
Citation: Santana, P.; Moura, J.

A Bayesian Multi-Armed Bandit

Algorithm for Dynamic End-to-End

Routing in SDN-Based Networks

with Piecewise-Stationary Rewards.

Algorithms 2023, 16, 233. https://

doi.org/10.3390/a16050233

Academic Editor: Frank Werner

Received: 1 April 2023

Revised: 21 April 2023

Accepted: 25 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Bayesian Multi-Armed Bandit Algorithm for Dynamic
End-to-End Routing in SDN-Based Networks with
Piecewise-Stationary Rewards
Pedro Santana 1,2,* and José Moura 1,3,*

1 ISCTE—University Institute of Lisbon (ISCTE-IUL), Av. das Forças Armadas, 1649-026 Lisboa, Portugal
2 ISTAR—Information Sciences and Technologies and Architecture Research Center, Av. das Forças Armadas,

1649-026 Lisboa, Portugal
3 Instituto de Telecomunicações (IT), Av. das Forças Armadas, 1649-026 Lisboa, Portugal
* Correspondence: pedro.santana@iscte-iul.pt (P.S.); jose.moura@iscte-iul.pt (J.M.)

Abstract: To handle the exponential growth of data-intensive network edge services and automatically
solve new challenges in routing management, machine learning is steadily being incorporated into
software-defined networking solutions. In this line, the article presents the design of a piecewise-
stationary Bayesian multi-armed bandit approach for the online optimum end-to-end dynamic
routing of data flows in the context of programmable networking systems. This learning-based
approach has been analyzed with simulated and emulated data, showing the proposal’s ability to
sequentially and proactively self-discover the end-to-end routing path with minimal delay among
a considerable number of alternatives, even when facing abrupt changes in transmission delay
distributions due to both variable congestion levels on path network devices and dynamic delays to
transmission links.

Keywords: networks; routing; congestion; variable link delay; SDN; algorithm design; multi-armed
bandits

1. Introduction

Due to the high complexity of managing the traffic on the network edge [1], cen-
tralized routing algorithms are more efficient than distributed ones. In fact, distributed
routing algorithms, such as Border Gateway Protocol (BGP) or Open Shortest Path First
(OSPF) could have significant delays to both discover an operational failure on the used
routing path and find an alternative reliable path. A centralized routing algorithm with a
more complete knowledge of the routing state can solve routing issues quicker than their
distributed counterparts.

Along the centralized approaches to control the network resources, the Software-
Defined Networking (SDN) paradigm has emerged in recent years as a very popular
paradigm to reduce the cost of the network operation and maintenance, as well as to hide
the network complexity from the high-level programmed algorithms. Ucoming networking
scenarios are predicted to be highly volatile in terms of the network topology or network
load, among other aspects. Consequently, it is imperative that the operation of central-
ized algorithms becomes automatically adjusted via learning agents to any unexpected
changes in the network operation. The authors in [2] analyze previous work on Machine
Learning (ML) techniques for routing optimization in SDN. In addition, ref. [3] revises the
available literature focused on ML research opportunities and evolution in distinct areas
of networking. A tutorial about the application of ML algorithms for wireless networks
is available in [4]. For usage scenarios with high quantities of available data about the
system operation, Deep Learning (DL) methods are becoming a popular alternative to
traditional ML methods, because DL is able to automatically extract high-level features
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and corresponding correlations from the input data, avoiding the need for the manual
engineering of these features, which is often required by traditional ML methods [5].

An important family of ML algorithms tailored for sequential decision making is
known as Reinforcement Learning (RL) [6]. Interestingly, little work has been carried out
considering RL for dynamic routing controlled by SDN systems [2]. Thus, we identified
the pertinence of carrying out further research on learning agents capable of enhancing the
performance of SDN-based systems.

In recent years, Multi-Armed Bandit (MAB) solutions [7,8], which are a form of RL,
have attracted the attention of many scholars due to their simple implementation and
high flexibility, enabling agent learning in heterogeneous scenarios [9], such as recom-
mendation systems, medicament trials, anomaly detection, and network configuration.
MAB algorithms address a fundamental RL problem, which is balancing exploration and
exploitation when choosing between uncertain actions: should the agent explore an action
that seems to be less rewarding with the expectation that one might be wrong about it, or
simply opt for the action that appears most rewarding, assuming one’s current knowledge
is sufficiently accurate?

To robustly handle the highly dynamic behavior of communication networks, we de-
vised and included in our agent a novel MAB algorithm, React-UCB, prepared to learn from
reward distributions that are piecewise-stationary and may abruptly change at unknown
moments. React-UCB combines the following features: optimism in the face of uncertainty;
discounted rewards to favor the present over the past; reset of reward estimates when
abrupt path delay distribution changes are detected; reward correlations to transfer learn-
ing among paths; and suspended exploration after a good reward has been found to reduce
the agent’s accumulated regret. The proposal’s main aim of finding the minimum delay
path can be also seen as an intelligent way of enhancing the network operation in terms
of its robustness against congestion scenarios, because when a network device is highly
congested, due to internal output buffering delays, it negatively increases the transmission
message delay from that device to their network neighbors. Considering this scenario, the
end-to-end network paths that include more congested network devices are expected to
exhibit a considerable increase on their delay. Paths with increased delays will be learned
by the agent as less-rewarding paths (actions). Thus, by not recommending those less-
rewarding paths to the associated SDN controller, the agent protects the controlled traffic
from being negatively impacted by the more high-congestion issues.

The proposed solution was assessed by conducting a set of experiments on simulated
and emulated data, regarding the most efficient system operation. The obtained results
show that React-UCB can robustly track the path with the lowest end-to-end delay, meaning
the less congested path, despite the presence of abrupt stationary change-points, as well as
those that are planned to be difficult to discover by the agent.

The rest of the article is structured as described. Section 2 discusses the related work.
Further details on the SDN-based system enhanced by the MAB agent are discussed in
Section 3. Section 4 presents and discusses the evaluation results. Section 5 concludes the
manuscript with future work.

2. Related Work

This section analyzes related contributions, highlighting the main novelties of the cur-
rent contribution in relation to the available literature. Machine learning (ML) can be used
to exploit the data originating from mobile sensors [10], but also to control the networks
underlying the computational edge systems. Tang et al. [11] present a comprehensive
literature analysis covering ML in the next generation of mobile networks to guarantee
the quality of end-to-end applications. More specifically, they classified the available
ML-related literature in the next four parts, network access in the media access control
(MAC) layer, end-to-end network routing, end-to-end network congestion control and the
end-to-end adaptive streaming control. Finally, they discuss some open research issues and
relevant guidelines for further investigation into upcoming mobile networking scenarios.
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In the networking area, the developed MAB algorithms have focused on learning
about the optimal operation policies for enhancing intrusion detection [12,13] or routing
via a hybrid mesh network [14] to optimize the throughput. Differently, our MAB proposal
aims to achieve end-to-end path delay minimization, meaning a more robust network
connectivity despite the unexpected congestion situations that occur in the network devices.

Considering a SDN scenario with multiple controllers, Huang et al. [15] investigate
how learning can boost both the switch–controller association and the load of the control
channel. Rischke et al. [16] and Casas-Velasco et al. [17] use RL to learn the optimum
routing path, but these force the SDN controller within each system time slot to actively
measure the delay in every network link, which excessively overloads the system, as
evidenced in the results of Section 4.3. Alternatively, we propose a more scalable MAB-
based approach, which measures a single end-to-end path delay in each time slot. We
investigate a centralized MAB agent that acts as a topmost system manager to learn which
end-to-end path traverses the set of less-congested network devices. Then, the SDN
controller configures this optimum end-to-end path in the generic network by transferring
proper flow rules to the network devices involved in that path, aiming to detect and avoid
abnormal congestion situations in network devices and preserving the network quality
offered to the system’s topmost-layer applications or services.

A multitude of MAB algorithms have been crafted over the years to handle different
types of reward distribution [7,8]. A family of algorithms is dedicated to handling stochastic
reward distributions, with the well-known UCB algorithm [18] being a remarkable repre-
sentative. Other algorithms, such as Exp3 [19], have been developed to tackle the more
general case, in which rewards can be specified by an adversary, which may not behave
in a stochastic way. Although more general, adversarial algorithms tend to underperform
compared to stochastic algorithms when facing stochastic rewards.

The success of UCB has triggered the proposal of several extensions, such as KL-
UCB [20], which is known to outperform the standard UCB algorithm. Despite their
abilities, most MAB algorithms for stochastic domains are restricted to handle stationarity
reward distributions, an assumption that hardly holds in dynamic networking scenarios.
A well-known extension of the UCB algorithm for non-stationary reward distributions is
known as Discounted UCB [21,22], which considers recent rewards to be more relevant
than older ones. We exploit the strength of both KL-UCB and Discounted UCB to proposed
an hybrid solution. However, it is often necessary to include additional mechanisms to
handle sudden and abrupt distribution changes. Some algorithms cope with this problem
by detecting changes in reward distributions and resetting the algorithm when those events
occur, such as M-UCB [23]. We build on this intuition and tune it to produce a more robust
solution for our proposed MAB agent.

When the dimension of the control problem grows, it becomes harder for MAB al-
gorithms to properly explore the actions space in an efficient way. In these cases, it is a
common strategy to exploit prior knowledge regarding the correlations between actions
to estimate rewards for untried actions from the rewards collected from tried actions. A
typical solution to this problem is to constrain the operation of a standard MAB algorithm
to a sub-set of potentially interesting actions [24]. We approach this problem in a principled
Bayesian way. In summary, our proposed algorithm, React-UCB, builds upon a judicious
innovative integration and the adjustment of well-established MAB components.

3. System Architecture

Figure 1 depicts the proposed architecture. It includes an SDN controller that, at power-
on, obtains the complete list of hosts, switches, and links from the controlled network
topology. Using these data, the controller creates a Networkx [25] algebraic network
representation. Then, the controller, by querying that abstracted topology, obtains a list
with all paths among hosts. The unique identifiers of all these paths are transferred to an
MAB agent that decides, in each system time slot, which path (arm in MAB nomenclature)
to use for message-routing. These decisions are made to maximise the expected reward
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in the long run; reward, in this case, represents the inverse of end-to-end delay associated
with the path previously selected by the agent. Hence, in each time slot, the MAB agent
chooses a path and relays its unique identifier to the controller, which, in turn, deletes old
flow rules and installs new ones in each switch of that path. Then, the controller actively
measures the selected path’s end-to-end bidirectional delay and returns it to the MAB agent
so that a reward can be computed.

Figure 1. Proposed architecture of a programmable system augmented by an MAB learner agent for
online optimum end-to-end dynamic routing path.

The end-to-end path delay is the sum of the individual delay contributions by all the
network devices involved in that path. In addition, the delay induced by each network
device to the end-to-end path is directly proportional to the local congestion level at that
device. This means, when considering an end-to-end path with two devices, A and B, if
device A is more congested than device B, device A’s delay contribution to the end-to-end
delay path will be higher than that of device B.

The MAB agent is controlled by a novel and generic MAB algorithm, React-UCB,
which we introduce to optimize the routing in dynamic communication networks. The
next sections detail React-UCB, explaining how it decides the arm to pull under piecewise-
stationary reward distributions in each time step. The main goal of React-UCB is to learn
about end-to-end path delay minimization (i.e., learn about the more robust end-to-end
path with the minimum aggregated congestion level), mapping arms to paths and rewards
to path delays.

3.1. The MAB Problem

At each time step t ∈ {1, 2, . . .}, the MAB agent pulls (selects) and uses arm It ∈ K,
K = {1, 2, ..., K}, according to a policy π and, as a consequence, the environment returns
a corresponding reward Xt(It) ∈ Θ with Θ = [0, 1] to signal how beneficial it was to pull
arm It.

In this article, we address a specific class of non-stationary bandit problems, in which
the reward distributions are piecewise-stationary and may abruptly change at unknown
time steps; hereafter, change-points. To cope with this type of distribution, the rewards for
each arm i ∈ K, {Xt(i)}∀t∈{1,2,...}, are a sequence of independent random variables from
potentially different distributions, which are unknown to the agent and could abruptly
change over time (time-dependent). µt(i) is the expected reward of arm i.

The policy performance π depends on the regret, i.e., the expected difference between
the policy’s collected rewards and the rewards that would have been gathered by the optimal
policy (an oracle pulling the arm with the largest expected reward) over a time horizon T:

Eπ

[
T

∑
t=1

(
max
i∈K

(µt(i))− µt(It)

)]
, (1)

where Eπ is the expectation under policy π.
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3.2. Preliminary: UCB / D-UCB

The UCB-1 method [18] chooses the arm i that maximizes the upper bound of a
confidence interval for the stationary expected reward. To handle non-stationary expected
rewards, the Discounted UCB (D-UCB) [21,22], a UCB-variant, provides higher weights to
recent rewards than to older rewards, considering a discounted empirical average reward,
X̄std

t (i) and a discounted number of arm pulls, Nstd
t (i), in the computation of the confidence

interval’s upper bound Ustd
t (i):

Ustd
t (i) = X̄std

t (i) + C

√√√√ log ∑K
j=1 Nstd

t (j)

Nstd
t (i)

, (2)

X̄std
t (i) =

1
Nstd

t (i)

t

∑
s=1

γt−s1{Is=i}Xs(i), (3)

Nstd
t (i) =

t

∑
s=1

γt−s1{Is=i}, with Nstd
1 (i) = 0, (4)

where the scalar γ ∈ [0, 1] is a discount factor, C > 0 is a constant controlling the exploration
level, and std indicates that this formulation refers to the standard D-UCB. D-UCB selects
the arm to be pulled at time t as the one with the highest upper confidence bound (principle
known as optimism in the face of uncertainty):

Istd
t = arg max

i∈K
Ustd

t (i). (5)

3.3. Incremental Formulation and Reset

To speed up computation, React-UCB avoids the summations in X̄std
t (i) and Nstd

t (i)
with an equivalent incremental formulation:

X̄t(i) = γX̄t−1(i)Rt−1 + 1{It=i}Xt(i), (6)

Nt(i) = γNt−1(i)Rt−1 + 1{It=i}, (7)

X̄0(i) = 0, N0(i) = 0, R0 = 0, (8)

where Rt ∈ {0, 1} is a modulatory variable that allows for the agent to reset X̄t(i) and Nt(i),
when an abrupt reward distribution change in the pulled arm It is detected (such a change
would be difficult to accommodate with discounting alone). This change detection occurs
on the list of rewards accumulated by each agent’s arm i ∈ K, whose size nt(i) increases
whenever i is pulled at time step t, and whose j-th element is given by xj(i):

nt(i) = nt−1(i) + 1{It=i}, (9)

xj<1(i) = nj<1(i) = 0, (10)

xnt(i)(i) = 1{It=i}Xt(i) + 1{It 6=i}xnt−1(i)(i). (11)

Similar to M-UCB [23], React-UCB detects changes by comparing some reward statis-
tics across the two most recent and contiguous series of w rewards gathered by the pulled
arm, It. The two ordered sets of indices of these two series in the rewards list are:

ν1,t = {nt(It)− w, . . . , nt(It) : nt(It) ≥ 2w}, (12)

ν2,t = {nt(It)− 2w, . . . , nt(It)− w : nt(It) ≥ 2w}. (13)

M-UCB detects changes based on the absolute difference between average rewards
across the two contiguous series as a function of a fixed average reward difference threshold.
However, a fixed threshold can rapidly become inaccurate in scenarios in which the rewards’
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variance changes unpredictably. That is, a low threshold may result in excessive false
positives (i.e., resets being issued even when the reward distribution has not changed) if
the rewards’ variance rises unexpectedly, whereas a high threshold may result in excessive
false negatives (i.e., resets not issued when the reward distribution has changed) if the
rewards’ variance lowers unexpectedly. The practical implication of being unable to
properly determine when what has been learned should be forgotten (i.e., a reset should be
issued) increases regret.

Alternatively, a change detection in React-UCB is only reported if: (i) the average
reward difference between {xi(It)}∀i∈ν1,t and {xi(It)}∀i∈ν2,t is above a small threshold ζ
(small, 0.1 in our tests, to avoid false negatives); (ii) it is statistically significant (not due
to chance); and (iii) it is of practical significance for the system optimization goal. Hence,
in React-UCB, the chances of triggering a reset are dynamically adjusted according to
the rewards’ variance, instead of being ruled by a fixed threshold throughout the whole
time horizon.

Statistical significance holds when pt < αp, where pt is the probability of the observed
difference in average rewards under the null hypothesis H0 , (µ1,t = µ2,t) and for a signif-
icance level αp (we opt for the standard αp = 0.05), and is estimated via an independent,
two-sample, two-sided Welch’s t-test:

µ1,t = w−1 ∑
v∈ν1,t

xv(It), (14)

µ2,t = w−1 ∑
v∈ν2,t

xv(It). (15)

Practical significance holds when ∆t > α∆, where ∆t is the effect size metric known
as Glass’ ∆ and α∆ is the effect size threshold (we used α∆ = 0.8 for large effect size [26]).
Glass’ ∆ was selected instead of the well-known Cohen’s d because the former (but not the
latter) does not assume equal variances in both groups:

∆t = σ−1
1,t |µ2,t − µ1,t|, (16)

σ1,t =
√

w−1 ∑
i∈ν1,t

(xi(It)− µ1,t)2. (17)

Resetting aims to level all arms when the previous agent’s knowledge is expected to
be more detrimental than beneficial. This occurs when a reward increase above the current
best reward estimate is observed in sub-optimum arms and when a reward decrease is
observed in the arm considered the best. In React-UCB, all the pre-conditions for a reset to
occur are considered in the reset modulatory variable Rt, as follows:

Rt = 1(C1,t ∧ C2,t ∧ (C3,t ∨ C4,t)), (18)

C1,t = 1(nt(It) ≥ 2w), (19)

C2,t = 1(pt < αp ∧ ∆t > α∆ ∧ |µ2,t − µ1,t| > ζ), (20)

C3,t = 1(It = mt ∧ µ2,t < µ1,t), (21)

C4,t = 1

(
It 6= mt ∧ µ2,t > µ1,t ∧ µ2,t ≥

X̄t(mt)

Nt(mt)

)
, (22)

where the most frequently pulled arm in recent history is indicative of the best arm for
resetting purposes:

mt = arg max
k∈K

(nt(k)− nt−2w(k)). (23)
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3.4. Upper Confidence Bound

For the upper confidence bound’s computation, React-UCB builds upon KL-UCB [20],
a UCB variant known to achieve lower regret than the standard UCB-1. However, the direct
integration of KL-UCB in React-UCB would be limited in scope, as KL-UCB has not been
designed to cope with non-stationary reward distributions. That is, KL-UCB can hardly
keep track of the optimal arm in the face of change. This limitation stems from the fact
that KL-UCB formulation accounts for undiscounted rewards. React-UCB reformulates
KL-UCB to account for discounted empirical average rewards, X̄t(i), and a discounted
number of arm pulls, Nt(i), enabling its operation in non-stationary regimes:

Ut(i) = max
{

q ∈ Θ : d
(

X̄t(i)
Nt(i)

, q
)
≤ C log(t′)

Nt(i)

}
, (24)

where t′ = ∑K
j=1 Nt(j) and d(x, y) = x/y− 1− log(x/y) is the Kullback–Leibler divergence

for exponential distributions (an adequate fit to the distribution of time delays).

3.5. Correlated Arms

The deterministic nature of D-UCB poses challenges in the detection of reward changes
in currently low-performing arms, which may eventually become the optimal ones in
subsequent time steps, without incurring expensive arm exploration by increasing C.
Resets allow the agent to deal with this problem, enabling all actions to be sufficiently
sampled. M-UCB samples all arms periodically to achieve this purpose. However, setting a
proper full sampling period may be difficult without knowing the environment dynamics
beforehand. A long period may not be sufficient to gather enough evidence to engage in
a reset in due time, whereas a short period may gather redundant evidence, negatively
impacting regret without added value. Moreover, the rewards from one arm can provide
information on the (pseudo-)rewards of correlated arms [24], as often occurs in paths
sharing network links, rendering these valuable in spreading the sampling over time rather
than periodically.

To cope with these challenges, React-UCB samples actions according to a distribution,
ensuring that all arms have a positive probability of being sampled in every time step,
while ensuring that the more promising arms, according to their accumulated rewards and
correlations, are more densely sampled. In this way, the algorithm becomes continuously
sensible to reward distribution changes, rather than only periodically. This stochastic ap-
proach borrows from algorithms such as Thompson-Sampling [27] and Exp3 [19], bringing
a new algorithmic ability to handle adversarial bandits. An alternative to this approach
would be to use pseudo-rewards to restrict, in each time step, the activity of the basic bandit
algorithm (e.g., UCB) to a sub-set of competitive arms [24]. However, by not including ran-
domness and by ruling out some arms in each time step, it is not clear how this alternative
handles piecewise-stationary bandits.

Let us define Yt and Yt−1 as random variables representing the distributions underly-
ing arm pulls It and It−1, respectively. Although arm pulls in React-UCB are not actually
ruled by these distributions, these will be used to reason about the value of each arm. Let
us also define the probability that arm i has been pulled in the previous step, t − 1, as
the softmax of its upper confidence bound, which, despite not being accurate, is a useful
approximation (η to sharpen the distribution, η = 10 in our tests):

P(Yt−1 = i) =
eηUt−1(i)

∑k∈K eηUt−1(k)
. (25)

Let the probability that arm i is the pulled one in the current time step t, given that
arm j was the pulled one in the previous time step, t− 1, be defined as the softmax of a
correlation function between arms a and b, s(a, b) : K2 7→ [0, 1], which, in the network case,
is the ratio of shared links between arms:
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P(Yt = i|Yt−1 = j) =
eηs(i,j)

∑k∈K eηs(i,k)
. (26)

It follows that the joint probability of arm i being selected at time step t and arm j
being selected at time step t− 1 is given by:

P(Yt = i, Yt−1 = j) = P(Yt = i|Yt−1 = j)P(Yt−1 = j). (27)

The probability of arm i being selected at time step t can be obtained by marginalizing
over the distribution of the arms selected in the previous time step t− 1:

P(Yt = i) = ∑
k∈K

P(Yt = i, Yt−1 = k). (28)

Finally, the probability mass function FYt identifies promising arms (i.e., those corre-
lated with the most-rewarded arms):

FYt(i) = P(Yt = i), ∀i ∈ K. (29)

3.6. Reactive-UCB

Algorithm 1 presents the proposed MAB algorithm (also includes the default parametri-
sation used in the experiments), Reactive-UCB, which evaluates the equations presented in
the previous sections (assuming constant input in Line 1) to exploit the synergies of the
following arm-sampling policies: opportunistic, complete, correlated, and optimistic.

Opportunistic sampling occurs when the average reward is good enough, i.e., statisti-
cally above ξ (0.9 in our tests) and, thus, exploration is not required (Lines 7–8). The three
other sampling policies are only available when opportunistic sampling is not active.

Complete sampling refers to the sequential execution of every arm k ∈ K, which
occurs at t = 1 and every time a reset occurs, i.e., whenever Rt = 1 (Lines 4–5). This
ensures that all arms are fairly sampled at least once.

Optimistic sampling (in the face of uncertainty), which occurs with probability 1− ε
(ε = 0.1 in our tests) when not performing complete sampling, deterministically selects the
arm with the highest upper confidence bound (breaking ties randomly) (Lines 9–10).

Correlated sampling, which occurs with probability ε when not performing complete
sampling, selects the arm by sampling the probability mass function FYt (Line 12). This
ensures that all arms are likely to be selected by exploiting their correlations.

The adaptation of the algorithm to the SDN-based routing problem occurs at Line 15
by assuming that an arm represents a path and that the reward is defined in terms of the
path’s delay. Formally, the reward obtained from choosing a path i ∈ K, Xt(i), is defined
as a function of the observed instantaneous path’s delay, δt(i), which ensures that: (i) the
higher the delay, the lower the reward; (ii) the delay’s changes are felt more strongly in
the reward for lower delay values, helping the agent to be more accurate in its best-arm
choices; and (iii) 10 ms is the lowest path delay. Formally,

Xt(i) = max
(

0, 0.5 log
(

max(δt(i), 0.01)−1
))

. (30)

3.7. Complexity Analysis

This section presents a complexity analysis of the proposed algorithm, React-UCB. For
this purpose, the big-O notation is used to describe the worst-case asymptotic execution
time of the algorithm, T(n), as the number of arms (n in the context of complexity analysis)
grows to infinity. The goal of this analysis is to assess the scalability of the algorithm as the
problem size increases. The number of arms was considered the growing variable as it is
the one with highest impact in terms of execution time.

As depicted in Algorithm 1, in each time step t, the algorithm is mostly composed of a
set of sequential and conditional constant time operations (e.g., Line 5), which have a joint
order of complexity O(1). In addition to these constant time operations, Algorithm 1 and
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the equations evaluated by it also include vector-wise operations, such as element-wise
products, summations, and max operations (e.g., Line 10), which exhibit a linear order of
complexity, O(n), as well as their resulting sequences.

Algorithm 1 Reactive-UCB (with default parametrisation)

1: Input: K = {1, 2, .., 25}, γ = 0.99, w = 100, C = 0.01
Input: αp = 0.05, α∆ = 0.8, ε = 0.1, ζ = 0.1, ξ = 0.9

2: τ ← 1
3: for t = 1, 2, . . . do
4: if t < |K| or t− τ < |K| then
5: It ← t− τ + 1
6: else
7: if |µ2,t−1 − ξ|/σ1,t−1 > α∆ then
8: It ← It−1
9: else if ut < 1− ε with ut ∼ U(0, 1) then

10: It ← arg maxi{Ut(k)}∀k∈K [Equation (24) with γ, C]
11: else
12: It ← ft with ft ∼ FYt(K) [Equation (29)]
13: end if
14: end if
15: Pull arm It and collect reward Xt(It) ∈ [0, 1]
16: if Rt = 1 [Equation (18) with w, αp, α∆, ζ] then
17: τ ← t
18: end if
19: end for

The computation of the probabilistic mass function described by Equation (29), used
to account for correlated arms, requires a quadratic execution time, O(n2) due to the
marginalization in Equation (28). As a result, the algorithm’s asymptotic global execution
time, per time step t, is, at most, T(n) = O(n2). Nevertheless, the quadratic component
applies only to a small set of mathematical operations, and thus has a limited impact to the
global execution time unless the number of arms grows to unpractical numbers. Section 4.4
presents a set of empirical results that corroborate this prediction and the underlying
theoretical analysis.

4. Evaluation

To assess the proposed system’s ability to track the optimal network route under
non-stationary settings, an evaluation setup based on simulated and emulated data was
designed and a set of experimental results were collected. The evaluation setup, the
collected results, and their analysis are presented below.

4.1. Datasets and Evaluation Setup

In order to facilitate the integration of the developed system with other tools and
libraries commonly used in networks and multi-armed bandit research, React-UCB was
implemented in the programming language Python. The KL-UCB component included in
React-UCB is based on a well-known Python implementation from [28].

To evaluate React-UCB’s performance with its default parametrisation, as specified in
Algorithm 1, a set of experiments were run on two different evaluation setups: emulation
setup and simulation setup. In the emulation setup, the agent is tasked to find the lowest-
delay path in an emulated network topology. Conversely, in the simulation setup, the agent
is challenged to find the arm with highest reward in a generic simulation of stochastic
bandits. Both setups assume that the agent needs to handle K = 25 paths (arms), whose
normally distributed delays are piecewise-stationary, with reward distribution change-
points occurring every P = 1000 time steps, up to the time horizon T = 105 and T = 106 in
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the emulation and simulation setups, respectively. The larger time horizon used for the
simulation setup aims to cope with the higher diversity of distribution changes that occur
in this setup.

The two evaluation setups were used due to their complementary characteristics. A
network emulator is adequate for testing the system against highly likely reward distribu-
tions, enabling an analysis focused on expected events. However, it is also important to
assess the system’s behaviour when facing uncommon distribution changes, which are hard
to find with a network emulator without engaging with extensive topology manipulations.
On the other hand, a generic simulation setup is adequate for testing the system against
arbitrary network delay distribution changes, enabling an analysis that is independent of
the network topologies specifically designed for the evaluation process.

The emulation setup is based on the open-source network emulator Mininet [29].
Mininet was selected as it is a well-established solution for the creation of realistic virtual
networks capable of running real, that is, deployable code. Moreover, Mininet is particularly
suited to studying SDN-based systems. By relying on Mininet, the emulated network
operation is highly accurate because it runs in real-time and the programmed delays and
jitters operate as if they were emerging from real hardware.

Figure 2 depicts the emulated network for this study, whose topology, composed
of seven OpenvSwitches, results in 25 end-to-end paths between end-hosts H1 and H2.
The seven switches are controlled via OpenFlow v1.3 by a Ryu [30] SDN controller. In the
emulation setup, React-UCB is tasked to select each time slot which one of the 25 end-to-end
paths is selected for data transmission (an arm per path).

Figure 2. Network topology with seven OpenvSwitch switches and 25 end-to-end paths between
end hosts H1 and H2. The switches are controlled via OpenFlow v1.3 by a Ryu [30] SDN controller
(not visualized).

During the emulation runs, and as any used path can be decomposed in several hops,
each hop’s delay contribution to the end-to-end single direction path delay is the sum of
the processing delay at the hop source switch (influenced by the congestion level at the
hop source switch), the link transmission delay between the hop source switch and the
hop destination switch (influenced by the sum of the link transmission delay and the link
propagation delay). The bidirectional delay in each end-to-end path changes according to
a set of three distributions D = {d1, d2, d3}, which are summarized in Table 1. The table
only presents paths that are optimal for at least one of the distributions. For every P steps,
the active distribution changes. Concretely, assuming d ∈ D to be the currently active
distribution, the next active distribution is randomly sampled from D \ {d}.
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Table 1. Path delay variation (AVG± STDEV ms) across emulated distributions; the best distribution
path in each distribution is in bold. Each path is represented by a tuple composed of the switches
along the path. Only a subset of 3 of the 25 possible end-to-end paths are listed.

Distribution Path (1, 2, 4) Path (1, 3, 4) Path (1, 5, 4)

d1 200 ± 20.0 230 ± 23.0 270 ± 27.0
d2 200 ± 20.0 100 ± 10.0 240 ± 24.0
d3 80 ± 8.0 100 ± 10.0 20 ± 2.0

The distributions in D were carefully crafted to challenge React-UCB’s ability to detect
and react to sudden and abrupt reward distributions. This is attained by ensuring that the
path with minimum delays is different in each distribution and that it is not always possible
for React-UCB to detect distribution changes by simply sensing a reward drop in the current
optimal path (this reward may remain the same across distribution change-points), thus
requiring a proper handling of the exploration–exploitation trade-off.

In the simulation setup, each of the 25 arms returns a stochastic reward according to a
normal distribution, whose parameters are randomly selected in every reward distribution
change-point. Hence, in this setup, React-UCB faces challenging scenarios, in which reward
distributions change in unpredictable and diverse ways.

Concretely, in each simulation time step t, the delay expectation of every path (arm)
i ∈ K, µδ

t (i), and standard deviation σδ
t (i), are either updated or maintained. Formally, if

t = 1 or t is a multiple of P, then µδ
t ∼ U(0, 1) and σδ

t ∼ U(0, 0.2); otherwise µδ
t ← µδ

t−1
and σδ

t ← σδ
t−1. The delay observed by the agent when selecting path (pulling arm) It is

obtained by sampling a normal distribution parameterized with the randomly selected
expected delays and their standard deviations, δt(It) ∼ N (µδ

t (It), σδ
t (It)).

4.2. Results

This section presents the set of results that were collected with both emulation and
simulation setups with four different tested React-UCB configurations. Testing with differ-
ent configurations aims to assess the contribution of each React-UCB’s feature (e.g., arms
correlation, reset functionality) to the overall algorithm’s performance.

The baseline configuration, referred to as B, represents the implemented discounted
KL-UCB (Equation (24)) augmented with ε-greedy for coverage guarantees in non-stationary
reward distributions. This configuration, composed of standard components, serves as a
benchmark for the remaining configurations.

The second configuration, hereafter referred to BR, extends configuration B by includ-
ing the reset functionality. Hence, a performance improvement in configuration BR over
configuration B should be an indication that the reset functionality provides added value
to the overall solution.

The third configuration, hereafter referred to BRC, builds upon configuration BR
by including arms’ correlation information in the decision-making process. The goal of
this configuration is to assess whether the correlation between arms, that is, knowledge
regarding how many links are shared across paths, can make a valuable contribution to the
provision of pseudo-rewards.

Finally, the fourth configuration, referred to as BRCT, extends configuration BRC by
including the mechanism that allows for the algorithm (Lines 7–8 in Algorithm 1) to cancel
exploration when rewards rise above a given satisfactory threshold, that is, the rewards are
good enough for the task at hand.

Table 2 summarizes the average (AVG) and the standard deviation (STD), per time
step, of the regret obtained with each of the four tested configurations. These statistics were
computed by considering the total regret accumulated over 30 independent runs, divided
by the number of time steps in each run (a run lasts T time steps, with T varying according
to the evaluation setup, as described earlier). A total of 30 independent runs was selected
to increase the power of the statistical tests to compare several configurations; that is, to
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minimise the impact that the randomness in both agent and reward systems may have
on the variance in the results. The independence between runs was enforced by using a
different random seed in the beginning of each run.

Table 2. Regret per iteration (AVG± STDEV).

Config. Simulation Setup Emulation Setup

B 0.1346± 0.0020 0.0755± 0.0021
BR 0.1254± 0.0017 0.0712± 0.0021
BRC 0.1041± 0.0017 0.0646± 0.0023
BRCT 0.1028± 0.0019 0.0453± 0.0023

As expected, Table 2 shows that including each React-UCB’s component results in a
gradual decrease in terms of regret. These results are confirmed in both simulation and
emulation setups, meaning that these results apply to both network and generic application
scenarios. Hence, the devised solutions reset the MAB when a reward distribution change
is detected, exploit the arms correlation to build pseudo-rewards, and stop exploration
when task-dependent, good-enough rewards are reached. These all positively contribute to
the algorithm’s performance. In fact, the fourth configuration, BRCT, exhibits only 70% of
the regret suffered by the baseline (benchmark) configuration, B, across both setups. Hence,
this result indicates an overall important reduction in terms of agent regret.

Considering the emulation setup, Table 3 shows that the increase in the agent’s average
reward per iteration is well-aligned with the previously discussed decrease in the agent’s
regret in the Table 2. Table 3 also shows that enhancements on the agent’s average reward
per iteration make an important positive contribution to the network throughput, mainly
after the last component (T, which inhibits the agent’s exploration after a good reward has
been discovered) is activated in the MAB’s algorithm.

Table 3. Reward and throughput (messages/s) per iteration (AVG± STDEV) for the emulation setup.

Config. Reward Throughput (Messages/s)

B 0.5422± 0.0102 12.1426± 1.0481
BR 0.5464± 0.0102 12.3836± 1.0481
BRC 0.5529± 0.0103 12.7605± 1.0487
BRCT 0.5723± 0.0118 13.9523± 1.0560

Table 4 shows that the regret differences observed between the four configurations
(Table 2) are all statistically significant for a 99 % confidence level (p < 0.01), according to
the Student’s two-sample unequal variance t-test, considering a two-tailed distribution.
Hence, it is very unlikely that the observed performance differences associated with the
diverse agent components are due to chance. Table 4 also shows that the observed regret
differences have practical significance; that is, they are likely to have practical benefits.
Here, practical significance is defined in terms of effect size, measured with Cohen’s d
metric. All configuration comparisons indicated in Table 4 exhibit a large effect size [26]
(d ≥ 0.8), except for the difference between configurations BRC and BRCT, which presents
a medium effect size [26] (d ∈ [0.5, 0.8)). Resets occur with a median delay from the
reward distribution change-points of 11 time steps and 23 time steps in the emulation and
simulation setups, respectively. Hence, assuming a plausible median period of 100 ms
between time steps, resets are expected to occur with a median delay of approximately 1.1 s
and 2.3 s in scenarios with similar reward distributions to those present in the emulation
and simulation setups, respectively. This shows the algorithm’s ability to adequately react
to sudden and abrupt reward distribution changes, explaining its low empirical regret.

In summary, the results show that the several React-UCB’s components provide added
value to the whole algorithm and that this conclusion is supported by strong statistical and
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practical significance validation tests, which were performed on the evaluation results of
our proposal.

Table 4. Regret statistical tests: p-values and Cohen’s d. The former test evaluates the significance of
the statistical difference between the diverse configuration options of the MAB agent, and the latter
test reveals the statistical practical significance of the agent components’ contributions to the final
MAB agent’s learning performance.

Null Hypothesis Simulation Setup Emulation Setup

B = BR p < 0.001, d = 4.97 p < 0.001, d = 2.02
BR = BRC p < 0.001, d = 12.50 p < 0.001, d = 2.93
BRC = BRCT p < 0.01, d = 0.71 p < 0.001, d = 8.38

4.3. Comparison to Standard SDN

The previous section analysed the benefits of the elements that comprise the devised
MAB agent for end-to-end path delay minimisation, avoiding the negative impact of
congested network devices in the quality of top system applications or services. This
section compares the benefits of using an MAB agent for this purpose compared to a
standard SDN solution without the support of any intelligent agent.

In a standard SDN solution, all links need to be periodically probed to determine their
current delay. Without this periodic and global probing process, the SDN controller is
unable to determine the optimal path for packet exchange. The periodic and global nature
of the traffic imposed by these probing messages results in a considerable overhead on
the network. Figure 3 presents the number of messages that need to be exchanged by a
classic SDN-based solution, when the network is composed of four, seven, and ten switches,
at both network and control levels. Analyzing these results, it is clear that the higher
the number of switches, the higher the number of probing messages that flow through
the network.

Figure 3. Average overhead comparison at both network (Net) and control (Ctrl) levels between
controller enhanced by the MAB agent (Ag+SDN) and standalone controller (SDN). This considers
several topology sizes.

The MAB-based solution for end-to-end path delay minimisation proposed in this arti-
cle aims to reduce the number of probing messages by properly handling the exploration–
exploitation trade-off. Figure 3 shows that the number of messages exchanged at both
the network and control levels of the MAB agent is systematically lower than the number
of messages exchanged by a standard SDN solution. Interestingly, the growth rate in the
number of messages, as a function of the number of switches, is lower with the MAB-based
solution than with the standard SDN solution. Hence, the MAB-based solution offers
higher scalability than the standard SDN solution as the network increases in size.

4.4. Computational Complexity Results

React-UCB’s complexity analysis, as presented in Section 3.7, was verified with empir-
ical results. These results were obtained on a MacBook Pro 2019, with 32 GB DDR4 and
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2.3 GHz 8-Core Intel Core i9 (Apple Inc., United States), using the simulation setup with 25,
100, 200, 300, and 400 arms.

Figure 4 presents the obtained average CPU execution time per time-step t (i.e., per
React-UCB’s decision making) over a horizon of T = 104 time steps. Execution time was
estimated with time.process_time() Python function in a conservative manner, that is,
by including the whole algorithm, simulation setup, and corresponding interactions.

Figure 4. React-UCB’s average execution time per time step over T = 104 time steps. The dashed line
represents the second-order polynomial curve that was fit to the execution times represented by the
black dots.

A second-order polynomial curve was fit to the obtained execution timings to assess
the theoretical algorithm’s asymptotic execution time of T(n) = O(n2) (see Section 3.7).
The quadratic order of complexity was confirmed by the almost perfect coefficient of
determination achieved by the regression process, R2 = 0.9995. It is also notorious that
the quadratic coefficient (9× 10−5) is several orders of magnitude smaller than the linear
coefficient (1980× 10−5). This is due to the fact that the quadratic order of complexity was
limited to the probabilistic inference step. The smaller quadratic coefficient results in a low
execution time for a practical number of arms. For instance, considering 25 and 400 arms,
the algorithm only takes, on average, 1.63 ms and 22.46 ms to output a decision per time
step t, respectively. These are adequate processing timings from a practical standpoint.

5. Conclusions

The paper presents a novel approach to the online, optimum, end-to-end dynamic
routing of data flows in the context of programmable networking systems. This is based on
a proposed piecewise-stationary Bayesian MAB algorithm, React-UCB, which is a careful
planned combination of several enhancing features for discovering the bidirectional end-to-
end network path with the minimum delay from a high number of alternatives. In addition,
our solution protects the quality of topmost system applications or services despite the
occurrence of both unpredictable congestion situations at network devices and unexpected
link delay variations.

React-UCB’s features allow for the algorithm to properly cope with abrupt changes
in the reward distributions by: (i) assuming the heuristic optimism in the face of uncertainty;
(ii) discounting rewards to favor recent feedback over older feedback; (iii) resetting pre-
viously learned data after abrupt changes in the path delay’s distribution are detected;
(iv) considering reward correlations to transfer learning across paths; and (v) suspending
exploration once a good reward is found. Jointly, these features positively reduce the
agent’s accumulated regret, contributing to an efficient network resource operation.

A set of experiments on simulated and emulated data were conducted to assess the
individual contribution of each system’s component. Comparing the diverse experimental
results, we obtained solid conclusions based on the statistically significant performance
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differences among the diverse system’s components. The results also show React-UCB’s
ability to properly handle the exploration–exploitation trade-off in a more scalable way
than alternative non-learning programmable solutions, which uniquely rely on periodic
link delay monitoring.

Our current proposal can control, in a centralized way, operations within a single-
domain network infrastructure. However, in our opinion, the current proposal could be
investigated in more complex scenarios, involving several network domains, forming a
federated scenario. Considering this, it will be necessary to deploy a distributed (and
coherent) learning solution in the diverse agents, with each one centrally controlling, via
the associated SDN controller, its own network domain.

The current research could be further developed to allow for the use of contextual
bandits [31] to boost the optimal path’s tracking convergence, as well as to change the
reward function to be energy-aware. We are also planning to study React-UCB in other very
challenging piecewise-stationary problems, such as elastic computational and networking
assets at the network edge, following the trend of system’s load demand [32,33]. Finally,
although the used emulation setup is highly realistic, we will further evaluate React-UCB
in a real multi-domain network that is congested by traffic from concurrent flows. The
proposed framework will be compared with other frameworks.
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Notation
The following notation is used in this manuscript:

1{c} Indicator function, which equals 1 if c is true and equals 0 if otherwise.
αp Significance level threshold.
α∆ Effect size threshold.
ε, C Exploration probability, exploration level.
γ Discount factor.
ζ Threshold to detect average reward differences.
ξ Threshold of average reward before exploration can be stopped.
FYt (i) Probability mass function associated with arm i.
It Selected arm at time t.
K The set of arms available in the MAB.
N (µ, σ) Normal distribution centred at µ with standard deviation σ.
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Nt(i) Discounted number of pulls applied to arm i.
P Time steps between reward distribution change-points (for evaluation purposes).
Rt Modulatory variable used in the reset functionality.
t, T Time step, time horizon.
U(a, b) Uniform distribution between a and b.
Ut(i) Upper confidence bound of arm i.
Xt(i) Reward collected as a result of pulling arm i.
X̄t(i) Discounted empirical average reward of arm i.
w Length of vector containing a contiguous series of w rewards.

Abbreviations
The following abbreviations are used in this manuscript:

BGP Border Gateway Protocol
OSPF Open Shortest Path First
RL Reinforcement Learning
KL Kullback–Leibler
MAB Multi-Armed Bandit
SDN Software-Defined Networking
UCB Upper Confidence Bound
B Baseline MAB Agent Configuration
R Reset MAB Agent Configuration
C MAB Agent Configuration using Correlated Arms
T MAB Agent Configuration using a Threshold for the Highest Reward
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