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Abstract
An original, variational formulation of the Virtual Element Method (VEM) is proposed, based on a Hu–Washizu mixed
variational statement for 2D linear elastostatics. The proposed variational framework appears to be ideal for the formulation
of VEs, whereby compatibility is enforced in a weak sense and the strainmodel can be prescribed a priori, independently of the
unknown displacement model. It is shown how the ensuing freedom in the definition of the strain model can be conveniently
exploited for the formulation of self-stabilized and possibly locking-free low order VEs. The superior performances of the
VEs formulated within this framework has been verified by application to several numerical tests.

Keywords Linear elasticity · Hu–Washizu formulation · Virtual Element Method · Hourglass stabilization · Self-stabilized
Virtual Elements · Locking-free

1 Introduction

The VEM, originally formulated for Poisson’s problems and
the Laplace operator [1], has been successively extended
to linear elastostatics [2]. Among the several contributions
appeared in the literature, we mention here the work in [3],
with the VEM formulation in elastostatics on low order 3D
polyhedra, the one in [4], where a detailed derivation of the
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VEM for linear 2D elastostatics is presented for the lowest
order together with its extension to arbitrarily higher order
on general polygons, and [5], where the finite-deformation
case is considered.

Whilemixed stress-displacement variational formulations
of the VEM for elastostatics have been proposed in the
literature (see, e.g., the works [6–8], based on Hellinger-
Reissner variational principle, and [9]), to our knowledge,
more general strain–stress-displacementmixedVEM formu-
lations have never been investigated. In thiswork,we propose
a formulation of the VEM for linear 2D elastostatics based
on themixedHu–Washizu variational principle [10].Making
use of Prager’s notion of generalized variables [11,12], the
stressmodel is obtained directly from the strainmodel and, in
practice, is not anymore a primal unknown of the problem,
which therefore reduces to a strain–displacement formula-
tion,where the key ingredient turns out to be the compatibility
matrix enforcing strain–displacement compatibility in weak
form. Using the VEM paradigm, it is then shown how it is
possible to compute the compatibility matrix and, hence, the
stiffness matrix, on arbitrarily shaped polygons.

As it is well-known, in most cases the VE stiffness matrix
requires a stabilization to avoid the development of zero-
energy hourglass modes. Alternative hourglass stabilization
strategies have been proposed in [1] and in [13]. For the con-
nection between the VEM and the finite element hourglass
control techniques, see [14]. In this work we present an orig-
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inal derivation of the stabilization stiffness matrix, departing
from Argyris’ notion of natural strains [15,16]. The key
ingredient is thehourglassmatrix, which is constructed based
on a decomposition of the discretized displacement modes
into a rigid body and pure deformation part and into an hour-
glass part. The resulting stabilization hourglass matrix turns
out to be identical to the one in [1]. Once the hourglassmatrix
has been derived, the stabilization matrix is built according
to what proposed in [17].

Even though the stabilization has proved to be effective in
guaranteeing the correct convergence order, its substantially
empirical nature, being based on artificial stiffness coeffi-
cients, is viewed as a limitation of themethod. For this reason,
there is a significant interest in investigating the possibil-
ity to formulate self-stabilized VEs, i.e., not requiring any
artificial stabilization. In view of the weak enforcement of
compatibility, in the proposed Hu–Washizu formulation the
strain model is independent of the displacement one. It is
then rather natural to exploit this additional freedom for the
formulation of self-stabilized VEs. In the classical VEM, if
the displacement model contains polynomials of order k, the
strain model is assumed to be polynomial of order k − 1. In
this work, a strain model of order p > k − 1 is assumed,
leading to a stiffness matrix of the correct rank. However, we
remark that for arbitrary polygons and polynomial order, a
satisfying theoretical investigation on how the strain model
should be selected in order to have the correct rank is still
missing. While in the standard VEM, only nodal Degrees Of
Freedom (DOFs) are required in the case k = 1, the price to
pay for the self-stabilization is that additional, moment-type,
DOFs have to be introduced in the element formulation. Even
though these new DOFs can be easily condensed out, since
they are internal to the element and not shared with neigh-
boring elements, their presence implies a small additional
computational effort. To avoid this, an alternative approach,
based on a projection of the unknown virtual displacement
field, based on what very recently proposed in [18,19], has
also been considered, leading to a self-stabilized element, not
requiring additional DOFs. It should be noted that while this
work was in progress, an approach substantially identical to
the one considered here, though not based on a Hu–Washizu
formulation of the VEM, has been published in [20], leading
to the same stabilized stiffness matrix in the case k = 1.

Another interesting aspect to be investigated is the behav-
ior of the developed VEs in the incompressibility limit.
Wriggers et al. [13] presented a VEM for large strain elas-
ticity, with excellent locking-free behavior in the nearly
incompressible limit and fully locking-free behavior in the
incompressible case, in this latter condition by means of a
penalization of the incompressibility constraint using pres-
sure as a Lagrange multiplier. For the case of isotropic
elasticity, in Park et al. [21] proposed a decomposition of
the elastic tensor in deviatoric and volumetric parts. The sta-

bilization stiffness matrix is then constructed as in [17], but
using only the deviatoric part of the elastic tensor. The result-
ing VEM model is shown to provide accurate results also
in the nearly incompressible case. In this work, we show
through numerical tests that the newVEs, enrichedwith addi-
tional moment DOFs and self-stabilized, seem locking-free
also in the nearly incompressible case and for highly distorted
and/or non-convex element shapes.

The paper is organized as follows. TheHu–Washizu varia-
tional formulation of the 2D linear elastic continuumproblem
is recalled first. Then, the corresponding three-field finite
element discretization, together with the generalized vari-
able assumption, is introduced. It is then shown how the
VEM paradigm can be used, starting from the defined mixed
framework, to construct the element matrices for elements of
arbitrary polygonal shapes. The mixed variational nature of
the proposed formulation naturally leads to the derivations
of Sect. 3, where two types of low-order self-stabilized 2D
VEs are formulated.Numerical tests for the compressible and
nearly incompressible case show the excellent performances
of the new self-stabilized elements.

Throughout this work, Voigt notation is adopted, so that
stress components are gathered in the stress vector σ and
strain components in the strain vector ε. Furthermore, the
material elastic tensor is replaced by the material matrix of
elastic moduli D.

2 Hu–Washizu variational formulation of the
virtual element method

2.1 Hu–Washizu variational formulation of the
continuum problem

Let us focus on the 2D linear elastostatic continuum prob-
lem, under the usual assumptions of small displacements and
strains. Inelastic and thermal effects are not considered for
simplicity, though they could be easily incorporated into the
theory.

The solid body is represented by a domain� ⊂ R
2, whose

boundary ∂� is composed of a constrained part ∂u� and a
free part ∂p�, with ∂u� ∩ ∂p� = ∅ and ∂u� ∪ ∂p� =
∂�. On the constrained part, imposed displacements ū are
assigned; on the free part, surface tractions p are applied.
The body is also subjected to body forces b. The two in-
plane displacement components are collected into the vector
u. All the aforementioned data and unknowns depend on the
position vectorxwith respect to aCartesian reference system.

The starting point is the definition of the three-field
Hu–Washizu functional, assuming as independent variables
displacements u, strains ε and stresses σ :

�(u, ε, σ ) = 1

2

ˆ
�

εTDεd� −
ˆ

�

σ T (ε − Su)d�
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−
ˆ

�

uTbd� −
ˆ

∂p�

uTpds (1)

with u = ū on ∂u�. In (1),D is thematrix of elastic constants
andS denotes the compatibility differential operator, defined
as:

S =
⎡
⎣

∂x 0
0 ∂y
∂y ∂x

⎤
⎦ (2)

where ∂(·) denotes the partial derivative with respect to (·).
Its transpose ST is the equilibrium differential operator.

Hu–Washizu variational theorem states that among all
solutions, the one satisfying equilibrium, compatibility and
constitutive law, makes the three-field functional stationary:

δ� =
ˆ

�

δεTDεd� −
ˆ

�

σ T (δε − Sδu)d�

−
ˆ

�

δσ T (ε − Su)d� −
ˆ

�

δuTbd�+

−
ˆ

∂p�

δuTpds = 0

∀δu, δε, δσ , with δu = 0 on ∂u� (3)

Integrating by parts the integral involving the term Sδu and
thanks to the arbitrariness of the variations δu, δε, δσ , the
weak form of the governing equations is obtained:

δu� = 0 �⇒
ˆ

�

δuT (ST σ + b)d�

−
ˆ

∂p�

δuT (Nσ − p)ds = 0 ∀δu equilibrium (4)

δε� = 0 �⇒
ˆ

�

δεT (σ − Dε)d� = 0

∀δε constitutive law (5)

δσ � = 0 �⇒
ˆ

�

δσ T (ε − Su)d� = 0

∀δσ compatibility (6)

where N is the matrix of director cosines of the outward
normal to the boundary:

N =
[
nx 0 ny
0 ny nx

]
(7)

and nx and ny are the two components of the outward normal
unit vector n.

The set {u, ε, σ } that makes stationary the Hu–Washizu
functional is then the solution of the problem, corresponding
to a saddle point for the mixed functional.

2.2 Mixed finite elements based on the Hu–Washizu
principle

The problem domain is subdivided into ne finite elements,
each occupying a domain �e. Let ∂p�e be a possible part of
�e boundary coinciding with a portion of the body boundary
∂p� subjected to surface tractions. Let ξ be a vector of non-
dimensional local coordinates in 2D:

ξ = x − xG
he

, η = y − yG
he

(8)

where xG and yG are the coordinates of the element centroid
andhe is themaximumdiameter of the element, i.e. ameasure
of the element size.

Remark 1 It should be noted that, unlike in standard isopara-
metric finite elements, no geometry mapping is required in
the definition of virtual finite elements; the intrinsic variables
ξ and η defined here have therefore substantially different
meaning than in classical isoparametric formulations. This
aspect allows for strongly distorted elements which are for-
bidden in the isoparametric setting. �

In the spirit of the Hu–Washizu formulation, an indepen-
dent modelling of local displacements, strains and stresses is
introduced:

u(ξ) ≈ uh(ξ) = Nu(ξ)û (9)

ε(ξ) ≈ εh(ξ) = Nε(ξ)ε̂ (10)

σ (ξ) ≈ σ h(ξ) = Nσ (ξ)σ̂ (11)

where Nu , Nε, Nσ are matrices of shape functions defined in
�e whose dimensions are respectively 2×nu , 3×nε, 3×nσ ,
nu , nε and nσ being the number of parameters used to define
the corresponding discretized fields. û, ε̂ and σ̂ are vectors of
parameters, in general not coinciding with nodal values and
without a physical meaning. While uh(ξ) is required to be
C0 continuous across elements, the interpolation functions
contained in Nε and Nσ are continuous inside each element,
but may not be so across element boundaries. To simplify the
notation, the subscript e, denoting the considered element�e,
will be omitted unless strictly necessary.

In the proposed formulation, strain and stress parameters ε̂

and σ̂ are required to correctly represent the element energy,
in the sense that:

σ̂
T
ε̂ =

ˆ
�e

σ T εd� = σ̂
T
(ˆ

�e

NT
σ Nεd�

)
ε̂ (12)
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Parameters σ̂ and ε̂ satisfying this condition are said to be
generalized variables in the sense of Prager.1 Equation (12)
implies that nσ = nε and that:

ˆ
�e

NT
σ Nεd� = I (13)

where I is the nε ×nε identity matrix. Consequently, possible
choices for the stress shape functions Nσ are:

Nσ
3×nε

= DNε

(ˆ
�e

NT
ε DNεd�

)−1

= D
3×3

Nε
3×nε

E−1
nε× nε

(14)

Nσ
3×nε

= Nε

(ˆ
�e

NT
ε Nεd�

)−1

= Nε
3×nε

G−1
nε× nε

(15)

where the square and invertible nε ×nε matricesE (hereafter
referred to as elasticity matrix) and G are defined as:

E =
ˆ

�e

NT
ε DNεd�, G =

ˆ
�e

NT
ε Nεd� (16)

The second choice (15) will be used in the remainder of this
paper.

Remark 2 The choice (15) for Nσ has been proposed by
Corradi in [12] and used, e.g., in [22,23] in the framework
of variational elastoplasticity in generalized variables. The
choice (14) has been proposed in [23] and recently used in
[20] for an enhanced VEM formulation. �

The final expression of the discretized functional associ-
ated to the generic element e is:

�h
e (û, ε̂, σ̂ ) = 1

2
ε̂
TEε̂ − σ̂

T (
ε̂ − Cû

)− ûTF (17)

where (13) has been exploited and the following quantities
have been introduced:

• element compatibility matrix, enforcing compatibility in
weak form

C
nε×nu

=
ˆ

�e

NT
σ (SNu)d�

= G−1
ˆ

�e

NT
ε (SNu)d� = G−1

nε×nε

A
nε×nu

(18)

with

A =
ˆ

�e

NT
ε (SNu)d� (19)

1 The concept of generalized variables was introduced by Prager with
reference to frame structures (see, e.g. [11,22]).

• element equivalent nodal forces vector

F
nu×1

=
ˆ

�e

NT
u bd� +

ˆ
∂p�e

NT
u pds = Fb + Fp (20)

where Fb and Fp are the contributions to the equivalent
nodal forces vector coming from body forces b in�e and
surface tractions p on ∂p�e, respectively.

Remark 3 If choice (15) for Nσ is adopted, the construction
of the compatibility matrixC in (18) can be seen as resulting
from an L2 projection of the symmetric part of the displace-
ment gradient onto the discretized strain space. �

The governing equations in discretized form are obtained
by enforcing the stationarity of the discretized functional (17)
with respect to û, ε̂ and σ̂ :

∂û�
h
e = 0 �⇒ CT σ̂ = F equilibrium (21)

∂ε̂�
h
e = 0 �⇒ σ̂ = Eε̂ constitutive law (22)

∂σ̂ �h
e = 0 �⇒ ε̂ = Cû compatibility (23)

Replacing (23) in (22) and (22) in (21), one obtains:

Kcû = F (24)

where:

Kc
nu×nu

= CT
nu×nε

E
nε×nε

C
nε×nu

(25)

is the element stiffness matrix, symmetric and positive semi-
definite, consistent (the superscript c stands for ’consistent’)
with the displacement and strain models. If nu − nε ≤ 3 and
C has nu − 3 independent rows, Kc has the correct degree
of singularity, equal to 3, i.e., equal to the number of rigid
body modes in 2D. In contrast, if nu − nε > 3, Kc has a
surplus of rank deficiency, equal to nu − nε − 3, and zero-
energy (hourglass) modes can arise.2 Hourglass modes are
spurious deformation modes without physical meaning and
are pathological. Hourglass stabilization is a typical issue
of mixed finite element formulations and it has the role of
reestablishing the correct degree of singularity of the stiffness
matrix without upsetting accuracy.

Remark 4 Once the displacement DOFs û have been com-
puted, the proposed mixed variational framework offers a
straightforward strategy for stress and strain recovery. Using
the strain and stressmodelsNε andNσ , one immediately has:

εh(ξ) = Nε(ξ)ε̂ = Nε(ξ)Cû (26)

2 Note that the number of zero eigenvalues of Kc is always at least
equal to nu − nε .
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σ h(ξ) = Nσ (ξ)σ̂ = Nσ (ξ)ECû (27)

�

2.3 Hourglass stabilization

The basic idea to stabilize the approximate solution is that of
adding a fictitious stiffness to the element hourglass modes.
In this way, the expression of the discretized element mixed
functional becomes:

�h
e (û, ûH, ε̂, σ̂ ) = 1

2
ε̂
TEε̂ + 1

2
ûTH �ûH

−σ̂
T (

ε̂ − Cû
)− ûTF (28)

The vector ûH contains combinations of displacement param-
eters defining hourglass modes and� is a matrix of fictitious
stiffnesses. A possible choice for the definition of � (see,
e.g., [3]) is (scalar-based stabilization):

� = 1

2
tr(Kc)I (29)

where I is the nu × nu identity matrix, tr(·) denotes the trace
operator and the coefficient 1/2 has been proposed in [4].
Another choice, proposed in [17], is (diagonal matrix-based
stabilization):

� = diag[�]i i = diag

[
max

{
[Kc]i i , 1

9
tr(D)

}]
(30)

The hourglass modes ûH in (28) can be defined in terms
of the displacements DOFs as:

ûH = Hû (31)

An original construction of the hourglass matrix H, based
on the natural approach of Argyris [12,15,16], is detailed in
“Appendix A”. The resulting stabilization stiffness matrix is
identical to the one originally proposed in [1,17]. It is also
worth mentioning the alternative approach to VEM stabi-
lization originally proposed in [13]. For a discussion on the
connections between the stabilization of hourglass modes in
the VEM and in the finite element method, see [14].

Defining the local stabilizing stiffness matrix Ks :

Ks = HT�H (32)

and using the definition (25) of the consistent stiffnessmatrix
and (28) of the stabilized functional, the stabilized element
stiffness matrixK can be expressed as the sum of two terms:

K = Kc + Ks (33)

This stiffness matrix is symmetric and has now the correct
rank deficiency, equal to 3.

2.4 Virtual element formulation

The general formulation presented in Sects. 2.2 and 2.3 can
be used to formulate different mixed finite elements. In par-
ticular, this framework will be exploited here to construct
mixed finite elements based on the Virtual Element Method
(VEM).

Let �e denote the domain of a finite element extracted
from a subdivision of the body domain in non-overlapping
polygons having straight edges and arbitrary shape. This ele-
ment is characterized by:

• an arbitrary polygonal shape
• an arbitrary number NV of vertices and straight edges.

Element local coordinates are defined by the simple linear
transformation (8), without a geometry mapping from a par-
ent element.

In the VEM, displacement shape functions Nu are not
explicitly known inside the element and are therefore said to
be virtual. These functions are known only on the polygonal
boundary of the element ∂�e, where they are described by
a polynomial of degree k (order of accuracy of the method).
The displacement field inside a virtual element is assumed to
contain a complete polynomial of degree k plus other func-
tions that, however, are never required to be explicitly defined
in the element interior and are not used in the computation.

For k > 1 and for the self-stabilized VEs with k = 1 that
will be discussed in Sect. 3.1, the VEM degrees of freedom
(DOFs) are not just nodal displacements. The DOFs in a
virtual element are:

• nodal displacements at the element vertices;
• nodal displacements at the nodes inside the element edges
(i.e., at positions different from the edge extrema);

• moments (scaled with respect to the element area ‖�e‖,
to be defined later) of order up to k − 2 of the unknown
approximate displacement field u = Nu û. These are
present only if k > 1 and are often referred to as ‘internal
DOFs’.

For a function f (ξ, η), the moments are defined as

1

‖�e‖
ˆ

�e

f (ξ, η)d� zero order moment

1

‖�e‖
ˆ

�e

ξ f (ξ, η)d� first order moment

1

‖�e‖
ˆ

�e

η f (ξ, η)d� first order moment

etc........................................................

(34)
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Since a polynomial of degree k in 2D requires for its defini-
tion nk parameters with:

nk = (k + 1)(k + 2)

2
(35)

the displacement field turns out to be defined by means of nu
DOFs, with:

nu = 2NV︸︷︷︸
vertex DOFs

+ 2NV(k − 1)︸ ︷︷ ︸
internal edge DOFs

+ 2nk−2︸ ︷︷ ︸
internal moment DOFs

= 2kNV + k(k − 1) (36)

where nk−2 = k(k−1)
2 is the number of parameters necessary

to describe a polynomial of degree k − 2 inside the element.
With the previous assumptions on the element displace-

ment DOFs, the matrix Nu defining the virtual displacement
model is of the type:

Nu =
[
Nu
1 0 Nu

2 0 . . . Nu
nu
2

0

0 Nu
1 0 Nu

2 . . . 0 Nu
nu
2

]
(37)

The first NV 2 × 2 blocks are associated to vertex DOFs;
the successive NV(k − 1) 2× 2 blocks are associated to edge
DOFs; the last k(k−1) 2×2 blocks are associated to internal
moment DOFs.

For the subsequent developments, it is convenient to col-
lect the monomials ξaηb, with a + b ≤ k, in the following
row vector:

qk = {1 ξ η ξ2 ξη η2 . . . ηk
}

(38)

With this notation, the entries of qk are denoted as q j . For
instance, for j = 4 one has q4 = ξ2, etc.

The last nk−2 = k(k−1)
2 shape functions in (37) (associated

to internal moment DOFs) are assumed to have value 0 on the
boundary andhave scaledmoment equal to 1 in theirDOFand
equal to 0 in correspondence of all the other DOFs. These
last conditions can be expressed as (for j = 1, . . . , nk−2,
i = 1, . . . , nk−2):

1

‖�e‖
ˆ

�e

q j [Nu]1,2kNV +2i−1d� = δi j (39)

1

‖�e‖
ˆ

�e

q j [Nu]2,2kNV +2i−1d� = 0 (40)

1

‖�e‖
ˆ

�e

q j [Nu]1,2kNV +2i d� = 0 (41)

1

‖�e‖
ˆ

�e

q j [Nu]2,2kNV +2i d� = δi j (42)

where δi j is the Kronecker’s delta and q j are the monomials
in the vector qk−2 (38).

The virtual shape functions contained in the first kNV 2×
2 blocks, (i.e., relative to a boundary node) are unknown
in the element interior but are assumed to be a Lagrangian
polynomial of order k on the element edges, taking value
1 in their node of definition and 0 in all the other nodes.
Furthermore, their moments up to order k − 2 are assumed
to be equal to 0.

The strain field modelNε(ξ) in a Hu–Washizu virtual ele-
ment is defined a priori. If the displacementmodel is assumed
to contain at least a complete polynomial of degree k, in the
standard VEM the strain model is assumed to be a complete
polynomial of degree k − 1. Thus, the number of parameters
required to describe the strain field in 2D is:

nε = 3nk−1 = 3
k(k + 1)

2
(43)

The matrix Nε(ξ) can be expressed as:

Nε(ξ) =
⎡
⎣
1 0 0 ξ 0 0 η 0 0 . . . ηk−1 0 0
0 1 0 0 ξ 0 0 η 0 . . . 0 ηk−1 0
0 0 1 0 0 ξ 0 0 η . . . 0 0 ηk−1

⎤
⎦ (44)

The key operator in the present VEM formulation is the com-
patibility matrix C defined in (18), projecting the symmetric
part of the displacement gradient field onto the space Pk−1

of polynomials of degree up to k − 1 of the approximate
strain field. The computation of C requires the computation
of the symmetric and invertiblematrixG, defined in (16), and
of A, defined in (19). The matrix G is directly computable
once the degree of accuracy k of the method is defined, by
computing the integrals by means of a subtriangulation tech-
nique. For more general strategies of polynomial integration
on polygons, see for instance [24]. According to this proce-
dure, the element is subdivided into NV subtriangles obtained
by connecting the element centroid to the element vertices.3

Then, a standard Gaussian quadrature rule for each triangle
is applied, in such a way that polynomials of degree 2k − 2
are exactly integrated.

The computation of the matrix A is less straightforward,
since its expression contains the matrix of displacement
shape functionsNu , unknown in the element interior. To over-
come the problem, one can proceed integrating by parts:

A =
ˆ

�e

NT
ε (SNu)d�

=
ˆ

∂�e

(NNε)
TNuds

︸ ︷︷ ︸
A1

−
ˆ

�e

(STNε)
TNud�

︸ ︷︷ ︸
A2

(45)

3 This procedure works for a convex polygon. For a non-convex poly-
gon with one vertex defining a concave angle, the polygon is subdivided
in NV − 2 subtriangles connecting the vertex in the concave angle to all
the other vertices.
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MatrixA1 results from the boundary integral of known quan-
tities, since Nu

i (ξ) is assumed to be a polynomial of degree k
on ∂�e, if i denotes a boundary node, and to vanish on ∂�e , if
i denotes a moment DOF. This integration can be performed
exactly for the polynomials of order 2k−1 resulting from the
product of polynomials of degree k − 1, related to Nε, and
polynomials of degree k, related toNu , by the Gauss-Lobatto
quadrature rule, using the k + 1 edge nodes as integration
points. Since the displacement shape functions assume just
values 1 and 0 in correspondence of the boundary nodes, the
integration turns out to be remarkably simple.

For what concerns A2, the first part of the integrand is:

STNε(ξ) =
[
0 0 0 ξ,x 0 ξ,y η,x 0 η,y . . . ηk−1,x 0 ηk−1,y

0 0 0 0 ξ,y ξ,x 0 η,y η,x . . . 0 ηk−1,y ηk−1,x

]
(46)

that can be also expressed in the scaledmonomial basis q j (ξ)

as:

STNε(ξ) =
nk−2∑
j=1

q j (ξ) M j
2×nε

(47)

where each of the nk−2 matrices M j contains some zero
entries and other non-zero entries that are constant values
and proportional to 1/he.

Replacing (47) in the expression of A2, one obtains:

A2 = −
ˆ

�e

nk−2∑
j=1

q j (ξ)MT
j Nu(ξ)d�

= −
nk−2∑
j=1

MT
j

ˆ
�e

q j (ξ)Nu(ξ)d� (48)

The integrals in (48) are the moments of order up to k − 2
of the displacement shape functions Nu , easily computable
exploiting (39)–(42).

Remark 5 From the expression (45) of A2, it is clear that the
required number of internal DOFs is strictly related to the
order of the polynomials assumed for the modelling of the
strain field in Nε. In standard VEM, since the strain field
is modelled by a complete polynomial of degree k − 1, the
internal moments have to be assumed up to the order k − 2.
This observation will be relevant in Sect. 3, when dealing
with self-stabilized virtual elements, inwhich the enrichment
of the strain field model will lead to a number of internal
displacement DOFs higher than in standard VEM. �

Once the compatibility matrix C and the elastic matrix
E have been computed (the latter by means of the subtrian-
gulation technique already described for the matrix G), one
can immediately compute the consistent stiffness matrix Kc

from (25).As for the stabilization stiffnessmatrixKs in (32),4

whether one chooses for � the scalar-based stabilization or
the diagonal matrix-based one, its computation is basically
reduced to the computation of the hourglass matrix H. The
computation of the element vector of equivalent nodal forces
F can be carried out following the standard approach used
in the VEM (see e.g. [4]) and it is briefly summarized in
“Appendix B”.

3 Self-stabilized virtual elements k = 1

One of the main limitations of the standard VEM is the need
for a stabilization of the stiffness matrix. Focusing on vir-
tual elements with k = 1, with 4 and 5 nodes (k = 1
triangles do not require to be stabilized), two methodologies
are therefore proposed for the formulation of self-stabilized
elements. The main difference between the two is related
to the introduction or not of additional internal degrees of
freedom. The first category of self-stabilized elements intro-
duces additional internal moments as displacement DOFs. It
is numerically shown how elements of this kind:

• do not require the stabilization of the stiffness matrix
• exhibit a superior accuracywith respect to standardVEM
• are locking-free, in the sense that the approximated dis-
placement field does not suffer volumetric locking in the
presence of nearly incompressible materials.

The second category is based on vertex displacement DOFs
only as the standard VEM with k = 1. It is numerically
shown how these elements:

• do not require the stabilization of the stiffness matrix
• exhibit an accuracy similar to the standard VEM
• are not volumetric locking-free.

In both cases, the key idea is to enrich the strain field with
respect to standard VEM, exploiting the freedom offered by
the mixed Hu-Washizu approach, where the strain field may
be defined independent of the displacement field and, there-
fore, has not to be a polynomial of order k − 1 as in standard
VEM. In the following, the maximum degree of interpola-
tion of the strain field is indicated by p, while k still denotes
the polynomial degree of interpolation of the displacements
along the boundary of the virtual element.

Remark 6 The first approach proposed here is substantially
identical to the ’Uncoupled Polynomial Representation’

4 In the standardVEM, the only case inwhich thismatrix has the correct
degree of singularity is that of a triangular element for k = 1. In this
case, no stabilization is needed.
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strategy just proposed in [20], while this work was in
progress, the only difference resting in the choice of the
stress model Nσ . The option in (14) has been adopted in
[20], leading to an energy projection of the displacement
gradient, while the choice for Nσ in (15) has been adopted
in the present paper.

The second approach proposed is basically an extension
to plane elasticity of the strategy presented in [18] for the
Poisson equation, similarly to what very recently done in
[19]. �

Remark 7 The first self-stabilization procedure proposed
here could be straightforwardly extended to higher order
displacement models, though at the cost of significant addi-
tional computational burden. For an 8-node quadrilateral,
with quadratic interpolation on the edges (k = 2), e.g., a
cubic model (p = 3) would be required for the strain field,
with 30 strain parameters and 28 displacement DOFs (16
nodal displacements plus 12 internal moments) [20]. For this
reason, only k = 1 elements will be considered here.

The second procedure could also be used in the presence
of higher number of edges and/or higher order displacement
models, always keeping the same number of DOFs as the
corresponding standard VEM of the same order. However,
as already mentioned in the Introduction, we remark that a
clear and satisfying analysis on how to design stabilization
free VEs in the general case (i.e. arbitrary polygons and poly-
nomial order) is still missing. �

3.1 Self-stabilized elements with additional internal
degrees of freedom

First, let us focus on k = 1, 4-node elements with additional
internal moment DOFs. The acronym VEM4SS is used to
denote 4-node self-stabilized virtual elementswith linear dis-
placement interpolation along the edges. In standard VEM,
a constant strain field (of order k − 1 = 0) is assumed and
no moment DOFs are necessary, since matrix A2 in (45)
vanishes. As discussed in Sect. 2.2, a necessary condition to
have a self-stabilized element is that nu − nε ≤ 3. In stan-
dard VEM, for this type of elements one has nu = 8 and
nε = 3, hence the consistent stiffness matrix Kc contains
two hourglass modes and requires a stabilization.

The need for a stabilization can be eliminated by enrich-
ing the strain field with linear terms (i.e., p = 1) in one of
different ways, at the cost of two additional moment DOFs
for the displacement model. Since the strain model now
contains polynomial terms of degree p = 1, unlike in the
standard VEM with k = 1, from (45) one has that the first
moments of the displacement shape functions have to be con-
sidered for the computation of matrix A2, implying that two
moment DOFs are required. Considering that NV = 4 and
that there are 2 displacement DOFs per vertex and 2 internal

moment DOFs, the final number of displacement DOFs is
nu = 2 × 4 + 2 = 10. Hence, Nu is a 2 × 10 matrix.

As a first attempt, the following 3 × 7 strain model is
assumed:

Nε =
⎡
⎣
1 0 0 η 0 ξ 0
0 1 0 0 ξ 0 η

0 0 1 ξ η 0 0

⎤
⎦ (49)

where the first three columns define a constant strain state
(as for standard VEM with k = 1), the fourth and the fifth
columns correspond to the two hourglass modes of the 4-
node element and the last two are necessary to define a
complete first order polynomial for each strain component
and to make unnecessary the stabilization of the consistent
stiffnessmatrixKc. Therefore, in this case p = 1 and nε = 7.
This type of element will be denoted as VEM4SS7-10DOFs,
emphasizing the fact that 7 strain parameters and 10 displace-
ment DOFs are considered.

Alternatively, also the following strain model can be con-
sidered:

Nε =
⎡
⎣
1 0 0 ξ 0 0 η 0 0
0 1 0 0 ξ 0 0 η 0
0 0 1 0 0 ξ 0 0 η

⎤
⎦ (50)

In this case p = 1 and nε = 9, and this type of element
is denoted as VEM4SS9-10DOFs, since 9 strain parameters
and 10 displacement DOFs are still considered.

For both the proposed elements, nu − nε ≤ 3 and, if
the rows of the compatibililty matrix C are independent, the
element consistent stiffness matrix Kc has rank deficiency
3, i.e., the element is self-stabilized. Indeed, denoting by ûR

i
the generic vector of displacement parameters corresponding
to one of the three rigid body modes, since SNu ûR

i = 0 by
construction, one immediately has that:

ε̂
R
i = CûR

i =
[
G−1

ˆ
�e

NT
ε (SNu)d�

]
ûR
i = 0

for i = 1, 2, 3 (51)

even in the case nu − nε < 3.
The whole procedure is analogous to the one in the stan-

dard VEM. However, it is worth observing that in this case,
being k = 1 and p = 1, the integrands in the matrix A1 are
polynomials of degree k + p = 2 along each edge. In this
case, the number n of integration points necessary for the
exact integration of A1 can be obtained from the condition:

k + p = 2n − 3 �⇒ n = k + p + 3

2
(52)

and if n is not an integer, the the smallest greater integer
number has to be considered. In this case, n = 3, i.e., the
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two vertex nodes and an additional point at the middle of the
edge are required. In conclusion, the construction of these
elements require a boundary integration of higher order than
in the standard VEM, while matrixA2 is exactly computable
thanks to the introduction of the two internal moment DOFs.

The final difference with respect to the standard VEM is
related to the construction of the equivalent nodal force vector
Fb due to the body forces b. The idea is that of projecting
the body force vector b onto the space Pp−1 of polynomials
of degree up to p − 1. In this case, since p = 1, the vector
b is projected onto the space P0 of constant polynomials
leading to a simple computation in terms of the two internal
moment DOFs. It is worth noting that the computation of Fb

is basically the same as for standard VEM with k = 2 (see,
e.g., [4]). The only difference is in the dimensions of the
matrix Nu . Indeed, for a standard VEM quad element with
k = 2,Nu is a 2×18 matrix, while in this caseNu is a 2×10
matrix. In both cases, the only non-zero components of Fb

are those related to the two internal DOFs.
Exploiting the same idea illustrated for the 4-node ele-

ment, also a 5-node element has been developed, with
the acronym VEM5SS indicating that it is a 5-node self-
stabilized virtual element. Also in this case, in the presence
of a linear strain model p = 1, two internal DOFs are
required for the computation of matrix A2. Since on the ele-
ment boundary one has k = 1 and NV = 5, the number of
displacement DOFs is nu = 2 × 5 + 2 = 12. To satisfy the
condition nu−nε ≤ 3, at least 9 strain parameters are needed
and the model Nε in (50) with nε = 9 has to be adopted.

Since nu −nε = 3, the element consistent stiffness matrix
Kc has rank deficiency 3 and the element is self-stabilized if
the rows of C are independent. Also in this case, the whole
procedure is analogous to the one for the standard VEM. The
same observations made for the VEM4SS-10DOFs elements
are valid also in this case and will not be repeated here.

Remark 8 The self-stabilizedVEs proposed abovemay seem
somehow similar to the enhanced strain finite elements of
Simo and Rifai [25]. There are however substantial dif-
ferences. Enhanced strain finite elements are based on a
nonlinear geometry mapping, as all isoparametric finite
elements, and hence, they are unavoidably subject to distor-
tion sensitivity when the geometry transformation Jacobian
becomes singular. In contrast, in the proposed approach no
geometry mapping between the master and the current ele-
ment is required, leading to a self-stabilized VE significantly
robust with respect to mesh distortion. Furthermore, in the
enhanced strain approach, strains are composed of two terms:
a compatible strain plus an enhanced, incompatible term,
orthogonal to the stress field. Since the symmetric gradient
of displacement is virtual in the VEM, no ‘compatible’ part
of the strain can be explicitly defined in the assumed polyno-
mial strain model. Finally, the proposed VE formulation is

valid for general polygonal elements, not only for quadrilat-
erals, even though a systematic application to elements with
more than five edgesmay be not computationally convenient.

�

Remark 9 The proposed self-stabilized VEs have some simi-
larities also with the Pian–Sumihara (P–S) element [26]. The
P–S element is based on a Hellinger-Reissner formulation,
with an elementwise polynomial bilinear interpolation for the
displacements and an elementwise 5-parameter modeling of
the stress field. The stress can be eliminated at the element
level, leading to a symmetric positive system in displace-
ments only. The main difference with the proposed VEM
model is the definition of the stress field. In the proposed
Hu-Washizu formulation, the stress model is a consequence
of the strain model, which requires at least 7 parameters to
produce a stable element, while the standard P–S element
uses 5 parameters for the stress definition. Moreover, while
the P–S element is known to be less sensitive to mesh distor-
tion with respect to standard quadrilateral elements, it is still
based on a nonlinear geometry mapping. Finally, as already
commented in the previous Remark, unlike the VEs, also the
P–S formulation applies to quadrilaterals only. �

3.2 Self-stabilized elements without additional
internal degrees of freedom

These elements differ from those described in the previous
Sect. 3.1 only for the computation of matrix A2 in (45) and
of the local equivalent nodal forces vector due to body forces
Fb. Matrix A2 in (45) contains the integral of the unknown
displacement shape functionsNu and cannot be computed as
it is. According to the proposed strategy, this term is com-
puted by means of a suitable projection of the gradient ofNu

onto the gradient of known polynomial functionsN1 of order
1 [18,19].

LetN1(ξ) be the 2×6 matrix of monomials up to the first
order:

N1 =
[
1 0 ξ 0 η 0
0 1 0 ξ 0 η

]
(53)

Let u1(ξ) be the approximate displacement field defined as
u1(ξ) = N1(ξ)ŝ. The ∇s projection of u(ξ) = Nu(ξ)û,
where ∇s denotes the symmetric gradient operator whose
matrix representation is S, onto u1 is defined as:

ˆ
�e

(SN1)
TS(u − u1)d�

=
ˆ

�e

(SN1)
TS(Nu û − N1ŝ)d� = 0 (54)
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from which one can write:

[ˆ
�e

(SN1)
TSN1d�

]
ŝ =

[ˆ
�e

(SN1)
TSNud�

]
û (55)

Thematrix in square brackets at the left hand side is obviously
singular in correspondence of the three rigid body modes.
Therefore, in order to solve system (55) for ŝ, we need to add
three other independent conditions, capable to fix the rigid
body modes. A way to perform this step is the following. An
identical term is added at both equation sides:

[ˆ
�e

(SN1)
TSN1d� +

ˆ
∂�e

(N1R1)
TN1ds

]

︸ ︷︷ ︸
G∇s

ŝ = (56)

[ˆ
�e

(SN1)
TSNud� +

ˆ
∂�e

(N1R1)
TNuds

]

︸ ︷︷ ︸
A∇s

û (57)

where thematrixR1 is such that ŝR = R1ŝ, where ŝR are com-
binations of parameters defining rigid body modes. Based
on this definition, whenever ŝ represents a pure deformation
mode, only the first addend of matrix G∇s in (56) comes
into play. In contrast, if ŝ represents a rigid body mode, only
the second one intervenes and, in this way, the symmetric
gradient projection is not modified. The construction of the
matrix R1 can be performed following the same procedure
used for the computation of the hourglassmatrixH illustrated
in “Appendix A”. One can set:

u1(ξ) = N1(ξ)ŝ = N1(ξ) (ŝR + ŝD)︸ ︷︷ ︸
ŝ

(58)

where ŝD are combinations of parameters defining pure defor-
mation modes. It is worth noting that N1 does not contain
hourglass modes. The displacement parameters ŝ can be
expressed in terms of natural parameters p̂R

1 and p̂D
1 as (see

“Appendix A”, Eq. (A1)):

ŝ = ŝR + ŝD = TR
1 p̂

R
1 + TD

1 p̂
D
1 (59)

The 6 × 3 matrix TR
1 of rigid body modes is given by:

TR
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 1
0 0 −1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(60)

where the first two columns define the rigid body translations
along ξ and η, respectively, and the third one defines the in-
plane rigid body rotation.

By virtue of the orthogonality of rigid and deformation
modes, one has:

(TR
1)

T ŝ = (TR
1)

TTR
1 p̂

R
1 + (TR

1)
TTD

1 p̂
D
1︸ ︷︷ ︸

=0

= (TR
1)

TTR
1 p̂

R
1 (61)

fromwhich the 3×1 vector of parameters p̂R
1 can be derived:

p̂R
1 = [(TR

1)
TTR

1]−1(TR
1)

T ŝ (62)

The 6×1 vector ŝR can be eventually extracted from the total
vector ŝ as follows:

ŝR = TR
1 p̂

R
1 = TR

1[(TR
1)

TTR
1]−1(TR

1)
T

︸ ︷︷ ︸
R1

ŝ = R1ŝ (63)

Hence, the 6 × 6 matrix R1 required in (56) is fully com-
putable by means of the matrix TR

1, whose expression is
given in (60). Note that whenever ŝ represents a pure defor-
mation mode, one has ŝR = R1ŝ = 0.

The matrix G∇s in (56) is now invertible and, hence, the
vector of parameters ŝ can be finally computed as:

ŝ = (G∇s )−1A∇s︸ ︷︷ ︸
�

∇s
1

û = �
∇s
1 û (64)

where the matrix�
∇s
1 = (G∇s )−1A∇s defines the symmetric

gradient projection operator.
The matrix G∇s can be easily computed, since it contains

integrals over �e of constant quantities, as well as integrals
over ∂�e of known functions. On the other hand, the first
part of the matrix A∇s is not immediately computable, since
it contains the integral over �e of the displacement virtual
shape functions Nu . However, one can integrate this term by
parts:

ˆ
�e

(SN1)
TSNud� =

ˆ
∂�e

[N(SN1)]TNuds

−
ˆ

�e

[ST (SN1)]TNud�

︸ ︷︷ ︸
=0

=
ˆ

∂�e

[N(SN1)]TNuds (65)

so that:

A∇s =
ˆ

∂�e

[N(SN1)]TNuds +
ˆ

∂�e

(N1R1)
TNuds (66)

where both terms are straightforwardly computable sinceNu

is knownon the element boundary.Adopting the usualGauss-
Lobatto rule, the first integral is exactly computable using
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2 integration points over each edge (that are also boundary
nodes of the element), while the second one requires an addi-
tional integration point at the middle of the edge, for a total
of 3 integration points over each edge.

Once �
∇s
1 in (64) is computed, the term A2 in (45) is

rewritten as:

A2 = −
ˆ

�e

(STNε)
TNud�

≈ −(STNε)
T
ˆ

�e

N1�
∇s
1 d� (67)

and is immediately computable. It is notable that the compu-
tation of the last integral in (67) turns out to be very simple,
due to the fact that:
ˆ

�e

ξd� =
ˆ

�e

ηd� = 0 (68)

from the definition of centroidal coordinate system. It finally
results:
ˆ

�e

N1�
∇s
1 d�

=
[
[�∇s

1 ]11‖�e‖ [�∇s
1 ]12‖�e‖ . . . [�∇s

1 ]1nu‖�e‖
[�∇s

1 ]21‖�e‖ [�∇s
1 ]22‖�e‖ . . . [�∇s

1 ]2nu‖�e‖

]

(69)

Once the matrix A is computed, the compatibility matrix
C is immediately determined using Eq. (18) and the local
consistent stiffness matrix can be also computed, following
Eq. (25).

Having the samedisplacementDOFs as the standardVEM
element with k = 1, the local equivalent nodal forces vector
due to body forces Fb can be computed as in the standard
VEM.

The approach described above has been implemented for
the 4-node element with both 7 and 9 strain parameters, using
(49) and (50), and for the 5-node element, using (50). Consis-
tentlywith the nomenclature used in 3.1, these three elements
are respectively indicated by the acronyms VEM4SS7-
8DOFs,VEM4SS9-8DOFsandVEM5SS-10DOFs.All these
elements are self-stabilized since the condition nu − nε ≤ 3
is satisfied.

4 Numerical tests

The mixed Hu–Washizu procedure for self-stabilized virtual
elements presented in the previous Sections has been imple-
mented into aMATLABcode for k = 1. For all the numerical
tests, the diagonal matrix-based stabilization technique has
been adopted in the case of the standard VEM.

Fig. 1 Convergence test with analytical solution: problem geometry

For all the three considered tests, the comparison between
the standardVEM k = 1 and the self-stabilized elements k =
1, p = 1 is proposed, evidencing the better performances of
the latters.

Units for the quantities in the examples will not be spec-
ified, though they have been taken in a consistent way
(e.g. N/mm3 for body forces; N/mm2 for surface trac-
tions, stresses, Young’s modulus and Lamé constants; mm
for lengths).

4.1 Convergence test with known analytical solution

The first application of the VEM is related to a classical 2D
plane strain convergence test with known analytical solution.
Specifically, the problem domain, depicted in Fig. 1, is a unit
square � = [0, 1]2 with constrained displacements all over
its boundary ∂u� ≡ ∂�, i.e., ∂p� = ∅.

The data of the problem are:

• Lamé constants λ = 1 and μ = 1 (corresponding to
E = 2.5 and ν = 0.25)

• body forces in �

bx = −π2 [−(λ + 3μ) sin(πx) sin(π y)

+(λ + μ) cos(πx) cos(π y)]

by = −π2 [−(λ + 3μ) sin(πx) sin(π y)

+(λ + μ) cos(πx) cos(π y)] (70)

• kinematic boundary conditions on ∂u� ≡ ∂�

{
ūx = 0

ū y = 0
(71)
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The analytical solution of the problem in terms of displace-
ments in � is given by:

{
ux = sin(πx) sin(π y)

uy = sin(πx) sin(π y)
(72)

Different meshes have been tested for the assessment of
the VEM convergence, each of them with an increasing
number of elements: a square mesh, a mesh with con-
vex distorted quadrilateral elements, a mesh with convex
and non-convex quadrilateral elements and two pentagonal
meshes with increasing level of distortion. All these meshes
are depicted in Fig. 2. Convergence upon mesh refinement
has been assessed in terms of the L2-norm of the strain error,
defined as:

‖eε‖L2 =
√√√√

ne∑
e=1

ˆ
�e

‖ε − εh‖2d� (73)

where ε and εh denote respectively the exact and the approx-
imated strain field over the generic element of the virtual
element mesh. The integrals in (73) are computed numer-
ically by means of the usual subtriangulation technique,
evaluating the exact and the approximate strains at the
quadrature points.

Convergence upon mesh refinement has been evaluated
also in terms of a displacement error eu , defined as:

eu =
√

‖U(xv) − Uh(xv)‖2
‖U(xv)‖2

(74)

where U(xv) is the global vector containing the exact dis-
placement solution evaluated at the mesh nodes v, whereas
Uh(xv) is the VEM solution in terms of global nodal dis-
placement DOFs. The results of VEM convergence analyses
show that in all cases, irrespective of the level of element
distortion, the slope of the error ‖eε‖L2 tends to the order
of approximation k of the method as the mean element size
h decreases, when plotted in log–log scale as a function of
h. Concerning the displacement error eu , the slope tends to
k+1 as h decreases, when plotted with the same scales used
for ‖eε‖L2 .

The standard VEM with k = 1 has been compared to the
self-stabilized elements presented in Sect. 3. Figure3 shows
the convergence curves of the strain error ‖eε‖L2 for the dif-
ferent considered meshes. VEM4 and VEM5 refer to the
standard quadrilateral and pentagonal VEM with k = 1,
respectively. As can be seen, all the self-stabilized elements
exhibit the expected convergence rate k = 1 of the standard
VEM. The self-stabilized elements with additional internal
DOFs always exhibit a higher accuracy than the standard
VEM. Furthermore, in the case of the very simple square

geometry, the self-stabilized quadrilateral element with 9
strain parameters and 10 displacement DOFs (VEM4SS9-
10DOFs) shows superconvergent behaviour, with a doubled
slope with respect to the theoretical value 1. As no clear
theoretical explanation for this superconvergent behavior is
available, one can think that this is the consequence of the
combination of several ingredients: the symmetry of the ana-
lytical solution, the symmetry of the square mesh, ‘aligned’
with the analytical solution, etc.. The self-stabilized elements
without additional moment DOFs exhibit an accuracy that is
very similar to the standard VEM in all cases, but without
requiring the stabilization.

The comparison of standard VEM and self-stabilized
VEM in terms of displacement error eu is shown in Fig. 4.
As can be seen, the expected convergence rate k + 1 = 2 is
exhibited by all the considered elements.

4.2 Divergence-free convergence test

The second application of the VEM is related to a 2D
plane strain convergence test with known displacement-
divergence-free analytical solution. The problem domain is
the same as for the first application, already depicted in Fig. 1,
namely a unit square � = [0, 1]2 with constrained displace-
ment all over its boundary ∂u� ≡ ∂�.

The data of the problem are:

• Lamé constants λ = 9999 and μ = 1 (corresponding to
E = 2.9999 and ν = 0.49995)

• body forces in �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bx = −4μπ3 sin(π y) cos(π y)[cos2(πx)

−3 sin2(πx)]
by = 4μπ3 sin(πx) cos(πx)[cos2(π y)

−3 sin2(π y)]
(75)

• kinematic boundary conditions on ∂u� ≡ ∂�

{
ūx = 0

ū y = 0
(76)

The analytical solution of the problem in terms of displace-
ments in � is given by:

{
ux = 2π sin2(πx) sin(π y) cos(π y)

uy = −2π sin2(π y) sin(πx) cos(πx)
(77)

The tested quadrilateral and pentagonal meshes are the ones
already depicted in Fig. 2. Figure5 shows the strain error
curves related to the different meshes. As can be appreci-
ated, the standard VEM exhibits severe volumetric locking
behaviour for all the meshes. This may be not so for other
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Fig. 2 Convergence test with analytical solution: considered quadrilateral and pentagonal meshes

Fig. 3 Convergence test with analytical solution: comparison of standard and self-stabilizedVEM for different quadrilateral and pentagonal meshes,
strain error

VEM implementations, and in particular for k > 1 (see,
e.g., [2]). Also the quadrilateral self-stabilized VEMwithout
additional internal DOFs shows locking behaviour, while its
pentagonal version exhibits the correct convergene rate. On
the other hand, the self-stabilized VEMwith additional inter-
nal DOFs is always volumetric-locking-free, able to keep the
right convergence rate and more accurate than the other two
approaches, as a result of the richer displacement field.

4.3 Cook’s beam problem

The last numerical application concerns the classical Cook’s
beam problem. The geometry of the problem is shown in
Fig. 6. It consists of a tapered cantilever beam, having the left
end restrained in both directions and the right edge subjected

to a uniform shear action along y. Also in this case plane
strain conditions are assumed.

Since the closed-form solution of this problem is not avail-
able, convergence has been assessed by comparison of the
vertical displacement uA

y of the point A in Fig. 6 with its ref-
erence value taken from the literature. Both the compressible
and the nearly incompressible cases have been analyzed.

The data of the problem are:

• Young’s modulus E = 70
• Poisson’s ratio ν = 0.33 (compressible case), ν =
0.49995 (nearly incompressible case)

• zero body forces in �
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Fig. 4 Convergence test with analytical solution: comparison of standard and self-stabilizedVEM for different quadrilateral and pentagonal meshes,
displacement error

Fig. 5 Divergence-free convergence test: comparison of standard and self-stabilized VEM for different quadrilateral and pentagonal meshes, strain
error
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Fig. 6 Cook’s beam: problem geometry

• surface tractions on ∂p�

{
px = 0

py = 6.25 × 10−3
(78)

• kinematic boundary conditions on ∂u�

{
ūx = 0

ū y = 0
(79)

The considered quadrilateral and pentagonal meshes for the
standard and the self-stabilized VEM with k = 1 are shown
in Fig. 7.

First, the compressible case (ν = 0.33) has been consid-
ered. In this case, the reference solution is uA

y ≈ 0.0323. The
corresponding results are shown in Fig. 8 in terms of the out-
put parameter uA

y as function of the mean element size h. As
can be seen, the self-stabilized VEMwith additional internal
DOFs converges to the right value of the vertical displace-
ment at A, always with enhanced accuracywith respect to the
corresponding standard VEM. On the other hand, the self-
stabilized VEM without additional moment DOFs always
shows a slightly worse accuracy with respect to the standard
VEM.

Even more interesting are the results in the nearly incom-
pressible limit (ν = 0.49995), depicted in Fig. 9. In this
case, the standard VEM with k = 1 always exhibits severe
volumetric locking behaviour. Also the self-stabilized VEM
without additional moment DOFs shows locking behaviour,
more severe in the case of quadrilateral elements. Consis-
tently with the results of 4.2, the self-stabilized VEM with
additional moment DOFs is locking-free for all the different
meshes and it rapidly converges to the right value of the tip
displacement uA

y ≈ 0.0277.

Figure 10 shows the mean stress contour maps for the
unstructured quad mesh with 498 elements and the different
tested 4-node elements. The mean stress σm is computed as
(σx + σy + σz)/3, where σz = ν(σx + σy) due to the plane
strain hypothesis. The same quantity is reported in Fig. 11
for the distorted pentagonal mesh with 256 elements and
the different tested 5-node elements. From these figures, one
can note how only the self-stabilized VEM with additional
moment DOFs seems to be able to completely remove the
locking artifacts in the nearly incompressible situation.

5 Conclusions

A mixed Hu–Washizu variational formulation of the VEM
has been presented. It allows in a straightforward way to cast
the VE approach within the framework of mixed methods
with a weak enforcement of compatibility, highlighting the
role of the VEM for the computation of the compatibility
matrix.

One of the main drawbacks of the VEM is that in most
cases the VEs require a stabilization. While on one hand an
original presentation of the stabilization technique, based on
the natural approach of Argyris [15] and Corradi [12] has
been proposed, on the other hand it has been shown how the
formulation of the VEM as a mixed method quite naturally
leads to the derivation of self-stabilized virtual elements, i.e.,
not requiring any stabilization. The basic idea is to increase
the order of polynomial representation of the strain model,
similarly towhat has been proposed very recently in [20]. The
resulting virtual element requires additional moment DOFs.
To avoid this, an alternative technique has been proposed
for the computation of the compatibility matrix, not requir-
ing additional moment DOFs. The technique is based on a
projection of the symmetric gradient of the displacement. A
substantially identical technique has been very recently pro-
posed in [18,19].

Quadrilateral and pentagonal self-stabilized, k = 1, p =
1, 2D VEs have been implemented in an in-house code and
applied to a number of benchmark problems. The expected
order of convergence has been obtained in all cases, with the
elements stabilized by the addition of moment DOFs exhibit-
ing a superior accuracy. In all cases the substantial distortion
insensitivity of the VEM has been confirmed.

The new VEs have also been tested in the nearly incom-
pressible limit. Also in this case, the new self-stabilized
VEs with additional moment DOFs have provided superior
performances, exhibiting an almost completely locking-free
behavior. The new VEs, self-stabilized without additional
moment DOFS, have instead shown performances very sim-
ilar to those of the standard stabilized VEM, including a
substantial deterioration of the convergence rate in the nearly
incompressible limit. However, we highlight that a complete
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Fig. 7 Cook’s beam: quadrilateral and pentagonal meshes

Fig. 8 Cook’s beam:
comparison of standard and
self-stabilized VEM for
different quadrilateral and
pentagonal meshes,
compressible case (ν = 0.33)

theoretical analysis of the stabilization free VEs in a general
framework (arbitrary polynomial order and arbitrary polyg-
onal meshes) is not available. Nonetheless, for the present
Hu–Washizu approach a stability and convergence study,
concerning the case k = 1 on quadrilateral meshes, can be
found in [27].

We conclude by noticing that possible interesting future
developments may consider the extension of the proposed
mixed variational formulation to three-dimensional VEs, to
elastoplasticity and to elastodynamics.
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Fig. 9 Cook’s beam:
comparison of standard and
self-stabilized VEM for different
quadrilateral and pentagonal
meshes, nearly incompressible
case (ν = 0.49995)

AppendixAComputationofhourglassmatrix
H

To define the hourglass modes ûH and the hourglass matrixH
in (28) it is possible to proceed as follows (see, e.g [12,16]).
According to the natural approach proposed byArgyris [15],
the element nodal displacements û can be expressed as a
linear combination of nR rigid body modes and nD natural
or straining modes, through a non-singular matrix T. In the
case that nH hourglass modes are also allowed by the element
kinematics, the vector of displacement parameters û can be
expressed as:

û = ûD+R + ûH = TD+R
u p̂D+R

u + TH
u p̂

H
u (A1)

where TD+R
u is a matrix of nD + nR columns, each one rep-

resenting an independent deformation or rigid mode, TH
u is

a matrix of nH columns, each one representing an indepen-
dent hourglass mode, p̂D+R

u are natural parameters and p̂H
u

are hourglass parameters defining the amplitude of the corre-
sponding hourglassmode.Deformationmodes and hourglass
modes are taken orthogonal to each other, i.e.:

(ûD+R)
T ûH = 0 (A2)

The orthogonality between deformation/rigid body modes
and hourglass modes implies also that:

(TD+R
u )TTH

u = 0 (A3)

Making use of this orthogonality property and of the decom-
position (A1) of û, one can write:

(TD+R
u )T û = (TD+R

u )TTD+R
u p̂D+R

u + (TD+R
u )TTH

u p̂
H
u︸ ︷︷ ︸

=0

= (TD+R
u )TTD+R

u p̂D+R
u (A4)

From the previous expression it is possible to compute the
natural parameters associated to deformation and rigid body
modes:

p̂D+R
u = [(TD+R

u )TTD+R
u ]−1(TD+R

u )T û (A5)

Substituting this expression in (A1) and solving for ûH =
TH
u p̂

H
u , one obtains:

ûH = TH
u p̂

H
u = û − TD+R

u p̂D+R
u = Hû (A6)

where the hourglass matrix H is defined as:

H = I − TD+R
u [(TD+R

u )TTD+R
u ]−1(TD+R

u )T (A7)

and I denotes the nu × nu identity matrix. As it can be easily
verified, one also has HTH = H.

The problem of computing ûH is then reduced to the
construction of the hourglass matrix H and, hence, to the
computation of the transformation matrix TD+R

u associated to
deformation and rigid body modes.
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Fig. 10 Cook’s beam: mean stress contour plots for unstructured quad mesh with 498 elements and different 4-node elements in the nearly
incompressible case (ν = 0.49995)

Fig. 11 Cook’s beam: mean stress contour plots for distorted pentagonal mesh with 256 elements and different 5-node elements in the nearly
incompressible case (ν = 0.49995)
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In the standardVEMof order k, the approximate displace-
ments locally contain all the polynomials of degree at most k;
accordingly, the strains are initially modelled by projecting
symmetric gradients of displacements onto polynomials of
degree at most k−1. However, for arbitrary polygons the dis-
placements are richer and other (typically non-polynomial)
functions are required to cope with inter-element continuity.
These additional functions are responsible for a surplus in
the rank deficiency of Kc with respect to the standard value
3. On the basis of this observation, the number of hourglass
modes is equal to nu − 2nk , nk being the number of param-
eters required to define a complete polynomial of order k
(35). Of course, nu − 2nk depends on the number of the ele-
ment vertices, see (36). As a consequence, the approximate
displacement without hourglass modes can be expressed as:

uD+R(ξ) = Nk(ξ)p̂D+R
u = Nu(ξ)ûD+R (A8)

where:

Nk(ξ) =
[
1 0 ξ 0 η 0 . . . ηk 0
0 1 0 ξ 0 η . . . 0 ηk

]
(A9)

Considering that:

ûD+R = TD+R
u p̂D+R

u (A10)

the following equality holds:

Nk(ξ) = Nu(ξ)TD+R
u (A11)

Since by definition Nu
i (ξ i ) = 1, if ξ i are the coordinates of

the i th boundary node and Nu
i is the corresponding shape

function, considering (A11), one has, e.g., at the edge node
1:

Nk(ξ1) =
[
1 0 ξ1 0 . . . ηk1 0
0 1 0 ξ1 . . . 0 ηk1

]

=
[
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0

]
TD+R
u (A12)

The matrix product at the right hand side of (A12) returns
the first two rows of the matrix TD+R

u . Repeating the same

procedure for all the other DOFs, one obtains the whole nu ×
2nk matrix:

TD+R
u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ξ1 0 η1 0 . . . ηk1 0
0 1 0 ξ1 0 η1 . . . 0 ηk1
1 0 ξ2 0 η2 0 . . . ηk2 0
0 1 0 ξ2 0 η2 . . . 0 ηk2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 0
ffl
�e

ξ 0
ffl
�e

η 0 . . .
ffl
�e

ηk 0
0 1 0

ffl
�e

ξ 0
ffl
�e

η . . . 0
ffl
�e

ηkffl
�e

ξ 0
ffl
�e

ξ2 0
ffl
�e

ξη 0 . . .
ffl
�e

ξηk 0
0

ffl
�e

ξ 0
ffl
�e

ξ2 0
ffl
�e

ξη . . . 0
ffl
�e

ξηk

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A13)

where:

 
�e

(·) = 1

‖�e‖
ˆ

�e

(·)d� (A14)

The first 2kNV rows contain the scaled monomials evaluated
in correspondence of DOFs on the element boundary. The
last k(k − 1) rows contain the following terms:

{
(TD+R

u )2i−1,2 j−1 = ffl
�e

qi−kNVq j

(TD+R
u )2i,2 j = ffl

�e
qi−kNVq j

(A15)

with i = kNV + 1, kNV + 2, . . . , nu
2 and j = 1, 2, . . . , nk .

All the other terms in the last k(k − 1) rows are zero.
Summarizing, the matrix TD+R

u can be computed evalu-
ating Nk(ξ) in correspondence of the element DOFs. Once
TD+R
u is computed, the hourglass matrix H can be computed

by means of (A7) and finally Ks can be evaluated.

AppendixBComputationof equivalent nodal
forces vector

The procedure for the construction of the element equivalent
nodal force vector is different for the cases k = 1 and k ≥ 2.
Even though the idea is the same for k = 2 and k > 2, for the
sake of clearness these two cases will be analyzed separately.
Note that the term “nodal forces” is used even though some
of the components of the force vector are not “nodal” when
moments DOFs are present.

Looking at (20), the term Fp is fully computable since
Nu is explicit on the boundary of the domain, where it is
described by polynomial functions of degree k. Therefore,
only the evaluation of the term Fb will be discussed below.

In the case k = 1, the equivalent nodal force vector asso-
ciated to the body forces b is computed in an approximate
way, exploiting an integration rule associated to the element
vertices. Basically, the load vector is uniformly distributed to
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each DOF of the virtual element. Let us introduce the 2 × 1
vector f :

f =
ˆ

�e

bd� (B16)

whose components are

fx =
ˆ

�e

bxd� (B17)

fy =
ˆ

�e

byd� (B18)

The equivalent nodal forces vector due to b is computed as:

Fb =
ˆ

�e

NT
u bd� ≈ 1

NV

{
fx fy fx fy · · · fx fy

}T
(B19)

where NV denotes the number of vertices of the virtual ele-
ment.

In the case k = 2, the basic idea is the same as for the
case k > 2, namely that of projecting the body force vector
b onto the space Pk−2 of polynomials of degree up to k − 2.
The computation results to be very simple due to the presence
of the internal moment DOFs. In the specific case k = 2, the
vector b is projected onto a vector of constants b̂h , that can
be derived from the condition:

ˆ
�e

b̂hd� =
ˆ

�e

bd� (B20)

Recalling (B16), the vector b̂h can be expressed as

b̂h = 1

‖�e‖ f (B21)

Finally, the vector Fb is computed as:

Fb =
ˆ

�e

NT
u bd� ≈

ˆ
�e

NT
u b̂

hd�

= 1

‖�e‖
(ˆ

�e

Nud�

)T

f (B22)

The quantities in brackets are the moments of order 0 of the
displacement shape functions, computable exploiting (39),
(40), (41) and (42). It results:

Fb = {0 0 · · · 0 0 fx fy
}T

(B23)

and the only non-zero components of Fb are those related to
internal DOFs.

In the general case k > 2, the idea is that of projecting the
body forces vector b onto the space Pk−2 of polynomials of

degree up to k − 2:

bh =
nk−2∑
i=1

qi b̂hi (B24)

where b̂hi is a 2× 1 vector and qi is the i th component of the
vector:

qk−2 = {1 ξ η ξ2 ξη η2 . . . ηk−2
}

(B25)

The coefficients of the polynomial expansion are obtained
from the condition:

ˆ
�e

q jbhd� =
ˆ

�e

q jbd� (B26)

Replacing (B24) in (B26), one obtains:

nk−2∑
i=1

ˆ
�e

qiq j b̂hi d� =
ˆ

�e

q jbd� (B27)

Introducing the quantities:

Qi j =
ˆ

�e

qiq j d� (B28)

f j =
ˆ

�e

q jbd� (B29)

Equation (B26) can be rearranged as:

nk−2∑
i=1

Qi j b̂hi = f j (B30)

Assembling all the terms from j = 1 to j = nk−2, one gets
the algebraic system:

Qb̂h = f (B31)

from which the vector b̂h containing the parameters of
the polynomial expansion can be derived. The symmetric
2nk−2 × 2nk−2 matrix Q has the following structure:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 0 Q12 0 . . . Q1nk−2 0
0 Q11 0 Q12 . . . 0 Q1nk−2

Q12 0 Q22 0 . . . Q2nk−2 0
0 Q12 0 Q22 . . . 0 Q2nk−2
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Q1nk−2 0 Q2nk−2 0 . . . Qnk−2nk−2 0
0 Q1nk−2 0 Q2nk−2 . . . 0 Qnk−2nk−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B32)
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The 2nk−2 × 1 vectors b̂h and f contain all the 2 × 1 contri-
butions:

b̂h =
{
b̂h1 b̂h2 . . . b̂hnk−2

}T
(B33)

f = {
f1 f2 . . . fnk−2

}T
(B34)

Finally, the element vector of nodal forces equivalent to b
can be computed from:

Fb ≈
ˆ

�e

NT
u b

hd� =
nk−2∑
i=1

(ˆ
�e

qiNud�

)T

b̂hi (B35)

where the matrices in brackets are the nk−2 moments of the
displacement shape functions Nu , once again computable
exploiting (39), (40), (41) and (42). Due to the fact that the
moments of the displacement shape functions on the element
boundary are zero, the only non-zero components of Fb are
those related to moment DOFs.
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