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Abstract

Time-Varying Little’s Law (TVLL) can be regarded as part of the theory of Infinite Servers (IS)

models, for the abstract system can be considered as a general IS model if waiting time is con-

sidered as service time. Moreover, the time-varying arrival rate does not affect the waiting time

distribution, when there are adequate time-varying servers in the system. In this study, we estimate

the average number of entities in the system over a sub-interval and the arrival rate function, and

apply TVLL combined with time-varying staffing to estimate the unknown mean wait times. When

the arrival rate function is approximated by a linear (quadratic) function, the average waiting time

satisfies a quadratic (cubic) equation. The estimation of average waiting time based on TVLL is a

positive real root of the average waiting time equation.

If, the arrival rate function is neither approximately linear nor approximately quadratic, it must

be approximated by a polynomial function of higher degree. In this study, we investigate systems

with arrival rate function of degree 3, and find the estimation of average waiting time which is the

root of a polynomial of degree 4.

Also, we study queues with time-varying arrival rate to obtain optimal visit time leading to

maximum satisfaction of patients in walk-in clinics. If there is adequate time-varying staffing,

then customers receive service upon arrival and waiting times tend to be approximately as equal as

the service times though the arrival rates are time-varying. However, in the systems with limited

servers, some customers must wait in the waiting room and when there is no room in the area,

the new arriving customers are refused. Rejection of customers may lead to their dissatisfaction.

If we decrease the average service time, less customers will be refused, but shorter service time

decreases happiness of admitted customers.

Another issue is the revenue of walk-in clinics. Walk-in clinics work on a fee-for-service

model, so they benefit from the number of patients they serve. As the number of patients increases,

more revenue is gained. Hence, it may be in interest of some walk-in clinics to reduce visit times
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to increase profit. As mentioned, short visit time sacrifices the quality of service and leads to the

dissatisfaction of patients. Patients want to be heard carefully and be asked directly why they have

come to the clinic. The problem gets worse in rush hours when the number of arrivals increases

but the number of servers could not be increased due to limitation in the number of doctors.

We obtain optimal value for visit time considering satisfaction of customers and revenue of

walk-in clinics simultaneously.

Keywords: Queueing System, Markov Chain, Queueing Theory, Little’s law (LL), Time-

Varying Little’s Law (TVLL), Time-Varying Arrival Rate
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1. Introduction

The vast majority of people have had the unpleasant experience of waiting in the long queues in

their lifetime. Not only customers but also business owners are influenced by long waiting times,

because long queues lead to undesirable experience which damages clients’ loyalty ([1], [2]). This

shows the importance of studying models and techniques to analyse queues and reduce the dura-

tion of waiting times. Queuing Theory, which is a tool for analysis of technical problems, deals

with waiting time. The applications of Queuing Theory are apparent in many fields such as manu-

facturing systems, computer and communication networks, transportation networks, service man-

agement, supply chain management, sharing economics, healthcare and so forth. Evidence shows

that the results obtained from studying queuing theory improve efficiency and profit significantly.

Hence, studying queuing is very important and practical.

1.1 Motivation

In comparison with research on the behavior of queues with constant rates, far less literature

exists on time dependent types of queues [3]. This is due to greater mathematical complexity of

time-varying rate problems. Moreover, many of the theoretical tools such as equilibrium probabil-

ities for Markov chains, matrix geometric solutions, and Laplace transforms are not available or

directly applicable for queues with time-varying rates. The results obtained from working in this

field can help to determine which mathematical tools are required to advance the theory of non-

stationary queues. Creating such a new theory provides new formulas and algorithms to employ

in the performance modelling of queuing systems especially in healthcare centers. In addition,

healthcare centers including walk-in clinics are complex systems due to time dependent behavior

of their queuing models. Studying queues with non-stationary parameters is very useful for en-

hancing the performance of walk-in clinics which have an incredible role in improving the health

of the community and have essential societal and economical benefits.
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1.2 Research framework

The main purpose in this research is to obtain optimum value for visit time in walk-in clinics

with time-varying arrival rate. First, we will discuss the different approximations for time-varying

arrival rates and waiting times. Then, according to the unique situation of each walk-in clinic in

the area under study, we define different scenarios. In these scenarios, we consider time-varying

arrival rates and limited number of servers and obtain optimum visit time with considering patients’

satisfaction and clinics’ revenue.

1.2.1 Time-varying arrival rate

A queueing system is a system with a service facility at which customers arrive for service. The

arrival rate is simply how many arrivals occur in a specified length of time interval. In reality, it

cannot be considered constant everywhere. For example in taxi stations, banks, call and healthcare

centers, the number of arrivals changes at different time intervals. The time dependent function of

arrival rate λ(s) could be approximated with different functions. In this research, we suppose three

polynomial functions to estimate arrival rates:

λ(s) ≈ λl(s) = a + bs 0 ≤ s ≤ t

λ(s) ≈ λq(s) = a + bs + cs2 0 ≤ s ≤ t

λ(s) ≈ λc(s) = a + bs + cs2 + ds3 0 ≤ s ≤ t.

In the next step, we obtain waiting time in an ideal system with time-varying staff where the

number of severs changes as the arrival rate changes. In addition, the performance of an ideal
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system is similar to IS system (Infinite Servers system). In the real world, however, it is not al-

ways possible to provide enough servers such that all arrivals receive servers upon arrival. In this

research, queuing systems with limited number of service providers will be investigated.

1.2.2 Service time in walk-in clinics

Some walk-in clinics accept all patients because of their unlimited capacity, while others have

to reject some patients due to their capacitated waiting room. Apart from this, some clinics act

in a monopoly condition, whereas others serve the patients in an oligopoly condition. So, we

should separate clinics based on their individual capacity and and market structures. We define

four scenarios:

• Scenario 1 (Model UM): an Uncapacitated walk-in clinic in a Monopolistic market, where

there are no other walk-in clinics in the area. The model is named Model UM, where U and

M show the Uncapacitated capacity and Monopolistic position of the clinic in the region,

respectively.

• Scenario 2 (Model CM): a Capacitated walk-in clinic where a certain number of patients can

be served. In this scenario, the clinic operates in a Monopolistic market.

• Scenario 3 (Model UO): This scenario considers an Uncapacitated walk-in clinic in an Oligopoly

market. In other words, there are several competitors in the vicinity.

• Scenario 4 (Model CO): In this model, a Capacitated walk-in clinic is considered in an area

in which there are some other walk-in clinics. The model is called CO to describe the Unca-

pacitated capacity and Oligopolistic position of the clinic in the region.

Then, optimum visit time is obtained based on satisfaction of patients and revenue in each

scenario.
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1.3 Thesis organization

This dissertation comprises seven chapters as listed below:

• Chapter 1 investigates the reasons motivating our work. Also, it contains the research frame-

work to provide a clear idea what exactly the problem is and what is done about it.

• Chapter 2 is a concise overview of research that has been done on queues with time-varying

arrival rates, largely focusing on healthcare centers. This brief overview shows the gaps and

areas needing further study.

• Chapter 3 provides fundamentals of queuing modelling and gives an introduction to non-

homogeneous Poisson processes (NHPPs) which are widely used to model time-dependent

queues in a multitude of stochastic models. In this chapter, statistical analysis with time-

varying Little’s Law (TVLL) will be reviewed to estimate waiting time in a time-varying

staffing system. Also, linear and quadratic approximation of arrival rates will be described

and a new approximation of arrival rates in the form of cubic polynomial function will be

introduced.

• Chapter 4 introduces a new version of Model UM with a limited number of servers and in-

vestigates how to find the optimum value of service time maximizing satisfaction of patients.

In this chapter, Model CM is explained in detail for multi-server queues and a new revenue

function ? is introduced which considers patients’ satisfaction and clinics’ profit simultane-

ously.

• Chapter 5 studies Model UO and Model CO. Satisfaction of patients and revenue in an

oligopoly situation will be discussed.

• Chapter 6 discusses the implementation of the different Models including UM, CM, UO, and

CO. Since the closed-form solution of the patient satisfaction maximization problem could
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not be found, numerical example would be defined. Also, sensitivity to different parameters

will be analyzed.

• In chapter 7, we summarize the main results of the research and list potential future research

directions.
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2. Literature review

This chapter provides a thorough review of the researchers’ work on queues with time-varying

arrival rates and service time in healthcare organizations. Since different concepts and subjects will

be reviewed, the literature review chapter is divided into some sub-sections, each dedicated to a

specific subject.

2.1 Queues with time-varying arrival

The study of queues with time-varying rates started in mid-twentieth century. A remarkable

early work has been done by E Brockmeyer et al. [4]. Two other early works have been done by

Rothkopf and Oren [5] and Newell [6] that inspired the Messey’s Ph.D. thesis [7] in non-stationary

queues, under the direction of Joseph B. Keller.

In recent years, studying these types of queues has increased significantly because parame-

ters are non-stationary in real world and for modeling queues in reality, we need to understand

the behavior of non-stationary queues. Most research on time-varying arrival queues has focused

on arrival process models and time-varying Little’s Law (TVLL). In this section, we will review

literature on arrival process models and TVLL.

2.1.1 Arrival process models

When building stochastic models for enhancing the performance of service systems, it is impor-

tant to have an appropriate arrival process model. For modeling queuing systems, usually station-

ary (homogeneous) Poisson arrivals are assumed. However, development of new technologies and

appearance of new services have led to new traffic models with non-stationary parameters. In addi-

tion, the classical Poisson process traffic model could not be applied when the arrival rate changes

considerably over time intervals [8].
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The natural arrival process model when there is a time-varying arrival rate is a non-homogeneous

Poisson process (NHPP). Ways to test and model non-Poisson and non-stationary arrival processes

have been studied in Massey and Whitt [9], Gebhardt and Nelson [10], Nelson and Gerhardt [11],

and Zhang et al [12]. In addition, Massey and Whitt [9] made a connection between laws of large

numbers and central limit theorems for non-stationary counting processes to corresponding lim-

its for their inverse processes. Then, these results were applied to develop approximations for

queues that are unstable in a non-stationary manner. For modeling, they constructed non-stationary

point processes as random time-transformations of familiar point processes, like renewal processes

and stationary point processes. Gebhardt and Nelson [10] extended techniques that transform a

stationary Poisson arrival process into a non-stationary Poisson arrival process (NSPP) by trans-

forming a stationary renewal process into a non-stationary, non-Poisson (NSNP) arrival process.

They illustrated that the desired arrival rate is obtained and that when the renewal base process

is either more or less variable than Poisson, then the NSNP process is also more or less variable,

respectively, than an NSPP. They also suggested methods for specifying the renewal base process

when presented properties of, or data from, an arrival process and showed them by modeling real

arrival data. In 2011, Nelson and Gerhardt [11] introduced another technique to model and simu-

late non-stationary, non-renewal arrival processes depending merely on the analyst setting intuitive

and easily controllable parameters which was suitable for assessing the effect of non-stationary,

non-exponential, and non-independent arrivals on simulated performance when they are suspected.

Zhang et al. [12] identified a significant factor characterizing the stochastic variability of the ar-

rivals to their averages which was referred as the scaling parameter having a profound impact on

the design of staffing rules. To capture the scaling parameter a new model was proposed.

Ways to fit or approximate the arrival rate function were studied in Massey et al. [13] and

Massey and Whitt [14]. Furthermore, Massey et al. [13] estimated the parameters of a non-

homogeneous Poisson process with linear rate over a finite interval. Investigated ways were ordi-

nary least squares (OLS), iterative weighted least squares (IWLS) and maximum likelihood (ML).

Also, statistical tests to determine whether the linear Poisson model is appropriate were developed.
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Massey and Whitt [14] considered Mt/G/s/0 model with a non-homogeneous Poisson arrival pro-

cess. They proposed a specific approximation based on the heavy-traffic peakedness formula.

2.1.2 Little’s Law and time-varying version

In a paper published in 1954 [15], Little’s Law was assumed true and used without proof [16].

In 1961, John D. C. Little [17] published a paper in Operations Research to proof the law. Over the

years, this formula has become widely known as Little’s Law. Due to its theoretical and practical

importance, this formula is now very well known in Queuing Theory.

Whitt [18] stated that there is greater unity in the overall theory than had been previously re-

alized. He emphasized the fundamental Little’s Law is intimately connected to the infinite server

(IS) queuing model. In addition, the IS model with a time-varying arrival rate is in turn connected

to the time-varying Little’s law (TVLL) as discussed in Bertsimas and Mourtzinou [19], Fralix and

Riano [20], and Kim and Whitt [21]. Bertsimas and Mourtzinou [19] established a transient Little’s

law at the same level of generality as the classical stationary version of Little’s law. Then, they

obtained transient distributional laws for overtaking free non-stationary systems. These laws relate

the distributions of the number of customers in the system and the delay at time t and constitute

a complete set of equations that describes the dynamics of overtake free non-stationary queuing

systems. Moreover, they extended these laws to multi-class systems as well. Finally, to demon-

strate the power of the transient laws, they applied them to a variety of queuing systems: Infinite

and single server systems with non-stationary Poisson arrivals and general non-stationary services,

multi-class single server systems with general non-stationary arrivals and services, and multi-server

systems with renewal arrivals and deterministic services, operating in the transient domain. For all

specific systems they related the performance measures using the established set of laws and ob-

tained a complete description of the system in the sense that they have a sufficient number of

integral equations and unknowns. They then solved the set of integral equations using asymptotic
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expansions and exact numerical techniques. Finally, they reported computational results from their

suggested methods. Fralix and Riano [20] took a new look at transient or time-dependent Little

laws for queueing systems. Through the use of Palm measures, they represented that previous laws

(see Bertsimas and Mourtzinou [19]) can be generalized. Furthermore, within this framework, a

new law can be derived as well, which gives higher-moment expressions for very general types of

queueing system; in particular, the laws hold for systems that allow customers to overtake one an-

other. What is especially novel about their approach is the use of Palm measures that are induced by

non-stationary point processes, as these measures are not commonly found in the queuing literature.

This new higher-moment law is then used to provide expressions for all moments of the number of

customers in the system in an M/G/1 preemptive last-come-first-served queue at a time t > 0, for

any initial condition and any of the more famous preemptive disciplines (i.e. preemptive-resume,

and preemptive-repeat with and without resampling) that are analogous to the special cases found

in Abate and Whitt [22], [23]. These expressions are then used to derive a nice structural form

for all of the time-dependent moments of a regulated Brownian motion (see Abate and Whitt [24],

[25]). Kim and Whitt [21] stated that TVLL can be regarded as part of the theory for IS models,

because the abstract system can be regarded as a general IS model, if we simply call the waiting

time as the service time in the IS model. They concentrated on the application of TVLL to estimate

waiting times by fitting a linear and quadratic function to arrival data. They also showed that the

bias in the simple indirect estimator can be estimated and reduced by applying the time-varying

Little’s law (TVLL).

Little’s law can be important for estimation, as shown in Glynn and Whitt [26], Lovejoy and

Desmond [27], Kim and Whitt [28]. Moreover, for a large class of queuing systems, Little’s law

provides a variety of statistical estimators for the long-run time-average queue length and the long-

run customer-average waiting time. Glynn and Whitt [26] applied central limit theorem versions

of Little’s law to investigate the asymptotic efficiency of these estimators. It was shown that an

indirect estimator for time-average queue length using the natural estimator for waiting time plus
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the known arrival rate is more efficient than a direct estimator for time-average queue length, pro-

vided that the inter-arrival and waiting times are negatively correlated. They also introduced a

general framework for indirect estimation which can be applied to other problems besides funda-

mental little’s law. They showed that the issue of indirect-versus-direct estimation is related to

estimation using nonlinear control variables and under mild regularity conditions, that any nonlin-

ear control-variable scheme is equivalent to a linear control-variable scheme from the point of view

of asymptotic efficiency. In addition, they indicated that asymptotic bias is typically asymptotically

negligible compared to asymptotic efficiency. Lovejoy and Desmond [27] used Little’s Law for

estimating appropriate size for the observation unit in health care organizations and a natural inter-

nal consistency check on data. Furthermore, they stated expanding hospital capacity by developing

an observation would be a significant strategy in congested hospitals. Understanding the princi-

ples for evaluating the potential impact and appropriate sizing of an observation unit is important.

Lovejoy and Desmond [27] contrasted two approaches to determining observation unit sizing and

profitability, real options, and a flow analysis based on Little’s Law.

Applications of fundamental Little’s Law with actual system data involve measurements over

a finite-time interval. Kim and Whitt [28] investigated how estimates of number of customers in

the system and arrival rate can be used to estimate waiting time when the waiting times are not

observed. They advocated estimating confidence intervals. Given a single sample-path segment,

they suggest estimating confidence intervals using the method of batch means, as is often done in

stochastic simulation output analysis. Finally, they indicated how to estimate and remove bias due

to interval edge effects when the system does not begin and end empty.

A sample-path version of a periodic Little’s law has recently been established in Whitt and

Zhang [29], which is motivated by the data analysis of an Israeli emergency department in Whitt

and Zhang [30].
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2.2 Healthcare

High-quality health plays a key role in human happiness and well-being contributing consider-

ably to prosperity, wealth and even economic progress, as healthy populations are more productive,

save more and live longer. This shows the importance of studying healthcare centers which are

complex systems with essential societal benefits and huge mounting costs. Decision-makers should

concentrate on improving healthcare quality even in ever-increasing pressures to make sure all peo-

ple get the healthcare services they need. On the other hand, if they concentrate on improving

healthcare, they will face challenges such as rising costs, lower reimbursements, and new regu-

latory demands. By studying and modeling processes in healthcare centers, we can deliver great

insight for decision-makers to make the best decision considering quality of service and revenue

simultaneously.

2.2.1 Healthcare organizations and time-varying arrival rate

Typically, healthcare centers have strongly time-varying arrivals and generally a non-homogeneous

Poisson processes (NHPP) model is considered for such arrival process. However, this model

should be tested by applying appropriate statistical tests to arrival data. Assuming that the NHPP

has a rate that can be regarded as approximately piecewise-constant, a Kolmogorov–Smirnov (KS)

statistical test of a Poisson process (PP) can be applied to test for a NHPP by combining data from

separate sub-intervals, exploiting the classical conditional-uniform property. Kim and Whitt [31]

applied KS tests to hospital emergency department arrival data and showed that they are consis-

tent with the NHPP property, but only if that data is analyzed carefully. Initial testing rejected the

NHPP null hypothesis because it failed to account for three common features of arrival data: (i)

data rounding, (ii) choosing sub-intervals over which the rate varies too much, and (iii) over dis-

persion caused by combining data from fixed hours on a fixed day of the week over multiple weeks

that do not have the same arrival rate. Kim and Whitt [31] investigated how to address each of these
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three problems.

Kim et al. [32] also applied statistical tests to arrival data from an endocrinology clinic, where

arrivals are by appointment. The clinic data were also consistent with an NHPP within each day, but

exhibit under-dispersion over multiple days. Kim et al. [32] introduced a new Gaussian-uniform

arrival process model, with Gaussian daily totals and uniformly distributed arrivals given the totals.

In 2018, Kim et al. [33] developed a high-fidelity simulation model of the patient arrival pro-

cess to an endocrinology clinic by carefully examining appointment and arrival data from that

clinic. The used data included the time that the appointment was originally made as well as the

time that the patient actually arrived, as well as if the patient did not arrive at all, in addition to the

scheduled appointment time. They take a data-based approach, specifying the schedule for each

day by its value at the end of the previous day. This data-based approach shows that the schedule

for a given day evolves randomly over time. Indeed, in addition to three recognized sources of vari-

ability—(i) no-shows, (ii) extra unscheduled arrivals, and (iii) deviations in the actual arrival times

from the scheduled times—they found that the primary source of variability in the arrival process

is variability in the daily schedule itself. Even though service systems with arrivals by appointment

can differ in many ways, their data-based approach to modeling the clinic arrival process was a

guideline or template for constructing high-fidelity simulation models for other arrival processes

generated by appointments.

Yom-Tov and Mandelbaum [34] analyzed a queueing model that is named Erlang-R, where

the “R” stands for reentrant customers. Erlang-R accommodates customers who return to service

several times during their sojourn within the system, and its modeling power is most pronounced in

time-varying environments. Indeed, it was motivated by healthcare systems, in which offered-loads

vary over time and patients often go through a repetitive service process. Erlang-R helps answer

questions such as how many servers (physicians/nurses) are required to achieve predetermined

service levels. Formally, it is merely a two-station open queuing network, which, in a steady state,

evolves like an Erlang-C M/M/k model. In time-varying environments, on the other hand, the

situation differs: in these systems, one must account for the reentrant nature of service to avoid
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excessive staffing costs or undesirable service levels. Yom-Tov and Mandelbaum [34] validated

Erlang-R against an emergency ward (EW) operating under normal conditions as well as during

a mass casualty event (MCE). In both scenarios, they applied time-varying fluid and diffusion

approximations: the EW is critically loaded and the MCE is overloaded. In particular, for the EW,

a time-varying square-root staffing policy was proposed, based on the modified offered-load, which

is proved to perform well over small-to-large systems.

A queuing-network view of patient flow in healthcare centers with non-stationary parameters

is also very important for improving the performance of healthcare organizations. Armony et al.

[35] explored patient flow data through the lens of a queuing scientist. The means is exploratory

data analysis (EDA) in a large Israeli hospital, which reveals important features that are not readily

explainable by existing models. Jacobson et al. [36] worked on allocation of scarce healthcare re-

sources to improve patient flow, while minimizing health care delivery costs and increasing patient

satisfaction. They suggested discrete-event simulation which is a popular and effective decision-

making tool for optimal allocation. Moreover, combined optimization and simulation tools allow

decision-makers to quickly determine optimal system configurations, even for complex integrated

facilities. They provide an overview of discrete-event simulation modeling applications to health

care clinics and integrated health care systems (e.g. hospitals, outpatient clinics, emergency depart-

ments, and pharmacies) over the past forty years.

Shi et al. [37] studied operations in the inpatient wards and their interface with the ED. Their

main focus was on understanding the effect of inpatient discharge policies and other operational

policies on the time-of-day waiting time performance, such as the fraction of patients waiting longer

than six hours in the ED before being admitted. They proposed a novel stochastic processing

network with the following characteristics to model inpatient operations:

• A patient’s service time in the inpatient wards depends on that patient’s admission and dis-

charge times and length of stay. The service times capture a two-time-scale phenomenon and

are not independent and identically distributed.

• Pre- and post-allocation delays model the extra amount of waiting caused by secondary bot-
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tlenecks other than bed unavailability, such as nurse shortage

• Patients waiting for a bed can overflow to a non primary ward when the waiting time reaches

a threshold, where the threshold is time dependent

They showed, via simulation studies, that their model is able to capture the inpatient flow dynam-

ics at hourly resolution and can evaluate the impact of operational policies on both the daily and

time-of-day waiting time performance. In particular, their model predicts that implementing a hy-

pothetical policy can eliminate excessive waiting for those patients who request beds in mornings.

This policy incorporated the following components: a discharge distribution with the first discharge

peak between 8 a.m. and 9 a.m. and 26% of patients discharging before noon, and constant-mean

allocation delays throughout the day. The insights gained from their model can help hospital man-

agers to choose among different policies to implement depending on the choice of objective, such

as to reduce the peak waiting in the morning or to reduce daily waiting time statistics.

2.2.2 Service time in healthcare centers

Visit time plays a key role in satisfaction of patients. This fact has been investigated by two

groups of researchers.

First group , including Fenton et al. [38], Schwartz et al. [39], and Gross et al. [40], considered

visit time directly in their surveys. In addition, Fenton et al. [38] assumed visit time as one of the

four factors pertaining to physician communication. Schwartz et al. [39] stated a high score to the

time, service providers (doctors and nurses) allocate to them to hear their problem. Gross et al.

[40] got a result that visit time is a significant factor in patient satisfaction.

Second group, Boudreaux and O’Hea [41], Boudreaux et al . [42], Jackson at el. [43], assumed

visit time indirectly in their surveys. They recognized mutual communication of staff, specially

the doctors, as one of the most critical factors to evaluate patient satisfaction. Boudreaux and

O’Hea [41] cited interpersonal interactions with the doctor as the most important factor in patient

satisfaction. Interpersonal communication represents physician’s manner and the amount, quality
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and understand-ability of information transferred by the doctor to the patient. In another survey,

Boudreaux et al. [42] set a list of significant factors for patient satisfaction including

• how well the doctor explains the plan of care,

• shows interest in patients concerns,

• conveys information, and

• guides the patient for homecare.

Jackson et al. [43] named the patient-doctor communication, including the information conveyed,

as one of the factors in post-visit patient satisfaction. In spite of the fact that this group of researches

do not directly consider visit time as a patient satisfaction factor, they consider time-consuming

actions such as amount of information conveyed to the patients as important drivers of patient

satisfaction. Hence, it can be claimed that visit time is a significant patients’ satisfaction factor,

even though it is considered indirectly.

Despite the importance of visit time in patient satisfaction, it may be sacrificed in walk-in

clinics to gain more revenue. Furthermore, walk-in clinics benefit from the number of patients they

serve and more admitted patients will result in increase in revenue. It would be better strategy to

reduce visit time to reject less patients. However, in this situation we are witnessing a gap between

what patients expect and what they receive. For this matter, Mostafa and Hamed [44] studied

a walk-in clinic as a queuing system with assuming exponential distributions for time-between-

arrival and service time, resulting in M/M/1 system. They concluded, government intervention

and a regulation in the form of minimum visit time would be an effective way to increase patient

satisfaction.

2.3 Research gaps

The research gaps that motivated this research are divided into three categories:
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• Sometimes the arrival rate function is neither approximately linear nor approximately quadratic.

Its behaviour is like a cubic function. In this case, we should use a polynomial function of

degree 3 to approximate the arrival rate. To the best of the author’s knowledge, a polynomial

function of degree 3 has not been considered to approximate the arrival rate in a walk-in

clinic.

• Long visit time leads to overcrowding in the uncapacitated clinics. So far, overcrowding has

not been considered as an issue in walk in clinics with infinite capacity.

• Long visit time is also a problem in the capacitated clinics. Because if a clinic spends a long

time on admitted patients, the departure rate would be slow, and due to not having enough

space in the waiting room, the clinic has to reject new arriving patients. Any rejection means

losing the revenue that could be obtained from that patient. This situation becomes more

serious in rush hours. Since a walk-in clinic is established for business purposes, many ca-

pacitated clinics tend to allocate minimum visit time especially in peak hours. The suggested

methods to solve this problem for protecting patients’ rights are bound to government’s in-

tervention. However, incentive ways of prompting clinics to maintain the quality of service

even in rush hours would be more efficient.

2.4 Contribution

This research offers a new analytical and methodological approach to fill the mentioned gaps:

• A new approximation in the form of polynomial function of degree 3 will be suggested to

estimate arrival rates. The parameters of the suggested function are approximated by using

ordinary least squares (OLS) method. Then waiting time in an ideal system with a cubic

time-varying arrival rate will be estimated.

• Many researchers have considered the M/M/k for walk-in clinics, while the model Mt/M/k
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would be more appropriate in reality. Such model with linear, quadratic and cubic polynomial

functions approximating the arrival rates will be considered for walk-in clinics.

• Overcrowding will be considered as the negative factor influencing patients’ satisfaction in

unlimited capacity clinics. With considering this factor, the optimum value maximizing pa-

tients’ satisfaction is obtained by using numerical methods.

• Since capacitated walk-in clinics benefit from the number of patients they admit, it is in their

best interest to allocate minimum visit times to acquire maximum revenue. Hence, quality of

service may be sacrificed to obtain more revenue. In this research a new method is suggested

which solves the problem by giving funds based on the performance of walk-in clinics. The

method of rewarding increases patients’ satisfaction and clinics’ profit simultaneously.
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3. Queuing theory with time-varying arrival rate

In this section, first a brief look will be taken into the formulation of queuing theory to provide

the reader with enough background to properly model a queuing system. Then, the basic queuing

model will be defined, and notations, queuing disciplines, birth-death processes, and Little’s queu-

ing formula will be discussed. Finally, queues with time-dependent parameters and estimation of

waiting time will be reviewed.

3.1 Stochastic processes

To begin understanding queues, the readers must have some knowledge of probability theory. In

particular, Markov chains, the exponential and Poisson probability distributions will be reviewed.

3.1.1 Markov chains

In probability theory and statistics, Markov chains are a common way to model random pro-

cesses. They have been used in many different domains, ranging from text generation to financial

modeling. A Markov chain is a mathematical system experiencing transitions from one state to

another according to certain probabilistic rules. It is a stochastic process, but what differentiates

a Markov chain from a general stochastic process is Its “memory-less” property. Regardless of

how the process arrived at its present state, the possible future states are fixed. In other words, the

probability of transitioning to any particular state is dependent only on the current state. Consider

a sequence X0, X1, ... of random variables satisfying the rule of conditional independence. It is a

Markov chain if for any positive integer n and possible states i0, i1, ..., in of the random variables, it

satisfies:

P(Xn = in|X0 = i0, X1 = i1, ..., Xn−1 = in−1) = P(Xn = in|Xn−1 = in−1).
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3.1.2 The exponential distribution

A continuous random variable X is said to have an exponential distribution with parameter λ if

its PDF is given by

fX(x) =


λe−λx x > 0

0 otherwise

It is shown by:

X ∼ Exp(
1
λ

).

If X is a random variable that represents inter-arrival times with the exponential distribution,

then P(X ≤ x) = 1 − e−λx. The most important property of the exponential distribution is its

memory-less property. This can be formally stated for all non-negative values of t and h as follows:

P(X > t + h|A ≥ t) = P(X > h).

Due to having the no-memory property, the distribution lends itself well to modeling customer

inter-arrival times or service times. The no-memory property suggests that the time until the next

arrival will never depend on how much time has already passed. This makes intuitive sense for

a model where customer arrivals are being measuring, because the customers’ actions are clearly

independent of one another.

3.1.3 The Poisson process

The Poisson process is the canonical traffic process model. In addition, the Poisson distribution

is used to determine the probability of a certain number of arrivals occurring in a given time period.

For instance, a call center receives an average of 60 calls per hour. The calls are independent which

means receiving one does not affect the probability of next call. The number of calls received

during any minute has a Poisson probability distribution: the most likely numbers are 0,1 and 2,
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while there is a very small probability it could be 7.

The Poisson distribution with parameter λ is given by

fX(x) =


(λ)xe−λ

x! x = 0, 1, 2, ...

0 otherwise

where x is the number of arrivals. A Poisson random variable is represented by:

X ∼ Po(λ).

The relationship between Poisson and exponential distribution

It is useful to note the exponential distribution’s relation to the Poisson distribution. If X shows

the number of events which are likely to occur in the interval of time [0,T ], and T represents the

expected time for the next event, then:

X ∼ Po(λ)⇒ T ∼ Exp(
1
λ

).

In addition, in a Poisson process, if events accrue on average at the rate λ per unit of time, then

there will be on average λt occurrence per t units of time. The Poisson distribution describing this

process is

P(x) =
(λt)xe−λt

x!

where P(x = 0) = e−λt is the probability of no occurrences in t units of time. Also, P(x = 0) =

e−λt shows the probability that the time, T , to the first occurrence is greater than t:

P(T > t) = P(x = 0|µ = λt) = e−λt
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In contrast, the probability that an event does occur during t units of time is shown by

P(T ≤ t) = 1 − P(x = 0|µ = λt) = 1 − e−λt

As shown, this is the cumulative exponential distribution. If it is differentiated with respect to

t, produces the probability density function of the exponential distribution

fT (t) = λe−λt

3.2 Queuing modelling fundamentals

This section explains queuing modelling fundamentals in this section. The six fundamental

elements are:

• The arrival process,

• The service process,

• The number of servers,

• The queuing discipline,

• The queue capacity, and

• The population.

First, each element will be explained and then Kendall’s notation, which is the standard system

used to describe and classify a queuing model, will be introduced.

3.2.1 Arrival process

Arrival represents the way customers enter the system. In usual queuing situations, the process

of arrival in the system is stochastic because at a given period customers arrive randomly. The
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arrival of one customer is also independent of arrival of another one. In the fallowing, a call center

with made up data is considered to clarify the process of calculating the expected arrival rate.

Let us to consider a call center and observe the number of calls received over a 24-hours period.

During 24 hours of observational survey, a period, for example 10 minutes, should be defined for

one slot of observation. Then, an observation line far behind the ordinary waiting line to count the

number of new arriving calls within 10 minutes observation should be set. Table 3.1 presents data

taken from the observation of a call center within a 24-hour interval.

Table 3.1: Time and number of arrival

Time Number of arrival

00:00-00:10 1

00:10-00:20 3

... ...

23:40-23:50 2

23:50-00:00 0

Total 544

Using the number of arrivals, arrival distribution can be drawn. Arrival distribution shows how

many times a certain number of customers arrive within 10 minutes are observed. Table 3.2 shows

arrivals in a call center.

Table 3.2: Arrivals in a call center

Number of arrivals Count Relative frequency

0 260 48%

1 186 34%

2 75 14%

3 18 3%

4 5 1%

Total 544 100%
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The arrival rate in that call center is computed as follows:

λ = 0 ∗ 48% + 1 ∗ 34% + 2 ∗ 14% + 3 ∗ 3% + 4 ∗ 1% = 0.75,

or 0.75 call is expected per 10 minutes. The most common type of arrival distribution in a queuing

system follow Poisson process. As discussed, the Poisson distribution with parameter λ is given by

P(n) =
λne−λ

n!
, n = 0, 1, 2, ....

Table 3.3 shows the probability based on Poisson formula:

Table 3.3: Poisson distribution of arrivals

Number of arrivals, n Poisson probability P(n) with λ = 0.75

0 47.24%

1 35.43%

2 13.29%

3 3.32%

4 0.62%

5 0r more 0.1%

As shown in Tables 3.2 and 3.3, probability of Poisson distribution and relative frequency of

observations are almost similar. If ti is defined as the time when the ith customer arrives, then

Ti = ti+1 − ti would be the ith interarrival time. It is usually assumed that all Ti’s are independent,

continuous and random variables. As discussed in section 3.1.3, if the number of arrival in a

given period of time occurs randomly and independently from other arrivals and follows a Poison

distribution with mean λ, then the inter-arrival time distribution follows an exponential probability

distribution with mean
1
λ

.
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3.2.2 Service process

To obtain distribution of service times, first data for each server over a given period of obser-

vation time is collected. Then, the time at which a customer begins to be served and the time that

s/he has been served and left the line is recorded.

Table 3.4: Frequency of service times

service time Count Relative frequency Cumulative frequency

0.5 261 48% 48%

1 129 24% 72%

1.5 75 14% 86%

2 35 6.5% 92.5%

2.5 17 3% 95.5%

3 15 2.5% 98%

3.5 5 1% 99%

4 3 0.5% 99.5%

4.5 0 0% 99.5%

5 2 0.3% 99.8%

5.5 1 0.1% 99.9%

6 0 0.0% 99.9%

6.5 1 0.1% 100%

Total 544 100%

Table 3.4 shows the observed data for frequency of service times in a call center. To obtain

service time, arriving and departure times are calculated. In addition, consider the starting time

to serve a customer is 08:05:35 and the completion time is 08:07:06. Therefore, the service time

shown by tservice is 01:31 (Minute: Second).
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Data are collected and observed to obtain the average service time E[tservice]. Then the service

rate which is equal to

µ =
1

E[tservice]
(3.1)

is obtained. Service rate represents the average number of customers being served per unit of

time. For instance, if the average service time is

E[tservice] = 1.08,

then the average number of customers being served per minute will be

µ =
1

1.08
= 0.926.

When the the results shown in Table 3.4 is compared to a theoretical distribution, surprisingly

it is found that cumulative distribution is close to the cumulative exponential distribution. Hence,

the probability that the service time is less than or equal to a time length x is given by

P(tservice < x) = 1 − e−µx.

A vast majority of service distributions in a queuing system follow exponential process. Table

3.5 represents similarity of theoretical distribution to the observed distribution.
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Table 3.5: Exponential distribution of service times

service time Cumulative frequency Theoretical cumulative distribution

0.5 48% 41.7%

1 72% 66.01%

1.5 86% 80.18%

2 92.5% 88.44%

2.5 95.5% 93.26%

3 98% 96.07%

3.5 99% 97.71%

4 99.5% 98.66%

4.5 99.5% 99.22%

5 99.8% 99.55%

5.5 99.9% 99.74%

6 99.9% 99.85%

6.5 100% 99.91%

Total 100% 99.91%

3.2.3 The number of servers

Idle time in queuing systems occurs whenever a server is not busy. A server being in such state

is referred to as an available (free) server. It is common to assume that an available server is willing

and able to start serving whenever there is a demand for service. Generally, a system has finite

number of servers. If a new customer arrives while all servers are busy, the customer has to wait in

queue for the next available server.

3.2.4 The queuing discipline

The method in which arrivals in a queue get processed is known as the queuing discipline. The

discipline determines the rule to select the next customer. It is easy for one to think of all queues
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operating like a grocery checkout line. When an arrival occurs, it is added to the end of the queue

and service is not performed on it until all arrivals, that came before it, are served in the order they

arrived. Although this a very common method for queues to be handled, it is far from the only way.

This particular example outlines a First-Come-First-Serve discipline. However, different types of

laws are used in different situation. The most commonly used laws are:

• FIFO - First In First Out: who comes earlier leaves earlier, FCFS - First Come First Served

• LIFO - Last Come First Out: who comes later leaves earlier, LCFS - Last Come First Served

• RS - Random Service: the customer is selected randomly, SIRO - Service In Random Order

• Priority without Preemption or Head of Line (HOL), Priority with Preemption, Resume or

Repeat

• PS - Processor Sharing.

3.2.5 The queue capacity

The capacity of a queue is the number of elements the queue can hold. In other words, a queuing

system has a space in which a limited number of customers can be accepted. Therefore, when the

space is full, no customer is accepted. However, there are some systems which don’t have any

threshold for admitting customers. In this case, the capacity is considered to be infinite.

3.2.6 The calling population

The population of potential customers is named the calling population which can be finite or

infinite. The key difference between finite and infinite population model is how the arrival rate is

defined:

• Finite population model: if arrival rate depends on the number of customers being served and

waiting
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• Infinite population model: if arrival rate is not affected by the number of customers being

served and waiting

The figure below shows a queuing system:

Figure 3.1: Queuing System

3.2.7 Kendall’s notation

Since describing all characteristics of a queue inevitably becomes very wordy, a much simpler

notation, known as Kendall-Lee notation, is used to describe a system. Kendall-Lee notation gives

us six abbreviations for characteristics listed in order separated by slashes:

A/B/m/K/n/D

where the notations are defined as bellows:

A: distribution function of the inter-arrival times,

B: distribution function of the service times,

m: number of servers,
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K: capacity of the system, the maximum number of customers in the system including the one

being serviced,

n: population size, number of sources of customers,

D: service discipline.

Exponentially distributed random variables are notated by M, meaning Markovian or memory-

less. Hence, M/M/1 denotes a system with Poisson arrivals, exponentially distributed service

times and a single server. M/G/m denotes an m-server system with Poisson arrivals and generally

distributed service times. M/M/r/K/n stands for a system where the customers arrive from a finite-

source with n elements, inter-arrival and service times are exponentially distributed, the service is

carried out according to the request’s arrival by r severs, and the system capacity is K.

The aim of all investigations in queuing theory is to get the main performance measures of the

system which are the probabilistic properties (distribution function, density function, mean, vari-

ance) of the following random variables: number of customers in the system, number of waiting

customers, utilization of the server/s, response time of a customer, waiting time of a customer, idle

time of the server, busy time of a server. Of course, the answers heavily depend on the assumptions

concerning the distribution of inter-arrival times, service times, number of servers, capacity, and

service discipline. It is quite rare, except for elementary or Markovian systems, that the distribu-

tions can be computed. Usually, their mean or transforms can be calculated.

3.2.8 Utilization factor

Apart from the mentioned parameters, there is another significant parameter in queuing systems

named “loading factor of the service server” or “utilization factor,”. It is denoted with ρ and defined

as the portion of time the service station is busy and cannot serve other customers. Since the system

cannot perform more work than its capacity allows for, the upper bound of the utilization factor is

restricted by Petrovic et al. [45]
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ρ = {
λ

mµ
, 1}

where m is the number of servers. In an IS models, it is assumed that:

ρ ≈ 0.

Also, in a stable system

ρ ≤ 1. (3.2)

ρ > 1 means that more customers arrive to the system than exit. Then the length of queue tends

to increase to infinity. Such systems are called unstable systems. Usually performance of stable

systems in which ρ ≤ 1 is investigated.

3.3 Birth-death process

The birth–death processes (BDPs) are a flexible class of continuous-time Markov chains which

are used to model the number of “particles” in a system, where each particle can “give birth” to

another particle or “die”. In addition, a BDP is a continuous-time Markov chain X(t) counting the

number of particles in a system at time t, taking values on the non-negative integers N. The model’s

name comes from the science of biology, since biologists study the development of populations of

organisms by using the birth-death process.

For constructing a general BDP in a formal way, the rules according to which the number of

particles evolves must be defined. This is done by specifying the behavior of the process for a very

short time dt, when there are n particles in the system. If dt is very small, the probability of an

event in the interval (t, t + dt) that occurs with rate r is approximately rdt. Hence, the probability

of a birth in the interval (t, t + dt), given X(t) = k, is
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Figure 3.2: The birth death Markov processes

P(X(t + dt) = k + 1|X(t) = k) = λkdt + o(dt) (3.3)

As shown, the probability of more than one birth event in a small time dt is significantly small.

Also, the probability of a death in (t, t + dt) is

P(X(t + dt) = k − 1|X(t) = k) = µkdt + o(dt) (3.4)

In addition, The probability of no births or deaths occurring during (t, t + dt) is

P(X(t + dt) = k|X(t) = k) = 1 − (λk + µk)dt + o(dt) (3.5)

3.3.1 Transition probabilities

Consider Pab(t) = P(X(t) = b|X(0) = a) represents transition probability from state X(0) = a

to X(t) = b. Suppose that X(0) = a. At the current time t, we want to know the probability that

in the next dt units of time, the process will reach state b. We look into the future by writing the

probabilities of three types of events that can take the process to state b:

• Birth from b − 1

• Death from b + 1 or

• No change from b.
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So, the result is:

Pab(t + dt) = λb−1Pa,b−1(t)dt + µb+1Pa,b+1(t)dt + (1 − λb − µb)Pab(t)dt + o(dt)

Subtracting Pab(t) from both sides, dividing by dt, and sending dt to zero, the Kolmogorov

forward equation is obtained:

dPab(t)
dt

= λb−1Pa,b−1(t) + µb+1Pa,b+1(t) − (λb + µb)Pab(t) (3.6)

where Pab(0) = 1 if a = b and zero otherwise.

3.3.2 Equilibrium probability

While calculating equilibrium probabilities for a Markov process, it is assumed that transition

probabilities do not change. Let’s set the left-hand side of the Kolmogorov forward equation (3.6)

to zero and replace the finite-time transition probabilities Pab(t) with the equilibrium probabilities

(Pab −→ πb) to get:

0 = λb−1πb−1 + µb+1πb+1 − (λb + µb)πb

resulting the equation

µb+1πb+1 − λbπb = µbπb − λb−1πb−1. (3.7)

Since this is true for every b, it is also true for b = 0. It is usually considered that µ0 = π−1 =

λ−1 = 0, so both sides of (3.7) are zero for every b by induction. This gives the detailed balance

condition for continuous-time Markov chains,

µiπi = λi−1πi−1 i = 0, 1, 2, ... (3.8)

Therefore, every general BDP is a reversible Markov chain. Iterating the recurrence (3.8), it is
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found that

πi =
λ0λ1λ2...λi−1

µ1µ2µ3...µi
π0. (3.9)

3.4 The non-homogeneous Poisson process

The Poisson process is a counting process for the number of events that occur at a certain time,

with a parameter λ. The Poisson process is a special activity of the process of counting where inter-

vals of events are mutually independent, have free increases and all are exponentially distributed. If

the exponential distribution has the same parameter value, then it is called a homogeneous Poisson

process. However, if it is not the same, it is called a non-homogeneous Poisson process. In addition,

non-homogeneous Poisson processes are Poisson processes with parameters that depend on time

and are not constant from time to time, they are also mutually independent. The emergence of new

services and new technologies has led to new traffic models. Al- though there are some situations

in which the Poisson process traffic model is still appropriate, in many new situations the classical

Poisson process traffic model is not. In these situation, non- homogeneous Poisson processes can

be applied. For example, these days for measuring daily ozone gas, model of noise exposure, and

new approaches to improving software reliability models the non-homogeneous Poisson processes

is used.

In reality the arrival process is also non-homogeneous and arrival rate typically varies signif-

icantly in time. In this section, a non-homogeneous Poisson process will be reviewed and ways

to estimate its parameters with linear, quadratic and cubic function over a finite interval will be

investigated.

Non-homogeneous Poisson processes (NHPPs) are widely used to model time-dependent ar-

rivals in a multitude of stochastic models. Their widespread use is because of the fact that they may

be defined in terms of very natural assumptions about the mechanism through which events happen.

In particular, when customers arrive somewhat randomly to the system, the number of customers

arriving to the system is modeled as a Poisson process with a non-stationary rate. Moreover, if N(t)
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represents the number of arriving customers by time t, it can be modeled as a non-homogeneous

Poisson process. Such process has all the properties of a Poisson process, except for the fact that

its rate is a function of time, i.e., λ = λ(t). The issue is estimating the rate function. A well-known

heuristic for estimating the rate function of a non-homogeneous Poisson process assumes that the

rate function is piece-wise constant on a set of data-independent intervals. It will be reviewed in

more detail below. First, let’s define a non-homogeneous Poisson process mathematically.

3.4.1 Definition

A counting process N(t), t ≥ 0 is called a non-homogeneous Poisson process if:

• for t, s ≥ 0, and 0 ≤ u ≤ t, N(t + s) − N(t) is independent of N(u);

• for t, s ≥ 0, Pr(N(t + s) − N(t) ≥ 2) = o(s)

• for t, s ≥ 0, Pr(N(t + s) − N(t) = 1) = λ(t)s + o(s).

The function λ(t) appearing in the definition is called the rate function which characterizes the

Poisson process. Also, the notation o(s) is used in the usual sense to denote a function f (s) that

satisfies lim
s→0

f (s)
s
= 0.

3.4.2 Characteristic properties

Some characteristic properties of a non-homogeneous Poisson process are:

• The number of points in any interval has a Poisson distribution.

• The number of points in any finite set of non overlapping intervals are mutually independent

random variables.

• The intervals between the points are not independent.

• The intervals between the points are not identically distributed.
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The most general NHPP is defined in terms of a monotone non decreasing right-continuous

function Λ(t) bounded in any finite interval:

Λ(t) =
∫ t

0
λ(s)ds. (3.10)

.

Then the number of points in any finite interval, for example (0, t0] has a Poisson distribution

with parameter µ = Λ(t0) − Λ(0). The right derivative of Λ(t) is λ(t) which is called rate function.

Λ(t) is called the integrated rate function and has the interpretation that

E[N(t)] = Λ(t) − Λ(0) =
∫ t

0
λ(s)ds, (3.11)

where N(t) indicates the total number of points in (0, t].

3.5 Estimating the parameters of a non-homogeneous Poisson

process

A non-homogeneous Poisson process model is parameterized by its arrival rate function λ(t).

In many cases it is reasonable to regard the arrival-rate function as linear, quadratic or cubic over

appropriate sub-intervals. In this research, arrival rates will be estimated first by a linear function

and then by quadratic and cubic function.

Consider a non-homogeneous Poisson process over the interval [0, T ] with linear arrival rate

function:

λ(t) = a + bt, 0 ≤ t ≤ T. (3.12)

Now two parameters a and b should be estimated. Assume the overall time interval (0, T ] is

divided into N measurement sub-intervals
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(
(k − 1)T

N
,

kT
N

], 1 ≤ k ≤ N

and then observe the number of points in each. The estimation is based on a single realization of an

arrival process or multiple independent samples. Massey at el. [13] investigated ways to estimate

the parameters of a non-Homogeneous Poisson Process with linear rate over a finite interval. They

considered:

• Ordinary Least Squares (OLS),

• Iterative Weighted Least Squares (IWLS) and

• Maximum Likelihood (ML) methods.

When the rate function is not near 0 at either end, approximately the same results will be

obtained and none of the procedures differ considerably. In this research, we opt for the ordinary

least squares estimators.

3.5.1 The ordinary least squares estimators

Consider a non-homogeneous Poisson process with linear rate

λ(t) = a + bt, 0 ≤ t ≤ T,

then count the number of points in the N sub-intervals

(
(k − 1)T

N
,

kT
N

], 1 ≤ k ≤ N.

This sampling procedure from a single realization of the non-homogeneous Poisson Process
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over [0,T ] produce mutually independent Poisson random variables Yk with mean

λk =
T
N

(a + bxk) (3.13)

where

xk = (k −
1
2

)
T
N
. (3.14)

Because if the total number of points in each sub-interval is shown with N(((k − 1) T
N , k

T
N ]), the

mean is:

E[N(((k − 1)
T
N
, k

T
N

])] = Λ(k
T
N

) − Λ((k − 1)
T
N

) =
∫ k T

N

(k−1) T
N

λ(s)ds =
∫ k T

N

(k−1) T
N

(a + bs)ds

=
T
N

(a + b((k −
1
2

)
T
N

)) =
T
N

(a + bxk).

If we form the linear model

Y = β0 + β1x + ϵ

and assume

yk = β0 + β1xk + ϵk, 1 ≤ k ≤ N,

then, parameters β0 and β1 and consequently parameters a and b can be approximated. To do that,

sum of the squared errors should be minimized:

min
N∑

k=1

ϵk
2 =

N∑
k=1

(yk − [β0 + β1xk])2. (3.15)

Applying calculus with (3.15) in the usual way, β̂0 and β̂1 are obtained as bellow:

β̂1 =

∑N
k=1(xk − x)(yk − y)∑N

k=1(xk − x)2
(3.16)
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β̂0 = y − β̂1x (3.17)

where

y =
∑N

k=1 yk

N

x =
∑N

k=1 xk

N
.

From (3.13), it can be seen that

β0 =
aT
N

β1 =
bT
N
.

Using β̂0 and β̂1 as the estimation of β0 and β1 respectively, â and b̂ are obtained:

â =
N
T
β̂0 (3.18)

b̂ =
N
T
β̂1. (3.19)

The resulting estimators are unbiased:

E[â] = a

E[b̂] = b.

Time varying arrival rates would be approximated by polynomial function of degree p such that

p ≥ 2. To find the coefficients of polynomial function, a Multiple Linear Regression model can

be applied. Moreover, consider a single dependent variable y and several independent variables

x1, x2, ..., xp. In Multiple Linear Regression, the following model is assumed:
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y = β0 + β1x1, ..., βpxp + ϵ (3.20)

where β0, β1, ..., βp are unknown parameters of the function f and ϵ is a random disturbance (usually

assumed to have a normal distribution with mean 0 and standard deviation σ).

Suppose N observations for dependent and independent variables have been given as shown in

matrix Y and matrix X:

Y =



y1

y2

...

yN



X =



x11 x12 ... x1p

x21 x22 ... x2p

...

xN1 xN2 ... xN p


.

The coefficients {β j}
p
j=0 which fit the equations best, can be found by solving the minimization

problem

β̂ = arg min
β

S (β)

where

S (β) = ∥y − Xβ∥2 = ΣN
k=1|yk − (β0 + β1xk1 + β2xk2 + ... + βpxkp)|2.

In general, assume a non-homogeneous Poisson process with a polynomial function rate of

degree p:

λ(t) = a0 + a1t + a2t2 + ... + aptp, 0 ≤ t ≤ T.
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To estimate the parameters {a j}
p
j=0, we consider y = λ(t) and xk = tk, k = 1, ...,N and then use

the regression methods as mentioned above.

3.6 Perturbation theory

Generally, finding the close-form solution of many problems is impossible or at least so difficult

such that it is not practical to obtain. However, sometimes it would be possible to obtain a so-

called asymptotic series approximation of the solution giving a good estimation to the solution.

In this section, perturbation methods, which are used to obtain approximate analytic solutions to

polynomials that can’t be solved exactly, will be reviewed.

3.6.1 Preliminary material

In this method, the expansion of the algebraic expression (x+y)n will be required. The binomial

theorem can be applied to state the expression as a sum of the terms involving individual exponents

of variables x and y. According to the theorem, it is possible to expand any nonnegative integer

power of (x + y) into a sum of the form

(x + y)n =

0n
 x0yn +

1n
 x1yn−1 +

2n
 x2yn−2 + ....

When n is a positive integer, this formula terminates:

(x + y)n =

0n
 x0yn +

1n
 x1yn−1 +

2n
 x2yn−2 + ... +

n0
 xny0.

Another useful theorem in this method is the fundamental theorem of perturbation theory. Be-

fore expressing it, an asymptotic expansion should be defined.

40



Definition of an asymptotic expansion: The series

ΣN
n=0cnxn(ϵ)

is an asymptotic expansion of x(ϵ) at ϵ = 0 if the following hold:

• xn(ϵ) = o(xn−1(ϵ)) as ϵ → 0 for n = 1, 2, ...,N + 1

• x(ϵ) − ΣN
n=0cnxn(ϵ) = O(xN+1(ϵ)) as ϵ → 0

Theorem 3.6.1. If an asymptotic expansion satisfies

A0 + A1ϵ + ... + ANϵ
N + O(ϵN+1) = 0

for all sufficiently small ϵ and the coefficients A j are independent of ϵ, we have

A0 = A1 = ... = AN = 0

3.6.2 Description of perturbation theory

In perturbation method, the problem is divided into ”solvable” and ”perturbative” parts. First,

the solvable part is considered in order to find an estimation of the solution, then it works for

continuously improving the previously obtained approximation. Assume the problem is finding the

roots of a polynomial of degree n, so the perturbed equation is

f (x) = c0 + c1 + ... + cnxn = 0.

Consider an approximation for the full solution x(ϵ) which is an asymptotic series in the small

parameter ϵ, like the following:

x(ϵ) = a0 + a1ϵ + a2ϵ
2 + ...
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where a0 is known solution and {ai}i=1,2,... can be found iteratively by a mechanistic procedure.

Furthermore, this formal series is substituted into the perturbed equation and then set the terms cor-

responding to powers of ϵ equal to zero and try to find the {ai}i=1,2,.... An approximate perturbative

solution is obtained by truncating the series, often by keeping only the first two terms,

x(ϵ) = a0 + a1ϵ + O(ϵ),

where O(ϵ) indicates the order of the error in the approximate solution.

3.6.3 Algebraic equations

Example: Consider the cubic equation

x3 + 0.01x + 27 = 0.

We probably do not know how to solve this equation to find the exact solution. In this case,

0.01 is small compared to other coefficients. This suggests that the equation studied is:

x3 + ϵx + 27 = 0. (3.21)

It is expected that the root would be close to x = −3 which is the root of x3 + 27 = 0. To find a

better approximation, assume there is an asymptotic series in the form

x(ϵ) = a0 + a1ϵ + a2ϵ
2 + ...

Substitute this formal series into the cubic equation (3.21)

(a0 + a1ϵ + a2ϵ
2 + ...)3

+ ϵ(a0 + a1ϵ + a2ϵ
2 + ...) + 27 = 0.

Collecting powers of ϵ leads to
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(a3
0 + 3a2

0a1ϵ + 3a0a2
1ϵ

2 + a3
1ϵ

3 + ...) + ϵ(a0 + a1ϵ + a2ϵ
2 + ...) + 27 = 0

or

(a3
0 + 27) + ϵ(3a2

0a1 + a0) + ... = 0

By using fundamental theorem of perturbation theory (Theorem 3.1):

a3
0 + 27 = 0⇒ a0 = −3

3a2
0a1 + a0 = 0⇒ a1 =

−a0

3a2
0

=
3
27
=

1
9

...

Therefore, it is obtained

x(ϵ) = a0 + a1ϵ + a2ϵ
2 + ... = −3 +

1
9
ϵ + ...

Since we want to keep just the two first terms, we get

x(ϵ) = −3 +
1
9
ϵ + O(ϵ2).

As a result, the approximation for the solution is

−3 +
1
9

(0.01) = −2.99888.

3.7 Statistical analysis with Little’s Law

In queuing theory, an important discipline within the mathematical theory of probability is

a theorem by John Little [17] that states that the long-term average number of customers in a

stationary system is equal to the long-term average effective arrival rate multiplied by the average
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time that a customer spends in the system. In the following, we explain Little’s Law algebraically.

3.7.1 Little’s Law

Consider a queuing system in which customers arrive from the outside, spend time in the system

and then depart. Let Ak be the arrival time and Dk be the departure time for customer k. we define

Wk ≡ Dk − Ak

Let Tk(t) be the time of the kth arrival before time t (less than or equal to t) and N(t) be the

number of arrivals by time t:

N(t) = max{k : Tk(t) ≤ t}.

Consider L(t) as the total number of customers in the system at time t. Define

λ ≡ lim
t→∞

N(t)
t

W ≡ lim
n→∞

1
n

n∑
k=1

Wk

L ≡ lim
t→∞

1
t

∫ t

0
L(s)ds

Theorem 3.7.1. If both λ and W exist and are finite, then L exists and L = λW

Proof: See [17]

As shown, the theorem concerns either long-run averages (limits) or the expected values of

stationary stochastic processes in stochastic models. Hence, the result does not necessarily directly

apply over finite-time intervals, due to problems such as how to log customers already present at
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the start of the logging interval and those who have not yet departed when logging stops [28].

3.7.2 Measurements over a finite time interval

Kim and Whitt [28] investigated how to take a statistical approach with data over a finite-time

interval. They assumed that the system was in operation in the past, prior to time 0, and that it will

remain in operation after time t.

Let R(0) count the customers that arrived before time 0 that remain in the system at time 0, so

L(0) = R(0) + N(0)

where N(0) is the number of new arrivals at time 0, if any. We will carefully distinguish between

L(0) and R(0). The averages of W(t), L(t) and λ(t) over the time interval [0, t] can be obtained:

λ(t) ≡
N(t)

t
(3.22)

L(t) ≡
1
t

∫ t

0
L(s)ds (3.23)

W(t) ≡
1

N(t)

R(0)+N(t)∑
k=R(0)+1

Wk. (3.24)

It can be seen that λ(t) and L(t) are time average and have been observed, while W(t) is a

customer average and cannot be directly observed. Hence, indirect estimator should be used. Kim

and Whitt [28] created a new alternative estimator exploiting from L = λW in the form of

WL,λ(t) ≡
L(t)

λ(t)
, (3.25)

where WL,λ(t) would be considered a substitute for W(t). Now, the question is ”how are the averages

WL,λ(t) and W(t) related?” The answer depends on the start and end points:
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• If the system starts and ends empty (L(t) = R(0) = 0):

W(t) = WL,λ(t)

• If system does not start empty or end empty (R(0) , 0 or L(t) , 0):

W(t) = WL,λ(t) −
T (r)

W (0) − T (r)
W (t)

N(t)

where T (r)
W (t) is the process recording the total residual waiting time of all customers in the

system at time t, which typically is not known if the waiting times are not directly observed.

T (r)
W (t) is defined as

T (r)
W (t) ≡

L(t)∑
k=1

Wr,t
k

where Wr,t
k is the remaining waiting time at time t for customer k in the system at time t.

The issue is finding estimation of residual waiting time Wr,t
k . Kim and Whitt [28] considered esti-

mation in two cases: when the system is stationary and when it is not:

• When the system is assumed to be stationary:

E[T (r)
W (0)] = E[T (r)

W (t)].

So, it is reasonable to use the indirect estimator WL,λ(t).

• When the system is assumed to be non-stationary as commonly happens when the arrival rate

is time-varying, Kim and Whitt [28] used WL,λ(t) to estimate the residual waiting time. In ad-

dition, they assumed the waiting time distribution remains fixed throughout the measurement

interval and the distribution of the waiting times is nearly exponential. The exponential dis-

tribution assumption was used to justify approximating the residual waiting time distribution
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for each customer in the system at time t by the ordinary waiting time distribution, which in

turn is estimated by WL,λ(t). They proposed the following refined estimator:

WL,λ,r(t) ≡ WL,λ(t) −
(R(0) − L(t))WL,λ(t)

N(t)
= WL,λ(t)(1 −

R(0) − L(t)
N(t)

). (3.26)

Moreover, there is some underlying stochastic model for which the mean E[W(t)] is well

defined and W(t) can be regarded as an estimate of E[W(t)]. Kim and Whitt [28] used WL,λ(t)

as an estimator of E[W(t)]. They found the bias in WL,λ(t) to be an estimator is E[∆W(t)],

where

∆W(t) = WL,λ(t) −W(t).

They proved in [28]

E(∆W(t)) = E(E(∆W(t)) : θ(t))

where

E[∆W(t) : θ(t)] ≈
(R(0) − L(t))WL,λ(t)

N(t)

θ(t) = (t, L(t), λ(t),R(0), L(t)).

Then, they obtained the new candidate refined estimator of E[W(t)], exploiting the observed

vector (L(t), λ(t),R(0), L(t))

WL,λ,r(t) ≡ WL,λ(t) − E[∆W(t) : θ(t)] ≈ WL,λ(t)(1 −
R(0) − L(t)

N(t)
)
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3.8 Estimating waiting times with time-varying Little’s Law (TVLL)

As mentioned, when waiting times cannot be observed directly, Little’s Law is used to estimate

the average waiting time by the average number in system divided by the average arrival rate.

However, that simple indirect estimator tends to be biased, especially when the arrival rates are

time-varying. The bias in that indirect estimator can be estimated by applying the time-varying

Little’s law (TVLL). Kim and Whitt [21] assumed that there are appropriate time-varying servers,

so the waiting time distribution would not be time-varying even though the arrival rate is time-

varying. They fitted a linear and quadratic function to the time-varying arrival data. When the

arrival rate function is approximated with a polynomial function of degree n, the mean waiting

time satisfies an equation of degree n + 1. The new estimators based on the TVLL are positive real

root of that equation.

3.8.1 Time Varying Little’s Law (TVLL)

The TVLL is a time-varying generalization of LL. The arrival rate over the interval [0, t] is

specified by requiring that

E [N(I)] = E [N([t1, t2])] ≡ Λ(t1, t2) =
∫ t2

t1
λ(s)ds, −∞ < t1 < t2 < ∞.

We assume that the conditional cumulative distribution function (cdf)

Gt(x) ≡ P(W(t) ≤ x|Nt), x ≥ 0

of the waiting time (time in system) for a new arrival at time t, given that an arrival occurs at

time t (the event Nt) is well defined for all t. (The precise meaning of the cdf Gt is somewhat

complicated, see [19] and [20]. Its precise meaning is not very important because based on time-

varying staffing property, the cdf Gt will be assumed independent of t). Consequently Gc
s(x) is:

48



Gc
s(x) ≡ P(W(t) > x|Ns), x ≥ 0.

L(t) as the total number of customers in the system at time t can be expressed as an infinite sum

of random variables or, equivalently, as an elementary stochastic integral via:

L(t) =
∞∑

k=1

1{Wk(t)≥t−Tk(t)} =

∞∑
k=1

1{W(Tk(t))≥t−W(Tk(t))}

=

∫ t

−∞

1{W(s)≥t−s}dN(s). (3.27)

Taking expectations in (3.27), the TVLL is obtained:

Theorem 3.8.1. (TVLL): Under the conditions above

E [L(t)] =
∫ t

−∞

Gc
s(t − s)λ(s)ds

Proof: See [19] and [20]

As shown, it is not immediately apparent how to apply the TVLL in Theorem (3.8.1) to estimate

waiting times. Kim and Whit [21] considered two additional assumptions.

3.8.2 Assumptions

Two strong assumptions considered by Kim and Whitt [21] are:

• Waiting time distribution remains fixed throughout the measurement interval. In addition,

they supposed the distribution of W(t) is distributed as W independent of t

• The fixed waiting time W has a cdf that is known except for its mean. In addition, it was

supposed that there is a specified cdf G with mean 1 such that P(W ≤ xE(W)) = G(x), x ≥ 0
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The first assumption is achieved by using appropriate time-varying staffing. With appropriate ser-

vice providers, the waiting times tend to not significantly exceed the service times. Hence, that it

is reasonable to regard the waiting times as stationary over sub-intervals.

The time-varying staffing

In many applications, time-varying staffing assumptions is reasonable. In well-managed centers,

waiting times usually remain approximately stationary, even though the arrival rate may be time-

varying. The time-varying staffing is selected to stabilize the performance at typical performance

levels. The following formula is the method of Feldman et al. [46] and Jennings et al. [47] for

required servers at time t:

S t = [m(t) + β
√

m(t)] (3.28)

where

S t is the number of servers at time t,

m(t) ≡ E[L(t)] is the offered load,

[x] is the least integer greater than or equal to x, and

β is called the quality-of-service (QoS) which is usually considered: 0, 1, 2.

β = 0 and β = 1 produce typical performance, whereas β = 2 corresponding to high QoS,

produces performance close to the IS model.

3.8.3 The TVLL with fixed waiting time distribution

Eick et al. [48] studied the physics of the Mt\G\∞ and showed that Q(t), which represents the

number of busy servers in the system at time t, has Poisson distribution with mean

E[Q(t)] = E[
∫ t

t−s
λ(u)du] = E[λ(t − S e)]E[S ] (3.29)
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where S shows service time and S e is a random variable with the associated stationary-exceed or

equilibrium-residual-lifetime cdf

Ge(t) ≡ P(S e ≤ t) ≡
1

E [S ]

∫
Gc(u)du

where G is the cdf of S and

Gc(t) = 1 −G(t).

Moments of S e are related to moments of S by

E[S k
e] =

E[S k+1]
(k + 1)E[S ]

, k ≥ 1.

The TVLL in Theorem (3.8.1) has important connections to IS queuing models. In addition, in

IS models the number of customers in the system is equal to the number of busy servers and the

waiting times coincide with the service times. TVLL can be regarded as part of the theory for IS

models, because the abstract system can be regarded as a general IS model, if we simply call the

waiting time as the service time in the IS model. Under the first assumption, the TVLL in Theorem

(3.8.1) reduces to the corresponding Mt\G\∞ IS formula in Theorem 1 of [48]

E[L(t)] = E[λ(t −We)]E[W] (3.30)

where the W and We are random variables with the fixed waiting-time cdf and the associated

stationary-excess cdf, that is

P(We ≤ t) ≡
1

E [W]

∫ x

0
P(We > u)du (3.31)
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E[Wk
e ] =

E[Wk+1]
(k + 1)E[W]

, k ≥ 1. (3.32)

3.8.4 An approximating linear arrival rate

Despite the fact that arrival rate is a time-varying function, it is approximately linear over sub-

intervals, for example for an hour or two. So, a linear function can be applied to estimate arrival

rate function:

λ(s) ≈ λl(s) = a + bs, 0 ≤ s ≤ t (3.33)

where a and b are constants such that λl(s) ≥ 0, with [0, t] denoting the designated time interval.

This approximation can be obtained through a Taylor series approximation [48]. Furthermore, an

ordinary least square fit was used in [13]. Using equations (3.30), (3.31), and (3.32), we get the

associated approximation for E [L(t)]:

E [L(t)] ≈ λl(t − E [We])E [W] = λl(t − γ2
W E [W])E [W]

= (a + bt)E [W] − bγ2
W E [W]2 (3.34)

where

γ2
W = (c2

W + 1)/2

c2
W = Var(W)/E [W]2 .

By integrating over [0, t] and dividing by t in (3.34), the following result is obtained:

E
[
L(t)

]
≡ t−1

∫ t

0
E [L(s)] ds ≈ (a + b(

t
2

))E [W] − bγ2
W E [W]2 (3.35)
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Consider estimations â of a, b̂ of b and L(t) of E
[
L(t)

]
and define

x ≡ E [W] ,

λ̂l(t) ≡ (â + b̂(
t
2

))

λ̂
′

l ≡ b̂,

then plug in x, λ̂l(t), and λ̂
′

l into (3.35). A quadratic equation is obtained as bellow:

γ2
W λ̂

′

l x
2 − λ̂l(t)x + L(t) = 0. (3.36)

By solving the equation (3.36), we get a new refined estimator based on a linear approximation

of the arrival rate function

WL,λ,l(t) ≡ x ≡
B ±
√

B2 − 4C
2

(3.37)

for

B ≡
λ̂l(t)
γ2

W λ̂
′

l

C ≡
L(t)
γ2

W λ̂
′

l

.

If
∣∣∣γ2

W λ̂
′

l

∣∣∣ is too small, there will be numerical instability, because in calculating B and C, we

divide by γ2
W λ̂

′

l . In this case, an alternative estimator can be calculated by using perturbation theory.

Perturbation analysis with a linear arrival rate function

Before introducing another new estimator, we express an important proposition.
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Proposition 3.8.1. Consider the quadratic equation

a2x2 − a1x + a0

with a1 > 0 and a0 > 0 and let

ϵ(a2) ≡
a2a0

a2
1

.

If 4ϵ(a2) < 1, then the equation has two positive real roots and the minimum positive root can be

expressed as

x =
a0

a1
(1 + ϵ(a2) + o(a2)) as a2 → 0.

Proof: Apply the Taylor series expansion

√
x + ϵ =

√
x +

ϵ

2
√

x
−
ϵ2

8x
3
2

+ o(ϵ2) as ϵ → 0.

Based on Proposition 3.8.1, and assuming λ̂l(t) = λ̂(t), the minimum positive root of the

quadratic equation in (3.36) can be approximated by the perturbation method:

WL,λ,l,p(t) ≡ WL,λ(t)(1 +WL,λ(t)(
γ2

W λ̂
′

l

λ̂(t)
)) (3.38)

In other words,

WL,λ,l,p(t) ≡ ω(1 + ωδ) (3.39)

where

ω = WL,λ(t)
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δ =
γ2

W λ̂
′

l

λ̂(t)

The estimator WL,λ,l,p(t) is preferred to the estimator WL,λ,l(t) when γ2
W λ̂

′

l is small.

3.8.5 Estimating R(0) − L(t) in WL,λ,r(t)

In the equation (3.26), the term R(0)−L(t) is seen. We might be unable to observe R(0) and L(t),

because we only have available L(t) and arrival process data, and do not have a full observation of

L(s), 0 ≤ s ≤ t. In this case, it is assumed that L(0) = R(0) and an estimate of E [L(0)] − E [L(t)]

is used instead. In addition, We first fit the arrival rate function to a linear function, then use the

equation (3.34) to estimate E [L(0)] − E [L(t)]. It is obtained:

E [L(0)] − E [L(t)] ≈ −btE [W] (3.40)

If E[W] is approximated with WL,λ(t) and it is considered λ̂
′

= b̂, then:

E[L(0)] − E[L(t)] ≈ −b̂tWL,λ(t) ≈ −λ̂
′

tWL,λ(t) (3.41)

Therefore,

WL,λ,r(t) ≡ WL,λ(t)(1 −
R(0) − L(t)

N(t)
) ≈ WL,λ(t)(1 −

E [L(0)] − E [L(t)]
N(t)

)

≈ WL,λ(t)(1 +
λ̂
′

tWL,λ(t)
N(t)

) (3.42)

3.8.6 An approximating quadratic arrival rate function

If the arrival rate function is not approximately linear, then a quadratic approximation can be

considered:

λ(s) ≈ λq(s) = a + bs + cs2 0 ≤ s ≤ t. (3.43)
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where a, b, and c are constant. Eick et al. [48] studied the quadratic arrival rate functions in an

IS system and obtained a nice formula for expected number of busy servers in the system at time t

which is mentioned in the following theorem.

Theorem 3.8.2. Suppose λ is quadratic as in (3.43). If

E[S 3] < ∞

Then,

E[Q(t)] = E[λ(t − S e)]E[S ] + cVar(S e)E[S ].

Proof: See Theorem 9 in [48]

As mentioned, the fact is that TVLL in Theorem (3.8.1) is connected to infinite-server (IS)

queuing models as the number of customers in the system is equal to the number of busy servers

in IS models and the waiting times are equal to service times in IS models. By using this fact and

Theorem 3.8.2, E[L(t)] is obtained:

E[L(t)] = E[λ(t −We)]E[W] + cVar(We)E[W]. (3.44)

Now consider (3.43) to approximate arrival rate and plug moment formula in the equation (3.32)

into (3.44) to get:

E [L(t)] ≈ E
[
Lq(t)

]
≡ (a + bs + cs2)E [W] − (b + 2ct)γ2

W E [W]2 + 2cθ3W(t)E [W]3

= λq(t)E [W] − γ2
Wλ

′

q(t)E [W]2 + θ3W(t)λ
′′

q(t)E [W]3 (3.45)

where
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γ2
W =

(c2
W + 1)

2
, c2

W =
Var(W)
E [W]2

θ3W(t) =
E

[
W3

]
6E [W]3

λ
′

q = b + 2ct

λ
′′

q(t) = 2c.

By integrating over [0, t] and dividing by t in (3.45), it is obtained:

E
[
L(t)

]
≡ t−1

∫ t

0
E [L(s)] ds ≈ λq(t)E [W] − γ2

Wλ
′

q(t)E [W]2 + θ3W(t)λ
′′

q(t)E [W]3 (3.46)

where

λq(t) ≡ t−1
∫ t

0
λq(s)ds = a + b(

t
2

) + c(
t2

3
) (3.47)

and

λ′q(t) ≡ t−1
∫ t

0
λ
′

q(s)ds = b + ct. (3.48)

Plug in x ≡ E [W] and L(t) ≈ E
[
L(t)

]
into the equation (3.46):

θ3W(t)λ
′′

q(t)x3 − γ2
Wλ

′

q(t)x2 + λq(t)x − L(t) = 0 (3.49)

To solve this equation of degree 3, perturbation method can be used by assuming

λ
′′

q ≪ λ
′

q(t) ≪ λq(t)

x(ϵ) = x0 + ϵx1 + o(ϵ2)
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λ
′′

q = O(ϵ) as ϵ → 0

and then using (3.38) for the O(1) terms. As a result, we get the following approximation:

x(ϵ) ≡ WL,λ,q(t) ≈ WL,λ,q,p(t) ≡ w(1 + wδ + w2ϵ(
1

1 − 2wδ
)) (3.50)

where

w ≡ WL,λ(t) ≡
L(t)

λ(t)

δ ≡
γ2

Wλ
′

q(t)

λq(t)

ϵ ≡
θ3W(t)λ

′′

q

λq(t)

with ϵ ≪ δ ≪ 1.

3.8.7 An approximating cubic arrival rate

If the arrival rate function is neither approximately linear nor approximately quadratic, then a

polynomial function of degree 3 can be considered to approximate arrival rate function:

λ(s) ≈ λc(s) = a + bs + cs2 + es3, a , 0, 0 ≤ s ≤ t (3.51)

where a, b, c and e are constants. To connect TVLL to the infinite-server (IS) when arrival rates are

approximated by a cubic function, we refer to Theorem 3.8.3.

Theorem 3.8.3. Consider a Mt\G\∞ queue. Let λ(k) denote the kth derivative of λ. For any n ≥ 0,

suppose λ is n+ 1-times differentiable and (n+ 1)st derivative is Riemann integrable on [t− x, t] for

all x. If

E[S n+2] < ∞
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and

E[λ(k)(t − S k+1
e )] < ∞, 0 ≤ k ≤ n + 1

then,

E[Q(t)] = mn(t) + Rn(t) (3.52)

where

mn(t) =
n∑

k=1

(−1)kλ
(k)(t)E[S k+1]

(k + 1)!

Rn(t) = (−1)n+1E[λ(n+1)(t − S n+2
e )]

E[S n+2]
(n + 2)!

.

Proof: See Theorem 10 in [48].

Given the fact that the L(t) is equal to Q(t) in IS models and the waiting times W are equal to

service times S in IS models and considering (3.51) to approximate arrival rate, Theorem 3.8.3 can

be applied to get the following formula:

E [L(t)] ≈ E [Lc(t)]

= λc(t)E [W] − γ2
Wλ

′

c(t)E [W]2 + θ3W(t)λ
′′

c (t)E [W]3 − α4
W(t)λ

′′′

c (t)E [W]4 (3.53)

where

γ2
W =

(c2
W + 1)

2
, c2

W =
Var(W)
E [W]2

θ3W(t) =
E

[
W3

]
6E [W]3

α4
W(t) =

E
[
W4

]
24E [W]4
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λ
′

c = b + 2cs + 3es2

λ
′′

c = 2c + 6es

λ
′′′

c = 6e.

By integrating over [0, t] and dividing by t in (3.53), it is obtained:

E
[
L(t)

]
≡ t−1

∫ t

0
E [L(s)] ds

≈ λc(t)E [W] − γ2
Wλ

′

c(t)E [W]2 + θ3W(t)λ′′c (t)E [W]3 − α4
W(t)λ

′′′

c E [W]4 (3.54)

where

λc(t) = t−1
∫ t

0
λ3(s)ds = a + b(

t
2

) + c(
t2

3
) + e(

t3

4
) (3.55)

and

λ′c(t) = t−1
∫ t

0
λ
′

q(s)ds = b + ct + et2 (3.56)

λ′′c (t) = t−1
∫ t

0
λ
′′

q(s)ds = 2c + 3et. (3.57)

Consider x ≡ E [W] and L(t) ≈ E
[
L(t)

]
, then substitute in the equation (3.54):

α4
W(t)λ

′′′

c (t)x4 − θ3W(t)λ′′c (t)x3 + γ2
Wλ

′

c(t)x2 − λc(t)x + L(t) = 0 (3.58)

Now, the root of the equation (3.58) should be estimated. To solve the equation, perturbation

method can be applied by assuming

λ
′′′

c ≪ λ
′′

c ≪ λ
′

c(t) ≪ λc(t)
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x(ϵ) = x0 + ϵx1 + o(ϵ2)

λ
′′′

q = O(ϵ) as ϵ → 0

First, let’s write the equation (3.58) in a simple format. The equation (3.58) can be divided by

λc(t) (Since a , 0, then λc(t) , 0)

α4
W(t)λ

′′′

c (t)

λc(t)
x4 −

θ3W(t)λ′′c (t)

λc(t)
x3 +

γ2
Wλ

′

c(t)

λc(t)
x2 −

λc(t)

λc(t)
x +

L(t)

λc(t)
= 0 (3.59)

If we define

ϵ =
α4

W(t)λ(3)
c (t)

λc(t)

β =
θ3W(t)λ

′′

c (t)

λc(t)

δ =
γ2

Wλ
′

c(t)

λc(t)

ω =
L(t)

λc(t)

and plug in them into (3.59), we get:
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ϵx4 + βx3 + δx2 + x − ω = 0 (3.60)

where

ϵ ≪ β ≪ δ ≪ 1.

Substitute x(ϵ) = a0 + a1ϵ into the equation (3.60) to get:

ϵ(a0 + a1ϵ)4 + β(a0 + a1ϵ)3 + δ(a0 + a1ϵ)2 + (a0 + a1ϵ) − ω = 0 (3.61)

Then collect the powers of ϵ and use Theorem 3.6.1 which leads to the following equations:

βa3
0 + δa

2
0 + a0 − ω = 0 (3.62)

a4
0 + 3βa1a2

0 − 2δa0a1 + a1 = 0 (3.63)

Again, perturbation theory is used to obtain a0 in the equation (3.62)

a0 = ω(1 + δω − βω2(
1

1 − 2ωδ
))

Then, a1 can be obtained easily from equation (3.63)

a1 =
a4

0

3βa2
0 − 2δa0 + 1

≈
ω4

3βω2 − 2δω + 1

As a result, a new estimate of waiting time is obtained in the form of:
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WL,λ,c,p(t) ≡ x(ϵ) = a0 + a1ϵ + O(ϵ2)

≈ ω(1 + δω −
βω2

1 − 2ωδ
+

ϵω3

1 − 2δω + 3βω2 )

(3.64)
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4. Service time in monopolistic walk-in clinics

In this chapter, first we define four scenarios based on walk-in clinics’ capacity (finite or infinite)

and their position in the area (monopolistic or oligopoly). Then, we focus on clinics acting in a

monopolistic market to obtain the optimum value for service time considering patients’ satisfaction

and clinics’ revenue.

4.1 Introduction

In healthcare, walk-in clinics, also called “rapid access clinics” or “medical clinics”, refer to

any healthcare center providing care without an appointment. In some cases they are owned by

doctors who work there, and in some cases the clinics are owned by a larger business which owns

multiple clinics and provides physicians with physical and administrative infrastructure.

Walk-in clinics work on a fee-for-service model, so they benefit from the number of patients

they serve. Moreover, doctors are paid by health insurance company on a fee-for-service basis and

direct a percentage of their payments to the clinic, which employs reception and nursing staff as it

considers necessary.

As the number of patients increases, more revenue is gained. Hence, it may be in interest of

some walk-in clinics to reduce their service times to increase profit.

On the other hand, short service time sacrifices the quality of service and leads to the dissatis-

faction of patients. Patients want to be heard carefully and be asked directly why they have come

to the clinic. This is essential especially with patients with multiple medical problems. Adequate

service time to communicate with patients could positively influence health outcomes by increas-

ing patient satisfaction, leading to greater patient understanding of health problems and treatments

available, contributing to better adherence to treatment plans. In contrast, limiting a patient’s com-

plaints during a visit may result in missing important information. A study in USA found that

just 36% of doctors posed an open-ended question to get patients to talk and after a doctor asks
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a question, patients get a median time of 11 seconds to answer before the doctor interrupts them.

Sometimes, the doctor interrupts to get clarity from a patient, but 11 seconds is still too soon.1

As mentioned, the problem is that clinics tend to allocate less service time than expected by

patients. The problem gets worse in rush hours when the number of arrivals has increased but

the number of servers could not be increased due to limitation in the number of doctors. In the

previous section, we reviewed a well-managed system in which the waiting times often remain

approximately stationary, even though the arrival rate is time-varying. That was primarily achieved

by using appropriate time-varying staffing. With appropriate staffing, customers do not have to wait

in the line and the time spent in the system is almost equal to the service times. However, in the

reality in walk-in clinics, we usually have limited number of doctors. When all available doctors are

busy, patients have to wait in waiting room. Long service time can lead to overcrowding in clinics

with infinite capacity. This issue is also more highlighted in clinics with finite capacity because

a certain number of patients are admitted. When waiting room is full, an arriving patient will be

turned away. Rejection causes dissatisfaction of refused patients and losing revenue that would be

gained by them.

In this section, we study walk-in clinics in which arrival rates are changing over time intervals,

while the number of servers can not be changed as much as required.

4.2 Models and analyses

To define the scenarios, the difference between monopolistic and oligopoly market should be

clarified. First, definition of these markets is mentioned:

• The Monopolistic Market: A monopolistic market is a theoretical condition describing a

market in which there is only one company offering products and services to the public. A

monopolistic market is the opposite of a perfectly competitive market. For instance, elec-

tricity is an example of a monopoly market. Generally, it is controlled or monitored by the

1https://www.cbc.ca/news/health/doctor-patient-visits-1.4755498
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governments to safeguard the customers interests.

• The Oligopoly Market: The term oligopoly has been derived from two Greek words: ‘oligi’

which means few and ‘polein’ that means to sell. Oligopoly is a market structure in which

there are two or more firms selling products or providing services to customers. Oligopoly is

also known as ‘competition among the few’ as there are few sellers in the market and every

seller has a great effect and is affected by the behaviour of other firms. For example, the

banking industry in Canada is dominated by six big banks: National Bank of Canada, Royal

Bank of Canada (RBC), the Bank of Montreal, Canadian Imperial Bank of Commerce, the

Bank of Nova Scotia (Scotiabank), and Toronto Dominion Bank (TD).

Therefore, a monopoly is when there is a single walk-in clinic, while an oligopoly is when there

are a small number of walk-in clinics in an area. Based on clinics’ capacity (finite or infinite) and

position of clinics (monopolistic or oligopoly), four scenarios are defined:

• Scenario 1 (Model UM): The capacity of waiting room is infinite which means no patient is

rejected and all arriving patients are served sooner or later. Furthermore, there is no walk-in

clinic in the region except this one. The model associated with this scenario is named Model

UM, where U represents the uncapacitated system and M shows the monopolistic position of

the clinic in the area.

• Scenario 2 (Model CM): The waiting room of clinic has finite capacity and just a limited

number of patients can be admitted. When there is no capacity in the waiting room, a new

arriving patient will be turned away. Moreover, we are still on the monopolistic position. The

model of this scenario is called Model CM showing a capacitated monopolistic clinic.

• Scenario 3 (Model UO): This scenario considers a clinic with infinite capacity in an oligopoly

market. In other words, there are several walk-in clinics in the region and all arriving patients

to the considered clinic are admitted. The model associated with this scenario is called Model

UO, where U indicates an uncapacitated system, and O denotes the oligopoly situation.
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• Scenario 4 (Model CO): In this scenario, we consider a clinic in an area in which there are

some other walk in clinics. Also, the clinic admits certain number of patients because of

limited space. The model associated with this scenario is called Model CO that is suitable to

describe many real-life situations.

For each scenario, a mathematical model will be presented . The notations used in this section

is presented in Table 4.1.

Table 4.1: Models notations

Parameter Definition
λ(t) Time-varying arrival rate
µ Service rate
s Average service time
πi Probability that there are i patients in the system
k Maximum number of available doctors
θ Patients sensitivity to service time
γ Patients sensitivity to difference between ideal and allocated service

time
β Level of dissatisfaction caused by overcrowding
sm Minimum service time that should be allocated to patients
sW Ideal service time
c Clinic’s capacity
α Patients dissatisfaction caused by being refused
Pi Patients satisfaction in scenario i ∈ {UM,CM,UO,CO}
s∗Pi

service time maximizing satisfaction function in scenario i
R Revenue function
B Maximum budget assigned by the governments

C1 Ancillary cost function
C2 Main cost function
RN New revenue function
N Net profit function

4.2.1 Assumptions

1. Customers arrive according to a Poisson process with rate λ(t).

2. Time-between-arrivals follow exponential distributed with mean
1
λ(t)

.
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3. Service times are exponentially distributed with mean µ.

4. The maximum number of available doctors is k.

5. Queue discipline is first come, first served (FCFS).

6. A doctor serves only one customer at a time.

7. When a patient joins the queue (is admitted to the clinic), s/he will never leave until being

visited by a doctor.

4.2.2 Ideal service time sW and minimum service time sm

As defied in Table 4.1, in all models the notations sW and sm will be used. Before discussing

different models, these notations should be explained in more details.

service time is recognized as one of the important factors in patient satisfaction. As the service

time increases, satisfaction is enhanced. In a well-organized clinic, ideal service time would be

allocated to patients and there is no rush even in rush hours. This is due to the fact that the number

of doctors would be increased as needed. When the arrival rate changes (increase or decrees), the

number of doctors changes (increase or decrees) to serve arriving patients in an unhurried manner.

However, in reality it is not always possible to provide appropriate time-varying doctors. Clinics

with limited number of servers could not allocate ideal service time especially when the number

of arriving patients is relatively large compared to the available doctors. Patients usually show

sensitivity to difference between ideal service time and time that would be allocated to them. As

the difference increases, satisfaction decreases.

In the previous section, a well-managed system with time-varying arrival rate was studied to

calculate sojourn time. As mentioned, in this system customers do not wait in the queue and re-

ceive service upon arrival. Hence, total waiting time is almost equal to service time. We will use

WL,λ(t), WL,λ,l(t), WL,λ,l,p(t), WL,λ,q,p(t), WL,λ,c,p(t) as the estimation of ideal service time in systems

with linear, quadratic and cubic arrival rate.
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Although it could not be always expected to provide ideal service time and highest level of sat-

isfaction, service time should be as long as patients have positive level of satisfaction. In addition,

sm can be calculated such that satisfaction function in each model is greater than zero:

Pi(sm) ≥ 0 i ∈ {UM,CM,UO,CO}.

4.3 Model UM

This model shows a clinic which acts as a monopoly in the region. It has infinite capacity with

time-varying arrival rate and k doctors. Such clinic with the addressed assumptions is modeled as

a Mt/M/k/∞ queuing system.

Since all arriving patients are accepted, people may experience overcrowding in such clinic

when the number of patients being present in the clinic exceeds the number of servers. In addition,

overcrowding in healthcare center is defined as having more patients than staff who should ideally

care for. It is also known as dangerously crowded because delays in services may have unpleasant

consequences which go well beyond the inconvenience of spending hours in the line. It may lead

to an increased risk of medical errors, delayed access to treatments, and increased gridlock in the

broader health care system. Hence, arriving at a crowded walk-in clinic increases the risk of bad

experience and dissatisfaction.

In this model, satisfaction of patients is presented in a functional form as shown bellow:

Pum(s) = θs − γ(sW − s) − βΣ∞i=k+1πi (4.1)

sm ≤ s ≤ sW

Patient satisfaction increases by longer service time while decrease by overcrowding and dif-

ference between ideal service time and allocated time. In the following, calculation of πi will be

discussed.
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4.3.1 Calculating πi

For a multi-server queue, πi can be calculated by using birth-death process. When a birth occurs,

the process goes from state i to i + 1, while in a death the process goes from state i to state i − 1.

As obtained in the equation (3.9), the process is specified by arrival rates {λi}i=1,2,.. and service rates

{µi}i=1,2,...

πi =
λ0λ1λ2...λi−1

µ1µ2µ3...µi
π0. (4.2)

Figure 4.1 indicates state diagram for a Mt/M/k/∞model. As shown, the service rate for states

smaller than k is equal to iµ, while for states larger than k is equal to kµ:

µi = µ =


iµ i < k

kµ i ≥ k
(4.3)

Figure 4.1: State diagram for a multi-server model

Based on considered estimation for arrival rates (linear, quadratic and cubic) in the interval

[0,T ], λi is defined:

λi = λ =


λl(T ) if linear

λq(T ) if quadratic

λc(T ) if cubic

(4.4)
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where

λl(T ) =
1
T

∫ T

0
(â0 + â1t)dt = â0 + â1(

T
2

), (4.5)

λq(T ) =
1
T

∫ T

0
(â0 + â1t + â2t2)dt = â0 + â1(

T
2

) + â2(
T 2

3
), (4.6)

λc(T ) =
1
T

∫ T

0
(â0 + â1t + â2t2 + â3t3)dt = â0 + â1(

T
2

) + â2(
T 2

3
) + â3(

T 3

4
). (4.7)

Therefore, πi can be calculated as follows:

πi =
λ0

µ1
×
λ1

µ2
× . . . ×

λi−1

µi
× π0 ≈

λ

µ
×
λ

2µ
× . . . ×

λ

iµ
× π0 =

λ
i

i!µiπ0, i ≤ k (4.8)

πi =
λ0

µ1
×
λ1

µ2
× . . . ×

λi−1

µi
× π0 ≈

λ
k

k!µk

 λkµ
i−k

π0, i ≥ k (4.9)

To find π0, we use the fact that the sum of all transition probabilities equals 1. Thus:

1 =
∞∑
j=0

π j =

k−1∑
j=0

λ
j

j!µ jπ0 +

∞∑
j=k

λ
k

k!µk

 λkµ
 j−k

π0 (4.10)

In other words:

π0 =
1

k−1∑
j=0

λ
j

j!µ j +

∞∑
j=k

λ
k

k!µk

 λkµ
 j−k . (4.11)
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Based on the equation (3.1)

s = E[tservice] =
1
µ
.

Substitute µ with
1
s

in the equation (4.11) to get:

π0 =
1

k−1∑
i=0

(λs)i

i!
+

∞∑
i=k

(λs)k

k!

λs
k

i−k . (4.12)

Consequently,

πi =
(λs)k

k!

λs
k

i−k
1

k−1∑
j=0

(λs) j

j!
+

∞∑
j=k

(λs)k

k!

λs
k

 j−k i ≥ k + 1 (4.13)

4.3.2 Concavity property of Pum

Concavity property can be used to obtain the global maximum of Pum. Proposition 4.3.1 shows

Pum has this property.

Proposition 4.3.1. Pum is a concave function.

Proof: Let us consider arbitrary points x1 < x2 in the interval [0,T ]. Assume

x0 = tx1 + (1 − t)x2, t ∈ [0,T ]

By using the mean value version of Taylor’s theorem, it is obtained:

Pum(x1) = Pum(x0) + P
′

um(x0)(x1 − x0) +
1
2

P
′′

um(ξ1)(x1 − x0)2

Pum(x2) = Pum(x0) + P
′

um(x0)(x2 − x0) +
1
2

P
′′

um(ξ2)(x2 − x0)2
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where

x1 ≤ ξ1 ≤ x0

x0 ≤ ξ2 ≤ x2.

Since P
′′

um = −βΣ
∞
i=k+1π

′′

i ≤ 0, it can be concluded:

Pum(x1) ≤ Pum(x0) + P
′

um(x0)(x1 − x0),

Pum(x2) ≤ Pum(x0) + P
′

um(x0)(x2 − x0).

The result of multiplying the Pum(x1) by t and Pum(x2) by (1 − t) and adding is:

tPum(x1) + (1 − t)Pum(x2) ≤ Pum(x0) + P
′

um(x0)(tx1 + (1 − t)x2 − x0) = Pum(tx1 + (1 − t)x2).

As a result, Pum is a concave function.

Proposition 4.3.2. Any local maximum of function Pum is also a global maximum.

Proof: Let x∗ be a local maximum of Pum. So, there is a δ > 0 such that for x ∈ (x∗ − δ, x∗ + δ):

Pum(x) ≤ Pum(x∗).

Suppose towards a contradiction that there exists x̂ such that

Pum(x̂) > Pum(x∗).

Consider the line segment

x(t) = tx̂ + (1 − t)x∗, t ∈ [0, 1].
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Due to concavity property of Pum,

Pum(x(t)) ≥ Pum(x∗), t ∈ [0, 1]

since

Pum(tx̂ + (1 − t)x∗) ≥ tPum(x̂) + (1 − t)Pum(x∗) > tPum(x∗) + (1 − t)Pum(x∗) = Pum(x∗).

Now, t can be picked sufficiently close to 0 such that

x(t) ∈ (x∗ − δ, x∗ + δ).

Therefore

Pum(x(t)) ≤ Pum(x∗)

by the definition of (x∗ − δ, x∗ + δ). This is a contradiction. Hence, it follows that

Pum(x) ≤ Pum(x∗)

for all x ∈ [0,T ]. Therefore, x∗ is a global maximum of Pum.

4.3.3 Optimization Pum

We seek to solve optimization problem

max
s

Pum.

Due to concavity property of Pum, it is enough to find its local maximum. To find the local

maximum, the root of P
′

um should be found. Obtaining a closed-form solution is not possible, so
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the numerical methods will be applied. In this research, we focus on Newton–Raphson method

which is also known as the Newton method. In calculus, it is an iterative method for finding the

root of a differentiable function.

The first step in this method is putting initial guess of the root which is typically denoted by s0

with the true root represented by s∗um. Therefore, the true root can be represented as:

s∗um = s0 + t,

where t shows how far the guess is from the true value of the root. As t is small, a linear tangent

line is used to approximate the location of the root which is written as:

0 = P
′

um(s∗um) = P
′

um(s0 + t) ≈ P
′

um(s0) + tP
′′

um(s0)

Therefore, t can be estimated:

t ≈ −
P
′

um(s0)
P′′um(s0)

.

Combining this approximation with the true value s∗um yields:

s∗um = s0 + t ≈ s0 −
P
′

um(s0)
P′′um(s0)

.

So, the new estimate of s∗um, s1 is

s1 = s0 −
P
′

um(s0)
P′′um(s0)

.

If we continue, the iteration of Newton-Raphson will be achieved:

si+1 = si −
P
′

um(si)
P′′um(si)

.

Generating sequence is stopped when the the difference between two successive ones is less
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than considered error e:

|si+1 − si| < e.

4.3.4 Revenue

In walk-in clinics, revenue is gained by serving patients. More arriving patients generate more

revenue. Revenue in this model does not depend on service time, because regardless of quality of

service, all patients in the region choose the clinic. All arriving patients are admitted and served,

so the clinic neither benefits nor loses by modifying the average service time. Hence, the clinic can

be asked to allocate average service time s∗um to maximize patients’ satisfaction.

4.4 Model CM

In this scenario, there is a cap on the number of admitted patients and due to limited capacity,

all arriving patients could not be admitted . It is the case for those walk-in clinics that are the only

clinic in a region and their waiting room capacity is small relative to the arriving patients. There

is a noticeable difference between patient satisfaction in models UM and model CM. Moreover, in

model UM the expected satisfaction values are the same for all arriving patients, while in model

CM the values for accepted and rejected patients are different. It is assumed that the refused patients

have a fixed level of dissatisfaction α. Therefore, to maximize the expected patient satisfaction, the

regulator solves:

Pcm(s) = (1 − πc)(θs − γsW + γs) − απc (4.14)

sm ≤ s ≤ sW

where πc is the probability that the system contains c patients and therefore a new arriving patient

is turned away. In the following, πc will be calculated.
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4.4.1 Calculating πc

As obtained in the equation (3.9), for queues with k servers πc is equal to:

πc =
λ0λ1λ2...λk−1λkλk+1...λc−1

µ1µ2...µk−1µkµk+1...µc
π0. (4.15)

Given (4.9), πc can be calculated as follows:

πc =
λ

k

k!µk

 λkµ
c−k

π0. (4.16)

By using the fact that the sum of all transition probabilities equals 1, π0 can be obtained:

1 =
∞∑

i=0

πi =

c∑
i=0

πi =

k−1∑
i=0

λ
i

i!µiπ0 +

c∑
i=k

λ
k

k!µk

 λkµ
i−k

π0 (4.17)

π0 =
1

k−1∑
i=0

λ
i

i!µi +

c∑
i=k

λ
k

k!µk

 λkµ
i−k (4.18)

Furthermore, given the equation (3.1), µ in the equation (4.18) can be substituted with
1
s

,

π0 =
1

k−1∑
i=0

(λs)i

i!
+

c∑
i=k

(λs)k

k!

λs
k

i−k . (4.19)
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Using the equations (4.16) and (4.19), πc is obtained as

πc =
(λs)c

k!kc−k

( 1
k−1∑
i=0

(λs)i

i!
+

c∑
i=k

(λs)k

k!

λs
k

i−k

)
. (4.20)

Proposition 4.4.1. πc is an increasing function of s.

Proof: For simplicity, put

t = λs

h =
1

k!k−k ,

and define the function f as

f (t) =
tc

k−1∑
i=0

ti

i!
+ h

c∑
i=k

ti

ki

.

Therefore, πc in the equation (4.20) can be written in the form of

πc =
f (t)
hkc , (4.21)

To prove πc is an increasing function, it is enough to show f (t) is an increasing function. Let us

differentiate f :
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∂ f
∂t
=

(ctc−1)(
k−1∑
i=0

ti

i!
+ h

c∑
i=k

ti

ki ) − (tc)(
k−1∑
i=0

iti−1

i!
+ h

c∑
i=k

iti−1

ki )

A2 , (4.22)

where

A =
k−1∑
i=0

ti

i!
+ h

c∑
i=k

ti

ki = 1 +
k−1∑
i=1

ti

i!
+ h

c∑
i=k

ti

ki > 0.

∂ f
∂t

in the equation (4.22) can be written in the form of:

∂ f
∂t
= (tc−1)

k−1∑
i=0

(c − i)ti

i!
+ h

c∑
i=k

(c − i)ti

ki

A2 . (4.23)

Since c ≥ i, then
∂ f
∂t
≥ 0.

As a result, f (and consequently πc) is an increasing function.

4.4.2 Objective function of satisfaction

The goal is to maximize Pcm by setting the best value for s. Therefore, the objective function is

defined as:

max
s

Pcm = (1 − πc)(θs − γsW + γs) − απc (4.24)

sm ≤ s ≤ sW .
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To find the optimum service time, the critical points of an n-degree polynomial must be cal-

culated. Based on Abel Ruffini theorem [49] obtaining the closed-form solutions of a general

polynomial function with higher than 5 degrees is not analytically possible. We apply numerical

method to find the optimum average service time and represent it with s∗cm.

Proposition 4.4.2. The maximum value of Pcm is at s∗cm > 0.

Proof: Pcm is is continuously differentiable on s > 0 and

lim
s→0

Pcm =
∂Pcm

∂s
= θ + γ > 0.

Therefore, there is an ϵ > 0 such that

Pcm(s = ϵ) > Pcm(s = 0),

concluding that the maximum of Pcm is achievable at a value of s greater than zero.

4.4.3 Revenue function

Each patient admitted by the clinic will generate revenue for the walk-in clinic. Hence, revenue

is made by serving the accepted patients that is defined as:

R(s) = λ
(
1 − πc(s)

)
. (4.25)

Since, πc is an increasing function of s, R is a decreasing function of s. In other words, as

average service time increases, the probability of rejection in capacitated clinics increases and con-

sequently revenue decreases. To gain more revenue, some clinics tend to reduce service time which

affects quality of service and patient care. The main goal of studying model CM is identifying the

cases where revenue maximization policies are not aligned with patient care. In the following, it is

outlined how this can be handled by the government’s plan.
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4.4.4 Government’s budget

Since revenue function is a decreasing function of s, the maximum revenue would be obtained

by allocation of minimum service time sm. If capacitated walk-in clinics allocate more service time,

their revenue will be less than R(sm)

s ≥ sm ⇒ R(s) ≤ R(sm). (4.26)

We would like to know how we can encourage capacitated clinics to increase the quality of

service and allocate more than minimum service time to patients. Let us assume

b1 =
R(s)

R(sm)
(4.27)

and

b2 = 1 − b1. (4.28)

When allocated time is s such that s ≥ sm, the clinic loses b2R(sm) amount of revenue. To

encourage clinics to increase service time, this loss can be compensated by the government based

on the performance of clinics. New revenue can be defined as

RN(s) = R(s) +
s

s∗cm
b2R(sm). (4.29)

Due to the limited budget that would be allocated to this plan, clinics could not increase the

service time as much as they want and expect that their all lost revenue could be compensated by

the government. In this case, Proposition 4.4.3 and 4.4.4 would be helpful to set a cap for the

average service time based on limitation on budget.

Theorem 4.4.1. Let f be a continuous function defined on [a, b] and let x be a number with f (a) <

x < f (b). Then the intermediate value theorem guarantees that there exists some s between a and
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b such that f (s) = x

Proof: See [50]

Proposition 4.4.3. : Assume B is the maximum budget assigned by the government to this plan and

define

d =
B

R(sm)
.

Then there is a sd such that

πc(sd) = 1 − [(1 − d)(1 − πc(sm))].

Proof: Since 0 ≤ d ≤ 1 and 0 ≤ πc(sm) ≤ 1, it can be concluded:

0 ≤ 1 − [(1 − d)(1 − πc(sm))] ≤ 1. (4.30)

Given Theorem 4.4.1 and the fact that πc(s) is a continuous function between 0 and 1, there is

sd such that

πc(sd) = 1 − [(1 − d)(1 − πc(sm))].

Proposition 4.4.4. Suppose that the average service time allocated to patients is s. Then s ≤ sd if

only if b2R(sm) ≤ B.

Proof: Based on Proposition 4.4.1, πc is an increasing function. Therefore,
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s ≤ sd ⇐⇒ πc(s) ≤ πc(sd)

⇐⇒ πc(s) ≤ 1 − [(1 − d)(1 − πc(sm))]

⇐⇒ (1 − d)(1 − πc(sm)) ≤ (1 − πc(s))

⇐⇒ (1 − d)λ(1 − πc(sm)) ≤ λ(1 − πc(s))

⇐⇒ (1 − d)R(sm) ≤ R(s)

⇐⇒ 1 − d ≤
R(s)

R(sm)

⇐⇒ 1 − d ≤ b1

⇐⇒ 1 − d ≤ 1 − b2

⇐⇒ b2 ≤ d

⇐⇒ b2R(sm) ≤ R(sm)d

⇐⇒ b2R(sm) ≤ B.

As a consequence,
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s ≤ sd ⇐⇒ πc(s) ≤ πc(sd)⇐⇒ b2R(sm) ≤ B. (4.31)

4.4.5 Ancillary cost and net profit

Let us look at the new revenue function defined in (4.29),

RN(s) = R(s) +
s

s∗cm
b2R(sm)

or equivalently,

RN(s) = b1R(sm) +
s

s∗cm
b2R(sm)

= (1 − b2)R(sm) +
s

s∗cm
b2R(sm).

At a glance, it can be seen that

RN(s) ≤ R(sm),

because
s

s∗cm
≤ 1.

Now, the question is “what could encourage the clinics to increase the service time, while their

total revenue would be less than original revenue R(sm)?” The answer is in ancillary cost and net

profit. Ancillary costs are different from main costs. In walk-in clinics it means all costs other than

servers employment expenses and cost of renting clinic space. Usually, a percentage of revenue

gained from serving patients is assigned to ancillary costs. Let p1 be this percentage, C1 be the

ancillary cost, C2 be the main cost, and N be the net profit such that:
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C1(s) = p1R(s) = p1[λ(1 − πc(s))] (4.32)

N(s) = RN(s) −C1 −C2 = (1 − p1)R(s) +
s

s∗cm
b2R(sm) −C2. (4.33)

Proposition 4.4.5. Assume that

ω =
s

s∗cm
.

Then p1 ≥ 1 − ω if only if N(s) ≥ N(sm).

Proof: We have

p1 ≥ 1 − ω⇐⇒ (1 − b1)p1 ≥ (1 − b1)(1 − ω)

⇐⇒ −b1 p1 + p1 ≥ 1 − b1 − ω + ωb1

⇐⇒ b1 + ω − ωb1 − b1 p1 ≥ 1 − p1

⇐⇒ (b1 + ω − ωb1 − b1 p1)R(sm) ≥ (1 − p1)R(sm)

⇐⇒ (1 − p1)b1R(sm) + (1 − b1)ωR(sm) ≥ (1 − p1)R(sm)

⇐⇒ (1 − p1)R(s) + (1 − b1)ωR(sm) ≥ (1 − p1)R(sm)

⇐⇒ (1 − p1)R(s) + (1 − b1)ωR(sm) −C2 ≥ (1 − p1)R(sm) −C2
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⇐⇒ (1 − p1)R(s) + b2ωR(sm) −C2 ≥ (1 − p1)R(sm) −C2

⇐⇒ (1 − p1)R(s) + b2
s

s∗cm
R(sm) −C2 ≥ (1 − p1)R(sm) −C2

⇐⇒ N(s) ≥ N(sm).

Proposition 4.4.5 represents the minimum service time to obtain more net profit. In other words,

it emphasizes that to gain more net profit, we should allocate

s ≥ s∗cm(1 − p1). (4.34)

However, based on the limitation on budget in (4.31), there is a cap on s:

s ≤ sd. (4.35)

Therefore, clinics first evaluate sd and s∗cm(1 − p1) and start to increase service time if

sd ≥ s∗cm(1 − p1). (4.36)

Otherwise, their net profit would not be more than when they allocate minimum service time.

As a result, to gain more profit, the average service time should be
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s∗cm(1 − p1) ≤ s ≤ sd. (4.37)

4.4.6 Objective function of profit

The objective is to maximize the net profit:

max
s

N(s) = (1 − p1)R(s) +
s

s∗cm
b2R(sm) −C2 (4.38)

s∗cm(1 − p1) ≤ s ≤ sd.

To find the optimum value, Proposition 4.4.6 can be applied.

Proposition 4.4.6. N(s) is an increasing function of s.

Proof: To determine N(s) is increasing, it is enough to show
∂N(s)
∂s

≥ 0.

N(s) = (1 − p1)R(s) +
s

s∗cm
b2R(sm) −C2

= (1 − p1)R(s) +
s

s∗cm
[R(sm) − R(s)] −C2.

Therefore,
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∂N(s)
∂s

= (1 − p1)
∂R(s)
∂s
+

1
s∗cm

[R(sm) − R(s)] −
s

s∗cm

∂R(s)
∂s

= (1 − p1)
∂R(s)
∂s
−

s
s∗cm

∂R(s)
∂s
+

1
s∗cm

[R(sm) − R(s)]

= −λ(1 − p1)
∂πc(s)
∂s

+ λ
s

s∗cm

∂πc(s)
∂s

+
1

s∗cm
[R(sm) − R(s)]

= λ(−1 + p1 +
s

s∗cm
)
∂πc(s)
∂s

+
1

s∗cm
[R(sm) − R(s)].

(4.39)

Using the Proposition 4.4.1, It can be concluded:

∂πc(s)
∂s

≥ 0. (4.40)

Also, since s∗cm(1 − p1) ≤ s,

(−1 + p1 +
s

s∗cm
) ≥ 0. (4.41)

In addition, the function R defined in the equation (4.25) is a decreasing function of s. Since

the average service time allocated to patients must be greater than minimum service time (sm ≤ s),

then

R(s) ≤ R(sm).

Therefore,
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R(sm) − R(s) ≥ 0. (4.42)

Given the equation (4.40), (4.41), and (4.42), we conclude that the equation (4.39) is greater

than zero:

∂N(s)
∂s

≥ 0.

This means that N(s) is an increasing function of s and the value maximizing the function N(s)

is sd. In other words, if the government plans to allocate budget to increase service time and this

budget is considerable as clinics can increase service time greater than s∗cm(1−p1), the clinics should

try to use all amount of reward because the maximum net profit is obtained at sd.
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5. Service time in oligopolistic walk-in clinic

In this chapter, first factors contributing to patient’s choice of a walk-in clinic will be discussed.

Then, Model UO and CO will be review to obtain optimum value for service time considering

patient satisfaction and clinic revenue.

5.1 Introduction

The number of walk-in clinics has increased dramatically over the last two decades across the

world, with several clinics popping up in one area. So, the structure of health market in such areas

is considered to be oligopolistic, with no clinics keeping others from having significant influence.

Given the competitive nature of oligopoly market, healthcare organizations make their utmost to

attract the maximum number of patients to gain more revenue. It benefits the patients, because

competition generally leads to more choice and better quality of service. Decision makers, budget-

holders and executives of organizations , who are responsible to identify areas of expenditure and

improve profitability, should put patients’ needs and preferences at the top of their list of priorities

as they carry out their planning. In this section, first the factors contributing to patient’s choices of

a clinic will be reviewed, then, the optimum value for service time will be obtained in capacitated

and uncapacitated walk-in clinics which are providing healthcare services in an oligopoly market.

5.2 Factors contributing towards patient’s choice of a walk-in

clinic

Walk-in clinics, as the private business in healthcare market, should develop and implement

plans for attracting more patients to ensure their survival and success. There are multiple factors

contribute to a patient’s choice of a healthcare center. Bahadori et al. [51] identified 21 factors that

may contribute to patient’s choices of a clinic as shown in Table 5.1.
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Table 5.1: Factors influencing patient’s choice of a clinic

Factors Variables

Facilities and physical assets Good facilities and equipment;

appropriate clinic environment

Service providers (physicians

and employees)

Having good physicians and per-

sonnel; being responsive to possi-

ble errors; scientific management

of the clinic in recent years

Location and place Having a strategic location

Services Providing high quality and various

services in a day, having all med-

ical disciplines; offering boarding

services; using a system for queu-

ing patients properly in all wards

Price Cheaper free tariffs on visits and

para-clinical services; low-cost ser-

vices for veterans and their fam-

ilies; being a non-commercial

clinic; promoting a patient-

centered culture

Promotion The center’s reputation; obtain-

ing the top rankings among other

centers; direct and indirect adver-

tisements and promotions; the au-

dience of the center

People living in different areas may have different preferences to choose a clinic. For example,
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people living in an area with high-healthcare costs may prefer a clinic with cheaper tariffs on visits,

while people in other region, where all residents receive healthcare at no cost or a very minimal cost,

prefer to attend a clinic with high quality of service. Therefore, the most significant contributing

factors to attract patients in different areas would be different. In the following, we explain how we

can select the best factors based on provided data.

5.2.1 Fitting equation to data

Suppose there is a single dependent variable y and several independent variables x1, x2, ..., xp.

The purpose is to fit an equation to the data collected on these measurements that explains the

dependence of y on x1, x2, ..., xp. Equations give very precise and concise descriptions of data ex-

plaining how dependent variables are related to independent variables. The equation that generally

describes the relationship between y and the independent variables is of the form:

y = f (x1, x2, ..., xp|ϕ0, ϕ1, ..., ϕp) + ϵ (5.1)

where ϕ0, ϕ1, ..., ϕp are unknown parameters of the function f and ϵ is a random disturbance (usually

assumed to have a normal distribution with mean 0 and standard deviation σ).

When fitting models to data, the utmost is to find the simplest form of a model that still ade-

quately describes the relationship between the dependent variable and the independent variables.

The linear model as the form of

y = ϕ0 + ϕ1x1 + · · · + ϕpxp + ϵ (5.2)

is sometimes the first equation to be fitted and only abandoned if it turns out to be inadequate.

In many instances, a linear model is the most appropriate model to describe the dependence re-

lationship between the dependent variable and the independent variables. This will be true if the
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dependent variable increases at a constant rate as any of the independent variables is increased

while holding the other independent variables constant. Many non-linear models can be put into

the form of a linear model by appropriately transforming the dependent variables and/or any or all

of the independent variables. This important fact ensures the wide utility of the linear model (i.e.

the fact that many non-linear models can be linearizable). When fitting a multiple linear regression

model, independent variables, that are not important in predicting the dependent variable, are likely

be included. However, these insignificant variables can be eliminated from the final equation by

“finding the best equation strategies”. Their purpose is to find the “simplest” model (not containing

variables that are not important) yet “adequate” (containing variables that are important). There are

several strategies for selecting the best equation:

• Forward selection

• Backward elimination

• Step-wise regression

• All Possible Regressions

• Best Subset Regression.

In the followings, these methods are explained.

Forward selection: This method starts with no variables in the equation. Then, statistical tests

are Carries out on variables not in the equation to see which have a significant effect on the de-

pendent variable and the most significant variables are added. The process is continued until all

variables not in the equation have no significant effect on the dependent variable.

Backward elimination: This method starts with all variables in the equation. Then, statistical

tests are Carries out on variables in the equation to see which have no significant effect on the de-

pendent variable and the least significant variables are deleted. The process is continued until all
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variables in the equation have a significant effect on the dependent variable.

Step-wise regression: This method uses both forward and backward techniques. It starts with

no variables in the equation, Then statistical tests are Carries out on variables not in the equation to

see which have a significant effect on the dependent variable and the most significant is added. After

adding a variable, it checks to see if any variables added earlier can now be deleted. The process is

continued until all variables not in the equation have no significant effect on the dependent variable.

All Possible Regressions: Unlike step-wise, this algorithm tests all possible subsets of the set

of potential independent variables. For instance, when there are p independent variables, there will

be 2p subsets of variables and the algorithm fits all regressions involving no regressor, one regres-

sor, two regressors, and so on. Then selection criterion is recorded for each regression. Usually,

either adjusted R-squared or Mallows’ Cp is the criterion for picking the best fitting models. Once

the procedure finishes, the champion for each subset size is determined. We then determine which

subset size is optimum for our case. Although this method takes longer time to run than step-wise,

it guarantees the right answer. Therefore, when there are 15 or fewer independent variables to

choose from, this is the variable selection procedure that should be used.

Best Subset Regression It is similar to all possible regressions. This method can be used when

the number of variables is large. In this algorithm, the user supplies the value K and the algorithm

identifies the best K subset of x1, x2, ..., xp for predicting y.

All of these methods are procedures for attempting to find the best equation.
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5.2.2 Notations and assumptions

In addition to notations used in Table 4.1, new notations will be used in this section which are

represented in Table 5.2.

Table 5.2: Model notations

Parameter Definition

ωs Probability of selecting the clinic being studied

ωi Probability of selecting clinic i

ωi
s Probability that patients rejected from clinic i select clinic being studied

ci Capacity of clinic i

πci Probability that there are ci patients in capacitated clinic i

n The total number of clinics in an area

n1 The number of capacitated clinics

n2 The number of uncapacitated clinics

λuo Arrival rate of an uncapacitated walk-in clinic in an oligopoly market

λco Arrival rate of an capacitated walk-in clinic in an oligopoly market

sR Optimum value maximizing revenue function

Ck The cost of adding a server

Cc The cost of adding a capacity

Apart from assumptions mentioned in 4.2.1, we consider two important assumptions in an

oligopoly health market:

• The average service time is the only factor contributing to patients’ choice of a walk-in clinic.

• There are adequate information (the number of servers, capacity, and service time) of other

clinics.
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Moreover, while trying to find the best equation, it can be seen that the average service time

is the variable which should remain in the equation, because the quality of service is a main de-

terminant of the choice of healthcare providers ([52] and [53]). A study conducted at the Inanda

C Community Health Centre (CHC) [54] shows that the most common process indicator that pa-

tients agreed on as reasons for attending Inanda C CHC was the average service time. The patients

were so satisfied when the doctor or nurse explained their sickness and treatment and they get good

quality of care. Therefore, we consider average service time as one of the most important factors

contributing towards patient’s choice. In this research, it is considered that all clinics are very well

located, equipped, advertised with same price and their difference is just in the average service time

that they allocate to the patients. Hence, there will be just a variable “s” playing role in patients’

choice. Also, in an oligopoly health market, every walk-in clinic is affected by the behavior of other

walk-in clinics. Therefore, a clinic acting in an oligopoly market should have enough information

about other competitors such as the number of servers, capacity and service time they provide.

5.2.3 The probability of selecting a walk-in clinic by patients

Consider linear relationship between the patient’s choice of a walk-in clinic and service time as

bellows:

y = f (s|ϕ) + ϵ ≈ ϕs, (5.3)

where y indicates the level of patient happiness which leads to selecting a clinic in a competitive

market. When there are n walk-in clinics in the vicinity, the probability of selecting the clinic,

shown by ωs, is defined as:

ωs =
ϕs

ϕs1 + ϕs2 + · · · + ϕsn−1 + ϕs
=

s
s1 + s2 + · · · + sn−1 + s

(5.4)

where s1, s2, ...., sn−1 demonstrate the average service time in n−1 walk-in clinics (it is assumed
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that there is enough information about the average service time allocated by other clinics in an

oligopolistic market). When the number of walk-in clinic in the area increases from 1 to n, the

number of patients does not change. Hence, average arrival rate calculated in (4.4) can be used

in oligopoly models as well, however the quality of service determines the parentage of patients

coming to a clinic. Clinics should monitor healthcare market in a regular basis, because any change

in service time of other clinics to absorb more patients will affect the probability of choosing other

clinics.

5.3 Model UO

This model shows a clinic which acts in an oligopoly market with unlimited capacity. The

difference between Model UO and Model UM is in the arrival rate. In Model UM there is no

competitor in the vicinity and patients don’t have any other choice. Whether the quality of service

is good or bad, they select the clinic. However, in Model UO, patients can compare the quality of

service and then select a clinic. Therefore, in Model UO the quality of service is important not only

for patients but also for clinics.

5.3.1 Arrival rate

Suppose there are n walk-in clinics in the area such that there exist n1 capacitated clinics and n2

uncapacitated clinics:

n = n1 + n2.

Let ci be the capacity of clinic i and πci be the probability of presence of ci patients in the clinic

i. Also, consider ωi shows the probability of selecting clinic i as defined bellow:

ωi =
si

s1 + s2 + · · · + sn−1 + s
.

Only capacitated walk-in clinics reject patients. Consider ωi
s shows the probability that patients
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rejected from capacitated clinic i select this uncapacitated walk-in clinic which is defined as:

ωi
s =

s
s1 + s2 + ... + si−1 + si+1 + ... + sn−1 + s

, i = 1, 2, ..., n1 (5.5)

Therefore, the arrival rate for an uncapacitated walk-in clinic serving patients in an oligopoly

market is:

λuo = ωsλ +

n1∑
i=1

ωi
sπciωiλ, (5.6)

where λ is the average arrival rate obtained in (4.4). In this research, we neglect the arrivals

rejected from two or more capacitated clinics.

Proposition 5.3.1. λuo is an increasing function of s.

Proof: Assume that:

H = s1 + s2 + ... + sn−1.

Then λuo defiend in equation (5.6) can be written in the form of:

λuo = λ

 s
H + s

+

n1∑
i=1

πci ssi

(H − si + s) (H + s)

 .

To prove λuo is increasing, we show
∂λuo

∂s
≥ 0.
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∂λuo

∂s
= λ

 H
(H + s)2 +

n1∑
i=1

πci si

(
H2 − Hsi − s2

(H − si + s)2(H + s)2

)

=
λ

(H + s)2

H +
n1∑
i=1

πci si

(
H2 − Hsi − s2

(H − si + s)2

)

=
λ

(H + s)2

H +
n1∑
i=1

πci si

(
H2 − Hsi

(H − si + s)2

)
−

n1∑
i=1

πci si

(
s2

(H − si + s)2

)

≥
λ

(H + s)2

H +
n1∑
i=1

πci si

(
H2 − Hsi

(H − si + s)2

)
−

n1∑
i=1

si

 (∗)

=
λ

(H + s)2

 n1∑
i=1

πci si

(
H2 − Hsi

(H − si + s)2

)
+ H −

n1∑
i=1

si

 .

Here inequality in (∗) holds since:

πci ≤ 1

and:

(
s2

(H − si + s)2

)
≤ 1.

Given the fact that:

H2 − Hsi = H(H − si) ≥ 0

and:
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H −
n1∑
i=1

si ≥ 0,

it is concluded that:

∂λuo

∂s
≥ 0.

5.3.2 Revenue

In Model UM, the revenue does not depend on quality of service, while in Model UO there

is a direct link between revenue and quality of service. In addition, higher service time results in

greater patient arrival rate and subsequently more revenue. In this model, the revenue is in the form

of:

R = max
s
λuo = max

s

ωsλ +

n1∑
i=1

ωi
sπciωiλ

 ,
sm ≤ s ≤ sW .

Based on Proposition 5.3.1, λuo is an increasing function of s. Therefore, maximum revenue is

gained at sW .

5.3.3 Satisfaction

In this model, satisfaction of patients is represented in a functional form as shown below:

Puo = θs + γ(sW − s) − β
∞∑

i=k+1

πi (5.7)

where:
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πi =
(λuos)i

k!ki−k


1

k−1∑
j=0

(λuos) j

j!
+

∞∑
j=k

(λuos)k

k!

λuos
k

 j−k


. (5.8)

The only difference between πi defined in equation (5.8) and πi obtained in (4.13) is in arrival

rate. In equation (4.13) λ has been used, while in the equation (5.8) λuo is considered as arrival

rate. In this model, patient satisfaction depends not only on the average service time but also on the

number of servers in the system. Proposition 5.3.2 shows the importance of the number of servers

in satisfaction of patients.

Proposition 5.3.2. In Model UO, the satisfaction of patients in a system with k + j servers is more

than the satisfaction of patients in a system with k servers. In other words, if we put:

P(k)
uo = θs + γ(sW − s) − β

∞∑
i=k+1

π(k)
i ,

where:

π(k)
i =

ti

k!ki−k

 1

Dk +
tk

k!
k

k − t

 , (5.9)

t = λuos,

Dk =

k−1∑
j=0

t j

j!
,

then:
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P(k)
uo ≤ P(k+ j)

uo j = 0, 1, 2, ...

Proof: First, let us to calculate
∑∞

i=k+1 π
(k)
i :

∞∑
i=k+1

π(k)
i =

∞∑
i=k+1

ti

k!ki−k

 1

Dk +
tk

k!
k

k − t



=
tk+1

k!(k − t)

 1

Dk +
tk

k!
k

k − t



=
tk+1

k!

 1

(k − t)Dk + k
tk

k!

 .

Similarly,
∑∞

i=k+2 π
(k+1)
i can be obtained as below:

∞∑
i=k+2

π(k+1)
i =

tk+2

(k + 1)!(k + 1 − t)

 1

Dk +
tk

k!
(

k + 1
k + 1 − t

)



=
tk+2

(k + 1)!

 1

(k + 1 − t) Dk + (k + 1)
tk

k!

 .
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Given (3.2),
t
k
≤ 1.

Therefore, the followings are concluded:

t
k
≤ 1 =⇒

t
k + 1

≤ 1

⇐⇒
t

k + 1

(
tk+1

k!

)
≤

(
tk+1

k!

)

⇐⇒
tk+2

(k + 1)!
≤

tk+1

k!

⇐⇒
tk+2

(k + 1)!

 1

(k + 1 − t)Dk + (k + 1)
tk

k!

 ≤ tk+1

k!

 1

(k − t)Dk + k
tk

k!



⇐⇒

∞∑
i=k+2

π(k+1)
i ≤

∞∑
i=k+1

π(k)
i .

Iterating will result in:

∞∑
i=k+1+ j

π
(k+ j)
i ≤

∞∑
i=k+1

π(k)
i j = 1, 2, ....

As a consequence:
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P(k)
uo ≤ P(k+ j)

uo j = 0, 1, 2, ....

5.4 Model CO

In this scenario, there is a threshold for the maximum number of admitted patients because

the capacity of waiting room is finite. This scenario is the case for many real-life situations in

more populated areas where there are some other walk-in clinics, but there is a cap on the admitted

patients due to limited space in this clinic.

5.4.1 Arrival rate

In this Model, the arrival rate is defined as below:

λco = ωsλ +

n1−1∑
i=1

ωi
sπciωiλ, (5.10)

where λ is defined in (4.4).

Proposition 5.4.1. λco is an increasing function of s

Proof: We omit the proof because it is very similar to prove given for Proposition 5.3.1.

5.4.2 Revenue

In this scenario, there is a cap on the possible number of patients in the waiting room, and

having higher average service time means higher arrival rate. However, higher average service

time leads to rejection of more patients. In general, the revenue function is in the form of:

R(s) = max
s

(
λco(1 − π(k)

c )
)

(5.11)

where
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π(k)
c =

(λcos)c

k!kc−k


1

k−1∑
i=0

(λcos)i

i!
+

c∑
i=k

(λcos)k

k!

λcos
k

i−k


, (5.12)

as obtained in equation (4.20); however, in this equation λco is used as arrival rate.

Proposition 5.4.2. 1 − π(k)
c is a decreasing function of s.

Proof: Given Proposition 4.4.1,

πc =
(λs)c

k!kc−k


1

k−1∑
i=0

(λs)i

i!
+

c∑
i=k

(λs)k

k!

λs
k

i−k



is an increasing function. Also, based on Proposition 5.4.1, λco is increasing. Therefore,

π(k)
c =

(λcos)c

k!kc−k


1

k−1∑
i=0

(λcos)i

i!
+

c∑
i=k

(λcos)k

k!

λcos
k

i−k



is increasing function of s. Hence, 1 − π(k)
c is a decreasing function of s.
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Revenue in this scenario is the multiplication of an increasing function “λco” and a decreasing

function “1−π(k)
c ”. Obtaining the closed-form solution is not possible, so numerical methods could

be used to get sR representing the optimum value maximizing revenue function.

5.4.3 Adding servers and expanding capacity

In a capaciated clinic, revenue can be increased by expanding capacity and employing new staff,

because π(k)
c which has a negative impact on revenue will decrease. On the other hand, expanding

capacity and adding new servers to the system would be costly. Let x be the number of new servers

which can lead to serving more hx patients. Consider the cost of adding a server and a capacity is

shown with Ck and Cc, respectively. Capacitated walk-in clinics can increase the number of servers

and capacity such that difference between new revenue and initial revenue is higher than cost of

employing new servers and expanding capacity. In other words:

R(s) − R(sR) − xCk − hxCc ≥ 0 =⇒ x ≤
R(s) − R(sR)

Ck + hCc

=⇒ x ≤
λ − R(sR)
Ck + hCc

.

Since x is an integer,

x = 0, 1, 2, ...,
λ − R(sR)

Ck + nCc

 ,

where [y] is the least integer greater than or equal to y.
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The goal is to maximize revenue by setting the best value for s, adding servers and expanding

capacity. Therefore. the objective function of profit is defined as:

N(s, x) = max
s,x

R(s, k + x, c + hx) − xCk − hxCc (5.13)

sm ≤ s ≤ sW

x = 0, 1, 2, ...,
λ − R(sR)

Ck + nCc

 .

In other words, there are
[
λ−R(sR)
Ck+nCc

]
+ 1 optimization problems and:

max
s
{N(s, 0),N(s, 1), ...,N(s,

λ − R(sR)
Ck − nCc

)} (5.14)

should be obtained. To find the optimum average service time in each problem , the critical points

of an polynomial must be calculated. Since obtaining the closed-form solutions of a general poly-

nomial function with higher than 5 degrees is not analytically possible, numerical methods can be

applied to find the optimum average service time maximizing profit function.

Proposition 5.4.3. In capacitated walk-in clinics, the probability of rejection decreases when the

number of servers and capacity increase. In other words,

π(k)
c ≥ π

(k+x)
c+hx
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Proof: First, let us consider x = 1 and show:

π(k)
c ≥ π

(k+1)
c+h .

For simplicity, put:

t = λcos

Dk =

k−1∑
i=0

ti

i!

Q =
c+h∑

i=c+1

t(k+1)

(k + 1)!

( t
k + 1

)i−(k+1)
.

Therefore, π(k)
c defined in equation (5.12) can be written in the form of:

π(k)
c =

tc

k!kc−k

 1

Dk +
∑c

i=k
tk

k!

( t
k

)i−k

 ,

Consequently:
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π(k+1)
c+h =

tc+h

(k + 1)!(k + 1)c+h−(k+1)


1

k∑
i=0

ti

i!
+

c+h∑
i=k+1

t(k+1)

(k + 1)!

( t
k + 1

)i−(k+1)



=
tc

k!(k + 1)c−k

th

(k + 1)h


1

Dk +
tk

k!
+

c∑
i=k+1

t(k+1)

(k + 1)!

( t
k + 1

)i−(k+1)
+ Q

 .

Comparing definition of π(k)
c and π(k+1)

c+h , it is enough to show that:

(k + 1)c−k+h

(
Dk +

tk
k! +

c∑
i=k+1

t(k+1)

(k+1)!

(
t

k+1

)i−(k+1)
+ Q

)
th ≥ kc−k

Dk +

c∑
i=k

tk

k!

( t
k

)i−k
 .

Given inequation (3.2),

λcos
k
≤ 1,

or equivalently:

t
k
≤ 1.

So, the followings are obtained:
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t
k
≤ 1 =⇒ k ≥ t

=⇒ k + 1 ≥ t

=⇒ (k + 1)h ≥ th

=⇒ (k + 1)h(k + 1)c−i ≥ thkc−i

=⇒ (k + 1)h (k + 1)c−k

(k + 1)i−k ≥ th kc−k

ki−k

=⇒ (k + 1)hti−k (k + 1)c−k

(k + 1)i−k ≥ thti−k kc−k

ki−k

=⇒ (k + 1)h(k + 1)c−k ti−k

(k + 1)i−k ≥ thkc−k ti−k

ki−k

=⇒ (k + 1)h(k + 1)c−k
c∑

i=k

ti−k

(k + 1)i−k ≥ thkc−k
c∑

i=k

ti−k

ki−k

=⇒ (k + 1)h(k + 1)c−k tk

k!

c∑
i=k

ti−k

(k + 1)i−k ≥ thkc−k tk

k!

c∑
i=k

ti−k

ki−k .

(5.15)

Since:

(k + 1)h(k + 1)c−k ≥ thkc−k,
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then:

(k + 1)h(k + 1)c−k
k−1∑
i=0

ti

i!
≥ thkc−k

k−1∑
i=0

ti

i!
. (5.16)

Given inequation (5.15) and (5.16), the followings are concluded:

(k + 1)h(k + 1)c−k

D +
tk

k!

c∑
i=k

( t
k + 1

)i−k
 ≥ thkc−k

D +
tk

k!

c∑
i=k

( t
k

)i−k


⇓

(k + 1)c−k+h

(
D + tk

k! +
c∑

i=k+1

t(k+1)

(k+1)!

(
t

k+1

)i−(k+1)
)

th ≥ kc−k

D +
c∑

i=k

tk

k!

( t
k

)i−k


⇓

(k + 1)c−k+h

(
D + tk

k! +
c∑

i=k+1

t(k+1)

(k+1)!

(
t

k+1

)i−(k+1)
+ Q

)
th ≥ kc−k

D +
c∑

i=k

tk

k!

( t
k

)i−k
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As a result:

π(k)
c ≥ π

(k+1)
c+h .

Similarly, for all x = 0, 1, 2, ... it can be proven that:

π(k)
c ≥ π

(k+x)
c+xh .

5.4.4 Satisfaction

In this model, satisfaction of patients is represented in a functional form as shown bellow:

Pco = (1 − π(k)
c )(θs − γsW + γs) − απ(k)

c . (5.17)

Patients’ satisfaction depends on the average service time, the number of servers, and capacity

of clinic. In Model CO, as the number of servers and capacity increases the satisfaction increases.

Because based on Proposition 5.4.3, when servers and capacity increase, π(k)
c which has a negative

impact on satisfaction function decreases. So, it is the best strategy for decision makers to employ

new servers and expand capacity such that:

R(s) − R(sR) − xCk − hxCc ≥ 0,

and then obtain the optimum value maximizing Pco by using numerical methods.
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6. Numerical analysis

In this chapter, simulated data (not from the real-world) will be used. First, arrival rate function

will be fitted to the arrival data for estimating waiting times in a well-managed system, which is

approximately equal to service time. Then, these estimations will be used to obtain the optimum

value of service time in different satisfaction and revenue functions defined for monopolistic and

oligopolistic models in Chapters 3 and 4. Also, the sensitivity of service time and satisfaction

function to different parameter inputs will be measured.

6.1 Estimation of Arrival rates and waiting times

In this section, arrival rate functions and waiting times are approximated with 95% confidence

intervals for linear, quadratic and cubic functions.

6.1.1 Approximating the arrival rate

To approximate arrival rates with polynomials, first the coefficients should be obtained. In

this research, the case of Mt/M/kt is considered which shows a multi-server queueing model with

a non-homogeneous Poisson arrival process (Mt), exponentially distributed service time (the M),

and time-varying staffing level (the kt). The arrival process and service times are considered to

be mutually independent. Using the Ordinary Least Squares (OLS) method developed in Section

3.5.1, the linear, quadratic and cubic arrival rate functions will be fitted to the arrival data for the

target interval [0, 8]. The estimates with 95% confidence intervals are shown in Table 6.1.

Table 6.1: Estimating arrival rate functions with 95% confidence intervals

Arrival rate â0 â1 â2 â3

Linear 36.1 ± 0.5 2.97 ± 0.12 - -

Quadratic 53.1 ± 0.5 2.185 ± 0.071 −0.0167±0.015 -

Cubic 40.3 ± 0.05 3.25 ± 0.064 −0.017 ± 0.005 0.015 ± 0.006
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Since the coefficients of the arrival rate function are estimated, average arrival rate defined in

(4.4) can be calculated as bellows:

λi = λ =


λl(T ) if linear

λq(T ) if quadratic

λc(T ) if cubic

(6.1)

where

λl(T ) =
1
T

∫ T

0
(â0 + â1t)dt = â0 + â1(

T
2

)

=
1
8

∫ 8

0
(36.1 + 2.97t)dt = 36.1 + 2.97(

8
2

) = 48.9

λq(T ) =
1
T

∫ T

0
(â0 + â1t + â2t2)dt = â0 + â1(

T
2

) + â2(
T 2

3
)

=
1
8

∫ 8

0
(53.1 + 2.185t − 0.0167t2)dt

= 53.1 + 2.185(
8
2

) − 0.0167(
82

3
) ≈ 61.48

λc(T ) =
1
T

∫ T

0
(â0 + â1t + â2t2 + â3t3)dt = â0 + â1(

T
2

) + â2(
T 2

3
) + â3(

T 3

4
)

=
1
8

∫ 8

0
(40.3 + 3.25t − 0.017t2 + 0.015t3)dt

= 40.3 + 3.25(
8
2

) − 0.017(
82

3
) + 0.015(

83

4
) ≈ 54.86
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6.1.2 Estimating waiting times with TVLL

Table 6.2 shows the approximation of waiting times estimated by different methods for the

linear, quadratic and cubic arrival rate functions. The first estimator is the direct and the rest are the

indirect estimators based on LL obtained in (3.37), (3.38),(3.50) and (3.64).

Table 6.2: Waiting time estimates with 95% confidence intervals

WL,λ(t) WL,λ,l(t) WL,λ,l,p(t) WL,λ,q,p(t) WL,λ,c,p(t)

0.983 ± 0.015 1.052 ± 0.017 1.044 ± 0.016 1.045 ± 0.016 1.039 ± 0.015

Waiting times are estimated in an ideal system, where they often remain approximately station-

ary even though the arrival rate is time-varying. That is primarily achieved by using appropriate

time-varying staffing levels. With appropriate staffing, customers do not have to wait in the line

and the time spent in the system is almost equal to the service times. Therefore, the waiting times

approximated in Table 6.2 are considered as an ideal service time or sW .

6.2 Models and optimum service time

In the previous section, an ideal system with no limit on the number of servers was reviewed.

However, in reality, there exist a limited number of servers. In this section, it is assumed that

there are k servers in the system and the model Mt/M/k with limited and unlimited capacity in a

monopolistic and oligopolistic market will be studied.

6.2.1 Model UM

This model shows a clinic which acts as a monopoly in the region. It has infinite capacity with

time-varying arrival rate and k doctors. Such a clinic with the addressed assumptions is modeled as

an Mt/M/k/∞ queuing system.
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In this model, satisfaction presented in (4.1) is in the form of:

Pum = θs − γ(sW − s) − βΣ∞i=k+1πi (6.2)

sm ≤ s ≤ sW .

Using numerical methods mentioned in Subsection 4.3.3, s∗um is obtained and shown in Tables

6.3 and 6.4 with considering different arrival rates and different number of servers.

Table 6.3: The optimum value of service time,
θ = 14, γ = 4, β = 1, k = 25

sm sW Σ∞i=26πi s∗um Pum

0.220 0.983 0.5402671 0.5112048 4.72942
0.234 1.052 0.5402671 0.5112048 4.45342
0.232 1.044 0.5402671 0.5112048 4.48542
0.233 1.045 0.5402535 0.4065993 2.598533
0.231 1.039 0.5401791 0.4556599 3.505641

Table 6.4: The optimum value of service time,
θ = 14, γ = 4, β = 1, k = 30

sm sW Σ∞i=26πi s∗um Pum

0.220 0.983 0.5164232 0.6134313 6.59334
0.234 1.052 0.5164232 0.6134313 6.31734
0.232 1.044 0.5164232 0.6134313 6.34934
0.233 1.045 0.5164276 0.4879125 4.085997
0.231 1.039 0.5164231 0.546788 5.169761

As it is shown in the tables, the number of servers plays a key role in satisfaction of patients; as

the number increases, satisfaction level rises. In the followings, sensitivity to different parameter

inputs, including θ, γ, β, will be analyzed and the importance of the number of servers in happiness

of patients will be reviewed in more details.
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Sensitivity to θ

Obviously, θ values impact the satisfaction of patients in different scenarios. In this section,

diffident values for θ will be considered and its influence on optimum service time and satisfaction

function will be analyzed.

Table 6.5: Different values of θ,
γ = 4, β = 1, k = 40, sW = 1.052

θ s∗um Pum θ s∗um Pum

1 0.8179418 -0.5973076 11 0.8179418 7.582111
2 0.8179418 0.2206343 12 0.8179418 8.400053
3 0.8179418 1.038576 13 0.8179418 9.217994
4 0.8179525 1.856518 14 0.8179418 10.03594
5 0.8179418 2.67446 15 0.8179418 10.85388
6 0.8179359 3.492402 16 0.8179418 11.67182
7 0.8179593 4.310343 17 0.8179418 12.48976
8 0.8179600 5.128285 18 0.8179418 13.3077
9 0.8179418 5.946227 19 0.8179418 14.12565

10 0.8179418 6.764169 20 0.8179418 14.94359

Table 6.6: Different values of θ,
γ = 4, β = 1, k = 40, sW = 1.045

θ s∗um Pum θ s∗um Pum

1 0.6505818 -1.406129 11 0.6505818 5.099689
2 0.6505818 -0.7555471 12 0.6505818 5.750271
3 0.6505818 -0.1049653 13 0.6505818 6.400853
4 0.6505818 0.5456165 14 0.6505818 7.051435
5 0.6505818 1.196198 15 0.6505818 7.702017
6 0.6505818 1.84678 16 0.6505818 8.352599
7 0.6505818 2.497362 17 0.6505818 9.00318
8 0.6505818 3.147944 18 0.6505818 9.653762
9 0.6505818 3.798526 19 0.6505818 10.30434

10 0.6505818 4.449108 20 0.6505818 10.95493
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Table 6.7: Different values of θ,
γ = 4, β = 1, k = 40, sW = 1.039

θ s∗um Pum θ s∗um Pum

1 0.729084 -0.9896066 11 0.729084 6.301234
2 0.729084 -0.2605225 12 0.729084 7.030318
3 0.7290848 0.4685615 13 0.729084 7.759402
4 0.729084 1.197646 14 0.729084 8.488486
5 0.729084 1.92673 15 0.729084 9.21757
6 0.729084 2.655814 16 0.729084 9.946654
7 0.729084 3.384898 17 0.729084 10.67574
8 0.729084 4.113982 18 0.729084 11.40482
9 0.729084 4.843066 19 0.729084 12.13391

10 0.729084 5.57215 20 0.729084 12.86299

Table 6.8: Different values of θ,
γ = 4, β = 10, k = 40, sW = 1.052

θ s∗um Pum θ s∗um Pum

1 0.5732583 -1.549578 11 0.6469679 4.58302
2 0.5830477 -0.9713347 12 0.6530964 5.233044
3 0.5918763 -0.3838033 13 0.6591967 5.889183
4 0.5999782 0.2121767 14 0.6653424 6.551448
5 0.6075448 0.8159824 15 0.6715653 7.219894
6 0.6147028 1.42714 16 0.6779165 7.894623
7 0.6215415 2.045285 17 0.6844574 8.575794
8 0.6281154 2.670134 18 0.691267 9.263634
9 0.6345257 3.301473 19 0.6984504 9.958462

10 0.6407887 3.939139 20 0.706174 10.66073

In Tables 6.5, 6.6 and 6.7, the relationship between θ and Pum for different arrival rates can be

seen. In all cases, there is a a direct link between θ and Pum which is shown in Figure 6.1 as well.

In contrast, as arrival rate increases, the level of satisfaction decreases. This is due the fact that the

number of servers is not changed while arrival rate changes. Also, from Tables 6.5, 6.6 and 6.7 it
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Figure 6.1: Sensitivity of Pum to θ

can be seen that θ has no impact on optimum service time s∗um. Precisely, increasing one unit of

θ has led to rising satisfaction by s∗um. As mentioned in Subsection 3.2.8, in this research a stable

system is studied, where s ≤
k

λ
. If there is a θ∗ such that

s∗um = Max{
k

λ
, sW},

then for all θ ≥ θ∗ the optimum value of service time remains unchanged, yet satisfaction increases

as it is shown in (6.3):

Pθ
∗+1

um − Pθ
∗

um =
(
(θ∗ + 1)s∗um − γ(sW − s∗um) − βΣ∞i=k+1πi

)
−

(
θ∗s∗um − γ(sW − s∗um) − βΣ∞i=k+1πi

)
= s∗um. (6.3)

In cases analyzed in Tables 6.5, 6.6 and 6.7, θ∗ = 1; when θ ≥ 1 the optimum value of service

time is not influenced by increasing θ. Let us consider another case to see the effect of θ on s∗um.

Table 6.8 demonstrates a particular case with different parameter values where θ impacts both
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Figure 6.2: Sensitivity of s∗um to θ

satisfaction and the optimum service time. Comparing Table 6.5 and Table 6.8, the only parameter

which has been changed is β. This change has affected the results dramatically. As depicted in

Table 6.8, both Pum and s∗um are rising up as θ increases. Figure 6.2 shows how s∗um is affected by

changing θ.
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Sensitivity to γ

In this section, the effect of changing γ on optimum service time and satisfaction function will

be considered. First, γ is analyzed with considering different values of sW , then β is perturbed and

the influence of γ on optimum service time and satisfaction function is studied. Finally, diffident

values for θ and γ will be considered to show the relationship between θ, γ and β.

Table 6.9: Different values of γ,
θ = 14, β = 1, k = 40, sW = 1.052

γ s∗um Pum γ s∗um Pum

1 0.8179418 10.73811 11 0.8179418 8.397529
2 0.8179418 10.50405 12 0.8179418 8.163471
3 0.8179418 10.26999 13 0.8179418 7.929413
4 0.8179418 10.03594 14 0.8179418 7.695355
5 0.8179418 9.801878 15 0.8179418 7.461296
6 0.8179418 9.56782 16 0.8179418 7.227238
7 0.8179418 9.333762 17 0.8179418 6.99318
8 0.8179418 9.099704 18 0.8179418 6.759122
9 0.8179418 8.865645 19 0.8179418 6.525064

10 0.8179418 8.631587 20 0.8179418 6.291006

Table 6.10: Different values of γ,
θ = 14, β = 1, k = 40, sW = 1.045

γ s∗um Pum γ s∗um Pum

1 0.6505818 8.234689 11 0.6505818 4.290508
2 0.6505818 7.840271 12 0.6505818 3.89609
3 0.6505818 7.445853 13 0.6505818 3.501671
4 0.6505818 7.051435 14 0.6505818 3.107253
5 0.6505818 6.657017 15 0.6505818 2.712835
6 0.6505818 6.262599 16 0.6505818 2.318417
7 0.6505818 5.86818 17 0.6505818 1.923999
8 0.6505818 5.473762 18 0.6505818 1.529581
9 0.6505818 5.079344 19 0.6505818 1.135162

10 0.6505818 4.684926 20 0.6505818 0.7407443
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Table 6.11: Different values of γ,
θ = 14, β = 1, k = 40, sW = 1.039

γ s∗um Pum γ s∗um Pum

1 0.729084 9.418234 11 0.729084 6.319074
2 0.729084 9.108318 12 0.729084 6.009158
3 0.7290848 8.798402 13 0.729084 5.699242
4 0.729084 8.488486 14 0.729084 5.389326
5 0.729084 8.17857 15 0.729084 5.079411
6 0.729084 7.868654 16 0.729084 4.769495
7 0.729084 7.558738 17 0.729084 4.459579
8 0.729084 7.248822 18 0.729084 4.149663
9 0.729084 6.938906 19 0.729084 3.839747

10 0.729084 6.62899 20 0.729084 3.529831

Table 6.12: Different values of γ,
θ = 14, β = 10, k = 40, sW = 1.052

γ s∗um Pum γ s∗um Pum

1 0.6469679 7.73902 11 0.7146855 4.007073
2 0.6530964 7.337044 12 0.7244131 3.674484
3 0.6591967 6.941183 13 0.736424 3.352638
4 0.6653424 06.551448 14 0.7550057 3.045317
5 0.6715653 6.167894 15 0.817934 2.816531
6 0.6779165 5.790623 16 0.81793775 2.582477
7 0.6844574 5.419794 17 0.81793870 2.348419
8 0.691267 5.055634 18 0.81795890 2.114464
9 0.6984504 4.698462 19 0.81796 1.880429
10 0.706174 4.348727 20 0.81796 1.646389

As presented in Tables 6.9, 6.10 and 6.11, γ has a great impact on Pum. An increase in γ causes

a decrease in Pum which can be seen in Figure 6.3 as well. On the other hand, no change can be

seen in the values of s∗um. In addition, when there is a γ∗ such that

s∗um = Max{
k

λ
, sW},
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Figure 6.3: Sensitivity of Pum to γ

then for all γ ≥ γ∗ the optimum value of service time will remain unchanged, while satisfaction

will decreased by s∗um − sW , as shown in the following:

P(γ∗+1)
um − P(γ∗)

um

=
(
θs∗um − (γ∗ + 1)(sW − s∗um) − βΣ∞i=k+1πi

)
−

(
θs∗um − γ

∗(sW − s∗um) − βΣ∞i=k+1πi
)

= s∗um − sW .

In cases analyzed in Tables 6.9, 6.10 and 6.11, γ∗ = 1, and for γ ≥ 1, the optimum value

of service time is constant. Note that this does not mean that s∗um is not influenced by γ. If the

parameter β is changed, then s∗um is affected by γ. In Table 6.12, β has been increased to 10 and

consequently s∗um has been influenced. In addition, s∗um is increasing as γ is rising up. However,

there is a cap on s∗um and when it reaches out the maximum value, it remains unchanged. Figure 6.4

shows the sensitivity of s∗um to γ.
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Figure 6.4: Sensitivity of s∗um to γ

It is worth to mention that the impact of θ and γ on s∗um is similar, whereas their effect on Pum is

different. Furthermore, let us re-write the satisfaction function in (4.1):

Pum = θs − γ(sW − s) − βΣ∞i=k+1πi

= (θ + γ)s − γsW − βΣ
∞
i=k+1πi.

Note that the coefficient of s in this function is (θ+ γ). Therefore, both parameters θ and γ have

positive effect on s.

Obviously, θ positively impacts Pum, while γ does not. In addition, γ is the coefficient of ideal

service time sW , which is always greater than all possible value for s. Therefore:

sW − s∗ ≥ 0,

and consequently, −γ(sW − s∗) always has a negative impact on the satisfaction function.
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Relationship between θ, γ and β

In the previous subsections, β was assumed to be equal to 1. It was seen that increasing θ and

γ does not affect s∗um. However, If θ and γ are changed simultaneously, then the influence of theses

parameters can be seen on s∗um. Table 14 considers different values for θ and γ.

Table 6.13: Different values of θ and γ,
β = 1, k = 40, sW = 1.052

θ γ s∗um θ γ s∗um
1 0 0.6147028 3 3 0.8179418
0 1 0.6147028 1 4 0.8179418
1 1 0.6779165 2 4 0.8179418
2 1 0.8179352 3 4 0.8179418
3 1 0.8179418 1 5 0.8179418
1 2 0.8179352 2 5 0.8179418
2 2 0.8179418 3 5 0.8179418
3 2 0.8179418 1 6 0.8179418
1 3 0.8179418 2 6 0.8179418
2 3 0.8179418 3 6 0.8179418

From the results depicted in Table 6.13, if:

θ + γ ≤ 2,

then s∗um is affected.
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Sensitivity to β

In this section, sensitivity to parameter β is reviewed to examine its effects on s∗um and Pum.

Table 6.14: Different values of β,
θ = 14, γ = 4, k = 40, sW = 1.052

β s∗um Pum β s∗um Pum

1 0.8179418 10.00258 11 0.6553124 6.438826
2 0.8179418 9.4902 12 0.6469679 6.341224
3 0.8179418 8.977824 13 0.6398322 6.255219
4 0.8179418 8.465447 14 0.6336209 6.178448
5 0.8179322 7.953026 15 0.6281154 6.109202
6 0.8179377 7.440686 16 0.623217 6.046205
7 0.721456 7.056354 17 0.6187618 5.988478
8 0.6948071 6.84652 18 0.6147028 5.935252
9 0.6779165 6.684361 19 0.6109987 5.885914

10 0.6653424 6.551448 20 0.6075448 5.839965

Table 6.15: Different values of β,
θ = 14, γ = 4, k = 40, sW = 1.045

β s∗um Pum β s∗um Pum

1 0.6505818 7.051435 11 0.5086145 4.126066
2 0.6505818 6.572397 12 0.5027146 4.053666
3 0.6505818 6.093359 13 0.4975982 3.989546
4 0.6505818 5.61432 14 0.4930996 3.93209
5 0.6505767 5.135271 15 0.489087 3.88011
6 0.5743791 4.760808 16 0.4854847 3.832705
7 0.5498103 4.566861 17 0.482182 3.789178
8 0.5349501 4.422053 18 0.4791906 3.748977
9 0.5241348 4.305906 19 0.476427 3.711658

10 0.5156462 4.209023 20 0.4738697 3.676858

As depicted in Tables 6.14, 6.15 and 6.16, in all cases Pum is changed by varying β. Figure 6.5

displays how Pum is affected by β.
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Table 6.16: Different values of β,
θ = 14, γ = 4, k = 40, sW = 1.039

β s∗um Pum β s∗um Pum

1 0.729084 8.488486 11 0.5794765 5.264046
2 0.729084 8.009459 12 0.5721717 5.178161
3 0.729084 7.530432 13 0.5659161 5.102432
4 0.729084 7.051406 14 0.5604484 5.034804
5 0.729084 6.572379 15 0.5556179 4.973789
6 0.7290802 6.093348 16 0.5513055 4.91827
7 0.6350029 5.802684 17 0.547392 4.867389
8 0.6134416 5.621328 18 0.5438319 4.820471
9 0.5990752 5.479638 19 0.5405321 4.776977

10 0.5882057 5.363038 20 0.5375131 4.73647

Figure 6.5: Sensitivity of Pum to β
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As shown in the tables and Figure 6.6, s∗um is changed when β is greater than 5 or 6. In addi-

tion, when patients are not so sensitive to overcrowding, servers should concentrate on the patients

being served. However, when sensitivity to overcrowding is significant, not only patients who are

receiving service but also patients waiting in waiting room should be considered.

Figure 6.6: Sensitivity of s∗um to β
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The importance of k

In Table 6.3 and 6.4, the importance of k in evaluating satisfaction is visible. In this section,

more values for k will be considered to show it in more details.

Table 6.17: Different values of k,
θ = 14, γ = 4, β = 1, sW = 1.052, λ = 48.9

k s∗um Pum k s∗um Pum

13 0.2658076 -0.0475548 22 0.4498532 3.332478
14 0.2862517 0.3297666 23 0.4702996 3.706297
15 0.3066959 0.7065033 30 0.6134313 6.31734
16 0.3271417 1.082745 35 0.7157032 8.17826
17 0.3475881 1.458533 40 0.8179418 10.03594
18 0.3680345 1.833907 45 0.9201846 11.89155
19 0.3885142 2.20937 50 1.0224610 13.74601
20 0.4089605 2.584039 51 1.0429090 14.11662
21 0.4294069 2.958399 52 1.0519640 14.30598

Table 6.18: Different values of k,
θ = 14, γ = 4, β = 1, sW = 1.045, λ = 61.48

k s∗um Pum k s∗um Pum

16 0.2602077 -0.0941006 40 0.6505818 7.051435
17 0.2764686 0.2063602 45 0.7319004 8.530426
18 0.2927295 0.5064071 50 0.813219 10.00773
19 0.3089904 0.8060806 55 0.8945407 11.4837
20 0.3252527 1.105434 60 0.9758626 12.95853
21 0.3415154 1.404484 61 0.992127 13.25338
25 0.4065993 2.598533 62 1.008391 13.54819
27 0.4391245 3.194041 63 1.024689 13.84349
30 0.4879125 4.085997 64 1.040953 14.13823
35 0.5692299 5.569834 65 1.044964 14.2397
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Table 6.19: Different values of k,
θ = 14, γ = 4, β = 1, sW = 1.039, λ = 54.86

k s∗um Pum k s∗um Pum

14 0.2551569 -0.1779609 25 0.4556599 3.505641
15 0.27338 0.1587976 30 0.546788 5.169761
16 0.2916031 0.4950387 35 0.6379527 6.83074
17 0.3098263 0.8308185 40 0.729084 8.488486
18 0.3280511 1.166208 45 0.8202156 10.14411
19 0.3462762 1.501227 50 0.9113506 11.7981
20 0.3645013 1.835908 54 0.9842587 13.12028
21 0.3827263 2.170281 55 1.002486 13.45071
22 0.4009847 2.504829 56 1.020746 13.78161
23 0.4192098 2.838666 57 1.038965 14.11182

As shown in Table 6.17, if the arrival rate is equal to λ = 48.9, then at least 14 servers are

required to allocate minimum service time sm. In this case, if the managers of walk-in clinics

employ less than 14 servers, they can not obtain positive satisfaction of patients. Moreover, the

table depicts the maximum number of servers. Employing 52 servers will lend to the clinic’s

highest performance in satisfying patients.

In Table 6.18, a quadratic arrival rate is considered (λ = 61.48). In this case, the minimum and

maximum servers required are 17 and 65 respectively.

In Table 6.19, a walk-in clinic with cubic arrival rate is considered (λ = 54.86). In this clinic, at

least 15 servers should be present in the clinic to serve patients. Also, to allocate maximum service

time, 57 servers are needed.

From Figure 6.7, the sensitivity of s∗um to k can be seen. k has positive effect on s∗um; however,

when s∗um reaches out its maximum, it is not influenced by increasing k any more.

Similarly, there is a direct link between Pum and k as shown in Figure 6.8. When the number of

servers increases, patients become more happy. Also, it shows having less than minimum number

of servers in the system could cause the negative level of satisfaction.
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Figure 6.7: Sensitivity of s∗um to k

Figure 6.8: Sensitivity of Pum to k

131



Summary of Model UM

The main results obtained for Model UM are summarized in the followings:

• In this model, there is no competitor in the region and all patients are served in this clinic.

Thus, the only concern of the clinic is maximizing satisfaction of patients without being

worried about revenue.

• In chapter 3, for linear arrival rate two waiting times are obtained (WL,λ,l(t) and WL,λ,l,p(t)).

No matter which one is used as sW , there is no significant difference between the results.

• As arrival rate increases, less service time can be allocated to patients.

• Impact of different parameters is shown in Table 6.20:

Table 6.20: Impact of different parameters in Model UM

Parameters s∗um Pum

k ↗ ↗

θ ↗ ↗

γ ↗ ↘

β ↘ ↘

• The number of servers plays a key role in satisfaction of patients; as the number increases,

satisfaction level rises.

• As sensitivity to service time increases, more service time should be allocated to patients for

capturing their maximum satisfaction.

• There is usually difference between ideal service time that patients expected and service time

that can be allocated to patients regarding the sources available in the clinic. When patients

are so sensitive to this difference, clinics should pay attention to this sensitivity and allocate

more service time even if it leads to dissatisfaction of other patients for waiting in the line

longer.
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• Patients who are receiving service should be always the top priority for walk-in clinics. When

patients are not so sensitive to overcrowding, servers should concentrate on the patients being

served and spend their expected service time. However, when patients are highly sensitive to

overcrowding, the time of visit should be decreased slightly.

133



6.2.2 Model CM

In this scenario, there is a cap on the number of admitted patients due to limited capacity. Based

on 4.14, satisfaction function is as shown below:

Pcm = (1 − πc)(θs − γsW + γs) − απc.

Let us assume θ = 14, γ = 4, α = 4 to obtain πc, s∗cm and Pcm. The results are represented in

Table 6.21.

Table 6.21: Optimum value of service time,
θ = 14, γ = 4, α = 1, k = 25, c = 50

sm sW πc s∗cm Pcm

0.23377 1.052 0.03124379 0.5111928 4.806211
0.23205 1.044 0.03124379 0.5111928 4.837211
0.23222 1.045 0.03125154 0.4065993 3.009443
0.23089 1.039 0.03124719 0.4556599 3.888209

The interesting result is that system tries to keep πc stable, while arrival rates are different. This

is achieved by differing s∗cm. Also, different levels of satisfaction for different arrival rates can be

seen, because there are 25 servers with 50 capacity in the system. As the arrival rate increases,

theses numbers of servers and capacity can not satisfy the patients properly.

In the following sections, s∗cm and Pcm will be evaluated with different arrival rates and parame-

ters.
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Linear arrival rate

In this section, arrival rate is considered linear λ = 48.9 and sensitivity to different parameters

is evaluated. First, different values for k are considered.

Table 6.22: Different values of k,
θ = 14, γ = 4, α = 1, c = 50

k s∗cm Pcm k s∗cm Pcm

11 0.2248859 -0.2125149 20 0.4089605 2.99566
12 0.2453634 0.1379492 22 0.4498532 3.718536
13 0.2658076 0.4904089 24 0.4907459 4.443269
14 0.2862517 0.8447173 25 0.5111928 4.806211
15 0.3066959 1.200547 30 0.6134313 6.625326
16 0.3271417 1.557655 35 0.7157032 8.450195
17 0.3475881 1.915837 40 0.8179418 10.27797
18 0.3680345 2.274933 45 0.9201846 12.10819
19 0.3885142 2.635078 50 1.022461 13.9409

As shown, at least 12 servers are required and less than this number could not satisfy the pa-

tients. Also, increasing the numbers of servers will lead to increasing s∗cm and Pcm. Let us review

the role of capacity in satisfaction as well.

Table 6.23: Different values of c,
θ = 14, γ = 4, α = 1, k = 25

c s∗cm Pcm c s∗cm Pcm

25 0.5111928 4.80571 33 0.5111928 4.80587
26 0.5111928 4.80573 37 0.5111928 4.805951
27 0.5111928 4.80575 40 0.5111928 4.806011
28 0.5111928 4.80577 45 0.5111928 4.806111
29 0.5111928 4.80579 50 0.5111928 4.806211
30 0.5111928 4.80581 55 0.5111928 4.806311

Although increasing capacity results in increasing satisfaction, it is not as important as increas-
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ing the number of servers which is shown in Figure 6.9. In addition, increasing capacity leads to

leveling up satisfaction slightly, while adding servers causes improving satisfaction hugely.

Figure 6.9: Sensitivity of Pcm to k and c

In contrast, s∗cm is not affected by c in this case. This is due to the high sensitivity of service time.

Comparing with 50 capacity, when capacity is 25, more patients are turned away which can lead

to their unhappiness. However, it does not mean that due to their satisfaction, we should decreases

service time of the patients in the system. However, when patients are not so sensitive to service

time, s∗cm is influenced by c. In Table 6.24, the results depict that increasing one capacity has led to

increasing service time by 0.0218052.

Table 6.24: Different values of c,
θ = 1, γ = 4, α = 14, k = 25

c s∗cm
25 0.3655726
26 0.3873778
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In the following, sensitivity to the parameters θ, γ and α will be investigated in more details.

First, look at the Table 6.25 in which sensitivity of s∗cm and Pcm to θ is presented. As shown, for

k = 25, c = 50 and θ ≤ 4, positive satisfaction will never be obtained because other parameters

have more impact. To obtain positive satisfaction, k and c should be increased. Also, it is shown

that s∗cm is not sensitive to θ, while Pcm is. The main reason has been mentioned in Subsection 6.2.1.

Table 6.25: Different values of θ,
γ = 4, α = 1, k = 25, c = 50

θ s∗cm Pcm θ s∗cm Pcm

1 0.5111928 -1.631664 11 0.5111928 3.320548
2 0.5111928 -1.136443 12 0.5111928 3.815769
3 0.5111928 -0.6412218 13 0.5111928 4.31099
4 0.5111928 -0.1460006 14 0.5111928 4.806211
5 0.5111928 0.3492206 15 0.5111928 5.301432
6 0.5111928 0.8444417 16 0.5111928 5.796654
7 0.5111928 1.339663 17 0.5111928 6.291875
8 0.5111928 1.834884 18 0.5111928 6.787096
9 0.5111928 2.330105 19 0.5111928 7.282317

10 0.5111928 2.825326 20 0.5111928 7.777538

Table 6.26: Different values of γ,
θ = 14, α = 1, k = 25, c = 50

γ s∗um Pcm γ s∗cm Pcm

1 0.5111928 9.349269 11 0.5111928 4.110166
2 0.5111928 8.825359 12 0.5111928 3.586255
3 0.5111928 8.301449 13 0.5111928 3.062345
4 0.5111928 7.777538 14 0.5111928 2.538434
5 0.5111928 7.253628 15 0.5111928 2.014524
6 0.5111928 6.729717 16 0.5111928 1.490614
7 0.5111928 6.205807 17 0.5111928 0.9667031
8 0.5111928 5.681897 18 0.5111928 0.4427927
9 0.5111928 5.157986 19 0.5111928 -0.0811177

10 0.5111928 4.634076 20 0.5111928 -0.605028

Reviewing sensitivity to γ in Table 6.26, it can be seen that when sensitivity to difference
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between ideal service time and allocated service time is greater than 19 (γ ≥ 19), we need to

increase the number of servers and capacity to capture at least the minimum satisfaction of patients.

Furthermore, s∗cm and Pcm show the different sensitivity to γ that reason has been mentioned in

Subsection 6.2.1.

Finally in this section, sensitivity to α is evaluated.

Table 6.27: Different values of α,
θ = 14, γ = 4, k = 25, c = 50

α s∗cm Pcm α s∗cm Pcm

1 0.5111928 4.806211 11 0.5111928 4.493774
2 0.5111928 4.774967 12 0.5111928 4.46253
3 0.5111928 4.743724 13 0.5111928 4.431286
4 0.5111928 4.71248 14 0.5092007 4.400732
5 0.5111928 4.681236 15 0.5067591 4.372483
6 0.5111928 4.649992 16 0.5045227 4.346302
7 0.5111928 4.618749 17 0.5024628 4.321917
8 0.5111928 4.587505 18 0.5005869 4.299108
9 0.5111928 4.556261 19 0.4988554 4.277691

10 0.5111928 4.525017 20 0.497248 4.257513

Figure 6.10: Sensitivity of s∗cm to α
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As shown, first s∗cm does not show sensitivity to α. In addition, for α ≤ 13, patients in the

system are preferred to patients who would like to enter the clinic and may dissatisfied due to being

refused. However, when sensitivity to rejection is increased, the clinic should decrease the service

time slightly to admit more patients as displayed in Figure 6.10.

In the following sections, clinics with quadratic and cubic arrival rate will be analyzed. Since

the similar results will be obtained, explanation is omitted.
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Quadratic arrival rate

Table 6.28: Different values of k,
θ = 14, γ = 4, α = 1, c = 65

k s∗um Pcm k s∗cm Pcm

14 0.2276526 -0.1291908 45 0.7319004 8.809453
15 0.2439468 0.1523509 50 0.813219 10.26544
16 0.2602077 0.4347545 55 0.8945407 11.72269
17 0.2764686 0.7183685 60 0.9758626 13.18088
20 0.3252527 1.573494 61 0.992127 13.47261
25 0.4065993 3.00962 62 1.008391 13.76718
30 0.4879125 4.453589 63 1.024689 14.05691
35 0.5692299 5.902468 64 1.040953 14.34873
40 0.6505818 7.355069 65 1.044964 14.35444

Table 6.29: Different values of c,
θ = 14, γ = 4, α = 1, k = 30

c s∗cm Pcm c s∗cm Pcm

30 0.4879125 4.453042 45 0.4879125 4.453276
31 0.4879125 4.453058 50 0.4879125 4.453355
32 0.4879125 4.453073 55 0.4879125 4.453433
33 0.4879125 4.453089 60 0.4879125 4.453511
35 0.4879125 4.45312 65 0.4879125 4.453589
40 0.4879125 4.453198 70 0.4879125 4.453667
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Table 6.30: Different values of θ,
γ = 4, α = 1, k = 30, c = 65

θ s∗cm Pcm θ s∗cm Pcm

1 0.4879125 -1.720767 11 0.4879125 3.028737
2 0.4879125 -1.245817 12 0.4879125 3.503688
3 0.4879125 -0.7708662 13 0.4879125 3.978638
4 0.4879125 -0.2959158 14 0.4879125 4.453589
5 0.4879125 0.1790347 15 0.4879125 4.928539
6 0.4879125 0.6539851 16 0.4879125 5.403489
7 0.4879125 1.128936 17 0.4879125 5.87844
8 0.4879125 1.603886 18 0.4879125 6.35339
9 0.4879125 2.078836 19 0.4879125 6.828341

10 0.4879125 2.553787 20 0.4879125 7.303291

Table 6.31: Different values of γ,
θ = 14, α = 1, k = 30, c = 65

γ s∗um Pcm γ s∗cm Pcm

1 0.4879125 6.080452 11 0.4879125 0.657574
2 0.4879125 5.538164 12 0.4879125 0.1152862
3 0.4879125 4.995876 13 0.4879125 -0.4270016
4 0.4879125 4.453589 14 0.4879125 -0.9692894
5 0.4879125 3.911301 15 0.4879125 -1.511577
6 0.4879125 3.369013 16 0.4879125 -2.053865
7 0.4879125 2.826725 17 0.4879125 -2.596153
8 0.4879125 2.284437 18 0.4879125 -3.138441
9 0.4879125 1.74215 19 0.4879125 -3.680728

10 0.4879125 1.199862 20 0.4879125 -4.223016
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Table 6.32: Different values of α,
θ = 14, γ = 4, k = 25, c = 50

α s∗cm Pcm α s∗cm Pcm

1 0.4879125 4.453589 11 0.484616 4.191799
2 0.4879125 4.427022 12 0.4830769 4.17006
3 0.4879125 4.400456 13 0.4816521 4.149908
4 0.4879125 4.37389 14 0.4803146 4.131141
5 0.4879125 4.347323 15 0.4791142 4.113593
6 0.4879125 4.320757 16 0.4779466 4.097126
7 0.4879125 4.294191 17 0.4768856 4.081621
8 0.4879125 4.267625 18 0.4758838 4.066978
9 0.4879125 4.241058 19 0.4749293 4.053113

10 0.4863116 4.215371 20 0.4740276 4.039952
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Cubic arrival rate

Table 6.33: Differentvalues of k,
θ = 14, γ = 4, α = 1, c = 60

k s∗um Pcm k s∗cm Pcm

12 0.2186774 -0.2650416 45 0.8202156 10.39323
13 0.2369005 0.04808283 50 0.9113506 12.02566
14 0.2551569 0.3631488 51 0.9295776 12.3523
15 0.27338 0.6794828 52 0.9478046 12.67899
20 0.3645013 2.276255 53 0.9660317 13.00573
25 0.4556599 3.888366 54 0.9842587 13.33251
30 0.546788 5.508472 55 1.002486 13.65933
35 0.6379527 7.134054 56 1.020746 13.98692
40 0.729084 8.762508 57 1.038965 14.31363

Table 6.34: Different values of c,
θ = 14, γ = 4, α = 1, k = 27

c s∗cm Pcm c s∗cm Pcm

27 0.49211 4.535066 45 0.49211 4.535383
28 0.49211 4.535084 50 0.49211 4.53547
29 0.49211 4.535102 55 0.49211 4.535558
30 0.49211 4.535119 60 0.49211 4.535646
35 0.49211 4.535207 65 0.49211 4.535733
40 0.49211 4.535295 70 0.49211 4.535821
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Table 6.35: Different values of θ,
γ = 4, α = 1, k = 27, c = 60

θ s∗cm Pcm θ s∗cm Pcm

1 0.492115 -1.675163 11 0.49211 3.102382
2 0.49211 -1.197408 12 0.49211 3.580137
3 0.49211 -0.7196536 13 0.49211 4.057891
4 0.49211 -0.2418992 14 0.49211 4.535646
5 0.49211 0.2358553 15 0.49211 5.0134
6 0.49211 0.7136098 16 0.49211 5.491155
7 0.49211 1.191364 17 0.49211 5.968909
8 0.49211 1.669119 18 0.49211 6.446664
9 0.49211 2.146873 19 0.49211 6.924418

10 0.49211 2.624628 20 0.49211 7.402173

Table 6.36: Different values of γ,
θ = 14, α = 1, k = 27, c = 60

γ s∗um Pcm γ s∗cm Pcm

1 0.49211 8.994982 11 0.49211 3.685618
2 0.49211 8.464045 12 0.49211 3.154681
3 0.49211 7.933109 13 0.49211 2.623745
4 0.49211 7.402173 14 0.49211 2.092808
5 0.49211 6.871236 15 0.49211 1.561872
6 0.49211 6.3403 16 0.49211 1.030936
7 0.49211 5.809363 17 0.49211 0.4999991
8 0.49211 5.278427 18 0.49211 -0.03093727
9 0.49211 4.74749 19 0.49211 -0.5618737
10 0.49211 4.216554 20 0.49211 -1.09281
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Table 6.37: Different values of α,
θ = 14, γ = 4, k = 27, c = 60

α s∗cm Pcm α s∗cm Pcm

1 0.49211 4.535646 11 0.4871749 4.252886
2 0.49211 4.506474 12 0.4856439 4.230669
3 0.49211 4.477303 13 0.4842119 4.210016
4 0.49211 4.448131 14 0.4829142 4.190737
5 0.49211 4.41896 15 0.4816824 4.172672
6 0.49211 4.389789 16 0.4805399 4.155687
7 0.49211 4.360617 17 0.4794531 4.139667
8 0.49211 4.331446 18 0.4784297 4.124515
9 0.4906462 4.303001 19 0.477463 4.110147

10 0.4888257 4.276902 20 0.4765582 4.096491
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Government’s budget

In this section, it is investigated that how Government’s intervention affect the performance of

walk-in clinics.

As mentioned in Chapter 4, in capacitated walk-in clinic the maximum revenue is obtained at

sm.

R(sm) = λ (1 − πc(sm)) = 48.9 (1 − πc(0.23377)) = 48.8999999.

Assume the maximum budget assigned by the government to this plan is 1. Based on Proposi-

tion 4.4.3, there is a sd such that

πc(sd) = 1 − [(1 − d)(1 − πc(sm))] = 0.0204498

where

d =
B

R(sm)
=

1
48.9

= 0.0204499.

Using numerical methods, sd is obtained:

sd ≈ 0.4979.

In Chapter 4, ancillary cost and net profit functions were obtained as below:

C1(s) = p1R(s) = p1[λ(1 − πc(s))]

N(s) = RN(s) −C1 −C2 = (1 − p1)R(s) +
s

s∗cm
b2R(sm) −C2
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Let us consider p1 = 0.03. Proposition 4.4.5 represents the minimum service time to obtain

more net profit. In other words, it emphasizes that to gain more net profit, the mean service time

allocated to patients should be

s ≥ s∗cm(1 − p1). (6.4)

However, based on the limitation on budget in (4.31), there is a cap on s:

s ≤ sd. (6.5)

Therefore, clinics first evaluate sd and s∗cm(1 − p1) and then start to increase service time if

sd ≥ s∗cm(1 − p1).

Since

0.4979 ≥ 0.5111928∗(1 − 0.03) = 0.495857,

service time can be increased in this case. In addition, based on proposition 4.4.6, the maximum

net profit is obtained at sd:

N(sd) = (1 − p1)R(sd) +
s

s∗cm
b2R(sm) −C2

= (1 − p1)R(sd) +
s

s∗cm
[R(sm) − R(sd)] −C2

= (1 − p1)λ
(
1 − πc(sd)

)
+

sd

s∗cm
[λ

(
πc(sd) − πc(sm)

)
] −C2

= (1 − 0.03)48.9
(
1 − πc(0.4979)

)
+

0.4979
0.5111928

[48.9
(
πc(0.4979) − πc(0.23377)

)
] −C2
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= 46.48108 + 0.9558373 −C2 = 47.43692 −C2.

On the other hand, minimum service time will lead to less net profit:

N(sm) = (1 − p1) R(sm) −C2

= (1 − p1) λ
(
1 − πc(sm)

)
−C2

= (1 − 0.03)48.9
(
1 − πc(0.23377)

)
−C2

= 47.433 −C2.

The difference between net profits is

N(sd) − N(sm) = (47.43692 −C2) − (47.433 −C2) = 0.00392.

As a result, if the governments allocate 1 budget to this plan, not only patients but also walk-in

clinics will be more happy. The service time can be increased from 0.23377 to 0.4979 and net

profit rises by 0.00392. However, any budget would not lead to theses satisfying results. In below

flowchart, the process is shown.

In Table 6.38, the budget is considered B = 1. In this case, when arrival rate is 61.48 and 54.86,

the budget assigned by the government can not entice the decision makers to increase the service

time. In other word, when the budget is not considerable compared to the revenue gained by the

patients, walk-in clinics prefer to allocate minimum service time.
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Start to calculate maximum net profit

Calculate sm

Calculate s∗cm

Calculate sd

Is ‘sd ≥ s∗cm(1 − p1)’?

Max net profit = N(sd)

Max net profit = N(sm)

Yes

No

Table 6.38: Allocated service time,
θ = 14, γ = 4, α = 1, k = 25, c = 50, p1 = 0.03

λ sm s∗um sd sd ≥ s∗um(1 − p1) s
48.90 0.23377 0.5111928 0.4979 Yes 0.49790
61.48 0.23222 0.4065993 0.3915 No 0.23222
54.86 0.23089 0.4556599 0.4415 No 0.23089

149



Summary of Model CM

The main results obtained for Model CM are summarized in the followings:

• In this Scenario, clinic tries to maximize not only satisfaction of patients but also revenue.

• In chapter 3, for linear arrival rate two waiting times are obtained (WL,λ,l(t) and WL,λ,l,p(t)).

No matter which one is used as sW , there is no significant difference between the results.

• To get positive feedback from patients, the minimum number of servers should be employed

in the clinic. Considering arrival rate and other parameters (θ, γ, α and c), this number is

calculated. Employing more servers will lead to increasing s∗um and Pum.

• Impact of different parameters is shown in Table 6.39:

Table 6.39: Impact of different parameters in Model CM

Parameters s∗cm Pcm

k ↗ ↗

c ↗ ↗

θ ↗ ↗

γ ↗ ↘

α ↘ ↘

• Although increasing capacity results in increasing satisfaction, it is not as important as in-

creasing the number of servers.

• Similar to Model UM, patients in the system are preferred to patients who would like to

enter the clinic. However, when patients are highly sensitivity to rejection, the clinic should

decrease the service time to admit more and refuse less patients.

• Comparing to sensitivity to rejection (α), when sensitivity to service time (θ) is not consider-

able, the number of servers and capacity should be increased. Otherwise, positive satisfaction

will never be obtained even if service time decreases.
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• In this scenario, clinics usually ignore the satisfaction of patients because the maximum

revenue is obtained at minimum service time.

• Unlike Model UM, Government’s intervention may have satisfactory results for patients and

walk-in clinics. If the governments allocate enough budget to the introduced plan in this

research, both patients and walk-in clinics will be more happy.

• When the budget is not considerable compared to the revenue gained by serving patients,

walk-in clinics still prefer to allocate minimum service time.
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6.2.3 Model UO

The only difference between Model UO and Model UM is arrival rate. Since in Model UO the

clinic works in a competitive market, arrival rate depends on its performance.

Revenue

Let us assume there are 10 clinics in the area including 7 capacitated and 3 uncapacitated clinics.

n = n1 + n2 = 7 + 3 = 10

The information required about other competitors is provided in Table 6.40 and 6.41.

Table 6.40: Capacitated walk-in clinics

i si πci

1 0.64 0.021
2 0.41 0.012
3 0.98 0.045
4 1.02 0.035
5 0.52 0.051
6 0.80 0.015
7 1.03 0.061

Table 6.41: Uncapacitated walk-in clinics

i si

8 0.95
9 0.86

In this model, the revenue is in the form of:

R = max
s
λuo = max

s

ωsλ +

n1∑
i=1

ωi
sπciωiλ

 ,
sm ≤ s ≤ sW .
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Based on Proposition 5.3.1, λuo is an increasing function of s. Therefore, maximum revenue is

gained at sW :

R = max
s
λuo =

ωsW +

n1∑
i=1

ωi
sW
πciωi

 λ.

Maximum Revenue with different arrival rate has been calculated in Table 6.42. Also, the

minimum number of servers required to allocate maximum service time is represented.

Table 6.42: Maximum revenue

λ sW ωsW

n1∑
i=1

ωi
sW
πciωi Max R Min k

48.9 1.052 0.1273299 0.003450248 6.395149 7
61.48 1.045 0.1265899 0.003433463 7.993836 9
54.86 1.039 0.1259547 0.003419023 7.097442 8

In this model, if the walk-in clinic decided to allocate minimum service time, then its arrival

rate and consequently the revenue will reduce dramatically. The results are shown in Table 6.43

where the revenue is not comparable with revenue shown in Table 6.42.

Table 6.43: Minimum revenue

λ sm ωsm

n1∑
i=1

ωi
sm
πciωi Min R Min k

48.9 0.23377 0.03140479 0.000957456 1.582514 1
61.48 0.23222 0.03120306 0.0009515313 1.976864 1
54.86 0.23089 0.03102989 0.0009464432 1.754222 1

Satisfaction

In this model, patients’ satisfaction depends on the average service time and the number of

servers in the system. Proposition 5.3.2 shows the importance of the number of servers in satisfac-
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tion of patients when it is decided to allocate maximum service time.
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6.2.4 Model CO

In this Model, we study a capaciated clinic for which the arrival rate is defined as below:

λco = ωsλ +

n1−1∑
i=1

ωi
sπciωiλ.

Let us consider 10 walk-in clinics in the region with 7 capacitated and 3 uncapacitated clinics.

The information needed about other clinics are shown in Table 6.44 and Table 6.45.

Table 6.44: Capacitated clinics

i si πci

1 0.64 0.021
2 0.41 0.012
3 0.98 0.045
4 1.02 0.035
5 0.52 0.051
6 0.80 0.015

Table 6.45: Unapacitated clinics

i si

7 1.03
8 0.95
9 0.86

Revenue

In this model, revenue function is in the form of:

R = max
s

(
λco(1 − π(k)

c )
)
.
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Considering different arrival rate, optimum value of service maximizing revenue is obtained

depicted in Table 6.46.

Table 6.46: Maximum revenue

λ sW k c sR Max R
48.9 1.052 7 15 1.049989 5.917521

61.48 1.045 9 20 1.044964 7.647349
54.86 1.039 8 17 1.038965 6.739960

Satisfaction

In Table 6.47, optimum value of service time assuming different arrival rates is gained.

Table 6.47: Maximum satisfaction

λ sW k c s∗co Max Pco

48.9 1.052 7 15 1.051964 13.67708
61.48 1.045 9 20 1.044964 14.08003
54.86 1.039 8 17 1.038965 13.88898

Comparing results represented in Table 6.46 and in Table 6.47, no significant difference can be

seen between sR and s∗co. In addition, in a competitive Market, there is no need for the government’s

intervention.
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7. Conclusion

In this section, the main points of the thesis are reviewed and some suggestions will be given

for future research.

7.0.1 Discussion and summary

In this research, non-stationary queues with time-varying arrival rate were investigated. First,

ways to estimate the parameters of a non-homogeneous Poisson process were studied. Then, wait-

ing times were estimated by using time-varying Little’s Law (TVLL). Furthermore, when waiting

times cannot be observed directly, Little’s law can be used to estimate the average waiting time by

the average number in system divided by the average arrival rate. However, applications of Lit-

tle’s Law (LL) with actual system data involve measurements over a finite-time interval and that

simple indirect estimator tends to be biased significantly when the arrival rates are considered a

time-varying function. Considering some general structural results and some simple formulas de-

scribing the time dependent performance of the IS queues with a non-homogeneous Poison arrival

process, TVLL was applied to estimate waiting times.

Since it was assumed that there is appropriate time-varying staffing, the waiting time distribu-

tion was fixed even though the arrival rate was considered a time-varying function. Hence, under

that condition, the TVLL provides estimation of waiting times, given estimates of the average

number in system over a sub-interval and the arrival rate function. Useful variants of the TVLL

estimator were obtained by fitting a linear, quadratic and cubic function to arrival data. When the

arrival rate function is approximately linear, quadratic or cubic, the mean waiting time satisfies a

quadratic, cubic or a polynomial of degree four equation, respectively. The new estimator based

on the TVLL is a positive real root of that equation. The new methods are shown to be effective in

estimating the bias in the indirect estimator.

As mentioned, fixed distribution was considered for waiting times throughout the measurement

interval which was achieved by using time-varying servers as the the arrival rates change. However,
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in many systems such as healthcare centers which are under strain from staff shortages, the number

of service providers cannot be increased as much as required. In this situation, quality of service

may be sacrificed. For example, in walk-in clinics where the revenue is gained from the number of

admitted patients, it would be in the best interest of clinics to reduce the service times which leads

to a gap between the service a patient receives and what s/he expects. For this matter, walk-in clin-

ics with time-varying arrival rates were studied. Based on the clinic’s capacity (finite or infinite)

and position of the clinic in the region (monopolistic or oligopoly), we considered four models:

Model UM, Model CM, Model CO, and Model UO. Waiting times obtained in an ideal system

was considered as the desired waiting time and regarding available resources, optimum value for

service time was obtained in each model.

7.0.2 Future research

Future researchers can investigate the following potential opportunities:

• The initially stated overarching aim of this research was to study non-stationary queue sys-

tems in walk-in clinics and we considered polynomial functions to approximate arrival rates.

However, other types of functions may also be considered for arrival rates. For instance,

functions which are commonly used to model periodic phenomena such as sin x and cos x.

• Another motivating extension is considering time-varying service times in walk-in clinics.

The model Mt/Mt/k may be an appropriate model to apply.

• In this research, we assumed exponential distributions for time-between-arrival and service

time. In different walk-in clinics, different inter-arrival and service time distributions can be

considered; for example, H2 and E4.

• Other numerical methods and techniques can be used for estimating the polynomial roots,

such as Bisection, Secant, and False-Position.
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• Different variables which contribute to patients’ satisfaction can be considered.

• Sensitivity can be measured by statistical methods.

• Data is not from real-world cases and is generated and simulated. Real data can be applied

instead of simulated and made-up data.
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