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Abstract

Despite the growing availability of artificial intelligence models for predicting type 2 diabetes,

there is still a lack of personalized approaches to quantify minimum viable changes in bio-

markers that may help reduce the individual risk of developing disease. The aim of this article

is to develop a new method, based on counterfactual explanations, to generate personalized

recommendations to reduce the one-year risk of type 2 diabetes. Ten routinely collected bio-

markers extracted from Electronic Medical Records of 2791 patients at low risk and 2791

patients at high risk of type 2 diabetes were analyzed. Two regions characterizing the two

classes of patients were estimated using a Support Vector Data Description classifier. Coun-

terfactual explanations (i.e., minimal changes in input features able to change the risk class)

were generated for patients at high risk and evaluated using performance metrics (availabil-

ity, validity, actionability, similarity, and discriminative power) and a qualitative survey admin-

istered to seven expert clinicians. Results showed that, on average, the requested minimum

viable changes implied a significant reduction of fasting blood sugar, systolic blood pressure,

and triglycerides and a significant increase of high-density lipoprotein in patients at risk of

diabetes. A significant reduction in body mass index was also recommended in most of the

patients at risk, except in females without hypertension. In general, greater changes were

recommended in hypertensive patients compared to non-hypertensive ones. The experts

were overall satisfied with the proposed approach although in some cases the proposed rec-

ommendations were deemed insufficient to reduce the risk in a clinically meaningful way.

Future research will focus on a larger set of biomarkers and different comorbidities, also

incorporating clinical guidelines whenever possible. Development of additional mathematical

and clinical validation approaches will also be of paramount importance.
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Introduction

Diabetes mellitus is a chronic metabolic disorder associated with hyperglycemia, i.e. an

increase in blood glucose level that may lead to life-threatening damages to the circulatory and

nervous systems. This abnormal rise may be caused by a variety of factors, either related to lim-

ited insulin production (Type I diabetes) or to deficiency of cell response to insulin, often

referred to as ‘insulin resistance’ (Type II diabetes, T2DM). According to the International

Diabetes Federation 2021 Report [1], around 536.6 million people (10.5% of the global popula-

tion) are affected by diabetes, and the global prevalence of this disease is estimated to increase

by 16% by 2045. Diabetes-related health expenditures have dramatically increased in the last

few years, reaching an estimated cost of 966 billion dollars in 2021. Particularly, T2DM

accounts for 90% of diabetes cases worldwide. Developing prevention strategies to reduce the

risk of having T2DM is of paramount importance to avoid the potentially serious complica-

tions of this disease. However, early detection can be challenging as patients with T2DM may

not develop clearly identifiable symptoms in the initial stages of the disease. As such, data-

driven predictive models may help identifying individuals at early risk of developing T2DM.

Machine learning approaches for T2DM prediction

Several machine learning (ML) models have been proposed to predict the onset of T2DM

from clinical measures. ML can help investigate possible hidden patterns in the available data

(e.g., clinical information, risk factors, and individual characteristics) to uncover possible

mechanisms of disease onset and development [2, 3]. For example, Perveen et al. [4] investi-

gated different ML methods to predict the onset of T2DM using information about individual

risk factors of metabolic syndrome including abdominal obesity, cholesterol levels and glucose

concentration. Results showed that the highest prediction performance (i.e., sensitivity and F-

measure of about 80%) was achieved with a Naïve Bayes classifier coupled with K-medoids

under sampling to obtain a balanced dataset. Alghamdi et al. [5] investigated ML ensemble

techniques for predicting diabetes by using clinical importance and information Gain Ranking

methods to select a subset of features from an initial set of 62 attributes related to cardiorespi-

ratory fitness data. Even in this case the dataset was balanced using sampling techniques (i.e.,

SMOTE-Synthetic Minority Over-sampling Technique). Different ML models to predict the

onset of T2DM using different types of input data (e.g., medical records, lifestyle, socio-demo-

graphic factors, family history. . .) have been explored in recent years, overall achieving satis-

factory levels of classification performance (i.e., 80% or higher). In this context, transparent

ML techniques like decision trees or logistic regression have been applied to obtain decision

rules and feature rankings that highlight the overall importance of different risk factors and

clinical features [2]. Moreover, personalized strategies for monitoring the health status of

T2DM patients have been proposed. For example, Alfian et al, [6] presented a real-time moni-

toring system based on Bluetooth Low Energy (BLE)-based sensors and ML models to predict

the onset of diabetes and to predict future blood glucose levels. Nevertheless, to the best of our

knowledge, there is still a lack of fully interpretable ML approaches able to define personalized

preventive recommendations to help patients lower their risk of developing T2DM by target-

ing individualized changes in biomarkers and modifiable risk factors. The personalized

approach is more specific and therefore may be more effective than sample-based ML

approaches generating average recommendations across the population.

Counterfactual explanations

EXplainable Artificial Intelligence (XAI) is a field of artificial intelligence comprising several

techniques which are able to provide insights about the inner logic of ML models, ensuring
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transparency of decision-making processes, therefore fulfilling the “right for explanation”

demanded, for example, by the European Union General Data Protection Regulation

(GDPR) [7]. XAI techniques either focus on the representation of the overall behavior of the

model, providing global explanations, or describe the decision-making process of the model

for a single specific instance providing local explanations [8, 9]. Explainability, transparency

and trustworthiness are extremely important requirements, especially when it comes to

automated solutions that could make life-critical decisions (e.g., clinical decision support

systems, medical robotic systems, or autonomous vehicles) and, as such, XAI techniques

have been extensively applied to medical case studies in recent years [10–12]. However,

transparency of a model is only one of the several components of trustworthiness and even a

fully explainable AI system should be compliant with several other requirements in order to

be considered trustworthy [13, 14]. For example, when dealing with medical decision sup-

port systems, particular attention must be paid to Human agency and oversight as a require-

ment for Trustworthy AI [13], meaning that AI systems must not limit human autonomy

and the decision-making process must guarantee that fundamental rights are respected,

without causing any harm.

Counterfactual explanations (from now on simply referred to as counterfactuals) belong

to the family of local XAI techniques. In a binary classification problem, a counterfactual

explanation is defined as the set of minimal changes that can be applied to the input features

related to a specific instance in order to change its predicted class. In the last few years, dif-

ferent methods for the generation of realistic and feasible counterfactuals able to increase

transparency of automated decision making processes have been proposed in the literature

[15]. The concept of counterfactual was first adapted to the AI field by Wachter et al. [16].

Since then, various methods for generating counterfactuals have been proposed for tabular

data, images, and text and applied to several application domains including, for example,

vehicle platooning [17], job hiring platforms [18], and disease prediction [16, 19, 20].

Among the use cases reported by [16], one was related to predicting the probability of devel-

oping diabetes by performing a logistic regression. To do so, eight features were extracted

from the Pima Indians Diabetes Database [21] and counterfactuals were generated to explain

the changes in the input features able to provide a probability of having diabetes of 0.5. The

same dataset was also used by White et al. [22] to demonstrate their proposed method, called

CLEAR (Counterfactual Local Explanations via Regression), to generate counterfactuals

through regression coefficients. Specifically, in [22] counterfactuals are generated for each

observation by following a brute force approach where small perturbations are applied to

each input feature separately and independently. Then, a linear regressor is trained on a bal-

anced neighborhood around the observations. Finally, the regressor is used to determine the

counterfactuals and the accuracy of these regressions with respect to the generated counter-

factuals is estimated. By applying the CLEAR method, a perturbation of -0.557 in glucose

concentration was identified as the minimal change able to generate a decrease in the proba-

bility of having diabetes from 0.69 to less than 0.5. However, all the aforementioned studies

aimed at developing general methods for counterfactuals generation and did not specifically

address constraints related to diabetes prevention for possible application in clinical

practice.

Rationale and contribution

The aim of this study is the development of a novel method based on counterfactual explana-

tions to produce personalized minimum viable modifications of routinely measured biomark-

ers potentially able to reduce the risk of developing T2DM. As a first step in this direction, we
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recently introduced and validated a method for building counterfactual explanations starting

from non-linear envelopes enclosing the points of each output class, using a Two-Class Sup-

port Vector Data Descriptor (TC-SVDD) [23] on data from vehicle platooning collision detec-

tion [17]. In the same contribution, we extracted a fully transparent, rule-based description of

the identified regions to characterize the two output classes and demonstrated the ability of the

proposed counterfactuals generation method to determine changes in output class. In [19], we

applied the proposed method to characterize T2DM using an unbalanced set of 1857 subjects

(428 diagnosed with T2DM and 1429 without the disease) and biomarkers derived from elec-

tronic medical records (EMRs). We demonstrated that the minimal variations in the input fea-

tures associated with a change in the output class were coherent with the literature related to

T2DM. Specifically, diabetic patients were on average associated with higher fasting blood

sugar (FBS), higher body mass index (BMI), and lower high-density lipoproteins (HDL), com-

pared to their non-diabetic counterfactuals. The method relied on the definition of two

TC-SVDD classification regions named “T2DM” and “No T2DM” and on the generation of a

set of counterfactuals that, being by definition at minimum distance, were located near the

decision boundary of the “No T2DM” class. However, the method developed in [19] is nor

readily applicable to diabetes prevention and risk reduction for the following reasons. First,

the boundaries of the two regions are very close to each other and, as a result, the observed

changes in biomarkers may not be able to decrease the risk of disease and, as such, may not be

translated into practical preventive recommendations. In principle, larger changes may be

obtained by using smaller regions to define the “No T2DM” class. For example, by reducing

the false negative rate (FNR) of the TC-SVDD classifier, a smaller, more conservative, “No

T2DM” region can be obtained and used to characterize patients without the disease that are

inherently different from those in the “T2DM” region. Second, in [19], the counterfactuals

were assessed only in terms of average differences and no human validation of the observed

changes in biomarkers was performed. Last, in [19] we focused on characterization of patients

already diagnosed with T2DM, rather than on the investigation of preventive recommenda-

tions on individuals at risk of developing T2DM in the future. For a clear identification of

actionable counterfactuals able to reduce the risk of developing disease, a different dataset than

the one used in [19] is needed.

The main contributions and advancements of the present study compared to previous liter-

ature and, particularly, compared to [17, 19] are summarized in the followings:

• selection of a dataset including individual observations before the onset of T2DM to investi-

gate which biomarkers and which change in biomarkers can help reduce the risk of develop-

ing T2DM;

• development of a novel methodology for the generation of actionable counterfactual expla-

nations from numerical and categorical tabular data by varying only a subset of controllable
features and constraining non controllable features such as age and sex;

• generalization of the TC-SVDD classifier that defines the two regions of the output classes

by controlling the FNR to modulate the risk associated with the “low” risk output class and

obtain “more conservative” minimal changes towards a lower risk of developing T2DM;

• assessment of the proposed XAI framework through an ad-hoc survey delivered to medical

experts, in line with the Human agency and oversight requirement of trustworthy AI;

• comparison of the newly proposed methodology with two state-of-the-art local XAI

techniques.
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Structure of the article

The rest of the article is structured as follows. Section Materials and Methods introduces the

dataset, the proposed counterfactuals generation process and the approach used for counter-

factual analysis, including computational and expert based validation. Section Results shows

the characterization of counterfactuals generated using both the original TC-SVDD and a

modified version based on FNR control. The section also presents the main outcomes of the

expert assessment and the comparison with two local XAI techniques. In section Discussion,

the main findings are examined in the context of available literature and knowledge, highlight-

ing limitations and possible future research. Finally, the last section (Conclusion) summarizes

the main remarks and outlines directions for further development.

Materials and methods

Dataset

The dataset analyzed in this study includes a set of records extracted from the Canadian Pri-

mary Care Sentinel Surveillance Network (CPCSSN), a Canadian longitudinal database of

EMRs [24]. The protocol was submitted to the Toronto Metropolitan University (formerly

Ryerson University) Review Ethics Board (REB 2013–261) and the Board provided a waiver of

review as the portion of CPCSSN database used includes de-identified and anonymized rec-

ords. Specifically, the CPCSSN database here used includes primary care EMR data collected

from January 1, 2002 to June 31, 2015 from 1’283’154 patients overall, 90’278 of which diag-

nosed with diabetes (including T2DM, Type I diabetes, and gestational diabetes). Each patient

is associated with several records in the database including, for example, data from medical

encounters, laboratory results, results of physical examinations, and medical prescriptions. In

this study, in addition to general patient characteristics such as age and gender, eight biomark-

ers, routinely measured in primary care, have been considered. We selected the following fea-

tures based on their relevance to T2DM risk prediction [1, 25, 26] and their large availability in

the general population: fasting blood sugar (FBS, mmol/L), body mass index (BMI, kg/m2), sys-
tolic blood pressure (sBP, mmHg), high-density lipoprotein (HDL, mmol/L), low-density lipo-
protein (LDL, mmol/L), triglycerides (TG, mmol/L), Total Cholesterol (Total Chol, mmol/L),

and presence of hypertension(HTN, {0,1}). The hypertension variable in CPCSSN codifies the

presence of essential hypertension, hypertensive heart disease, hypertensive chronic kidney

disease, hypertensive heart and kidney disease, and secondary hypertension. In all cases there

must be a clear diagnosis of hypertension.

Inclusion criteria for diabetic patients were: age� 30, diagnosis of T2DM, presence of at

least one medical encounter up to one year before the onset of T2DM, and presence of at least

one value for each biomarker in a time window from six years to one year before diagnosis. By

applying these criteria, 2791 T2DM patients were selected. Inclusion criteria for non diabetic

patients were: age� 30, absence of any kind of diabetes diagnosis, presence of at least two

encounters (with a difference of at least one year), and presence of at least one value for each
biomarker in a time window from six years to one year before the last encounter. In order to

obtain a balanced dataset, 2791 non diabetic patients were randomly selected from about

58000 eligible non diabetic patients.

For each patient, a single record was obtained by averaging all the available readings for

each biomarker in the observation window. Records related to T2DM patients were labeled as

“high risk” (i.e., output class highT2DM) whereas records related to patients who did not

develop diabetes in the observation window were labeled as “low risk” (i.e., output class

(lowT2DM). As a result, the final balanced dataset consisted of 5882 records, each including 10
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input features and one binary output related to the risk of developing T2DM. The highT2DM
class included data from 1510 females (age: 57 ± 13 years) and 1281 males (age: 58 ± 11 years),

whereas the lowT2DM class included data from 1710 females (age: 58 ± 11 years) and 1081

males (age: 60 ± 11 years).

Counterfactuals generation process

Fig 1 shows a schematic workflow of the proposed counterfactuals generation method. First,

the regions characterizing patients in the two ouput classes are identified (see Step 1. Classifica-
tion using TC-SVDD), then counterfactuals are estimated (see Step 2. Counterfactuals search
algorithm). The counterfactual generation process code (https://github.com/AlbiCarle/

CounterfactualSVDD) was implemented in Matlab R2021a.

Step 1. Classification using TC-SVDD. The dataset is divided into training (70%) and

test (30%) sets by applying stratification to maintain class balancing in the partitions. Then, a

TC-SVDD [23] is trained over training data to learn the decision boundaries of two classifica-

tion regions, i.e. S1 (highT2DM class) and S2 (lowT2DM class), with S2 being the target region,

where searching for counterfactuals.

More specifically, given a set of data points {(xi, yi)} (where yi is the label that determines to

which class, I or II, the observation belongs) and a binary classification problem, the aim of the

TC-SVDD is to find a region (i.e. an hypersphere with center a and radius R) for each class

that encloses as many points of that class as possible, while limiting the volume of the region.

Fig 1. Workflow. Schematic workflow of the counterfactuals generation process.

https://doi.org/10.1371/journal.pone.0272825.g001

PLOS ONE Individualized recommendations for type 2 diabetes prevention

PLOS ONE | https://doi.org/10.1371/journal.pone.0272825 November 17, 2022 6 / 24

https://github.com/AlbiCarle/CounterfactualSVDD
https://github.com/AlbiCarle/CounterfactualSVDD
https://doi.org/10.1371/journal.pone.0272825.g001
https://doi.org/10.1371/journal.pone.0272825


This is achieved by solving an optimization problem:

min FðR1;R2; a1; a2Þ ¼ R2
1
þ R2

2
ð1Þ

under the constraints

k xi � a1k
2 � R2

1
8i s:t: xi belongs to class I; k xi � a2k

2 � R2
2
8i s:t: xi belongs to class II

k xi � a2k
2 � R2

2
8i s:t: xi belongs to class I; k xi � a1k

2 � R2
1
8i s:t: xi belongs to class II

Since the algorithm tries to maximize the number of correctly classified points by minimiz-

ing the volume of the spheres, the TC-SVDD algorithm abstains from making a final decision

on a subset of data points, namely the unclassified points, i.e., not belonging to either region as

they represent data in an overlapping region between the two classes. Although the feature

space is not entirely mapped into two classes, the TC-SVDD algorithm generates two closed,

dense regions (S1 and S2) with high reliability in classifying points belonging to the highT2DM
and lowT2DM class, respectively. As a result, the TC-SVDD yields high positive predictive

value (PPV) and negative predictive value (NPV). The TC-SVDD algorithm fits our goal since

the search for counterfactuals must be performed in a well-specified closed region to maximize

the reliability of the counterfactuals generated. The aforementioned optimization problem can

be relaxed and be solved analytically by introducing slack variables and regularization parame-

ters (please refer to [23] for further details). However, it is worth mentioning that the regulari-

zation parameters play a relevant role in training the classifier, as they handle the amount of

error allowed between classes. The introduction of a radial basis function kernel allows to map

the input data points into a high dimensional feature space, to increase flexibility. A set of

hyperparameters has been selected for the TC-SVDD training, including the width of the ker-

nel (σ = 5) and the regularization terms C1 = 1, C2 = 1, C3 = 1/(νNhighT2DM), C4 = 1/

(νNlowT2DM), where ν is equal to 0.05 [23] and NhighT2DM and NlowT2DM are the number of train-

ing points belonging to the two output classes, respectively. These latter terms establish a

trade-off between volume and classification errors of S1 and S2, respectively.

It is worth noting that maximization of classification accuracy may not lead to sufficiently

reliable counterfactuals in some applications, for example those characterized by fluctuating

data or inherent overlap between classes, such as typical disease prediction problems. In these

cases, reducing the descriptive regions to characterize a smaller but more stable set of points in

the target classes can help increase the reliability of the generated counterfactuals. This could

be obtained by implementing a reliable version of the TC-SVDD which tries to minimize the

number of misclassified points in one or both classes. A possibility is to limit the false positive

rate (FPR) and/or the FNR i.e., the conditional probability of a positive prediction given a neg-

ative observation and/or the conditional probability of a negative prediction given a positive

observation. In our task of disease risk reduction, for example, implementing such an

approach may be useful to define a “more conservative” lowT2DM region which includes data

from patients with presumably better health, i.e. points at a higher distance from points in the

opposite class. Let’s consider lowT2DM as the negative class and highT2DM as the positive

class. To define a “more conservative” lowT2DM region (S2_red), the FNR can be kept below a

given threshold (at the expense of accuracy). In the specific version of the SVDD here used

(i.e. TC − SVDDred), the center a and radius R characterizing the shape of the SVDD region S2

are modified iteratively during the training phase until the FNR reaches a value below a certain

threshold τ [27, 28]. The threshold τ depends on the specific application. In a disease classifica-

tion and prediction problem based on routinely collected biomarkers, like the one presented

in this study, typically there is inherent overlap between the two classes and the distributions

of features exhibit high variability. Hence, values of FNR close to zero could lead to an
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excessively small S2 region, poorly descriptive of the lowT2DM class, thus causing loss of

meaningful information regarding healthy patients. In this study, τ was set at 8% following a

preliminary analysis to establish a trade-off between the percentage of true negative points

within the region (e.g.,>35% of the training set) and FNR value.

Step 2. Counterfactuals search algorithm. Once the two classification regions S1 and S2

have been defined, S2 is discretized with a low-discrepancy method based on the quasi-random

Halton sequence [29] to obtain the set of candidate counterfactuals. The use of a low discrep-

ancy method allows to obtain a spatially balanced sampling of the features space and ensures

convergence. Indeed, if we assume to sample L points starting from the continuous set of

points S2, convergence is guaranteed with a rate of O 1

L

� �
, which is faster with respect to the

convergence rate ensured by random discretization of points (i.e., O 1

L1=2

� �
) [30]. Specifically, L

was set equal to 10000 in this study. Counterfactuals are generated from real highT2DM obser-

vations, called factuals. Specifically, for each factual xi, the corresponding counterfactual is

defined as the point x�i ¼ xi þ Dxi belonging to the sampled region S2 (and not belonging to

S1) that lies at minimum distance (i.e., Euclidean distance in our study) from the factual:

min
Dxi2Rn

dðxi; ðxi þ DxiÞÞ subject to k ðxi þ DxiÞ � a1 k
2 � R2

1
and k ðxi þ DxiÞ � a2 k

2 � R2

2 ð2Þ

where a1 and R2
1
, a2 and R2

2
are the centers and the radii of the hyperspheres describing regions

S1 and S2, respectively.

Indeed, unless for the presence of discontinuity points, counterfactuals will be found, by

definition, near the boundary of S2. As such, if no limit on the FNR is applied, the counterfac-

tuals might be characterized by small differences in features compared to their factuals, there-

fore they may have potentially limited benefit in terms of reducing the risk of developing

disease. Moreover, as the counterfactual would be close to points that characterize patients

with high risk of disease, a patient with the biomarkers variation described by the counterfac-

tual might be in an unstable situation, since a small fluctuation in biomarkers would bring the

patient back to the high-risk region. A more conservative risk reduction can be obtained by

searching inside the reduced region S2_red, characterized by FNR below τ, while keeping the

definition of counterfactual generated at minimum distance. Moreover, the number of avail-

able factuals increases (Nred� N) as reducing the volume of region S2 also reduces the overlap

region between S1 and S2.

As discussed in [17], the set of input variables x can be subdivided in two groups: controlla-
ble variables u = (u1, . . ., un) and non controllable variables z = (z1, . . ., zm). Regarding T2DM,

controllable variables can be referred to as biomarkers that can be manipulated such as

through medications, lifestyle changes, or medical treatments. Non-controllable variables are

instead non-manipulable features such as age, sex, and family history. In this study, age, sex

and the presence of hypertension were constrained during counterfactual generation. In par-

ticular, the presence of hypertension has been considered as partially non-controllable because

hypertension is a chronic disease. Although it can be treated with medications and lifestyle

changes, its treatment requires long-term interventions, whereas we are focusing on a nar-

rower window of time. Moreover, the CPCSSN codifies an onset date for the disease, but it

doesn’t codify an offset date. For this reason, in the proposed framework, if the highT2DM fac-

tual presents hypertension, its related counterfactual (lowT2DM) will also present hyperten-

sion due to the chronic nature of this condition. However, although counterintuitive towards

the goal of reducing the risk of disease, the algorithm hypothetically allows a non-hypertensive

factual to have an hypertensive counterfactual.
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Counterfactuals analysis

Analysis of performance. The performance of the TC-SVDD in terms of ability to enclose

the two output classes was assessed using common ML metrics like accuracy, specificity, sensi-

tivity, PPV, NPV, FNR, and FPR. The generated counterfactuals were evaluated according to

the following properties [15]:

• Availability. The counterfactual x�i is available if it is returned by the search algorithm. Avail-

ability can be defined as the ratio of the number of counterfactuals to the total number of

factuals.

• Validity. The counterfactual x�i should belong to a different class from that of the factual.

Hence, validity is defined as the ratio between the number of counterfactuals that have the

desired class label (i.e., lowT2DM) and the total number of counterfactuals generated.

• Actionability. To guarantee feasibility, the counterfactual x�i should never change non con-

trollable features. Actionability is the ratio between the number of constrained features and

the total number of non controllable input features.

• Similarity. The counterfactual x�i should be close to xi, given a distance function d. The lower

the distance, the higher the similarity. Specifically, the distance between xi and x�i should be

lower than a predefined threshold �, i.e., dðxi; x�i Þ < ε. To assess similarity, we normalized

data between 0 and 1. Then, we calculated the Euclidean distance between each counterfac-

tual and the corresponding factual and we computed the ratio between the distance and the

maximum theoretical distance in the standardized feature space (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffinfeatures
p

). The distance

distribution observed over the factual-counterfactual pairs was summarized in terms of aver-

age and 95% confidence interval (C.I.).

• Discriminative Power. Despite being close to xi based on the desired property of similarity,

the counterfactual x�i should be distinguishable from the points of the class to which xi

belongs. Discriminative Power was assessed by evaluating the accuracy of a k-Nearest Neigh-

bor (KNN) classifier (k = 5) trained on a dataset including the counterfactuals and the real

highT2DM data points. 5-Fold cross-validation was used and the average accuracy on the

test set was estimated. Discriminative power was also investigated from a subjective point of

view through specific questions incorporated in an Expert survey (see subsection Expert
assessment).

Characterization of counterfactuals. Four different, non overlapping groups of patients

have been considered in the analysis of the generated counterfactuals: females with hyperten-

sion (F_HTN), females without hypertension (F_noHTN), males with hypertension (M_HTN),

males without hypertension (M_noHTN). Females and males were considered separately

because of the presence of well known gender-related differences in biomarkers, for example

BMI and cardiovascular risk factors (e.g., HDL, LDL) [31]. Hypertensive and non-hyperten-

sive patients were considered separately to assess whether the presence of this comorbidity

may influence the changes determined by counterfactuals towards a reduced risk of developing

T2DM. In each group of patients, the changes for each controllable biomarker ui have been

computed as follows:

Dui ¼ u�i � ui ¼ ui;lowT2DM � ui;highT2DM ð3Þ

The Lilliefors test was performed to check for normality of the distributions of the changes

for each biomarker, in the four groups. If the variables were not normally distributed, non-
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parametric tests were used. Specifically, the paired samples Wilcoxon signed-rank test was per-

formed to test the presence of significant differences between factuals and counterfactuals for

each biomarker and for each group. The Wilcoxon rank-sum test was applied to assess possible

differences in the observed changes for each biomarker between different groups of patients. A

significance level alpha = 0.05 was considered in this study. Bonferroni correction was applied

to correct for multiple comparisons. Statistical analysis was performed in Python version 3.7.

Expert assessment. Changes in input features suggested by the counterfactuals may be

validated by using domain-specific approaches. In some cases, the observed phenomenon may

be simulated (see for example [17]) and/or validated with respect to a known or computation-

ally estimated gold standard. In other cases, for example in disease prediction and prevention

applications, validation of model predictions against computational simulations is, in general,

not possible. A possible way to analyse the quality of the proposed approach is to perform an

application-grounded evaluation by asking domain experts (i.e., clinicians) to assess the per-

ceived usefulness and effectiveness of the changes in biomarkers suggested by the counterfac-

tuals, for the purpose of T2DM risk reduction [32].

To perform a preliminary evaluation of the proposed approach, a group of 7 medical

experts based in Canada was asked to fill out a survey. All the respondents participated to this

phase of the study on a voluntary basis. All data were collected anonymously. The experts were

blinded to any details on the proposed method to limit possible bias.

The survey consisted of four sections and is reported in full detail in the supplementary

material (S1 File). The first section included general questions about the experts’ clinical back-

ground, and their opinion on AI. The second section (risk evaluation) included five examples

of patients with related input features: 3 real highT2DM patients, 1 real lowT2DM patient, and

1 lowT2DM patient representing a candidate counterfactual in S2_red. The task was to assess

the risk the patient had of developing T2DM in 1 year and to provide a confidence level associ-

ated with that assessment. Both patient risk and confidence level were selected from a marked

five-item scale. The third section (counterfactuals evaluation) included four examples of

patients with high risk of developing T2DM (i.e., factuals) and the related changes in biomark-

ers proposed by the algorithm based on TC − SVDDred in order to reduce the risk (i.e., coun-

terfactuals). Each expert was asked to specify the level of agreement with the target values

proposed by the algorithm on a marked five-item scale. In the final section, each expert was

asked to provide overall feedback on the proposed methodology (e.g., quality, usefulness). The

survey was administered online using Microsoft Forms.

Comparison with state-of-the-art techniques. We compared our method with two dif-

ferent techniques, a commonly used XAI technique (SHapley Additive exPlanations-SHAP

[33]) and a different method for the generation of counterfactuals (Diverse Counterfactual

Explanations-DiCE [34]).

SHAP [33] is a local XAI technique derived from game theory that quantifies the marginal

contribution that each single feature (i.e., a single player) brings to the model’s outcome (i.e.,

the game) for a given instance X in the sample. SHAP values can be visualized in different

ways. For example, the waterfall plot allows to explain why a specific record receives a certain

prediction. The plot sums up the positive or negative contribution of each input feature to get

the model’s output probability f(X), starting from a baseline expected value E[f(X)] that is the

model output when no features are present, i.e. the initial proportion of classification (0.5 in

our balanced dataset). The summary plot instead combines single explanations to get a global

insight of the model reasoning in terms of feature relevance and feature effects on the

prediction.

Different methods for the generation of counterfactuals have been proposed in the litera-

ture [15], however no common benchmark models have been established yet. The DiCE
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technique [34] was used in this study because it has similar properties to the method here pro-

posed. Specifically, DiCE is defined for tabular datasets, it can handle categorical features, and

it allows to define controllable and non controllable features, in line with the desired property

of actionability. Counterfactuals were generated using a Random Forest classifier and the

model-agnostic implementation of DiCE with independent random sampling of features [35].

The total number of counterfactuals for each factual was set to 1 and the desired class of the

counterfactuals was set to “lowT2DM”. To allow for a fair comparison with our method, the

same set of factuals (i.e., real highT2DM points) was considered and the same counterfactuals

properties were evaluated.

Results

Analysis of performance

A set of factuals and related counterfactuals was generated following the process described in

Fig 1. Table 1 shows the classification performance of the canonical TC-SVDD on both train-

ing and test sets. From an initial set of 734 factuals, 731 counterfactuals were generated (avail-

ability = 99.6%; F_HTN: 154, F_noHTN: 237, M_HTN: 134, M_noHTN: 206). All the

counterfactuals belonged to the desired class (validity = 100%). The set of counterfactual

showed a high discriminative power characterized by an average accuracy of 94% of the KNN

classifier. The average distance between factual-counterfactual pairs is 13% of the maximum

theoretical distance in the standardized feature space (C.I.: 4%-21%), suggesting high

similarity.

TC − SVDDred generated a region S2_red that included 750 out of 1954 real lowT2DM
patients in the training set and 260 out of 837 in the test set, providing a precision of 71% and

a negative predictive value (NPV) of 83% on both the training set and the test set. Using TC −
SVDDred, the number of admissible factuals and, in turn, the number of generated counterfac-

tuals increased because the number of highT2DM patients outside the S2_red region increased

compared to those outside the S2. As a result, a total of 882 counterfactuals was generated start-

ing from 1361 factuals (availability = 65%; F_HTN: 104, F_noHTN: 358, M_HTN: 95,

M_noHTN: 325). As observed with the canonical TC-SVDD, all the counterfactuals obtained

using TC − SVDDred belonged to the desired class (validity = 100%). As expected, the set of

counterfactuals obtained using TC − SVDDred showed a higher discriminative power than that

obtained using the canonical TC-SVDD (average accuracy of 97% with the KNN classifier).

The average distance between factual-counterfactual pairs is 12% of the maximum theoretical

distance in the standardized feature space (C.I.: 4%-21%), suggesting high similarity.

Characterization of counterfactuals

To analyze the differences between the two versions of the TC-SVDD, the changes in biomark-

ers Δui derived from S2 and S2_red have been analyzed. To allow for a fair comparison, only

counterfactuals derived from common factuals (i.e., 475) have been considered. As an exam-

ple, Fig 2 shows the distributions of the changes in FBS, BMI and sBP obtained with a

Table 1. Classification performance of the TC-SVDD.

Accuracy Specificity Sensitivity PPV NPV FNR FPR

Training 69% 91% 48% 95% 73% 34% 2%

Test 59% 76% 41% 86% 68% 36% 7%

PPV = Positive Predictive Value; NPV = Negative Predictive Value; FNR = False Negative Rate; FPR = False Positive Rate.

https://doi.org/10.1371/journal.pone.0272825.t001
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canonical TC-SVDD and TC − SVDDred, in the four groups of subjects. Statistically significant

differences in median changes in sBP and BMI between the two different TC-SVDD classifiers

are observed in hypertensive patients (both F_HTN and M_HTN) and in males without

hypertension (sBP—F_HTN: p = 0.006; M_HTN: p<0.001; M_noHTN: p = 0.009; BMI—

F_HTN: p = 0.009; M_HTN: p = 0.022; M_noHTN: p = 0.019). Statistically significant differ-

ences in median changes between TC-SVDD and TC − SVDDred, for the same groups of

Fig 2. Comparison between Canonical TC-SVDD and TC-SVDD with FNR reduction. Comparison between the

changes in FBS, sBP, and BMI derived from counterfactuals generated from a canonical TC-SVDD and TC-SVDD

with FNR reductionB(TC − SVDDred) in the four groups of subjects: F_HTN, F_noHTN, M_HTN, M_noHTN.

https://doi.org/10.1371/journal.pone.0272825.g002
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subjects, have been also found in terms of HDL and Total Cholesterol, whereas no significant

changes have been found in terms of FBS, LDL and TG.

Fig 3 depicts the SVDD representation of the training set points in the FBS-sBP plane,

together with two examples of factual-counterfactual pairs. The area of the lowT2DM region

identified by TC − SVDDred is sensibly reduced with respect to the area identified by the

canonical TC-SVDD. As a result, the number of unclassified points increases and the gener-

ated counterfactuals are different. For example, considering the factual F1 (FBS = 6.2 mmol/L,

sBP = 133 mmHg) the counterfactual generated by TC − SVDDred is associated with lower tar-

get values than those generated by the TC-SVDD (i.e., FBS = 4.5 mmol/L, sBP = 114 mmHg vs

FBS = 5.3 mmol/L, sBP = 124 mmHg).

The relationship between reduction in sBP and FBS and potential reduction of risk also

proves valid when generalizing from individual cases to the entire population since statistically

significant differences in median changes of FBS (F_HTN, F_noHTN, M_HTN, M_noHTN: p

<0.001) and sBP (F_HTN, F_noHTN, M_HTN, M_noHTN: p<0.001) were found between

factuals and counterfactuals for each group of patients, when the TC − SVDDred was applied.

Similarly, statistically significant differences in median changes of HDL (F_HTN, F_noHTN,

M_HTN, M_noHTN: p<0.001) and TG (F_HTN, F_noHTN, M_noHTN: p<0.001;

M_HTN: p = 0.004) were observed for all the four groups, whereas observed differences in

median changes of BMI were significant for F_HTN, M_HTN, and M_noHTN (p<0.001),

differences in LDL were significant for F_HTN (p = 0.004) and F_noHTN (p<0.001) only,

and differences in Total Cholesterol were significant for M_HTN (p = 0.003) and M_noHTN

(p = 0.009) only.

Table 2 shows medians and 25th-75th percentile range of the changes (Eq (3)) for each con-

trollable biomarker in the four different groups of patients. Concerning females, the changes

in 4 out of 7 controllable biomarkers were significantly different between hypertensive and

non-hypertensive patients (FBS, sBP, BMI, TG: p<0.001). Concerning males, 2 out of 7

Fig 3. Classification regions obtained with Canonical TC-SVDD and TC-SVDD with FNR reduction. Visualization of

classification regions obtained with Canonical TC-SVDD and TC-SVDD with FNR reduction (TC − SVDDred) in the plane

FBS-sBP with two examples of factuals (black circle markers) and related counterfactuals (black cross markers).

https://doi.org/10.1371/journal.pone.0272825.g003
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controllable biomarkers were significantly different between hypertensive and non-hyperten-

sive patients (FBS, sBP: p<0.001).

Expert assessment

The group of respondents included 7 clinicians with a diverse range of professional back-

grounds: primary care (2), endocrinology, surgery, health informatics, emergency medicine,

and dermatology. The survey took on average 29 minutes to complete.

As concerns the first section, all the surveyed experts reported some degree of experience

with AI (2 minimal, 2 basic, 3 adequate). The impact AI will have on medical decisions in the

coming years was rated as moderate or higher (2 moderate, 3 major, 2 important). Experts had

varying opinions on whether an AI-based medical decision support system capable of provid-

ing quantitative explanations (through XAI) could be considered fully trustable. Specifically, 1

expert strongly disagreed, 3 were neutral and 3 moderately agreed.

The risk evaluation section dealt with the assessment of the patient risk, given a set of bio-

markers. Two examples of questions are shown in Table 3. The patient described in EX1 is a

female individual, 84 years old, whose FBS is above the clinical prediabetes threshold (i.e., 5.6

mmol/L [1]). The BMI value is in the overweight range (i.e., 25� BMI <30). This patient will

actually develop diabetes in a year. In this first example, 4 experts rated the patient as having a

minor risk, 2 as moderate risk, and 1 as major risk. The majority of the experts claimed to be

confident about their evaluation (1 Somewhat confident; 4 Fairly confident). The values

reported in EX2 are related to a 56-year-old male patient whose FBS is below the prediabetes

threshold. All the other biomarkers are quite similar to those of EX1. This subject will not

develop diabetes in a year. In this second example, 1 expert rated the patient as no risk, 3 as

minor risk, and 3 as moderate risk.

The counterfactuals evaluation section of the survey dealt with the assessment of some

examples of highT2DM patients (factuals) and the corresponding target changes in biomarkers

proposed by the algorithm in order to reduce the risk. Two examples of this kind of questions

are shown in Table 4 where two factuals (F1 and F2) and their counterfactuals (C1 and C2) are

Table 2. Change in biomarkers derived from the counterfactuals generated by TC − SVDDred, in four different group of patients: Median (25th percentile; 75th

percentile).

FBS

[mmol/L]

sBP

[mmHg]

BMI

[kg/m2]

HDL

[mmol/L]

LDL

[mmol/L]

TG

[mmol/L]

Total Chol

[mmol/L]

F_HTN -1.25

(-1.74; -0.51)

-4.90

(-15.06; 0.86)

-5.26

(-9.29; 0.48)

0.41

(-0.22; 0.85)

-0.24

(-0.81; 0.31)

-0.49

(-1.10; 0.28)

-0.39

(-1.17; 0.6)

F_noHTN -0.50

(-1.05; 0.13)

-1.19

(-5.41; 2.82)

0.05

(-3.64; 3.08)

0.22

(-0.34; 0.77)

-0.26

(-1.08; 0.57)

0.14

(-0.43; 0.81)

0.04

(-0.90; 0.68)

M_HTN -1.31

(-1.92; -0.70)

-7.5

(-15.59; 0.08)

-2.20

(-7.05; 1.46)

0.68

(0.09; 1.17)

0.10

(-0.79; 0.77)

-0.24

(-0.83; 0.31)

0.52

(-0.43; 1.24)

M_noHTN -0.80

(-1.41; -0.21)

-2.43

(-9.56; 1.37)

-1.98

(-5.12; 1.35)

0.76

(0.17; 1.26)

0.06

(-0.75; 0.75)

-0.23

(-0.91; 0.35)

0.13

(-0.58; 1.07)

https://doi.org/10.1371/journal.pone.0272825.t002

Table 3. Risk evaluation: Examples of subjects at high (EX1) and low risk (EX2) of developing T2DM.

Gender Age FBS

[mmol/L]

BMI

[kg/m2]

sBP

[mmHg]

LDL

[mmol/L]

HDL

[mmol/L]

TG

[mmol/L]

Total Chol

[mmol/L]

HTN

EX1: highT2DM Female 84 6 27 124 2.6 2.1 1.3 4.7 No

EX2: lowT2DM Male 56 4.7 27.4 126.5 3.2 1.1 0.9 4.8 No

https://doi.org/10.1371/journal.pone.0272825.t003
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reported. These factual-counterfactual pairs are the same shown in Fig 3 in the FBS-sBP plane.

F1 represents a 63-year-old female patient with hypertension, with FBS above the prediabetes

threshold, and slightly elevated BMI (i.e., overweight class). LDL is near the desired range (i.e.,

optimal if LDL <2.6 mmol/L), HDL is acceptable (i.e., optimal if HDL >1.3 mmol/L in

women), TG and Total Cholesterol are in the desired range (i.e., TG <1.7 mmol/L and Total

Cholesterol <5.18 mmol/L) according to general guidelines [36]. The algorithm proposes to

lower the risk of developing T2DM by targeting the values in C1, namely by reducing FBS,

BMI, sBP, TG and Total Cholesterol by keeping the LDL and TG levels almost constant. All

the experts agreed that the proposed target values are reasonable to obtain a risk reduction

when focusing on T2DM (i.e., 5 Moderately agree; 2 Strongly agree).

F2 represents a 55-year-old male patient living with hypertension, with FBS slightly above

the prediabetes threshold and very high BMI (i.e., in the severe obesity range). LDL is near

optimal, HDL is optimal (i.e., optimal if HDL>1.0 mmol/L in men), TG and Total Cholesterol

are above the desired range. The algorithm proposes to lower the risk of developing T2DM by

targeting the values in C2, namely by reducing FBS, BMI, sBP and TG while keeping the other

values almost constant. In this case, experts expressed different opinions about the proposed

risk reduction strategy (i.e., 3 Moderately disagree; 2 Moderately agree; 2 Strongly agree).

After counterfactuals evaluation, experts were asked to specify which biomarkers were the

the most relevant for their assessments (multiple responses were permitted). The following

biomarkers were identified as relevant, ordered based on the number of experts who selected

them: BMI (7/7), FBS (5/7), Diagnosis of hypertension (3/7), HDL and TG (2/7), sBP and LDL

(1/7), Total Cholesterol (0/7).

Expert responses regarding relevant features are largely aligned with the feature ranking

obtained by applying the rule based description of the TC-SVDD (following [27]). Specifically,

BMI, sBP, FBS, HDL, and diagnosis of Hypertension were the most relevant, whereas TG,

Total Cholesterol, LDL were the least relevant.

Comparison with state-of-the-art techniques

Fig 4 represents individual explanations for the prediction of F1 (left panel) and F2 (right

panel) in terms of SHAP values. This waterfall representation shows the positive or negative

contribution of each feature in determining the output. Features are ordered according to

their relevance, from the most relevant (top) to the least relevant (bottom). The SHAP analysis

of patient F1 shows that the majority of the features have a positive contribution to the final

prediction probability (highT2DM class), with the presence of hypertension being the most

important. The high value of FBS is also crucial for the prediction, whereas BMI contributes in

a slightly negative way as it lowers the output probability. Similarly, when considering patient

F2, most of the features have a positive contribution towards the probability of highT2DM clas-

sification. In particular, the most relevant features are presence of hypertension, BMI, FBS and

TG. SHAP values related to different individual explanations can be combined to get a com-

prehensive view of the features contribution over the whole set of data, as shown in Fig 5. This

Table 4. Counterfactuals evaluation: Examples of subjects at high risk of developing T2DM (factuals, F1 and F2) and corresponding counterfactuals (C1 and C2).

Gender Age FBS [mmol/L] BMI [kg/m2] sBP [mmHg] LDL [mmol/L] HDL [mmol/L] TG [mmol/L] Total Chol [mmol/L] HTN

F1: highT2DM Female 63 6.2 28.7 133 3.1 1.1 1.5 4.9 Yes

C1: lowT2DM 4.5 25 114 3.0 0.8 0.4 3.8

F2: highT2DM Male 55 5.8 44.1 157 3.0 1.2 2.3 5.9 Yes

C2: lowT2DM 5 40 134 3.0 1.2 2.0 6.2

https://doi.org/10.1371/journal.pone.0272825.t004
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plot provides indications about the relationship between feature values and model output. Spe-

cifically, a higher probability to be in the highT2DM class is associated with high FBS, BMI,

TG, LDL and Total Cholesterol, low HDL, and the presence of hypertension. The marginal

contribution of Sex is almost negligible since the absolute SHAP value is always lower than

0.05.

Fig 4. SHAP waterfall plots for individual predictions. Waterfall visualization of SHAP values related to factuals F1 (left panel) and F2 (right panel).

Red bar: positive contribution; blue bar: negative contribution. E[f(X)]: baseline expected output; f(X): output predicted by the model. Features are

ordered by importance.

https://doi.org/10.1371/journal.pone.0272825.g004

Fig 5. SHAP summary plot. Each point in the plot represents the SHAP value for a feature in an individual record of the dataset. The

color represents the feature value from high (red) to low (blue). Features are ordered by importance.

https://doi.org/10.1371/journal.pone.0272825.g005
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By using DiCE as counterfactuals generation technique on the same set of 734 factuals, only

454 counterfactuals were found (availability = 62%). A not negligible portion of the factuals

(i.e., about 20%) were misclassified by the Random Forest algorithm, therefore yielding to

invalid counterfactuals. The discriminative power was high (average accuracy = 94%), whereas

the similarity was equal, on average, to 16.2% of the maximum distance in the standardized

features space (C.I.: 0%—32%).

Discussion

The field of XAI has grown steadily in recent years, including applications in disease character-

ization and prediction. However, there is still lack of transparent approaches to generate per-

sonalized recommendations for T2DM prevention. This study addresses this research gap by

introducing a new approach based on counterfactual explanations to quantify, in a personal-

ized way, the minimum viable changes needed to improve a patient’s health status.

In this article, a TC-SVDD was trained and tested on a set of routinely collected biomarkers

representing patients at high and low risk of developing T2DM, achieving a specificity of 91%

and a sensitivity of 60%. It should be noted that, in this study, we focused on maximizing the

ability to characterize the region where to identify counterfactuals (i.e., specificity and negative

predictive value of the lowT2DM region) rather than on maximizing sensitivity as the class of

the factuals was known by definition. Sensitivity may be increased in future studies by consid-

ering larger datasets and more specific biomarkers in addition to the primary care measures

here used. The observed classification performance is in line with that of other predictive

methods for T2DM available from the literature (i.e., sensitivity = 81%, 95% C.I.: 67%-90%;

specificity = 82%, 95% C.I.: 74%-88% [3]). However, existing methods are typically able to pro-

vide general global recommendations that are not tailored to the individual patient’s character-

istics, whereas the proposed approach defines personalized recommendations aimed at

lowering the individual risk of developing T2DM on an individual basis.

Counterfactuals generation and analysis

As described in the diagram shown in Fig 1, two different versions of the TC-SVDD were

implemented. The canonical TC-SVDD provides very good results in defining regions that

accurately enclose data points [17, 23, 27], whereas the TC − SVDDred enables identification of

more conservative minimum viable changes to lower the risk of developing T2DM because it

identifies a smaller, but more reliable, target region for the lowT2DM class (FNR = 9% on the

test set).

The distributions of the biomarkers changes suggested by the two versions of TC-SVDD

have been investigated in four groups of patients, subdivided based on sex (male/female) and

diagnosis of HTN (presence/absence) (Fig 2). Results have shown that TC − SVDDred allows

for more noticeable changes for almost all biomarkers (including for example sBP and BMI, as

shown in Fig 2), for three out of four patient groups (i.e., F_HTN, M_HTN, and M_noHTN).

More pronounced differences are observed when considering hypertensive patients (both

females and males) with respect to non-hypertensives. Hence, counterfactuals generated from

S2_red turn out to be potentially more viable for generating possible recommendations than

those generated from S2. For example, to lower the risk of developing T2DM, patient F1

shown in Fig 1 should achieve lower FBS and sBP values with both canonical TC-SVDD and

TC − SVDDred, but the changes targeted by the latter are greater and presumably move the

patient in a state that is further away from developing the disease compared to those targeted

by the classical version of the classifier. Similar considerations can be made for patient F2, as

shown in Fig 1.
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A deeper analysis of counterfactuals generated using TC − SVDDred showed that, in general,

patients of all the four groups are, on average, suggested to reduce FBS, sBP and TG and

increase HDL by an amount substantially different than 0 (Table 2). These changes relate to a

global improvement in biomarker values. The demand to lower TG and increase HDL may

coincide with the fact that a large number of T2DM patients suffer from dyslipidemia (abnor-

malities in lipid levels), notably characterized by elevated TG and LDL and reduced HDL, that

may occur before the onset of the disease [25]. Moreover, the treatment of this condition may

reduce the risk of developing cardiovascular disease which is the main cause of mortality in

patients with T2DM [26]. Moreover, hypertensive patients are generally required to change

their biomarkers to a greater extent than non-hypertensive patients. Specifically, as expected,

HTN patients are asked to reduce their sBP values by a greater amount (i.e., median changes of

about 5 mmHg for female patients and 7.5 mmHg for male patients) with respect to noHTN
patients. In addition, also a greater reduction in FBS (i.e., median changes of about 1.25 mmol/

L for female patients and 1.31 mmol/L for males patients) is required for HTN patients with

respect to noHTN ones, suggesting a longitudinal connection between blood pressure values

and T2DM [37] and highlighting the importance of keeping both blood pressure and blood

glucose under control in order to reduce T2DM risk [1]. Considering the female groups,

greater reductions in BMI and TG values were also found in hypertensives vs non-hyperten-

sives patients. A possible future application of the proposed methodology may be the follow-

ing: a patient goes to the primary care physician and all the necessary biomarkers are routinely

measured and recorded into the EMR. The set of input features is fed to the previously trained

TC − SVDDred. If the patient is classified in the highT2DM region, its counterfactual is gener-

ated and the doctor, based on medical expertise, may recommend a specific, individualized

prevention strategy to target the proposed target values and reduce the T2DM risk. Several

encounters may be scheduled to monitor the evolution of patient’s biomarkers in time until

the patient is finally and effctively classified as lowT2DM by the TC − SVDDred.

One of the advantages of the proposed approach compared to global prediction models is

that the counterfactual generation method takes into account all the controllable features for

each real patient whereas global rule-sets derived from classic fully interpretable ML algo-

rithms may involve only a subset of features, i.e. those that are representative of a sufficiently

large part of the population, to limit overfitting. For example, a hypothetical rule-based model

may classify patients in the highT2DM class if their age and blood pressure are above certain

cutoffs. However, there may be specific patients with high age and high blood pressure that

actually belong to the lowT2DM class because of the values of other features that are not taken

into account by the main decision rules determined by the algorithm. Thus, the personalized

approach presented in this study may provide a higher degree of flexibility and personalization

as it allows us to identify (and therefore act) on specific features that are relevant for the indi-

vidual case and to potentially apply tailored interventions.

When implementing new medical decision support methods, continuous interaction with

the end users i.e., clinicians, is of paramount importance. For this reason, to gain a deeper

insight into the feasibility and applicability of the proposed method, feedback from experts

was collected in the form of an online survey.

To gather information regarding how medical experts evaluate the risk of T2DM given a

pretty restricted set of routinely collected biomarkers, a risk assessment section was introduced

in the survey. In this section, examples of subjects with the corresponding biomarkers were

proposed, without making explicit whether or not these subjects will develop T2DM in one

year (i.e., their “real” output class). Two of these examples are reported in Table 3 and briefly

discussed below.
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Surprisingly, EX1 was rated by the interviewed experts as having minor risk of developing

T2DM with a pretty high confidence level despite having FBS higher than prediabetes thresh-

old. Actually, EX1 is an example of instance belonging to highT2DM class. Presumably, this

low rating is due to two main reasons. First, BMI is not too high and there may be lack of

meaningful additional information like A1c, family history and exercise level. Second, assess-

ing clinical risk is a task characterized by some degree of uncertainty due to the fact that there

is a natural overlap between classes and lowT2DM and highT2DM patients cannot always be

perfectly distinguished, especially when considering a limited set of features.

EX2 was coherently evaluated by clinicians based on what was stated for EX1. Indeed, EX2

is younger and his FBS is lower with respect to EX1 whereas BMI and Total Cholesterol values

are comparable between the two patients and, because of this, EX2 risk was rated as lower or

equal, compared with EX1, by 6 of 7 clinicians.

More generally, when experts were asked to assess the risk of patients, some variability in

responses was observed. The heterogeneity characterizing the evaluations is also evident in the

remaining survey responses, which are not explicitly reported in the “Results” section.

General questions regarding prior experience with AI and its perceived importance in the

medical field were also included in the survey. As one might expect, the surveyed clinicians

foresee that AI techniques will play a not negligible role in medicine in the upcoming years

because of their many possible applications in supporting diagnosis, prognosis, prevention

and management of diseases. However, the ability of these techniques to provide quantitative

explanations is not enough to make the decision support system fully trustable. In this regard,

several other requirements must be considered to implement Trustworthy AI solutions (e.g.,

[13, 14]) and decrease the skepticism that stakeholders (i.e., clinicians and patients) may have

toward systems that can make decisions on their own.

To evaluate examples of target values derived from minimum viable changes in biomarkers,

factual-counterfactual pairs were also included in the survey. Two out of five examples pro-

posed to the experts are reported in the Results section (Table 4). All the experts agreed with

the target values proposed to reduce the T2DM risk of patient F1 as the target goals were con-

sidered reasonable. In particular, lowering FBS was considered as a very important mecha-

nism. The treatments proposed to achieve these goals included moderate healthy diet and

regular exercise. In some cases, however, lowering T2DM risk may not be the priority for the

clinician when looking at the biomarkers. For example, a very high LDL value may suggest

high cardiovascular risk for the patient under examination. In this case, it could be more

important to act on LDL reduction with respect to other features more associated with T2DM

(e.g., FBS), as the presence of cardiovascular risk may lead to potential life-critical situations

(e.g., miocardial infarction or stroke). Hence, future studies may propose a set of different

counterfactuals for each patient generated according to different categories of risk.

The surveyed experts were in general agreement also with the values proposed to lower the

risk of patient F2, since the targets to be achieved point towards the right direction with regard

to risk reduction (i.e., lower FBS, sBP and BMI). However, in this case the respondents were

particularly skeptical with concern to the BMI value. In fact, patient F2, who is severely obese

according his BMI value (i.e., class 3 obesity), is asked for a reduction of 4kg/m2 which is

judged too small and therefore ineffective in reducing T2DM risk. It is important to note that

the proposed reduction still involves a 9% change in BMI, and furthermore, what we are aim-

ing for is to find minimum viable changes that can be implemented in a relatively short time

and not drastic changes. Nevertheless, it will be crucial in the future to introduce medical

guidelines in the generation of counterfactuals, to be followed (when feasible) to achieve clini-

cally sufficient changes.
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When experts were asked to select the most significant biomarkers for their assessments,

BMI and FBS were found to be the most relevant. Notably, FBS was not chosen by all respon-

dents perhaps because it is subject to more day to day fluctuations than BMI, which is a well-

known primary risk factor for T2DM and was considered more stable. In addition, FBS value

might be more affected by external factors with respect to other correlated diagnostic markers

like for example glycosylated hemoglobin (HbA1c). It should be emphasized that the experts

responded based on the assessments proposed in the survey, so the obtained result is specific

and may depend on the provided examples.

The majority of the respondents evaluated the proposed counterfactuals as realistic (4) and/

or consistent (2). Skepticism is mostly due to the fact that the proposed target values may not

be applicable to everyone. Indeed, patients with restricted mobility may not be able to exercise

to achieve the necessary targets. Moreover, also patients stuck on a particular diet, may not be

able to achieve the clinical goal. Metformin may be prescribed for T2DM prevention to lower

FBS level and therefore contrast hyperglycemia by targeting the proposed values when lifestyle

changes are not considered sufficient, however this medicine is not suitable for all people.

Indeed, its prescription is not advised when the patient has liver or kidney diseases or if the

patient has heart failure. Therefore, we need to have access to more information about the

patients and eventually define a set of patients for which this kind of AI-supported strategy is

applicable. This may lead to possible ethical biases in contrast with EU requirements for trust-

worthy AI (e.g., Diversity, non-discrimination and fairness requirement [13]).

For this reason, it should not be the automated medical decision support system to choose

if the method is applicable but it is up to the clinicians employing the tool to choose whether

or not to apply the proposed strategy based on their own experience. In any case, the patients

keep the right to decide if they wish to proceed with the proposed prevention strategy.

We have compared the proposed method with different local XAI techniques. SHAP is a

very useful technique to study the effect of specific feature values in predicting a certain output.

As such, it may be used to identify relevant features for specific patients and indicate the

desired direction for change in controllable characteristics (e.g., decrease in FBS in F1,

decrease in BMI in F2) toward a reduced risk of developing T2DM. However, the SHAP tech-

nique is not able to directly provide quantitative personalized recommendations, in the form

of target values, as counterfactuals do. For example, looking at Fig 4 we can say that patient F1

should mainly lower her FBS value and cure hypertension to lower the risk of having T2DM.

Patient F2, in addition to cure hypertension and lower FBS of a smaller amount with respect to

F1, should also lower BMI and TG. Although these suggestions are helpful, the generation of

counterfactuals allows us to make a further step and define target biomarkers values that may

be used as a basis to make personalized therapeutic recommendations. Comparative analysis

of our method with respect to DiCE using the same set of 734 highT2DM patients showed that

DiCE was worse in terms of availability of counterfactuals (i.e., 62% vs 99%) and in terms of

similarity, as the average distance between factuals and counterfactuals was greater. The dis-

criminative power was 94% in both cases, proving the ability of both methods to distinguish

counterfactuals, that are ‘virtual’ lowT2DM patients, from real highT2DM patients. Based on

these analyses, we can conclude that our method is more suitable for the purpose of generating

minimum feasible changes.

Limitations

This study presents some limitations. The first one relates to the data sample. In particular, the

dataset considered includes a limited set of common primary care biomarkers which reflects

the characteristics of a specific population based in Canada and may not be generalizable to
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other populations. Another limitation of this study relates to the classification using

TC-SVDD. The optimization of the TC-SVDD was focused on the characterization of region

S2 based on retrospective data with known output labels. For this reason, specificity was maxi-

mized, at the expense of sensitivity, and factuals were selected among real highT2DM patients.

However, since in future we will deal with prospective data related to patients with unknown

risk, an accurate representation of S1 will be important to find patients with a predicted high

risk of developing T2DM (i.e., factuals). Therefore, a trade-off between these performance met-

rics must be found. Another limitation concerns the formulation of the survey. To avoid possi-

ble sources of bias and to ensure that responses were not guided in any way, the respondents

received minimal information with respect to the proposed method. Therefore, different

experts may have interpreted the questions differently. In addition, the questionnaire did not

specify the time frame in which patients should achieve the target values. Interviewed experts

often referred to larger changes to obtain a substantial risk reduction, not realistically achiev-

able with short-term treatments. Finally, in this preliminary study, only a reduced number of

counterfactuals were included in the survey to limit the completion time and the expert survey

did not include specific comparison of counterfactuals generated using the proposed method

with respect to DiCE.

Future developments

Starting from the previously discussed limitations, several potential research lines can be

explored in future studies. First of all, to achieve a more precise characterization of patients

and target biomarkers values, a larger set of input features should be considered, including

family history, medications, level of exercise, diet, alcohol consumption, cardiovascular risk

(e.g., Framingham score [38]), presence of comorbidities, and socio-economic status. More-

over, causal relationships between features should be investigated to asses causation beyond

association. It will be also necessary to validate the proposed method on patients from different

geographical areas using data from longitudinal datasets, like e.g., the English Longitudinal

Study of Ageing (ELSA) [39]. Further research will target the optimization of the TC-SVDD

through the choice of hyperparameters that can minimize unclassified points and improve

prediction performance. Currently, there is no standard metric to evaluate counterfactuals

from a computational perspective, although some measures have been proposed in the litera-

ture [15] and applied in this study. Future works may focus on the application and further

development of these metrics to compare our method with other existing techniques for coun-

terfactuals generation. As a further development, the structure of the survey could be refined

to limit possible biases, for instance by introducing a set of examples to help respondents

familiarize themselves with the questions and by specifying more clearly that the method

focuses on minimum viable changes. In the next studies, it will be also necessary to focus on a

more extensive human-based evaluation. Moreover, the risk reduction obtained by applying

counterfactuals should be evaluated also with respect to common clinical risk estimators such

as the Canadian Diabetes Risk Questionnaire (cANRISK) [40]. Finally, future developments

should take into account continuous interaction with a team of clinical experts to develop and

validate a platform able to generate realistic personalized strategies that aim at lowering T2DM

risk by targeting specific values.

Conclusion

To our knowledge, this is the first study in which an XAI framework based on counterfactual

explanations is specifically applied to reduce the risk of a chronic disease, based on personal-

ized minimum viable recommendations. As an added value, the methodology here introduced

PLOS ONE Individualized recommendations for type 2 diabetes prevention

PLOS ONE | https://doi.org/10.1371/journal.pone.0272825 November 17, 2022 21 / 24

https://doi.org/10.1371/journal.pone.0272825


has been compared to other solutions for the generation of local explanations and preliminar-

ily evaluated by experienced clinicians. Results showed that the proposed method performed

better than an alternative method for counterfactuals generation (i.e., DiCE) in terms of avail-

ability and similarity of counterfactuals. Moreover, changes in biomarkers recommended by

the proposed method were consistent with local XAI analysis using SHAP and with medical

knowledge, as suggested by the expert assessment and related literature. In principle, the pro-

posed approach is able to define regions with various levels of confidence associated with dif-

ferent FNR cut-off thresholds, that can be easily controlled by changing the radius of the S2

region. In future, it may be useful to search for a path of step-wise individualized minimal

changes in biomarkers’ values that may be readily achievable but at the same time enable pro-

gressive reduction of risk. This may be helpful to facilitate adherence to therapy which is an

imperative factor for the success of any prevention strategy. Further research will focus on the

examination of a larger set of modifiable risk factors in populations with different characteris-

tics and on more extensive evaluation of the explanations from both methodological and clini-

cal perspectives.
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