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Abstract: Starting from a rigorous finite mass, Dirac equation-based model, we investigate the R.F.
quantum admittance of a monolayer 2D material under the action of an electromagnetic (e.m.) wave
with axially directed vector potential. With some reasonable approximations, the analysis yields a
relatively simple RLC-equivalent circuit with frequency-independent elements depending on the
bias, temperature, effective mass, Fermi velocity and effective e.m. index of the material, losses and
other relevant parameters.
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1. Introduction

The drive toward circuit miniaturization and the advent of new materials, such as
graphene, has led to a situation where the quantum current flows on mesoscopic and
nanoscopic conductors. The quantum current and conductivity in nanostructures present
novel and interesting aspects that have been the subject of much interest in recent years.
In evaluating this kind of situation with a finite electron mass, the Schrödinger equation
from quantum mechanics has been used in the framework of a free electron model, where
electrons are described by scalar wave functions. This description is, however, incomplete
when the polarization and magnetization aspects become important (e.g., in the common
situation of applied electromagnetic fields). In such a case, the use of a four-component
Dirac spinor description becomes necessary. In a conductor in particular, the scalar ratio
between the first pair of components and the second pair plays the role of characteristic
impedance of a transmission line, where the ratio of source impedance to load impedance
is essential for the correct definition of transmittivity. In a previous work [1], we derived
from the Dirac equation with a finite effective mass the quantum current in the presence
of a d.c. electric field parallel to the surface of a 2D nanomaterial and, consequently, the
d.c. conductivity. In the literature, a large number of works address the problem of charge
transport in low-dimensional structures and related applications [2–25]. In this work,
we consider the action of an R.F. electric field in the same idealized 2D geometry. In the
case of a device with dimensions much smaller than the electromagnetic wavelength, the
electromagnetic boundary conditions of the field can be neglected, and the tensor character
of the admittance can be approximated as scalar since the cross-impedance effect is low.
Real loss mechanisms, such as intra-band transitions and interaction with the substrate, are
subsumed by a global, finite mean free path LF. Our aim is to extend the calculation of the
scalar quantum conductivity previously performed in the d.c. case to the case of the R.F.
admittance. The amplitude of the driving R.F. field is assumed initially to not be depleted
by losses and be unaffected by the current on the surface (low loss approach). Once the
current has been evaluated, losses are introduced in the potential, leading to the complex
R.F. admittance at the signal frequency. The intensity of the R.F. signal is assumed to be
moderate enough to not affect the electron density or Fermi distribution, and its action is
assumed to start at x = 0 and t = 0.
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2. Dirac Equation

Considering the problem in Figure 1, the Dirac equation in x and t, with a finite
effective mass me and Fermi velocity vF in the band of interest, is[

vFαx(−ih̄∂x + |e|A) + βmev2
F

]
Ψ = [ih̄∂t + |e|Φ]Ψ (1)

where |e|Φ stands for the energy related to the total scalar potential Φ, which is due to the
d.c. electric field as well as that associated with the vector potential A. When dealing with
the modulation of a time harmonic, namely a very high frequency carrier (e.g., optical) by a
radio frequency (R.F.), it is expedient to separate the large but constant contribution of the
carrier frequency ωc from that of the time modulation by writing

∂t = −iωc + ∂τ . (2)

In the present case, the “rest” energy is

mev2
F = 2EF (3)

where in the case of parabolic dispersion, in absence of doping and identifying me with
the cyclotron mass, it is usually much larger than all other contributions.It is therefore
appropriate to extract from the Hamiltonian on the RHS of Equation (1) its stationary terms
by rewriting it as

ih̄∂t = mev2
F + E′ + ih̄∂τ (4)

where τ is the time scale of the modulation and E′ is the stationary state energy we are con-
sidering. Clearly, we have to integrate over the range of possible E’ values. Schrödinger’s
equation is actually recovered from Equation (1) by repeated application of the Hamilto-
nian operator in the limit mev2

F � E′, neglecting the squares of the potentials and passing
from a spinor to a scalar wave function by equating the currents. Moreover, we have in
Equation (1) that

V = V0 + E0x (5)

Φ = V + φ(x, τ) (6)

where V0 is the d.c. bias constant in space and time, E0 is the constant d.c. field, if any, and
φ is the time-dependent scalar potential associated with the vector potential A such that
the Lorentz gauge is satisfied:

∇ · A +
1
v2 ∂τφ = 0 (7)

In our case, by disregarding transverse variation over the ribbon width (2π/k� Ly,
where k is the wavenumber in the media) and boundary conditions of the e.m. field, we
assume an x-directed vector potential

A = Âei(kx x−ωτ) x̂ (8)

that implies a scalar potential φ = −
(
v2/ω

)
kx Âei(kx x−ωτ) = −nevA, where ne = kx/k0 is

the “effective” “index” of the propagating wave. The Dirac equation (Equation (1)) is now
cast in the working form[

αx

(
∂x + i

|e|
h̄

A
)
− i
|e|
h̄

φ

vF
+

1
vF

∂τ

]
Ψ =

i
h̄vF

[(
E′ + Ev + mev2

F

)
I −mev2

Fβ
]
Ψ (9)

where I is the 4 × 4 identity matrix and Ev = |e|V is the d.c. field energy. As mentioned,
we also subsume constant small losses (e.g., due to interaction with the substrate) over
a finite mean free path LF, leading to a propagation decay of the type e−x/LF , simply by
replacing ∂x with ∂x ± 1/LF according to whether the wave is progressive or regressive.
This modification keeps the remainder of the equation Hermitian in nature. The solution
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of the system of the partial differential equation (Equation (9)) is uniquely determined
by the initial and boundary conditions. A proper definition of quantum admittance also
requires no return wave and a proper input match at the origin of the computational
domain (0 ≤ x ≤ Lx) for a progressive wave traveling from left to right.

Figure 1. Representation of the domain under study, showing the adopted sign convention. Electric
potential and current density present opposite directions, which explains the negative sign in the
admittance definition in Equation (37).

3. Spinor Solution

As a preliminary, EV is assumed to be constant either in absence of the d.c. field or
following a stepwise approximation of V for modest fields. This expedience allows us to
eliminate the inconvenient, constant diagonal matrix on the RHS of Equation (9) by means
of a similarity transformation:

Ψ′ ≡
[√

E′ + EV I 0
0

√
E′ + EV + 2mev2

F I

]
Ψ (10)

This reduces to the form of a standard eigenvalue equation:[
αx

(
∂x + i

|e|
h̄

A
)
− i
|e|
h̄

φ

vF
+

1
vF

∂τ

]
Ψ′ =

i
λ

Ψ′ (11)

where λ ≡ 1/(h̄vF)
√
(E′ + EV)(E′ + EV + 2mev2

F) m−1. The Dirac matrix αx is now the
only one appearing in Equation (11). The progressive and regressive traveling wave solu-
tions of Ψ′ are eigenvectors pertaining to the eigenvalues ± 1. In [1], in fact, it is shown
that the spinor Ψ′ is in the following form:

Ψ′ =
[

a + b
σx(a− b)

]
(12)

where

a =

[
a0
a1

]
b =

[
b0
b1

]
(13)

Setting b = 0 in Equation (12) above retains just the progressive wave, as is required in
this case. In the absence of y variation, moreover, we may set a0 = a1 = a/

√
2.

Since we are now dealing with just one eigenvector, in Equation (11), we may replace
the matrix αx with its eigenvalue +1 and reduce Equation (11) to an ordinary differential
equation for the scalar a:[

∂x + i
|e|
h̄ω

Â
(

ω− v2

vF
kx

)
ei(kx x−ωτ) +

1
vF

∂τ

]
a =

[
i
λ
− 1

LF

]
a (14)

It is expedient to introduce the “angular frequency”

ω1 ≡ vF
|e|
h̄

Â
ω− v2kx

vF

ω− vFkx
(15)

and the position
ã ≡ exp

[
−ω1/ωei(kx x−ωτ)

]
a (16)
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This reduces Equation (14) to the standard transmission line equation[
∂x +

1
vF

∂τ

]
ã =

[
i
λ
− 1

LF

]
ã (17)

The progressive wave solution of Equation (17) is

ã(x, τ) = exp
[
− x

LF
+

i
λ
(x− vFτ)

]
ã(0, 0) (18)

with ã(0, 0) = exp(−ω1/ω)a(0, 0). Finally, by introducing Equation (18) into Equation (16),
we obtain the solution to Equation (14) as follows:

a(x, τ; E′) = exp
[
− x

LF
+

i
λ
(x− vFτ) +

ω1

ω

(
ei(kx x−ωτ) − 1

)]
a(0, 0; E′) (19)

In addition, the original spinor Ψ is recovered by means of the inverse transformation
of Equation (12):

Ψ =

 I√
E′+EV

0

0 I√
E′+EV+2mev2

F

Ψ′ =
a√
2



1√
E′+EV

1√
E′+EV

1√
E′+EV+2me+v2

F
1√

E′+EV+2me+v2
F

 (20)

Equation (19) shows that the R.F. produces frequency modulation as well as a time-
retarded traveling wave in the phase of the spinor.

4. Definition of Current

From knowledge of the Dirac spinor Ψ, the general current density vector J(x, t; E′) is
defined as

J = −vF|e|N(E′)Ψ†αΨ (21)

N(E′) above is the electron density at the energy E′, which is considered to be unaf-
fected by the presence of the R.F. as is reasonable for moderate fields, as reported in [4].
Using Equation (18), the longitudinal component Jx is given by

Jx = −|e|NvFΨ†
[

0 σx
σx 0

]
Ψ = −2|e|NvF|a|2

[√
(E′ + EV)(E′ + EV + 2mev2

F)

]−1
(22)

However, Equation (19) gives

|a|2 = exp
[
−2

x
LF

+ 2
ω1

ω
cos(kxx−ωt)− 1)

]
|a(0, 0; E′)|2 (23)

Adopting the same current normalization as in [1], where J(0, 0; E′) = −|e|N(E′)vF,

implies that |a(0, 0; E′)|2 = 1
2

√
(E′ + EV)(E′ + EV + 2mev2

F) and consequently

Jx(x, t; E′) = −|e|N(E′)vF exp
[
−2

x
LF

+ 2
ω1

ω
cos(kxx−ωt)− 1)

]
(24)

The first term in Equation (24) represents just d.c. losses in the absence of the R.F. signal.
As a function of the frequency, the current shows high-pass characteristics. Moreover, there
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appear to be infinite harmonics of the argument θ = kxx − ωt, which is a feature of RF
mixers. This fact is made explicit by the identity [2]

exp
[
2

ω1

ω
cosθ

]
= ∑

k
Ik

(
2

ω1

ω
eikθ
)

(k = 0,±1,±2, . . .) (25)

where Ik(z) = i−k Jk(iz) are the Bessel functions. Retaining only the fundamental harmonic
of the signal (k = 1) yields the scalar admittance at the signal frequency.

We consider now a ballistic regime with flow in the x direction and which is uniform
in the y direction. For a band of energies, the electron density N(E′) is to be replaced
by a density of states, weighted by the occupation probability and integrated from the
thermodynamic energy limit KB T ≈ 25 meV at 300◦ up to the chemical potential µ. By
retaining just the fundamental harmonic in Equation (24), this leads to a current density of

J = −2|e|vF
1

LxLy
exp
(

2x
LF

+ iθ
)

I1

(
2ω1

ω

)
e−2ω1/ω

∫ µ

KBT
D(E′) f (E′)dE′ [Am−1] (26)

The pre-factor 2, now appearing in Equation (26), is due to two electrons of opposite
spins finding places in a state. Moreover, the density of the states is D(E′) = dNS

dk
dk
dE′ .

Since we are considering a ribbon configuration, we assume the density of the states of
a two-dimensional system with parabolic E-k characteristics first. The particular case of
graphene will be considered presently.

Apearring in Equation (16) as well, NS = (πk2)/( (2π)2

Lx Ly
) is the number of states in the

k-space and E′ = (h̄k)2/(2me) such that:

D(E′) =
dNS
dk

dk
dE′

=
k

2π
LxLy

me

h̄2k
= LxLy

me

2πh̄2 = const. (27)

The probability of occupation, in the presence of the applied voltage V, is

f =
1

1 + exp[(E′ − (µ− µ0))/(KBT)]
(28)

where µ− µ0 = EV . Consistent with previous assumptions, we disregard the effect of the
R.F. field energy on the probability distribution. The energy integral of Equation (26) is

J = −|e|vFme

πh̄2 exp
(

2x
LF

+ iθ
)

I1

(
2ω1

ω

)
e−2ω1/ω∆ [Am−1] (29)

where, from the tables in [2] (p. 92), we have

∆ =
∫ µ

KBT
f (E′)dE′ = µ− KBT

[
1− ln

(
1 + e(KBT−(µ−µ0))/(KBT))

1 + eEV /(KBT)

)]
(30)

4.1. Graphene

Graphene provides an important particular case, since the dispersion relation is
assumed to be of the type

E′(k) = (h̄k)
mevF
2me

= vF
h̄k
2

(31)

This implies a density of states

D(E′) =
2E′

π(h̄vF)2 LxLy [J−1]. (32)
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In this case, Equation (29) is replaced by

J = −4
|e|

πh̄2vF
exp
(

2x
LF

+ iθ
)

I1

(
2ω1

ω

)
e−2ω1/ω∆′ [Am−1] (33)

where
∆′ ≡

∫ µ

KBT
E′ f (E′)dE′ (34)

4.2. R.F. Quantum Admittance

The definition of admittance of the main harmonic is

Y(ω) = − J
E

[Ω−1] (35)

In our case, E = Ex = −∂A/∂t− ∂φ/∂x, φ = v2kx A/ω is the scalar R.F. potential.
The current propagation losses are now introduced in the potential. We have ∂φ/∂x =
(−2/LF + ikx)φ and

E = iωA−
(
− 2

LF
+ ikx

)
φ =

1
iω

(
v2k2

x −ω2 + i
2v2kx

LF

)
A =

=
1

iω

(
v2k2

x −ω2 + iω
2v
LF

ne

n

)
A

(36)

In the last step, we used the fact that vkx = ne/nω, where ne is the effective refractive index
kx/k0 of the e.m. wave at the frequency in question and n = c/v. From Equations (26)
and (29), at x = Lx, we find the following for the parabolic E-k dispersion:

Y(ω) = −iω
|e|vFme∆

πh̄2 e−2Lx/LF
1
Â

I1

(
2ω1

ω

)
e−2ω1/ω

[
v2k2

x −ω2 + iω
2v
LF

ne

n

]−1
(37)

whereas for the linear dispersion (graphene), we found the following (Equation (38)):

Y(ω) = −iω
|e|∆′

πh̄2vF
e−2Lx/LF

1
Â

I1

(
2ω1

ω

)
e−2ω1/ω

[
v2k2

x −ω2 + iω
2v
LF

ne

n

]−1
(38)

Recalling that ω1 is defined as in Equation(15), we find the following in the limit of
the small argument:

Y(ω) = −i
|e|2∆′

πh̄3 e−2Lx/LF
ω− v2kx/vF

ω− vFkx

[
v2k2

x −ω2 + iω
2v
LF

ne

n

]−1
(39)

If ne = n, then vkx = ω, and thus:

Y(ω) = −|e|
2∆′

πh̄3 e−2Lx/LF
LF

2ωvF
(40)

Figure 2 shows the admittance Y in the linear dispersion case in Equation (40) as
functions of the frequency for different values of Lx, considering the parameters in Table 1.
As is shown, as Lx approaches to the mean free path, the admittance decreases due to a
transition between the ballistic and diffusive transport regimes.
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Figure 2. Surface admittance in the low field limit considering the linear dispersion (graphene).

Table 1. Parameter and constant values adopted in the plots.

Parameter Value

v = vF 106 m/s
µ0 4π × 10−7 H/m
|e| 1.602× 10−19 C
h̄ 1.055× 10−34 J s

m0 9.1110−31 kg
me 0.06 m0
LF 500 nm

The admittance of Equations (37) or (38) above is the admittance of a series RLC circuit
seen through a frequency-dependent ideal transformer n′(ω):

Y(ω) =
jωCn′2ω

1−ω2LC + jωRC
(41)

where j = −i, LC = 1/(v2k2
x), RC = (2v/LF)(ne/n)(1/(v2k2

x)) and

Cn′2(ω) =
|e|vFme∆
πh̄2v2k2

x
e−2Lx/LF

1
Â

I1

(
2ω1

ω

)
e−2ω1/ω (42)

Cn′2(ω) =
|e|∆′

πh̄2v2k2
xvF

e−2Lx/LF
1
Â

I1

(
2ω1

ω

)
e−2ω1/ω (43)

for the parabolic and linear dispersion cases, respectively.
In the small argument limit (weak field and high frequency), we have I1(z)e−z ∼ z/2,

whereas for large arguments (high field and low frequency), we have I1(z)e−z ∼ 1/
√

2πz.
In the former limit, recalling that ω1 is defined as in Equation (15), we obtain

Cn′2(ω) =
|e|2v2

Fme∆

πh̄2v2k2
x

e−2Lx/LF
1

h̄ω

ω− (v2kx)/vF
ω− vFkx

(44)

Cn′2(ω) =
|e|2vF∆′

πh̄2v2k2
xvF

e−2Lx/LF
1

h̄ω

ω− (v2kx)/vF
ω− vFkx

(45)

for the parabolic and linear dispersion cases, respectively.
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In the high field and low frequency limit, we obtain

Cn′2(ω) =
|e|vFme∆
πh̄2v2k2

x

√
h̄ω

4πÂ3
|e|vF e−2Lx/LF

√
ω− vFkx

ω− (v2kx)/vF
(46)

Cn′2(ω) =
|e|∆′

πh̄2v2k2
xvF

√
h̄ω

4πÂ3
|e|vF e−2Lx/LF

√
ω− vFkx

ω− (v2kx)/vF
(47)

for the parabolic and linear dispersion cases, respectively.
Figure 3 shows the Cn′2 dependence from the frequency in both the low-field and

high-field as well as parabolic and linear approximations.

Figure 3. Comparison of the low-field (solid) and high-field (dashed) approximations for Cn′2 in
parabolic and linear dispersions.

A slightly more complex situation arises in presence of an R.F. TM wave with addi-
tional components Ez and Hy, but this is beyond the scope of the present work.

5. Conclusions

Starting from the four-component spinor from the Dirac equation, we derived a
rigorous formulation of the quantum admittance for a monolayer 2D material at certain
radio frequencies. A quantum-mechanical evaluation was then provided in the case
of parabolic and linear dispersion in order to extract the frequency-dependent current
density and thus the linear admittance. A subsequent analysis allowed us to extract
an RLC-equivalent circuit with frequency-independent elements depending on the bias,
temperature, effective mass, Fermi velocity and effective e.m. index of the material, losses
and other relevant parameters. The circuit was evaluated while considering both low-field
and high-frequency as well as high-field and low-frequency approximations.
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