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Abstract Gaussian mixture models (GMM) are the most-widely employed
approach to perform model-based clustering of continuous features. Grievously,
with the increasing availability of high-dimensional datasets, their direct ap-
plicability is put at stake: GMMs suffer from the curse of dimensionality
issue, as the number of parameters grows quadratically with the number
of variables. To this extent, a methodological link between Gaussian mix-
tures and Gaussian graphical models has recently been established in order
to provide a framework for performing penalized model-based clustering in
presence of large precision matrices. Notwithstanding, current methodologies
do not account for the fact that groups may be under or over-connected,
thus implicitly assuming similar levels of sparsity across clusters. We over-
come this limitation by defining data-driven and component specific penalty
factors, automatically accounting for different degrees of connections within
groups. A real data experiment on handwritten digits recognition showcases
the validity of our proposal.
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1 Introduction and motivation

In model-based clustering finite mixture models are employed to delineate
a one-to-one correspondence between mixture components and sought clus-
ters, with the Gaussian distribution being the conventional choice to group
multivariate continuous samples (Bouveyron et al., 2019). Unfortunately, in
the big data era the applicability of this well-established procedure is jeopar-
dized as Gaussian mixture models (GMM) tend to be over-parameterized in
high-dimensional settings (Bouveyron and Brunet-Saumard, 2014). To miti-
gate this issue, several solutions have been proposed that include constrained
modelling, variable selection and sparse estimation (Fop and Murphy, 2018).
Particularly, within the latter family, Zhou et al. (2009) proposed a penal-
ized approach in which the number of parameters to be estimated is drasti-
cally reduced by enforcing a graphical lasso penalty in the objective function
(Friedman et al., 2008). The resulting penalized likelihood allows to detect
different sparsity patterns in the estimated precision matrices, but it falls
short when these matrices have a substantially different number of non-zero
entries, as the method explicitly assumes a common shrinkage factor for each
and every component of the mixture. Such a behavior may hinder the result-
ing clustering in applications where sparse intensity is cluster-wise different.
To overcome this limitation, the present paper extends the methodology of
Zhou et al. (2009) by devising group-wise penalty factors which automatically
enforce under or over-connectivity in the precision matrices. The approach
is entirely data-driven and does not require any additional hyper-parameter
specification.

The remainder of the paper is structured as follows. In Section 2 we in-
troduce our new proposal and we discuss two strategies to compute cluster-
specific penalty factors. Section 3 presents a digits recognition application,
in which dependence structures between pixels differ across digits. Section 4
summarizes the novel contributions and highlights future research directions.

2 Proposed solution

Consider a set of 𝑛 observed data X = {x1, . . . , x𝑛}, with x𝑖 ∈ R𝑝 for 𝑖 =
1, . . . , 𝑛. With the aim of partitioning X in 𝐾 subpopulations or clusters, the
present work proposes to carry out parameter estimation by maximizing the
following penalized log-likelihood function:

𝑛∑︁
𝑖=1

log
𝐾∑︁
𝑘=1

𝜋𝑘𝜙(x𝑖;µ𝑘 ,𝛀𝑘 ) − _
𝐾∑︁
𝑘=1

‖P𝑘 ∗𝛀𝑘 ‖1 . (1)
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The first term in (1) is the log-likelihood of a GMM, with 𝐾 the number of
mixture components, 𝜋𝑘s the mixing proportions (𝜋𝑘 > 0,

∑
𝑘 𝜋𝑘 = 1), and

𝜙(·;µ𝑘 ,𝛀𝑘 ) the density of a multivariate Gaussian distribution with mean
vector µ𝑘 = (`1𝑘 , . . . , `𝑝𝑘 ) and precision matrix 𝛀𝑘 , 𝑘 = 1, . . . , 𝐾. The sec-
ond term in (1) identifies a graphical lasso penalty with shrinkage factor _
that is applied to the 𝐾 precision matrices. In details, ‖·‖1 is the 𝐿1 norm
taken element-wise (‖𝐴‖1 =

∑
𝑖 𝑗 |𝐴𝑖 𝑗 |), with ∗ we denote the Hadamard prod-

uct, and P𝑘s are weighting matrices that scale the effect of the common
penalty _ depending on the component-specific sparsity underlying cluster 𝑘,
𝑘 = 1, . . . , 𝐾. Such a penalty forces some entries in the precision matrices to
be shrunk to 0, uncovering group-wise conditional independence among the
variables.

The original proposal by Zhou et al. (2009) implicitly assumed P𝑘 to be an
all-one matrix ∀𝑘, our specification of P1, . . . ,P𝐾 instead allows to encode
information about class specific sparsity patterns, accounting for under or
over-connectivity scenarios. We rely on carefully initialized sample precision

matrices �̂�
(0)
1 , . . . , �̂�

(0)
𝐾 (based on model-based and/or ensemble initialization

strategies) to define P𝑘 = 𝑓 (�̂�(0)
𝑘 ), with 𝑓 : S𝑝+ → S𝑝 a function from the

space of positive semi-definite matrices to the space of symmetric matrices
of dimension 𝑝. Two viable options for defining 𝑓 (·) are briefly described
hereafter.

Option 1: 𝑓 (·) via inversely weighted sample precision matrices

The first proposal for defining P𝑘 is as follows:

𝑃𝑘,𝑖 𝑗 = 1/
(
|Ω̂(0)
𝑘,𝑖 𝑗

|
)
, (2)

where 𝑃𝑘,𝑖 𝑗 , Ω̂
(0)
𝑘,𝑖 𝑗

are respectively the (𝑖, 𝑗)-th elements of the matrices P𝑘

and �̂�
(0)
𝑘 . Intuitively, an high |Ω̂(0)

𝑘,𝑖 𝑗
| value induces a deflation on the penalty

enforced on the (𝑖, 𝑗)-th element of 𝛀𝑘 , whereas when |Ω̂(0)
𝑘,𝑖 𝑗

| is close to 0

we are imposing an extra shrinkage on Ω𝑘,𝑖 𝑗 . This strategy can be seen as a
multiclass extension of the approach proposed in Fan et al. (2009).

Option 2: 𝑓 (·) via distance measures in the S𝑝+ space

A second data-driven alternative involves setting P𝑘 entries proportional to

the distance between �̂�
(0)
𝑘 and diag

(
�̂�

(0)
𝑘

)
, where diag

(
�̂�

(0)
𝑘

)
is a diagonal

matrix whose diagonal elements are equal to the ones in �̂�
(0)
𝑘 . Such a strategy

mathematically reads as follows:
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𝑃𝑘,𝑖 𝑗 =
1

D
(
�̂�

(0)
𝑘 , diag

(
�̂�

(0)
k

)) , ∀𝑖, 𝑗 = 1, . . . , 𝑝 and 𝑖 ≠ 𝑗 , (3)

where with D(·, ·) we identify a distance measure in the space of positive
semi-definite matrices. Given the non-Euclidean nature of the S𝑝+ space sev-
eral D(·, ·) may be considered when defining (3): we subsequently employ
Frobenius and Riemannian distances, but other options are at our disposal
(see, e.g., Dryden et al., 2009).

The two above-described strategies for defining 𝑓 (·) force entries corre-
sponding to weaker sample conditional dependencies to be more strongly
penalized. Once the definition of 𝑃𝑘 has been established, coherently to Zhou
et al. (2009), the model is estimated employing an EM algorithm where, in
the M step, a graphical lasso strategy is adopted to compute Ω1, . . . ,Ω𝐾

with _gl = 2_𝑃𝑘/𝑛(𝑡)𝑘 with 𝑛(𝑡)
𝑘

denoting the estimated sample size of the 𝑘-th
cluster at the 𝑡-th iteration of the algorithm.

3 Application to handwritten digits recognition

The methodology presented in the previous section is employed to perform
automatic handwritten digits recognition. The considered dataset is publicly
available in the University of California Irvine Machine Learning data reposi-
tory (http://archive.ics.uci.edu/ml/datasets/optical+recognition+
of+handwritten+digits) and it contains 𝑛 = 5620 handwritten samples of
𝐾 = 10 digits. After having performed a preprocessing step to eliminate the
near-zero variance pixels, we are left with 𝑝 = 47 features onto which perform
model based clustering. This translates to a challenging modeling task due
to the narrow separation between classes and the high dimensionality of the
parameter space. Indeed, a standard GMM with full precision matrices would
require the estimation of (𝐾−1)+𝐾𝑝+𝐾𝑝(𝑝−1)/2 = 11759 parameters. We fit
the penalized GMM methodology in (1) to the handwritten digits recognition
dataset with different specification of 𝑃𝑘s: results are reported in Table 1. In
details, P𝑘 = 𝑱 identifies the original procedure of Zhou et al. (2009), with 𝑱
the all-one matrix, while the remaining models describe the novel proposals
of Section 2.

The penalized methods are able to shrink the estimates in a group-wise
manner, recovering fairly well the underlying data partition. This is especially
true in our proposals for which, even though the resulting Adjusted Rand
Index Rand (1971) is not dramatically affected, the number of covariance
parameters shrunk to 0 is digits-wise different thanks to the P𝑘 specification.
In Figure 1 we report the averaged images for digits 0, 5, and 9 and the
estimated graphs in the precision matrices for the P𝑘 via Riemannian distance
approach. This method showcases the highest ARI and we can appreciate
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Table 1 BIC, Adjusted Rand Index (ARI), number of estimated parameters in the
precision matrices for different penalized model-based clustering methods and for
digits 0, 5 and 9. Handwritten digits dataset.

BIC ARI 𝑑𝛀 𝑑0 𝑑5 𝑑9

P𝑘 = 𝑱 -388862 0.6837 4914 701 989 1271
P𝑘 as in (2) -368604 0.6820 3436 535 651 721
P𝑘 as in (3), Frobenius distance -391359 0.6827 6066 771 1003 1041
P𝑘 as in (3), Riemannian distance -388902 0.6841 5206 723 1059 1295
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Fig. 1 Averaged images for digits 0, 5, and 9 and estimated graphs in the precision
matrices for the P𝑘 via Riemannian distance approach. Dark blue squares denote the
presence of an edge between the two variables. Handwritten digits dataset.

how the number of estimated non-zero entries appreciably differ between the
selected digits.

4 Conclusion and discussion

In this work we have proposed an extension to the approach outlined in Zhou
et al. (2009). Two different procedures have been suggested to account for
under or over-connected sparsity patterns in the precision matrices within a
model-based clustering framework. The first solution provides an entry-wise
inflation/deflation on the common penalty factor, while the second relies
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on distance metrics in the space of positive semi-definite matrices to deter-
mine group-wise adjustments to the overall shrinkage term. An experiment on
handwritten digits recognition has demonstrated the promising applicability
of the devised procedure.

A direction for future research involves the development of a flexible mix-
and-match methodology in which the penalization could interchangeably be
applied to sparse precision and/or covariance matrices (Bien and Tibshirani,
2011). Such a framework, coupled with a penalty in the component means,
can ultimately be employed to discard variables irrelevant for the clustering:
ideas are being explored and they will be the object of future work.
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