sarivougioukas & 

Vagelatos, 2020), it can only be used in cases that do not require in-person physical examinations. 

Additional barriers to telemedicine are lack of appropriate equipment, or insufficient internet 

bandwidth. 

The problem can be defined with the help of Figure 5.1. The scenario is as follows: there are 

multiple healthcare units in a region, and there are a few professionals (doctors, nurses) in different 

departments of one unit. Patients are looking to book healthcare services, e.g., COVID-19 testing, 

through phone calls or online (Lin et al., 2021; Wan & Chin, 2021). It is reasonable to assume that 

patients want to have short waiting time and short travel time. Waiting time in this study is defined 

as the interval between the time that a patient desires to have a healthcare service and the time the 

patient actually receives the service. When there is no immediate time slot available for the 

patient’s desired time, the patient’s appointment will be postponed to the next available one; as 

such, waiting time occurs. The travel time is defined as the time that a patient travels from a 

patient’s location to a healthcare unit. 
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Figure 5.1 A general situation of the scheduling problem. 

Studies in literature have largely been focused on reducing waiting time from the scheduled 

appointment time to the time that the appointment actually starts (Ahmadi-Javid, Jalali, and 

Klassen, 2017). To our knowledge, very little study has examined the issue of waiting time between 

when a patient requests an appointment and the scheduled appointment time. Moreover, there have 

been no studies that have investigated how to reduce both the waiting time and travel time 

simultaneously. During the COVID-19 pandemic period, remote scheduling with consideration of 

both travel time and waiting time is a sensible solution for scheduling COVID-19 testing. In this 

study, the problem is formulated as a multi-objective optimization problem and solved with a 

Genetic Algorithm (GA). In this connection, a novel encoding method, Discrete Event Encoding 

(DEE), is proposed for GA as well as any evolutionary computing algorithms. As an example, 

DEE is implemented as a part of Non-dominated Sorting Genetic Algorithm II (NSGA-II) in this 

study. The simulated experiment demonstrates the effectiveness of the proposed method. This 

chapter has two contributions. The first one is in the field of healthcare service management, 



 

120 

specifically, a new problem has been defined and its mathematical model has been developed. The 

second contribution is in the field of GA, namely the novel encoding method, DEE, which can 

represent candidate solutions without causing violations of constraints or resource wastes. Further 

explanations are given in Section 5.2.2. 

The remainder of this chapter is organized as follows. In Section 5.2, a literature review is provided 

on the problem of patient waiting time reduction and encoding methods used in multi-objective 

optimization algorithms. In Section 5.3, the model along with the algorithm for scheduling is 

presented. The performance of the algorithm is illustrated through simulated experiments in 

Section 5.4. Finally, Section 5.5 concludes the chapter with a discussion of future work. 

5.2 Literature Review 

5.2.1 The existing approaches to reduce patients waiting time 

The outpatient scheduling problem has received attention from healthcare researchers and 

practitioners. Extensive reviews of appointment scheduling literature can be found in the study 

conducted by Cayirli and Veral (2003) and Ahmadi-Javid (2017). The approach can be divided 

into three levels: strategic, tactical, and operational (Ahmadi-Javid, Jalali, and Klassen, 2017). 

Strategic decisions are long-term decisions that determine the main structure of an outpatient 

appointment system. Tactical decisions are medium-term decisions related to how patients as a 

whole, are scheduled, or how groups of patients are processed. Operational decisions are short-

term and are concerned with efficiently scheduling individual patients. 

At the strategic decision level, Robinson and Chen (2010) compared the performance of the pre-

scheduled policy, which schedules patients in advance of their appointment days, and the open-
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access policy, which schedules patients on the same day that they call for an appointment. In their 

study, the number of appointments was given, the service time was deterministic, and the arrival 

of patients was assumed to be punctual. Their numerical analysis revealed that the open-access 

policy can significantly out-perform the pre-scheduled policy in most cases including patients’ 

waiting time, doctor’s idle time, and doctor’s overtime. Dobson, Hasija, and Pinker (2011) also 

compared a pre-scheduled policy with an open-access policy; they found that when there were a 

lot of urgent walk-in patients, the open-access policy performed better than the pre-scheduled 

policy. It is worth mentioning that both online (appointments are scheduled immediately upon their 

request) and offline (appointments are scheduled after a batch of requests has been received) 

problems have been studied in the literature, see (Wang & Gupta, 2011; Weiner et al., 2009). 

Indeed, the use of personal mobile devices, instant messages and notifications have made offline 

scheduling more efficient. The offline scheduling system collects patient requests electronically 

(e.g., via email or Web-based portal) first, and then advises their appointment time using text 

messages. Kuiper et al. (2015) compared the performance of the online and offline approaches and 

found that the offline approach had a better performance in terms of reducing the patient waiting 

time as well as staff idle time. 

At the tactical decision level, Klassen and Yoogalingam (2009) showed that the best pattern of 

appointment lengths was a plateau-dome structure. The structure breaks one day’s schedule into 

three sections. In the first section (e.g., morning), the appointment lengths increase over time. The 

appointment lengths of the middle section (e.g. afternoon) have the same, creating a plateau. The 

appointment lengths of the last section decrease until the end of the day. Their study found that 

this pattern results in the least waste of capacity. As opposed to these time-dependent appointment 

lengths, Nguyen, Sivakumar, and Graves (2015) proposed a network flow model to determine the 
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optimal allocated capacity based on different groups. In their study, two patient groups with 

different appointment lengths were considered; they were patients on their first visit and return 

visits. In Zhou et al.’s work (2019), they generalized the idea of different appointment lengths and 

considered uncertainties in patients’ lengths of stay. They raised the point that when managing for 

maximizing hospital revenue, it is important to allocate resources to multiple types of patients and 

uphold service equity. At the operation decision level, there are two main streams of studies. One 

focuses on allocating clients (patients) to services and the other on determining the appointment 

time. Most studies on allocating patients assumed that all services are identical. For example, 

Zheng et al.’s study (2015) proposed an overbooking scheduling model. Their goal is to maximize 

the expected profit by optimizing the number of overbooked patients in multiple-provider clinics. 

Other studies took some factors to differential services. Balasubramanian et al. (2014) developed 

a model that factorized the importance of continuous care. Their study showed that significantly 

higher revenue was earned when a primary-care provider saw one of his/her own patients 

compared to when the continuity of care was broken. In determining the appointment time, 

Chakraborty et al. (2013) found that, compared with a slot scheduling method (slot time is 

predetermined), scheduling patients at any time in the consultation session can be more efficient; 

however, it is less attractive in practice because the resulting appointment time has no particular 

pattern, which means difficulty for patients to follow. As an alternative way to determine the 

appointment time, Liu and Geng (2020) proposed an ordinal optimization strategy. Instead of 

directly controlling the appointment time, their approach was to determine the sequence, in which 

a list of patients should be scheduled. Their goal was to utilize the limited medical resources 

efficiently while ensuring the quality of service for clients. 

Although each study in the above focuses on a specific decision level, an outpatient scheduling 



 

123 

approach usually covers two or three of the decision levels above. For example, for a study that 

focuses on appointment time optimization (at the operation decision level), their scheduling 

approach used either a pre-scheduled or open-access policy (at the strategic decision level) (Li et 

al. 2019). From the literature above, three remarks are made. The first is that offline scheduling 

becomes more popular as scheduling systems are more accessible to patients via mobile phones. 

The second is that most studies only consider waiting time inside healthcare units. The third is that 

most of the studies above have only a single optimization objective. 

When considering multiple objectives, e.g., maximizing revenue and resource utilization, the 

existing work often adds up those objectives with different weights. This type of optimization is 

useful as a tool which should provide decision-makers with insights into the nature of the problem, 

but usually cannot provide a set of alternative solutions that trade different objectives against each 

other (Savic 2002). On the contrary, in a multi-objective optimization problem with conflicting 

objectives, there is no single optimal solution. The interaction among different objectives gives 

rise to a set of compromised solutions. Investigating scheduling problems with multi-objectives 

captures more semantics of appointment booking and scheduling in practice (Castro & Petrovic, 

2012). Therefore, our study is to address the scheduling problem using an offline scheduling 

strategy with multi-objectives. 

5.2.2 The existing method for hospital scheduling problems 

A typical hospital scheduling problem has the following characteristics: 1) schedule a given 

number of patients, 2) each appointment may take a different amount of time, 3) each appointment 

has to meet certain resource constraints. To maximize resource utilization, an optimal schedule 

needs to be found. This is an NP-hard problem (Yeh and Lin 2007) as the number of possible 
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schedules grows exponentially if one attempts to exhaust all solutions. That is why researchers use 

Evolutionary Computation (EC) approaches and other approaches. EC is fundamental for 

evolutionary algorithms which includes Genetic Algorithms (GA) (Kramer, 2017; Mitchell, 1998), 

Genetic Programming (GP) (Kennedy and Eberhart 1995), Evolution Programming (EP) (Back, 

1996), etc. 

When applying an EC method such as GA, candidate solutions need to be encoded as an array of 

bits, called chromosomes. In the hospital scheduling problem, chromosomes can be either 

represented by a list of appointment times or a list of appointment indexes. Both encoding methods 

may cause violations of constraints after the crossover and mutation step. For example, when using 

a list of appointment times as a chromosome, time & space conflicts among appointments may 

happen due to the randomized nature of GA. Chromosomes with the violations need to be either 

discarded (Sulis et al., 2020) which causes a considerable waste of computation resources and 

reduces the algorithm’s efficiency, or considered as a penalty when evaluating chromosomes 

(İnanç & Şenaras, 2020; Kaveh et al., 2020; Lin & Chou, 2020). The latter way may result in 

impractical results. 

To avoid such constraint violations, many researchers (Roland et al., 2010; Vali-Siar, Gholami, and 

Ramezanian, 2018; Zhao, Chien & Gen, 2018; Hamid et al., 2020; Li & Chen, 2021) took a repair 

approach. The approach resolved violations of constraints by modifying candidate solutions based 

on given rules. For example, when duplicate appointments are found in a candidate solution. The 

repair step replaces the duplicate appointments with other ones from the previous generation of 

solutions. This made the new solutions very similar to the previous ones and diminished the 

benefits of evolution. Besides, this additional modification causes the results hard to converge 
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(Vali-Siar, Gholami, and Ramezanian, 2018; Zhao, Chien, and Gen, 2018). Alternatively, Rivera, 

et al. (2020) used a group of fixed-length containers to encode a solution. Each container had one 

or more appointments. At the crossover and mutation step, solution modification only happened at 

the container level. In this way, time conflict will be avoided. However, as the container length 

was fixed while the appointment length was not, there are gaps between appointments. Those gaps 

were considered as time waste, and they reduced resource usage. 

In short, when applying traditional encoding methods on scheduling problems, violation of 

constraints happens in candidate solutions after mutation and crossover steps. To overcome this 

problem, researchers either used a repair step to fix the solutions, or added gap time in schedules 

to avoid the violation. The repair step is a waste of computational resources, and the gap time is a 

waste of healthcare resources. Our new encoding method, DEE, can naturally avoid the violation 

of constraints. DEE does not require any repair step or gap in schedules, and therefore does not 

cause any waste of resources. This method can be adapted for any EC algorithm which uses 

mutation or crossover steps in scheduling problems. 

5.3 Scheduling Optimization Algorithm 

5.3.1 Optimization Problem 

The optimization problem has two objectives: (1) to minimize the patient waiting time, and (2) to 

minimize the patient travel time. Further, the following assumptions are applied: 

(1) There are limited healthcare units in a region, which could offer similar services but are in 

different locations. 

(2) Patients and healthcare professionals are punctual. 
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(3) The lengths of appointments vary among patients and are determined when patients request 

services. 

(4) Patients do not know the appointment time or the healthcare location when they request a 

healthcare service. Instead, they will be notified of the time and the location with the length 

of time (θ) prior to their departure time. 

5.3.2 Mathematical Model 

A common scheduling method utilizes a first-come-first-serve strategy and schedules patients 

sequentially. Our scheduling algorithm optimizes a group of patients to achieve a better overall 

result in a scheduling system as opposed to the common strategy. We consider the following two 

scenarios: pre-scheduled scenario and open-access scenario. In the first scenario, scheduling for a 

group of patients within a pre-defined period of time is taken, where patients are not individually 

differentiated. After that, the schedule is kept unchanged. In the second scenario, patients are 

individually scheduled upon their requests being received.  

Denote all patients’ appointments in the system as 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛}, where n is the number 

of appointments. The times when patients request their appointments are defined as R = {r1, r2, 

r3,…,, rn}. Patients’ preferred appointment times are denoted as 𝑌𝑟 = {𝑦1
𝑟 , 𝑦2

𝑟 , 𝑦3
𝑟 , … , 𝑦𝑛

𝑟}, and the 

duration of appointments is denoted as A = {a1, a2, a3,…,, an}. Patients are given their initial 

scheduled appointment times as 𝑌𝑜 = {𝑦1
𝑜 , 𝑦2

𝑜 , 𝑦3
𝑜 , … , 𝑦𝑛

𝑜} using the basic scheduling method (as 

introduced in Section 3.2). Their optimized appointment time by the system is denoted as 𝑌𝑠 = 

{𝑦1
𝑠, 𝑦2

𝑠, 𝑦3
𝑠, … , 𝑦𝑛

𝑠}. Then, we have: 

 𝑅 ≤ 𝑌𝑟 ≤ 𝑌𝑜 & 𝑅 ≤ 𝑌𝑟 ≤ 𝑌𝑠 (5.1) 
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Under the pre-scheduled scenario, the re-arrangeable patient appointments Px is: 

 𝑃𝑥 = {𝑝𝑖|𝑝𝑖 ∈ 𝑃, 𝑠𝑗  ≥  𝑦𝑖
0  ≥ 𝑠𝑗−1} (1 ≤ 𝑖 ≤ 𝑛) (5.2) 

where 𝑦𝑖
0  is the time which patient pi departures; 𝑠𝑗  is the predefined time point to run the 

algorithm; 𝑠𝑗−1 is the previous time point. For example, if the system groups all the patients within 

24hrs and schedule time together, then 𝑠𝑗−1 can be 8 pm on day 1, and 𝑠𝑗 be 8 pm on day 2. 

Under the open-access scenario the re-arrangeable patient appointments Px is: 

 𝑃𝑥 = {𝑝𝑖|𝑝𝑖 ∈ 𝑃, 𝑦𝑖
0 ≥ 𝑠′

𝑗  + δ𝑖𝑘  +  θ } (1 ≤ 𝑖 ≤ 𝑛) (5.3) 

where 𝑠′
𝑗  is the time point when a patient requests an appointment, 𝑠′

𝑗 ∈ 𝑅 ; δ𝑖𝑘  is the time 

required for patient pi to travel to healthcare unit k (1 ≤ 𝑘 ≤ 𝑚); θ is a predefined length of time, 

prior to patients’ departure time, it determines the time the system confirms patients’ appointments; 

n is the total number of healthcare units in the region/system.  

There are two objective functions: 

 

 OB-1: Min ∑ {𝑦𝑖
𝑠 – 𝑦𝑖

𝑟}|𝑃𝑥|
i=1  (1 ≤ 𝑖 ≤ |𝑃𝑥|) 

 

(5.4) 

 OB-2: Min ∑  δ𝑖𝑘
|𝑃𝑥|
i=1  (1 ≤ 𝑖 ≤ |𝑃𝑥|) 

 

(5.5) 

where |𝑃𝑥| is the number of re-arrangeable appointments. OB-1 is to minimize the total waiting 

time. The OB-2 is to minimize the total travel time.  

The constraint of this problem is that there is no conflict in the scheduled time. It can be written 

as: 
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∀ 𝑝𝑖 , 𝑝𝑗 ∈ 𝑃𝑥, 𝑖 ≠ 𝑗,   

𝑖𝑓 𝑘𝑖 = 𝑘𝑗 , 𝑡ℎ𝑒𝑛   

 [𝑦𝑖 − (𝑦𝑗 + 𝑎𝑗)] × [(𝑦𝑖 + 𝑎𝑖) − 𝑦𝑗] ≥ 0 (5.6) 

where k is the healthcare unit where a patient has an appointment. This constraint ensures that no 

overlap among appointments in the same healthcare unit. This creates a trade-off between 

appointment time and choice of healthcare units. 

Here, we give the formal definition of the optimization problem as 

OB-1: Min ∑ {𝑦𝑖 – 𝑟𝑖}h
i=1  (1 ≤ 𝑖 ≤ ℎ) 

OB-2: Min ∑  δ𝑖𝑘
h
i=1  (1 ≤ 𝑖 ≤ ℎ) 

s.t 

∀ 𝑝𝑖, 𝑝𝑗 ∈ 𝑃𝑥, 𝑖 ≠ 𝑗,  

𝑖𝑓 𝑠𝑖 = 𝑠𝑗 , 𝑡ℎ𝑒𝑛  

 [𝑦𝑖 − (𝑦𝑗 + 𝑎𝑗)] × [(𝑦𝑖 + 𝑎𝑖) − 𝑦𝑗] ≥ 0 (5.7) 

All notations used above are summarized in Table 5.1. 

5.3.3 Algorithm 

To solve the above multi-objective optimization problem, NSGA-II (Deb et al., 2002) was used in 

this study. NSGA-II is a well-known genetic algorithm, which is capable of fast sorting and elite 

searching for multi-objective solutions. Thus, it is ideal for our problem. To implement the genetic 

algorithm, a new encoding method, DEE, is proposed, in conjunction with the Discrete Event 

Simulation (DES) (Jun, Jacobson, and Swisher, 1999) to calculate the objectives’ value of each 

chromosome. DES has the benefit of mimicking a scheduling process, while NSGA-II is effective 

in solution searching. Based on this understanding, we combined them based on the theory of 
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engineering hybridization (Zhang, Ouyang, and Sun, 2010) and proposed a hybrid method called 

DEE-NSGA-II here. Its workflow is illustrated in Figure 5.2. 

Table 5.1 Indices and parameters in the mathematical model 

Symbol Explanation 

i,j Appointment index 

P Total patient appointments 

n Number of total patient appointments  

R Time when patients request their appointments  

A Appointment durations 

𝑌𝑟  Patients’ preferred appointment time  

𝑌𝑜  Initial scheduled appointment time  

𝑌𝑠  Optimized appointment time  

Px A subset of re-arrangeable appointments 

s Time points to run the algorithm 

𝛿  
Length of time required for patient to travel to a healthcare 

unit 

𝜃  
Length of time, prior to patients’ departure time, it determines 

when the system confirms patients’ appointments 

m Number of healthcare units 

d Healthcare professional assigned to an appointment 

The optimization workflow of the DEE-NSGA-II follows a typical NSGA-II procedure. The 

method starts with a set of chromosomes that are generated using DEE. Each chromosome presents 

a candidate solution to the problem. The algorithm takes the population of chromosomes as parents 

and reproduces new chromosomes (i.e., offspring in a GA). The reproduction exchanges partial 

information between two chromosomes, called crossover, and makes minor changes, called 

mutation. Then, a subset of elite parents & offspring chromosomes are selected to reproduce the 
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next generation of offspring. This process repeats for a given number of generations. Populations 

from newer generations are expected to perform better than ones from earlier generations as they 

are offspring from elite chromosomes. To identify those elites, NSGA-II uses the fast 

nondominated sorting and the crowding distance sorting to achieve a superior sorting speed and 

keep diversity among candidate chromosomes. More details on how each step in the NSGA-II can 

be found in (Deb et al., 2002). It is worth noting that applying the NSGA-II algorithm to the 

problem is not the main contribution of this work. There are many other multi-objective 

optimization algorithms that may be suitable for solving the problem. The NSGA-II is picked in 

this study to demonstrate the effectiveness of DEE, as explained below. 

With the scheduling order (chromosome), the DES was used to evaluate the objective functions, 

step 2 in Figure 5.2. Details of this step are shown in Figure 5.3. For each appointment in the 

scheduling order, a group of healthcare units with the shortest waiting time available is identified. 

From this group, the healthcare unit with the shortest travel time is chosen. The process goes 

through all the appointments following the order. By summing up the waiting time and travel time 

of each appointment, the total patients’ waiting time and travel time are calculated, which are the 

values of OB1 & OB2. 

In applying NSGA-II or other multi-objective optimization algorithms, the most challenging part 

is the representation of candidate solutions (encoding methods). The candidate solution in a GA is 

typically encoded as a string consisting of N integer numbers (called chromosomes). Conventional 

encoding methods often require a repair step to resolve constraint violations from chromosomes. 

This additional step causes GA hard to converge. To overcome this inefficiency problem, we 

developed a new encoding method, DEE, which uses a scheduling order as a chromosome. Figure 
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5.4 shows an example of a scheduling order. 

 

 

Figure 5.2 The optimization workflow of the DEE-NSGA-II. 
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Figure 5.3 A flowchart of how the DES evaluates individual chromosomes. 

 

Figure 5.4 An example of DEE encoded chromosomes. 

In this example, the scheduling order of 4 appointments a, b, c, d in a queue is determined. The 

length of the chromosome is the number of appointments. Each digit in the chromosome represents 

the order in the current appointment queue. For example, the first number “3” means the third 

appointment in the current queue a, b, c, d. So, appointment c will be scheduled first and after that 
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is removed from the appointment queue. The second number “3” means the 3rd appointment in 

the current appointment queue a, b, d. Therefore, appointment d is scheduled next and then 

removed from the queue. Similarly, the third number “1” means the 1st appointment in the current 

appointment queue a, b, which is appointment a. The fourth number “1” means appointment b, 

which is the 1st appointment in the remaining appointment b. One might notice that the last number 

in the representation will always be “1” as there is only one appointment in the queue. In summary, 

the chromosome in Figure 5.4 represents an appointment scheduling order as (c, d, a, b), and it 

only decides the order of appointments to be scheduled rather than the appointment time or 

location. This order will then be processed by the DES to guarantee the constraints in the 

optimization problem will not be violated. 

5.4 Experiment 

5.4.1 Experiment Data and Setting 

In this section, we report two case studies to demonstrate how the proposed method works in a 

patient scheduling problem. In both cases, we used synthetic patient data to simulate realistic 

situations. The synthetic data was randomly generated to follow the rules in Table 5.2. 

Table 5.2 Parameters used in generating synthetic patient appointment data 

Parameters Value used in generating synthetic data 

Number of all appointments (n) 25~160, varies in each experiment. 

Time of request appointments (R) 16~96 hrs, varies in each experiment. 

Appointment length (A) 
0.25~4 hrs, round up to the nearest 

quarter. 

Patient travel time length (δ) 0~1 hr 

number of healthcare units (m) 3 

number of healthcare professional (q) 3 
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The proposed method is written in Python 3.6. The NSGA-II module is adopted from pymoo 

(Blank & Deb, 2020) and the DES module is developed by ourselves. pymoo is a python package 

for multi-objective optimization algorithms and is developed under the supervision of the original 

developer of the NSGA-II algorithm (Deb et al., 2002). Table 5.3 contains a list of parameters used 

in the proposed DEE-NSGA-II method. 

The population size and the mutation probability are determined by the number of all appointments 

(n). The algorithm stops when there is no improvement (objective value changes < 0.0025) for gs 

continuous generations, or the maximum generation (gmax) is reached. The Crossover & Mutation 

Distribution Index are the control parameters which are inversely proportional to the amount of 

perturbation in Crossover & Mutation. The smaller the value, the larger the perturbation and vice 

versa. A smaller value, thus, improves the resilience to premature convergence at the cost of a 

highly focused search. The default value of 10.0. 

Table 5.3 List of parameters in the DES-NSGA-II method/model and their values 

Parameters Values used in the experiments 

Population size 2 x n 

Crossover rate 1 

Crossover type Simulated Binary Crossover 

Crossover distribution index 3 

Mutation probability 1/n 

Mutation type Polynomial Mutation 

Mutation distribution index 3 

Max. generation ($g_max$)  200 

Termination criteria ($g_s$) 20 
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Two sets of hardware are used for the experiment. The cloud server is used for optimizing cases 

under the open-access scheduling scenario and the local desktop is for optimizing the pre-

scheduled scenario.  

o Local Desktop: Processor, Intel Core i5-7600K, Quad-Core, 3.8 GHz, Max Turbo @4.20 

GHz. 16 GB RAM.  

o Cloud Server (Compute Canada): Processor, Intel Xeon Platinum 8168, 32 Core 2.70GHz, 

Max Turbo @3.70 GHz. 64 GB RAM. 

5.4.2 Case Studies 

Two cases with simulation data were used in this study. The first is the pre-scheduled scenario, 

which schedules patients in advance of their appointment days, so all requests are optimized at the 

same time. The second is the open-access scheduling scenario, which schedules patients on the 

same day that they request an appointment. Compared to the open-access scheduling scenario, the 

pre-scheduled scenario has more appointments to be arranged and only runs once. It could take 

considerably less computational resources. However, it requires appointments to be made in 

advance and no changes to appointments can be made after the schedule is made. The open-access 

scheduling scenario, on the other hand, optimizes all appointments every time a new appointment 

is added or modified. 

In the first case study, we compare DEE-NSGA-II to a baseline scheduling method and a GA using 

a conventional encoding method (GACE) that is adapted from literature (Vali-Siar, Gholami, and 

Ramezanian, 2018; Zhao, Chien, and Gen, 2018) using pre-scheduled scenarios. In terms of the 

total appointments (represented as patient numbers in Figure 5.5 & Figure 5.6, we used four 

different ones (12, 14, 18, 24). Under each number, 6 sets of synthetic appointment data were 
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generated by following the rules in Table 5.2. Figure 5.5 shows the results for total waiting time, 

and Figure 5.6 shows the results for total travel time. 

The baseline scheduling method schedules patients on a first-come-first-serve base strategy. Note 

that the same strategy was used in the DES to calculate optimization objectives. Details of this 

strategy were explained in Figure 5.3. The GACE schedule patients using the NSGA-II algorithm 

with an encoding method which represents a chromosome by a list of appointment indexes. Such 

an encoding method requires a repair step as explained in Section 5.2.2. 

 
Figure 5.5 Comparing waiting time when pre-scheduling different sizes of 

patient groups. 

Figure 5.5 shows the total waiting time of all patients in each group when under the pre-scheduled 

scenario. We see that results from DEE-NSGA-II and GACE are clearly better than the baseline. 

For example, when the patient number is 12, the total waiting time of the baseline method is 25.05 

hours, while DEE-NSGA-II takes 13.0 hours and GACE takes 12.5 hours. That means 48.1% and 

49.9% waiting time saving from DEE-NSGA-II and GACE, respectively. While the waiting time 

save is noticeable across all cases, it is worth noting that the rate of saving declines as the patient 
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number grows. When the patient number increases to 18, the waiting time savings are 28.0% from 

DEE-NSGA-II and 26.2% from GACE. 

 

 
Figure 5.6 Comparing travel time when pre-scheduling different sizes of 

patient groups. 

Figure 5.6 shows the total travel time of all patients in each group when under the prescheduled 

scenario. The effectiveness of both DEE-NSGA-II and GACE on travel time reduction has been 

demonstrated. In the baseline method, total travel time increases as more patients are scheduled. 

In contrast, both DEE-NSGA-II and GACE can keep the total travel time low in all cases. The 

total travel time from DEE-NSGA-II and GACE ranges from 0.7 to 1.0 hour, while the baseline 

travel time increases from 1.7 hours to 5.0 hours. Compared to the baseline method, the DEE-

NSGA-II and GACE reduced 53.7% & 55.3% of travel time respectively when the patient number 

is 12. When the patient number is 24, the travel time saving is 78.3% from DEE-NSGA-II and 

76.7% from GACE. 

Figure 5.7 shows the number of GA optimization iterations (generations) for DEE-NSGA-II and 
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GACE to converge when the patient number is 12. The termination criteria in this study are either 

reaching the max generation (200) or there is no significant change (<0.0025) in objective value 

in the last 20 generations. On average, GACE takes 130 generations to converge. On the other 

hand, DEE-NSGA-II requires 108 generations, 17.0% less than GACE. This result supports our 

claim that our new encoding method DEE has a better convergence rate compared to conventional 

encoding methods. 

 

Figure 5.7 Number of generation for DEE-NSGA-II and GACE to converge. 

In the second case study, we illustrate one open-access scheduling scenario by comparing DEE-

NSGA-II to the baseline method. 10 sets of synthetic patient data were used (25 patients). Figure 

5.8 shows the results for total patient waiting time from baseline and the optimization algorithm 

using open-access scheduling. The results from 10 sets of data show an average of 58.2% waiting 

time savings. Figure 5.9 shows the results for total patient travel time from baseline and the 

optimization algorithm using open access scheduling. The results from 6 sets of data show an 

average of 89.3% travel time reduction. 
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Figure 5.8 Comparing patient waiting time using open-access scheduling. 

 

Figure 5.9 Comparing patient travel time using open-access scheduling. 

5.4.3 Results and Discussion 

From the above case studies, we found that DEE-NSGA-II is effective for both prescheduling and 

open-access scheduling. In the first case study, the effectiveness of both DEE-NSGA-II and GACE 

has been demonstrated. Both algorithms can save 26% to 49% of total waiting time. When 

achieving very similar results, DEE-NSGA-II requires 17% less iterations to converge than GACE. 

This result illustrates the benefits of our novel encoding method, DEE. In the second case study, 

DEE-NSGA-II saved 58.2% waiting time and 89.3% travel time compared to the baseline method. 
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Further, the total waiting time from DEE-NSGA-II is more consistent among 10 sets of test data. 

The standard deviation of the waiting time from DEE-NSGA-II is 2.1 hours while the one from 

the baseline method is 6.6 hours. 

Compared to the waiting time improvement from DEE-NSGA-II, the travel time was reduced more 

significantly as the patient number grew. We believe that this is partially due to there being only 

three healthcare units in the case studies. This makes travel time optimizations simpler than waiting 

time optimizations. The significant travel time reduction also justifies the importance of optimizing 

travel time in addition to waiting time. 

When comparing results from the pre-scheduling and the open-access scheduling, we found that 

DEE-NSGA-II is suitable for both cases and achieves noticeable time reductions. For example, it 

achieves 26.8% shorter waiting time and 78.3% shorter travel time when patient number = 24 in 

pre-scheduling cases. In comparison, it reduces 58.2% the waiting time and 89.3% the travel time 

in open-access cases. DEE-NSGA-II shows better results in the open-access cases. This advantage 

may be appreciated as open-access scheduling was found to be more useful in practice. Some 

reports show that online scheduling has a positive effect on reducing patients’ no-show rates 

(Dobson, Hasija, and Pinker 2011). 

5.5 Conclusion 

Outpatient waiting time is a source of dissatisfaction with healthcare quality, lost productivity for 

individual patients, as well as increased risk of the deteriorated condition of patients. In addition, 

long travel time decreases the chance for patients to receive quality healthcare. To deal with both 

waiting time and travel time, we defined the problem as an optimization problem and proposed an 
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optimization model. To solve the model, we proposed a novel encoding method for DEE-NSGA-

II. The DEE-NSGA-II algorithm schedules patients to a health unit based on their locations and 

desired time. It minimizes patients’ waiting time outside healthcare units, and their travel time to 

the units. To illustrate its performance, two case studies were conducted. The results showed that 

the algorithm is effective for the pre-scheduling scenario and the open-access scenario. Both 

waiting time and travel time were significantly reduced compared to a traditional first-come-first-

service scheduling system. The results also showed the advantage of the novel encoding method 

when compared to the conventional encoding methods. 

The contributions of this study are highlighted as follows. First, this study investigated a new 

problem which is to reduce travel time of patients in addition to waiting time. Travel time 

optimization was often omitted in existing studies, despite its impact on healthcare accessibility. 

To solve these two conflicting objectives, a mathematical model is formulated and implemented 

in two case studies. The results from the case studies showed its promising benefits in reducing 

travel time significantly. In addition, different from the existing work which combines multiple 

objectives into one, our method can be applied to more realistic problems and identify a wider 

range of alternatives to be selected by decision makers. Second, a new encoding method, DEE, is 

developed to represent a candidate solution in GA. It avoids violation of constraints when 

generating new candidate solutions, and its application is demonstrated through DEE-NSGA-II. 

DEE can be useful for solving other types of patient scheduling problems with different objectives, 

e.g., optimizing patient surgical waiting time while considering patients’ mental status, risk of 

disease deterioration, etc. Furthermore, it can also be used in a category of single objective and 

multiple objectives GA such as BRKGA (Gonçalves & Resende, 2011), R-NSGA-III (Vesikar, 

Deb, and Blank, 2018), MOEA/D (Zhang & Li, 2007), etc. Potentially, the encoding method can 
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be adapted to other evolutionary algorithms, which perform genetic operations on candidate 

solutions. Examples include Swarm Optimization Algorithms (Cuevas, Fausto, and González 

2020), Evolution Strategy (Knowles & Corne, 2000), and Differential Evolution (Price, 2013). 

There are a few limitations of this study that could be addressed in the future. For example, a more 

sophisticated case study with complex settings could be conducted. It should consider patients’ & 

healthcare professionals’ delays, patients’ priorities due to their symptoms & deteriorations, 

hospital preferences, and their changes of locations. Those considerations could be modelled either 

as additional optimization objectives or as constraints. The other limitation is that the algorithm 

efficiency was not investigated. Based on the case studies, we noticed that the genetic algorithm 

is computationally expensive. In this study, the algorithm was only adapted for proof of concept 

and its efficiency is not a focus. We will further investigate it in the future by adapting or 

developing a more complicated optimization algorithm. Lastly, the implementation of the 

scheduling method was not discussed. Future studies could investigate how to fit our multi-

objective scheduling method into an existing patient scheduling system. 
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This chapter is an application of sustainability and resilience as patient equity in healthcare 

decision-making. The discussion in Section 2.4.4 identified a need for a comprehensive resource 

allocation model that considers dynamics in patient demand, such as travel time, and in service 

availability, such as manpower shortages and resource distributions. This need is fulfilled by the 

research for Objective 4 of this thesis. This chapter was submitted as Wenjun Lin et al. "An 

optimization model for resource allocation with consideration of the equity, efficiency, and 

resilience of a healthcare system" to the International Journal of Intelligent Systems in 2023 (under 

review). 

Abstract 

Healthcare resource allocation is crucial for the quality of a public healthcare system, especially 

resilience and equity. Conventional resource allocation methods primarily focus on efficiency, 

which tends to result in resources being concentrated in a geographical center. This result is 

especially harmful in the situation where healthcare facilities may experience unexpected 

shutdowns (due to logistical challenges and human resource shortages). As a result, access to 

healthcare services in rural areas is extremely difficult. In this chapter, we develop a multi-

objective optimization model for representing healthcare facilities and resources along with their 

Chapter 6 – 

An optimization model for resource allocation with consideration of 

the equity, efficiency, and resilience 
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allocations with consideration of (1) healthcare equity, (2) resilience, and (3) efficiency of service 

delivery. For healthcare equity, three different indicators were implemented in the model. The 

effects of these indicators on service delivery quality were investigated using a case study 

involving the allocation of COVID-19 test sites in Saskatchewan (Canada). The results obtained 

with our model show that by considering system resilience, the allocation plan can reduce testing 

days by up to 92% in the event that one test site is shut down. In practice, the model served as a 

tool for the healthcare resources manager to allocate the COVID-19 test sites as well as other 

healthcare resources such as antiviral medications, intensive care unit beds, and ventilators. It may 

be apparent that the methodology for building such a model can be used for any type of resource. 

Therefore, the study has a generalized implication for the resource allocation problem. The study 

reported in this chapter is perhaps the first to consider equity and resilience together in a healthcare 

resource allocation problem. 

6.1 Introduction  

The worldwide outbreak of the COVID-19 pandemic and its far-reaching impacts have 

significantly highlighted the need for improved rational planning of healthcare resources (Kang et 

al., 2020). However, the conventional distribution of healthcare services often does not provide 

equal accessibility to all (Polzin et al., 2014). In Canada, for example, healthcare delivery often 

fails to address social and health inequities that lead to health disparities among specific 

populations, especially Indigenous and rural communities (Nader et al., 2017).  

Unlike other resource allocation problems that focus on cost minimization, healthcare decision-

makers face complex challenges when deciding where to locate healthcare facilities and how to 

distribute capacity. One challenge is related to healthcare accessibility. Healthcare accessibility is 
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significantly dispersed across different locations (Langford et al., 2016), which causes spatial 

inequity. The other challenge is system resilience. While resilience is a core concept in disaster 

risk reduction, its application to healthcare systems is relatively new. It has been defined broadly 

as institutions’ and health actors’ capacities to prepare for, recover from, and absorb crises, while 

maintaining core functions (Kruk et al., 2015). The pandemic has caused logistical complications, 

supply shortages, and healthcare professional burnout. It is essential to have a resilient healthcare 

system that can effectively adapt in response to dynamic situations while still serving the acute 

care needs of their communities. 

In this chapter, we use a multi-objective selection model to optimize these three criteria: efficiency, 

equity, and system resilience. The model determines the optimal locations of healthcare facilities 

and resource allocations for each facility. Multiple objective evaluation methods of equity and 

system resilience were adapted and implemented. Their performances were demonstrated in a case 

study that is for COVID-19 test site allocation in the province of Saskatchewan, Canada. This 

study’s contributions are fourfold. First, it is one of the first studies to consider system resilience 

at the stage of resource allocation. Second, it compared different methods of evaluating equity. 

Their pros and cons are explained through the case study. Third, the model optimizes facility 

locations and resources in each facility at the same time. Fourth, it can serve as a guide to the 

authorities in determining the locations of the COVID-19 test sites as well as other scarce 

healthcare resources. 

The remaining part of the chapter is organized as follows. In Section 6.2, we discuss literature 

related to healthcare equity, system resilience, and their applications in healthcare resource 

allocation problems. In Section 6.3, the model and the optimization algorithm are presented. In 
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Section 6.4, we present the case study and interpret the results. Section 6.5 presents the conclusion 

and discusses the limitations. 

6.2 Literature Review 

As a tool to optimize resources, location-allocation models have been around for a long time 

(Drezner & Hamacher, 2004). The classical models also include the p-median model, the maximal 

covering location model, the location set covering model, and the p-center model (Owen & Daskin, 

1998). Taking the maximal covering model as an example, it deals with the coverage of demanders 

within a certain radius of each facility (Murray, 2016). Demanders are places where people demand 

services from facilities. The model aims to maximize coverage within the limited capacity of 

facilities available. Another example is the location set covering model, which is designated to 

achieve full coverage using the least number of facilities (García-Palomares et al., 2012). 

There are a few limitations with the classical models (Wang, 2012). First, they fail to address 

complicated situations such as equity issues or partial system failure. Most of the existing 

allocation models only address efficiency-oriented objectives. Second, the assumptions of the 

spatial interaction between demanders and facilities in these models are relatively simple. Few 

models, for example, have used realistic accessibility measurements when determining how long 

it takes users to reach facilities. Third, those models only determine facility location without taking 

the amount of resources to be allocated into account. The optimal amount usually requires a 

secondary model. The two-step process limited its optimization performance and lacked flexibility 

in implementing the optimization solution. 

Aiming to address the equity issue, Wang and Tang (2013) initiated a maximal accessibility equity 
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(MAE) model. The MAE model quantifies the equity of the configuration of facilities as the 

standard deviation (SD) of travel time to different facilities. The optimal solution would minimize 

the SD. The result suggested that to achieve better equity in accessibility, additional supplies are 

needed in less-central locations. 

SD has been applied as an equity measurement in a few more studies. Tao et al. (2014) applied the 

maximal equity model to find the optimal configuration of residential facilities. Similarly, Wang 

et al. (2015) used a similar method to select newly added facility locations rather than reallocating 

resources at existing locations. Like the classical models, two studies used a two-step procedure, 

with the first step being to optimize the locations of facilities, and the second step being to optimize 

the respective sizes of the facilities. Most recently, Dai et al. (2019) used SD as an equity 

measurement to optimize educational opportunities. 

In addition, Rong et al. (2020) used the GINI index (Gini, 1936) to represent equity in their studies 

of the spatial accessibility of medical treatment in the main urban area of Zhengzhou, China. By 

using an improved potential model and an Internet map navigation service, their study identified 

imbalances in the medical facilities and services on the outskirts of the city. This is one of a few 

studies of healthcare equity using GINI (Schoen et al., 2000; Liu, 2014; Braveman, 2006). Both 

SD and GINI are quite popular in the measurement of healthcare equity. However, the advantages 

and disadvantages of the two measures are still not clear, which can cause difficulties in their 

applications. 

To date, few studies have paid attention to the resilience of the whole system when optimizing 

locations of resources (Qin et al., 2022; Wang & Liu, 2019; Alemzadeh et al., 2020). The focus of 

these studies is on the strategy of maximizing system capability in the event that one or multiple 
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parts of the system fail. For example, to maximize the effect of SOPs (soft open points) on the 

boost of the resilience of the power distribution network, Qin et al. (2022) proposed a mixed integer 

non-linear optimization problem to schedule the siting and sizing of SOPs based on a multi-stage 

elastic mechanical model. A particle swarm algorithm is used to optimize the control strategies of 

SOP to obtain the maximum power system capability. Compared to regaining the capability of a 

system, where resources have already been allocated, system resilience optimizations at the 

resource allocation stage have less constraints. Therefore, the present study attempts to incorporate 

resilience into resource allocation for accessibility and efficiency. 

6.3 Methodology 

6.3.1 Optimization Problem 

In this study, we investigate a resource allocation problem that chooses multiple locations in a 

region to set up healthcare facilities and to determine the distribution of resources among facilities. 

The problem has three objectives: (1) to maximize the region’s overall efficiency in utilizing the 

resources, (2) to maximize healthcare equity among patients from different parts of the region, and 

(3) to maximize system resilience so its performance won’t degrade dramatically in the event of a 

partial system failure. 

The problem has the following assumptions: 

1) There are a limited number of locations to be chosen. Each location offers the same 

services. 

2) Travel time is the main barrier to accessing healthcare. 

3) Patients use the same method of transportation, i.e., driving. 

4) Patients always choose the closest facility. 
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5) A partial system failure means that one facility is shut down, and its resources is 

unavailable.  

6) Upon the system failure, patients will go to the next closest facility which still operates. 

7) There is a booking system for patients to access to facilities (Lin et al., 2022), which is 

expected to ensure the facility will not be overwhelmed.  

6.3.2 Evaluation of system efficiency 

We evaluate system efficiency with the maximum number of testing days (NTD) before all test 

demands are met. The NTD is calculated by 

 𝑁𝑇𝐷 = 𝑚𝑎𝑥 {𝑖 ∈ {1,2, … , 𝑚}:
𝑤𝑖

𝑐𝑖
} (6.1) 

where m is the number of facilities, w is the healthcare demand and c is the capacity of each facility. 

The healthcare demand is determined by its nearby community population, assuming every 

community will always visit its closest facility.  

6.3.3 Evaluation of equity 

Multiple methods of evaluating equity from the literature are adapted for comparison in this study. 

The first one is the Gini index (GINI), also known as the Gini coefficient, which is a measure of 

statistical dispersion to represent income inequality or wealth inequality within a nation or a social 

group (Gini, 1936). The Gini index is widely used to evaluate the equality and equity in the 

accessibility to public service facilities (Lyon, Li, and Gastwirth, 2017; Christopoulos et al., 2017; 

Rong et al., 2020). The Gini coefficient is approximated by 
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 𝐺𝐼𝑁𝐼 = 1 − ∑(𝑊𝑘 − 𝑊𝑘−1)(𝑇𝑘 + 𝑇𝑘−1)

𝑛

𝑘=1

 (6.2) 

where Wk is the weight which can be the cumulative ratio of population, or healthcare demands 

required in each community, k = 0 … …n, W0 = 0, Wn = 1; Tk denotes the cumulative ratio of 

accessibility, such as travel time required to access healthcare, k = 0 … …n, T0 = 0, Tn = 1; n is 

the total number of communities in a region. The value of the Gini coefficient ranges from 0 to 1. 

According to the international standard of the Gini coefficient classification (Shu & Xiong, 2018), 

the Gini coefficient values of 0–0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5 and 0.5–1 are, respectively, 

expressed as absolute equity, comparative equity, relative rationality, poor equity, and great 

disparity. 

The second method to evaluate the equity is SD, which is a statistic that measures the dispersion 

of a dataset relative to its mean, and SD is calculated by: 

 𝑆𝐷 = √
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

 (6.3) 

where 𝑥𝑖 is the accessibility in each community, such as travel time required to access healthcare, 

i = 0 …n; 𝜇 is the mean of x; n is the total number of communities in a region. 

The third method to evaluate the equity is ratio over a threshold (ROT). The ROT uses a threshold 

to determine inequity in accessing healthcare and is calculated by: 

 𝑅𝑂𝑇 =  
1

𝑛
|{𝑖 ∈ {1,2, … , 𝑛}: 𝑥𝑖 ≥ 𝑡}| (6.4) 
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where x is the accessibility; n is the total number of communities; t is the threshold, such as the 

maximum travel time that can be tolerated. Note that in SD as well as ROT, community populations 

are not included, which means that each community, regardless of its size, is treated equally.  

6.3.4 Evaluation of system resilience  

We incorporate the evaluation of resilience into the calculation of each objective. Instead of 

assuming that no failure occurs, and every healthcare facility can be accessed by any community, 

we consider the possibility that any facility may be shut down. In these cases, the resources of the 

failed facility cannot be utilized, and all demands are directed to nearby other facilities. The 

resilience of the system is determined by the difference of its performance with one facility shut 

down and without any facility shut down. A high resilience indicates that there is very minimum 

difference in performance, while a low resilience implies a high difference.  

Two types of performances are used in this study, efficiency and equity. The efficiency is 

represented by the longest NTD among all cases, as follows: 

 𝑁𝑇𝐷′ = 𝑚𝑎𝑥 {𝑖 ∈ {1,2, … , 𝑚}, 𝑗 ∈ {1,2, … , 𝑚}:
𝑤𝑖𝑗

𝑐𝑖
, 𝑖 ≠ 𝑗} (6.5) 

where 𝑤𝑖𝑗is the demand that is allocated to facility i in the event that facility j is closed; 𝑐𝑖 is the 

capacity of facility i.  

Similarly, the equity becomes: 

 𝐸′ = 𝑓(𝑖 ∈ {1,2, … , 𝑚}, 𝑗 ∈ {1,2, … , 𝑚}: 𝑤𝑖𝑗 , 𝑖 ≠ 𝑗) (6.6) 

where 𝑓is one of the equity evaluation methods presented in Section 6.3.3; 𝑤𝑖𝑗is the demand that 
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is allocated to facility i in the event that facility j is closed. 

6.3.5 Optimization algorithm 

The SMS-EMOA (hypervolume metric selection - evolutionary multi-objective optimisation 

algorithms) is used in this study for the multi-objective optimization problem. The algorithm is 

well-suited for Pareto optimization with two and three objectives, and found to outperform other 

established techniques (Beume, 2007).  

The SMS-EMOA algorithm has a similar process as other evolutionary algorithms. As explained 

in Table 6.1, the algorithm starts with an initial population of μ individuals, and a new individual 

is generated by randomized variation operators. The new individual will become a member of the 

next population, if replacing another individual leads to a higher quality of the population with 

respect to the hypervolume metric. The reduce step is further explained in Table 6.2. First, the 

merged population Pt ∪ {qt+1} is denoted as Q. It is divided into v layers {𝑅1, … , 𝑅𝑣} using fast-

nondominated-sorting (Deb, 2002). The least ranked front is 𝑅𝑣 and from this front, an individual 

is removed in the selection step to shrink the size of the population from t + 1 to t. 

Table 6.1 SMS-EMOA algorithm 
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Table 6.2 Details of the reduce step 

 

A distinct feature of the SMS-EMOA is that it is well-suited for approximating Pareto sets with a 

small number of individuals. This is often desired in practice. Therefore, the SMS-EMOA 

algorithm was selected for this study. It is noted, however, that our problem model can be solved 

by other multi-objective algorithms, and the choice of algorithm should not affect the results of 

optimization. 

6.4 Case study 

6.4.1 Case description 

The study area, the province of Saskatchewan, is one of the Prairie provinces in Canada. 

Saskatchewan shares its borders with Alberta to the west, the Northwest Territories to the north, 

Manitoba to the east and the United States to the south. The province has a total population of 

1,132,505, approximately 34% live in rural areas (Statistics Canada, 2021), which is defined as 

living in areas with less than 1000 residents and/or where the access to key amenities is greater 

than 5 km (Statistics Canada, 2008). Residents living in rural areas are often less affluent, older, 

and have limited access to health services (Litman, 2003; Starkey, Ellis, Hine, and Ternell, 2002; 

Statistics Canada, 2008).  

In the early 2022, the Saskatchewan Health Authority (SHA) sets-up multiple COVID-19 test sites 
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for the general public. However, many residents, especially those from remote communities, faced 

difficulties in accessing the tests (CBC, 2022). Therefore, SHA sought an optimal planning tool 

for allocating critical healthcare resources, such as the test sites and test kits at each site. The major 

barriers, in this case, are the availability of test kits and the long travel time to test sites. Therefore, 

we used travel time as the main way to evaluate equity in Saskatchewan. For different regions, the 

indicators should be adaptive to their specific accessibility barriers (Allen & Farber, 2019, 

Kaasalainen, 2012; Williams, 2011; Nagarajan, 2004). 

6.4.2 Data source 

Two parts of data are considered in our optimization model, community population and travel time 

between communities. The population data was retrieved from the website of the government of 

Saskatchewan (2022). The data includes 15 cities, 149 towns, and 273 villages, 437 in total. Broder 

cities, including Flin Flon and Lloydminster are excluded. Note that in this study, only 

communities that have a population greater than 2000 are considered a candidate for allocating 

test sites. A smaller community may not necessarily have adequate human resources and 

infrastructures to facilitate the site. This results in 32 communities which are close to the actual 

number of healthcare centers in the province (Abrametz, 2016). More population statistics are 

listed in Table 6.3. 

Table 6.3 Population distribution among communities in Saskatchewan 

Population < 500 501 - 1000 1001 - 2000 2001-10000 10000+ 

Numbers of 

communities 
298 68 39 21 11 

 

Data regarding travel time were obtained via the google map Distance Matrix API 
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(https://developers.google.com/maps/documentation/distance-matrix/overview) using the Python 

scripting language based on the average distance of travel time between two communities. The 

choice of route along with its duration is based on the road network and average time-independent 

traffic conditions. The route that takes the shortest time was chosen. The optimal travel routes 

along with travel time were generated by setting driving as the travel mode.  

6.4.3 Implementation 

The proposed method is written in Python 3.10. The SMS-EMOA model is adopted from pymoo 

0.6.0 (Blank and Deb 2020), a python package for multi-objective optimization algorithms. Table 

6.4 contains a list of parameters used in the SMS-EMOA model. The algorithm terminates when 

there is no improvement (objective value changes less than 0.0025) over gs continuous generations, 

or when the maximum generation (gmax) is reached. A local laptop is used for the optimization with 

an Intel Core i5-10210U, Quad-Core, 1.6 GHz, Max Turbo @4.20 GHz. 16 GB RAM. 

Table 6.4 List of parameters in the SMS-EMOA model and their values 

Parameters Values used in the experiments 

Population size 

Crossover rate 

100 

0.5 

Crossover type Simulated Binary Crossover 

Mutation probability 0.9 

Mutation type Polynomial Mutation 

Max. generation (gmax) 200 

Termination criterion (gs) 20 

6.4.4 Results 

Two experiments were carried in this study. The first one is to examine three types of equity 
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evaluation methods, GINI, SD, and ROT, and compare their impact on optimization results. Details 

on the equity evaluation methods were presented in Section 6.3.3. In this experiment, four 

optimizations were carried out. The first one serves as a baseline that has only one optimization 

objective which is to minimize the NTD. The other three optimizations used NTD as the first 

optimization objective and three equity evaluation methods as the second objective, respectively. 

In each optimization, the top five results are used for comparison. In particular, we are interested 

in the number of test sites (NTS) chosen, the standard deviation of the test capacity distribution 

(TCD), and NTD. In this experiment, we assume that 1% of the population needs to be tested, and 

we have the capacity to perform 8800 tests (~1% of the population) every day. In the calculation 

of ROT, we used a threshold of 120 minutes of travel time. The results of the experiment can be 

found in Table 6.5. 

Table 6.5 Experiment 1: Comparisons of equity evaluation methods with a 

baseline and GINI, SD, ROT 

 Baseline GINI SD ROT 

Objective 1 

minimize 

testing 

days 

minimize 

testing days 

minimize 

testing days 

minimize 

testing days 

Objective 2 - 
minimize 

GINI 
minimize SD minimize ROT 

NTS 4 7.2 19.8 11.2 

TCD 0.102 0.094 0.075 0.091 

NTD 0.999 1.004 1.03 1.01 

 

The baseline optimization illustrated a conventional optimization that only focuses on efficiency. 

Compared to the baseline, we found that GINI achieved a similar NTD but improved the diversity 

of test capacity. By optimizing GINI, TCD decreased by 11% at a cost of 80% more test sites. SD 
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emphasizes diversifying test capacity. Optimizing SD results in a 31% lower TCD but 180% higher 

test site numbers when compared to the baseline. ROT reached a middle ground compared with 

the other two methods. ROT achieved a balance among NTS, TCD, and NTD.  

The second experiment considers system resilience and examines its impact on results. The method 

of resilience evaluation was discussed in Section 6.3.4. In this experiment, we compared cases, 

where system resilience is included in the optimization, with cases, where resilience of system is 

excluded. In the cases where one test site shuts down, the system’s NTD and equity will increase. 

However, a system with better resilience should expect a less amount of increase. In this 

experiment, we also assume that 1% of the population needs to be tested and the province has a 

capacity to perform 8800 tests (~1% of the population) every day. The results of the experiment 

can be found in Table 6.6. 

Table 6.6 Experiment 2: Consideration of system resilience in optimizing 

system equity 

  Equity NTD 

GINI without resilience 0.206 7.805 

GINI with resilience 0.159 1.84 

SD without resilience 0.569 29.6 

SD with resilience 0.595 1.92 

ROT without resilience 0.692 11.66 

ROT with resilience 0.462 1.89 

 

The results show that considering system resilience will dramatically improve the system's 

performance in the event that a test site shuts down. Under all three equity measurements, we 

found that NTD increased significantly when a shutdown happened. For example, when SD is 
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implemented, the NTD increased to 29.6 days, a 28-fold increase from the case without shutdowns. 

In comparison, when system resilience was considered in the optimizations, the NTD only 

increased marginally. On the other hand, the change in equity is less significant compared to NTD. 

In the case of GINI and ROT, better (smaller) equity values were still achieved if system resilience 

was considered. Note that the equity values from GINI, SD, and ROT cannot be directly compared 

as they are not on the same scale. 

6.4.5 Discussion  

In the case study, the importance of considering equity and system resilience in healthcare planning 

has been demonstrated. Among the three methods of evaluating equity, GINI was found to be more 

focused on efficiency. GINI used the least amount of additional resources to enhance equity. This 

result could make GINI more practical and easier to be adopted by decision-makers. This unique 

characteristic may be because GINI is focused on an equal distribution rather than an absolute 

value. For example, when applying GINI to travel time, a solution where most communities must 

drive a long time might seem adequate. By looking at the GINI alone, our study got a score of 

0.159, which means absolute equity according to the international standard (Shu and Xiong, 2018). 

However, the GINI score does not mean that no further effort is required to improve its equity.  

Besides, we found that SD is the most impactful evaluation method. SD and GINI are both widely 

used in measuring data spread. However, they have three key differences. First, SD does not 

consider weights such as population. Second, SD retains the scale of data, while GINI has no 

measurement unit. Third, SD judges statistical dispersion through different lenses. GINI reaches 

its maximum value for a non-negative dataset if the dataset contains one positive and the rest are 

zeros. SD reaches its maximum if half the data lives at the extreme maximum and the other half 
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registers at the extreme minimum. Those differences may contribute to the impact on optimization 

results and make SD potentially more focused on improving equity. 

The third method, ROT, is quite straightforward and was able to achieve a middle ground between 

GINI and SD. That makes ROT a convenient way to evaluate equity. ROT also takes the least 

computational resource among the three methods and might be suitable for larger-scale 

calculations. One drawbacks of ROT are that its value depends on a threshold. The threshold is set 

up by experience and should be adjusted case by case. This means that an expert may need to be 

consulted.  

The second experiment illustrated the importance of considering system resilience at the allocation 

stage. Optimizing objectives in the case of partial failure could help a system to recover under a 

minimal period. People in post-pandemic societies have a better understanding of how unexpected 

events can degrade system performance. Supply chain disruptions such as the 2021 Suez Canal 

obstruction (Gambrell, 2021) remind everyone of the importance of diverse critical resources. The 

resilience measurement in this study has improved our understanding of system resilience in 

resource allocation. 

6.5 Conclusion 

In this study, we investigated the resource allocation problem with consideration of efficiency, 

equity, and system resilience at the same time. An optimization problem model was developed to 

solve the problem. The effectiveness of the model was illustrated through a case study that 

optimized COVID-19 test sites in Saskatchewan, Canada. This study has made four contributions: 

(1) it has demonstrated the importance of considering system resilience in healthcare resource 
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allocation; (2) it has compared three methods to evaluate equity and provided insights based on 

the case study; (3) it has provided a model that determines healthcare facility locations and 

resources in each location at the same time; and (4) it has provided decision-makers a guide in 

planning critical healthcare resources such as COVID-19 test kits, intensive care unit beds, 

ventilators, and so on. 

There are several limitations to this study. First, only one site shutdown is considered when 

evaluating the system's resilience. In a more complicated region where more facilities are 

allocated, the shutdown of two or more facilities might need to be considered. Therefore, the 

resilience evaluation needs to be adapted accordingly. Second, equity is only demonstrated through 

spatial accessibility in this study. However, equity is multi-dimensional. In practice, regardless of 

the type of equity chosen, its performance needs to be further investigated through collaboration 

with local communities. Third, the cost of setting up facilities is not considered. In the case study, 

the cost of the test site is insignificant as it reuses existing facilities. For other applications, the 

facility cost should be considered as a constraint or another objective. 
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7.1 Conclusions 

This thesis was aimed to improve the process of HIS decision-making based on the advanced 

understanding of ontology modelling, system resiliency and social sustainability. In the current 

literature, “ontology”, “resilience” and “sustainability” are three buzzwords. However, their 

concepts lacked clarity, adversely affecting their development and applications. Thus, the main 

motivation of the study presented in this thesis was to thoroughly comprehend these concepts in 

order to develop a more solid theory. According to this thesis, all research objectives have been 

achieved. The conclusions pertain to these objectives can be drawn as follows: 

(1) Regarding Objective 1 (studying the theory of ontology in data and developing a deep 

model for constructing HIS): By clearly defining the scope and application of an ontology, 

a data model with rich semantics and simple data integration may be produced. 

(2) Regarding Objective 2 (advancing our understanding of healthcare system resiliency and 

social sustainability): Resiliency and sustainability are two closely related concepts. Any 

procedures or actions that enhance one concept should consider how they can affect the 

other. In addition, the recommended design principles can also considerably improve the 

resilience and sustainability of a healthcare system. 

Chapter 7 – 

Conclusions and future work 
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(3) Regarding Objective 3 (development of a methodology for scheduling with multiple 

objectives): A scheduling problem may be made more patient-accessible by carefully 

considering both efficiency and patients' experiences, as well as by using an innovative 

optimization technique. 

(4) Regarding Objective 4 (development of a methodology for resource allocation with 

multiple objectives): The simultaneous optimization of efficiency, sustainability, and 

resilience at the system design stage is made possible by a systematic evaluation method 

for all three criteria. This method also enables effective resource allocations and site 

selections for healthcare facilities. 

7.2 Contribution 

The contributions of the thesis can be summarized as follows: 

Scientifically, this thesis has expanded our scientific understanding of ontology and data modelling 

for HIS improvements, as well as our comprehension of the healthcare system's resilience and 

sustainability. 

Technologically and methodologically, the thesis has advanced the state of knowledge for system 

modelling and decision-making. This thesis takes a system perspective to study the properties of 

healthcare systems. Three ideas in this thesis can be generalized and applied to other properties of 

other systems, namely the ontology-based data modelling method, the multi-objective 

optimization models, and the algorithms for solving the models.  
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7.3 Limitations and Future Work 

Some further studies that may be needed to improve the thesis are given as follows: 

First, the ontology modelling tools developed are only for data integration at the conceptual level. 

To solve the practical problem that people face in the integration of data, an external-level 

application needs to be developed and demonstrated in a few case studies. The findings of the case 

studies would in turn help with the development of modelling tools at the conceptual level. 

Second, in a patient scheduling problem, patients’ and healthcare professionals’ delays, patients’ 

priorities due to their symptoms and deteriorations, patients’ healthcare preferences, and their 

changes of locations should all be considered to be more encompassing. Those considerations 

could be modelled either as additional optimization objectives or as constraints. They may cause 

some performance issues with the genetic algorithm adopted. Further investigation of the 

algorithm may therefore be required to improve its efficiency and effectiveness on complicated 

optimization problems. 

Third, in this study, equity was only shown to exist in a resource allocation dilemma through spatial 

accessibility. However, in reality, equity has many different aspects. It is important to take into 

account how each person prefers their healthcare in relation to their culture, social standing, and 

wealth. These factors depend on an extensive data collection and integration system, which echoes 

the requirement for a data integration application.  
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APPENDIX A: ONTOLOGY REASONING 

Ontology reasoning is a powerful technique for data integration, as it is supposed to infer new 

knowledge from existing ontologies as well as their data (both information and knowledge) 

sources. Yet, ontology reasoning still faces some challenges and has some limitations, especially 

when dealing with applications involving heterogeneous and dynamic data. In this appendix, 

ontology reasoning for data integration is explained with a close examination of its features and 

limitations, focusing on OWL as a standard language for representing ontologies (Grau et al., 

2008), and SWRL (Semantic Web Rule Language) as a language that allows the expression of 

rules (Horrocks et al., 2004).  

OWL constructs 

OWL is an ontology language that provides a rich set of constructs to define classes, properties, 

individuals, and their relationships. OWL is based on the RDF and extends the RDF Schema 

(RDFS) (Brickley et al., 1998) with more expressive features. OWL is designed to support the 

Semantic Web, which aims to make web resources more understandable and interoperable for 

humans and machines. 

OWL's main constructs can be divided into three categories: class expressions, property 

expressions, individual expressions. Class expressions are used to define complex classes of 

individuals based on logical conditions. Property expressions are used to define properties that 

relate individuals or data values. Individual expressions are used to define facts about the identity 

of individuals.  
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Some examples of class expressions are: 

• intersectionOf: defines a class as the intersection of two or more other classes. 

• unionOf: defines a class as the aggregation of two or more other classes. 

• complementOf: defines a class contains exactly those individuals that do not belong to 

another class. 

• oneOf: defines a class as an enumeration of specific individuals. 

• subClassOf: defines a class as a subclass of another class. 

• equivalentClass: defines two classes as equivalent. 

• disjointWith: defines two classes have no common individuals. 

Some examples of property expressions are: 

• subPropertyOf: defines a property as a sub-property of another property. 

• equivalentProperty: defines two properties as equivalent. 

• inverseOf: defines a property as the inverse of another property. 

• FunctionalProperty: defines a property as functional, meaning that an individual can have 

at most one value for that property. 

• TransitiveProperty: defines a property as transitive, meaning that if an individual x has that 

property with y, and y has that property with z, then x also has that property with z. 

Some examples of individual expressions are: 

• sameAs: defines an individual is the same as another individual. 

• differentFrom: defines an individual is different from another individual. 
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• AllDifferent: defines a list of individuals that are all different from each other. 

OWL has some limitations in terms of expressiveness and decidability. For example, OWL cannot 

express arbitrary cardinality constraints on properties, such as "every person has exactly two 

parents". OWL also cannot guarantee that reasoning over an ontology will always terminate and 

produce a correct answer. To address these limitations, OWL has different dialects or profiles that 

trade off expressiveness and decidability. For example, OWL Lite is less expressive but more 

decidable than OWL DL (Description Logic), which is less expressive but more decidable than 

OWL Full. 

OWL reasoning 

Common reasoning tasks with OWL include classifying individuals into classes, inferring their 

properties and checking their identity or equivalence. For example, if an OWL defines that a person 

is a sub-class of a mammal, and that John is an instance of a person, then a reasoner can infer that 

John is also an instance of a mammal. OWL reasoning can be applied on data integration in various 

scenarios, such as schema matching, query rewriting, data fusion, and data validation (Marchetti 

et al., 2008). Schema matching is the process of finding correspondences between the elements of 

different data sources based on their semantic similarity. Query rewriting is the process of 

reformulating a query over a global schema (which may be an ontology) into queries over local 

schemas of data sources. Data fusion is the process of combining data from multiple sources into 

a consistent and coherent representation. Data validation is the process of checking the consistency 

and quality of data against an ontology.  
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SWRL reasoning 

SWRL is a language that allows expressing rules that combine the expressive power of OWL with 

the procedural capabilities of Horn logic (Mcnulty, 1977). SWRL is closely related to OWL, as it 

uses the same syntax and vocabulary to represent classes, properties, individuals, and data types. 

In addition, SWRL uses variables to express more complex relationships and constraints that are 

not possible in OWL alone.  

The syntax of SWRL is based on the notation of first-order logic with variables, predicates, and 

logical connectives. A SWRL rule consists of an antecedent (or body) and a consequent (or head), 

separated by an implication sign (→). The antecedent and the consequent are conjunctions of 

atoms, which can be either class atoms, property atoms, data range atoms, built-in atoms, or 

same/different atoms. A class atom has the form C(x), where C is an OWL class and x is either a 

variable or an individual. A property atom has the form P(x,y), where P is an OWL property and x 

and y are either variables or individuals. A data range atom has the form D(x), where D is an OWL 

data range and x is either a variable or a literal. A built-in atom has the form op(x1,...,xn), where op 

is a predefined or user-defined operation and x1,...,xn are either variables or literals. For example, 

the following SWRL rule states that if a person works at a university and supervises a student, then 

that person is a professor of that student: 

worksAt(?x,?y) ^ University(?y) ^ supervises(?x,?z) ^ Student(?z) → professorOf(?x,?z) 

SWRL reasoning can be done by using a reasoner (reasoning engine) that supports SWRL rules, 

such as Bossam (Jang et al., 2004) and Pellet (Sirin et al., 2007). It is worth mentioning that SWRL 

reasoning differs from OWL reasoning in several aspects. First, SWRL reasoning can express more 
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complex and fine-grained knowledge than OWL reasoning and can capture domain-specific rules 

that are not easily modeled by OWL constructs. Second, SWRL reasoning is more computationally 

expensive than OWL reasoning and may not guarantee completeness or decidability of the 

inference process. Third, SWRL reasoning may introduce inconsistencies or conflicts with the 

OWL axioms, and therefore, expressions written with SWRL require careful design and validation. 

Context reasoning 

One challenge for OWL reasoning and SWRL reasoning is to cope with the dynamic and evolving 

nature of data sources (Halpin & Jayes, 2010). Data sources may provide different information 

depending on the context or situation of the query. For example, a person's location may vary 

depending on the time of day or the device used to access the data source. Therefore, context 

reasoning is used to handle temporal and contextual aspects of data sources. 

The idea of context reasoning (Wang et al., 2004) is developed from context-aware computing 

techniques. Context-aware computing is a field that studies how to adapt software systems to the 

changing environment and user preferences. Context can be defined as any information that can 

be used to characterize the situation of an entity (e.g., a person, a place, an object). Context 

reasoning focuses on how to infer implicit or high-level context from explicit or low-level context 

using ontologies and rules. For example, if an ontology defines that one is at home if one is within 

a certain distance from one’s home address, then a context reasoner can use one’s location to infer 

that if the person is at home. 

Context reasoning can enhance ontology reasoning for data integration by providing more relevant 

and accurate information for queries. For example, if a user wants to find nearby restaurants based 
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on their current location and preferences, then a context reasoner can filter and rank the results 

based on the distance, availability, and ratings of the restaurants. However, context reasoning meets 

some new challenges and complexities for ontology reasoning, such as how to model and represent 

the context in ontologies, how to deal with incomplete or imprecise context information, how to 

resolve conflicts or inconsistencies between different contexts or sources, and how to update 

context information in real time. It is noted that the definition of imprecise information can be 

found in Cai et al. (2017), where imprecise information can be vague information, uncertain 

information, and missing information. 
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