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Characterization of Synthetic Health Data Using Rule-Based Artificial
Intelligence Models
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Abstract— The aim of this study is to apply and characterize
eXplainable AI (XAI) to assess the quality of synthetic health data
generated using a data augmentation algorithm. In this exploratory
study, several synthetic datasets are generated using various
configurations of a conditional Generative Adversarial Network
(GAN) from a set of 156 observations related to adult hearing
screening. A rule-based native XAI algorithm, the Logic Learning
Machine, is used in combination with conventional utility metrics.
The classification performance in different conditions is assessed:
models trained and tested on synthetic data, models trained on
synthetic data and tested on real data, and models trained on real
data and tested on synthetic data. The rules extracted from real and
synthetic data are then compared using a rule similarity metric.
The results indicate that XAI may be used to assess the quality
of synthetic data by (i) the analysis of classification performance
and (ii) the analysis of the rules extracted on real and synthetic
data (number, covering, structure, cut-off values, and similarity).
These results suggest that XAI can be used in an original way
to assess synthetic health data and extract knowledge about the
mechanisms underlying the generated data.

Index Terms— data augmentation, eXplainable AI (XAI),
hearing screening, rule similarity, Generative Adversarial
Networks (GAN).

I. INTRODUCTION

The area of synthetic data generation is gaining growing attention
in healthcare. Generation of high-quality synthetic data can help
build realistic datasets that can be shared openly in the educational
and scientific community, for example to support the development
of predictive models of disease, averting issues related to patient
identification and data privacy that frequently limit the widespread
use of health data [1]–[4]. Data augmentation from patient monitoring
devices can help limit issues related to missing data, misuse, or lack
of compliance [5]–[7]. Synthetic data generation can help develop
large datasets from small ones as well as balanced datasets from
highly unbalanced ones, and it can help limit the costs of building
datasets from large cohorts of patients [8], [9]. The goal of data
augmentation algorithms is to create realistic and useful synthetic
data, namely preserving distributions, predictive capabilities, and
relationships [1], [9]. The field of data generation algorithms is still an
important area of research, however it is beyond the aims of this study
to develop and assess synthetic data generation techniques. Rather,
this study focused on introducing and characterizing novel metrics
to assess the quality of synthetic data. Several approaches have been
introduced in the literature, such as utility metrics derived from the
distributions (e.g., Maximum Mean Discrepancy (MMD), Hellinger
distance, Classifier Two Sample (C2S) metric), or measures based on
classification performance on real and generated data [10]–[14].
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Utility metrics and classification performance can give a general
picture of the quality of generated data but they provide limited
insight into the way input-output relationships are preserved in
synthetic data. EXplainable AI (XAI) techniques could help assess if,
and to what extent synthetic data maintain input-output relationships
similar to those found in real data [15], [16]. When dealing with
health data, XAI methods are particularly promising as they can help
healthcare experts enter the logic of the machine learning process and
extract knowledge about the mechanisms underlying the observed
phenomena in a meaningful and transparent way, so that synthetic
data can be validated against available knowledge [17], [18]. In a
preliminary study on data from a pilot experiment on respiratory
disease monitoring, we showed that conventional utility metrics are
able to anticipate XAI classification performance, being low utility
metrics associated with low classification performance of XAI models
trained on synthetic data and tested on real data [6]. However, the
ability of XAI to provide additional information about the logic
underlying synthetic health data has not been specifically investigated
so far. The aim of this study is to apply and characterize XAI-based
models and metrics as a means to assess the quality of synthetic
health data. The novel contributions here introduced consist of: XAI
evaluation of synthetic datasets in terms of feature relevance, visual
inspection of rules, and classification performance; and the definition
of a new rule similarity method to compare rule-based XAI models
trained on synthetic and real data.

II. DATASET

The example of health dataset assessed in this study includes
hearing screening data collected from a self-administered adaptive
speech-in-noise test for adult hearing screening in the context of
project WHISPER (Widespread Hearing Impairment Screening and
PrEvention of Risk) [19], [20]. Multivariate hearing screening data
are particularly useful as they can be used to develop machine
learning models able to identify individuals with hearing loss, there-
fore supporting widespread screening of this largely underdiagnosed
condition, that is currently the third leading cause of years lived
with disability worldwide [21], [22]. However, there is scarcity
of multivariate hearing screening data to build machine learning
models to predict hearing loss as, to date, screening outcomes are
typically determined on the basis of a single variable (e.g., the speech
recognition threshold, SRT, or the number/percentage of correct
responses) [23].

The WHISPER dataset includes 156 records related to eight input
features extracted from speech-in-noise testing and one output class,
that is the presence or absence of hearing loss in the tested ear, as
determined by the pure tone average (PTA), i.e. the average value of
pure-tone thresholds measured at 0.5, 1, 2, and 4 kHz. The output
class is defined following the World Health Organization (WHO)
definition of slight/mild hearing impairment, in force until Feb 28,
2021 [24]: hearing loss (“HL”, PTA > 25 dB HL: 55 records) and
no hearing loss (“no HL”, PTA ≤ 25 dB HL; 101 records). The
input features extracted upon completion of the speech-in-noise test
comprise: subject’s age, SRT, measured in dB signal-to-noise ratio;
#trials, i.e. number of presented stimuli; #correct, i.e. number of
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Fig. 1. Scheme of a conditional GAN describing an adversarial learning
game between a generator G and a discriminator D.

correct responses; %correct, i.e. percentage of correct responses; avg
reaction time, i.e. average time needed to provide a response; total
test time, i.e. total time needed to complete the test; and volume,
i.e. self-adjusted volume set by the participant before taking the test,
computed on a range from 0 to 1. The experimental protocol was
approved by the Politecnico di Milano Research Ethical Committee
(Opinion n. 2/2019, Feb 19 2019).

III. GENERATION OF SYNTHETIC DATA

In this study, synthetic data are generated using Generative Adver-
sarial Networks (GAN) [25], a deep learning approach able to reach
remarkable performance in generating high-quality synthetic data, for
example in the field of images [26], biosignals [27], [28], and time
series from patient monitoring devices [6]. A GAN comprises two
neural networks: a generator (G) for generating fake but realistic data
x′, and a discriminator (D) for distinguishing whether the generated
data are real or fake. Learning is achieved by an adversarial game
between G and D: G uses the encoder-decoder scheme to build
synthetic data, whereas D infers the separation between real and
synthetic data. Therefore, D learns to become better at distinguishing
real from synthetic data and G learns to generate better data to fool
the discriminator [25]. In this study, a conditional GAN [29], [30]
is implemented (see Fig. 1), i.e. a GAN in which G and D are
conditioned during training by using output class labels in a way
that G learns to produce realistic examples for each label in the
training set starting from random noise, and D learns to distinguish
fake example-label pairs (x′, y′) from real example-label pairs (x, y).
A set of balanced synthetic datasets are generated by varying different
GAN parameters, namely the number of nodes per layer in G and D
networks, the batch size, and the number of epochs, as follows:

1) G nodes: 128, 64, 32, 1; D nodes: 32, 64, 128; Batch size: 64.
2) G nodes: 64, 32, 16, 1; D nodes: 16, 32, 64; Batch size: 32.
3) G nodes: 64, 32, 16, 1; D nodes: 16, 32, 64; Batch size: 64.

For each of these three configurations, the number of epochs is set
at five different values: 10000, 15000, 20000, 25000, and 30000, to
obtain a total of 15 different synthetic datasets.

IV. ASSESSMENT OF SYNTHETIC DATA USING
UTILITY METRICS

To monitor the quality of the GAN generation process, we use a
combination of the following measures: MMD, C2S metric, Hellinger
Distance (HD) and Pairwise Correlation Difference (PCD) [10].

The MMD metric is a measure of dissimilarity between two
probability distributions P and Q that uses samples drawn indepen-
dently from each of them [10]. Given a kernel k and its associated
Reproducing Kernel Hilbert Space (RKHS) Hk of functions defined
on a set X , the distance between the two probability distributions
P and Q in the original space is converted into a distance between

their relative mean embeddings of features in the space Hk [31].
A statistical hypothesis test is introduced to test the null hypothesis
H0 : P = Q versus the alternate hypothesis H1 : P ̸= Q [31].
The test statistic is compared to a threshold which depends on the
probability P and K and is selected based on the chosen α level. In
this study, a Gaussian radial basis function kernel (rbf) is chosen for
the MMD statistical test.

The C2S metric uses a machine learning classifier to assess whether
two samples are drawn from the same distribution [10], [32], [33].
The C2S metric computation comprises the following steps:

1) A dataset D is built by combining the real samples as 0 and
the synthetic samples as 1;

2) The dataset is randomly split into two disjoint training and
testing subsets (Dtrain and Dtest, respectively);

3) A binary classifier (e.g., logistic regression) is trained on
Dtrain and the C2S metric is defined as the classification
accuracy of this classifier computed on Dtest.

Hence, the higher the C2S metric (i.e., the accuracy), the more
likely the two distributions are different, whereas for samples drawn
from the same distribution the accuracy should remain near chance-
level. To maintain class balance between real and generated data,
the MMD and C2S metrics are computed using the same number
of samples as in the original dataset and then averaged across 10
random realizations of the sampled subsets.

The HD [14] is a utility metric related to the Bhattacharyya
coefficient-based measure that evaluates the distance between two
probability distributions in their original space. This metrics ranges
from 0 (i.e., identical distributions) to 1 (i.e., totally dissimilar
distributions). The HD has been derived in this study starting from
the probability density functions of the datasets to be compared.

Finally, PCD [12] was evaluated to investigate if synthetic datasets
were able to retain the correlations among features that characterize
the original distribution. The PCD between a real and a synthetic
dataset is defined as the Frobenius norm of the difference of the
correlation matrices extracted from the two datasets to be compared.
The lower the PCD, the greater the similarity between the correlations
in the original dataset and those in the synthetic dataset.

V. ASSESSMENT OF SYNTHETIC DATA USING
XAI

Among the various XAI techniques available, in this study we
used the Logic Learning Machine (LLM), a technique able to
generate transparent models whose inner logic could be described
using a set of n intelligible rules, in the form if (premise) then
(consequence), where premise is a logical product of m conditions
cj , and consequence provides a class assignment for the output y

[34], [35]1. Let x1, ..., xn be the input features, each defined in a
specific domain. Then, a condition involving the variable xj , can
have one of the following forms: xj > λ, xj ≤ µ, λ < xj ≤ µ,
being λ, µ values belonging to the feature’s domain. The classification
uncertainty associated with a rule R(i) is described by the measures
of covering and error shown in (1) and (2):

Covering : C(R(i)) =
TP (R(i))

TP (R(i)) + FN(R(i))
(1)

Error : E(R(i)) =
FP (R(i))

FP (R(i)) + TN(R(i))
(2)

where TP (R(i)), FP (R(i)), TN(R(i)), and FN(R(i)) are the true
positives, false positives, true negatives, and false negatives associated

1The Rulex platform, www.rulex.ai, is used as it contains a big data
implementation of the LLM.
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with the rule R(i). Feature relevance is derived from (1) and (2). In
order to obtain the relevance Rel(cj) of a condition, we compare the
rule R, in which condition cj occurs, and the same rule without that
condition, called R′. Since the premise part of R′ is less stringent, we
obtain that E(R′) ≥ E(R), thus the quantity Rel(cj) = (E(R′)−
E(R))C(R) indicates the relevance for the condition of interest and,
therefore, for the feature involved in that condition.

A. Analysis of classification performance
The real and synthetic datasets were randomly split into training

and test sets by applying stratification. The classification performance
was addressed by computing sensitivity, specificity, and F1-score in
LLM models deployed with the following combinations of training
(Tr) and test (Te) sets:

• Condition A (baseline): TrR = training set from real dataset
(80%), TeR = test set from real dataset (20%)

• Condition B: TrS = training set from synthetic dataset (80%),
TeS = test set from synthetic dataset (20%);

• Condition C: TrS = training set from synthetic dataset (80%),
TeR = test set is the whole real dataset ;

• Condition D: TrR = training set from real dataset (80%), TeS =
test set is the whole synthetic dataset.

A cross-classification (CC) measure [12] was introduced to summa-
rize the similarity between real and synthetic datasets in terms of
classification performance. Two CCs were computed as the ratio of
the accuracy in conditions C and D to the accuracy in condition A.

B. Analysis of similarity between rules
A measure of similarity between rules is introduced, based on the

cosine similarity between Bag of Words (BOW) [36] representations
of the set of rules extracted from real and synthetic datasets. BOW is a
widely used text representation approach (e.g., [37], [38]) where a text
is decomposed into a matrix of words and their relative frequencies.
In a preliminary study [39], a BOW-based metric was introduced to
individually compare rules from different classes of the same dataset
and rule sets referring to stratifications (e.g., different age groups) of
the same phenomenon. In this study, we further elaborated this metric
by considering the difference in covering between different rules and
introducing a global similarity metric that, based on the similarity
between pairs of rules, provides an estimate of similarity between rule
sets, i.e., between the models that describe the underlying data. Each
rule R(i), associated to the output class y, can be defined by a set of
m conditions, each described by a word w (i.e., the combination of
the feature name and direction of the inequality sign) and the related
cut-off value t as shown in [35].

R(i) = if
{
cj
}m
j=1

then y, y ∈ [0, 1] (3)

cj = (wj(i), t(i)) (4)

Two rules can be considered similar when their conditions share the
same structure (i.e., same feature and same direction) and similar
cut-off values [40]. In the specific case of classification rules, there
can be at maximum one condition for each feature (i.e., a word can
be present only once in the rule), so the related cells of the BOW
matrix contain binary values (1 if the word is present and 0 if the
word is not present). For each word, an additional column is added
to account for the cut-off value, normalized between 0 and 1 based
on the theoretical lowest and highest possible values of the feature.

Once the BOW matrix is created for both rulesets to be compared,
cosine similarity is applied to all the combination of couples of rules{
Rreal(ir)

mr
ir=1, Rsynthetic(is)

ms
is=1

}
, divided by class, to obtain a

measure of similarity between rules S′
rs. Cosine similarity is a widely

used text similarity measure, often combined with BOW representa-
tion (e.g., [41]), that measures the similarity between two vectors
in terms of the cosine of the angle in between. To compute rule
similarity, only rules with covering higher than 15% are considered,
as rules with lower covering are representative of only a few input
data and therefore may be subject to greater variability due to the
choice of training and test partitions, especially in small datasets
like the one here used. Intuitively, if the real and synthetic datasets
are similar, their rules should be similar in terms of structure and
covering. Hence, the difference in covering between rules extracted
from real and synthetic data is introduced as a weighting factor in
the computation of rule similarity. Therefore, the resulting similarity
metric is:

Srs = S′
rs ∗

(
1−

∣∣C(Rreal(ir))− C(Rsynthetic(is))
∣∣) (5)

where C(Rreal(ir)) and C(Rsynthetic(is) are the covering of the
real rule and of the synthetic one, respectively2 A global similarity
metric between rulesets Gx is defined as the ratio of the number
of real-synthetic rule pairs nx with similarity greater than a pre-
determined threshold value x (i.e, 0.6 in this study) to the total
number of rules extracted from the real dataset mr .

VI. RESULTS

A. WHISPER dataset

Hold-out cross validation of LLM models using ten randomly
shuffled versions of the training and test set was performed to extract
feature relevance (as defined in SectionV). The most relevant features
are: age, #correct, SRT, %correct, and avg reaction time, (relevance:
age = 0.67 ± 0.07; #correct = 0.52 ± 0.21; SRT = 0.40 ± 0.22;
%correct= 0.22± 0.19; avg reaction time= 0.21± 0.17). Vice versa,
test volume, total test time, and number of trials do not contribute
substantially to the output class (relevance: volume = 0.03 ±0.03;
total test time = 0.10 ±0.07; #trials: 0.15 ±0.24).

For the sake of simplicity, a reduced version of the experimental
dataset including the three most relevant features (age, #correct,
SRT), and the output class is here used to assess the outcomes of
XAI on synthetic data and enable straightforward visualization and
interpretation of results. Table I shows the MMD, the related p-value,
the HD and the C2S metric as a function of the GAN settings for the
15 synthetically generated datasets. For the MMD and C2S metrics,
the mean and standard deviation (s.d.) are computed over 10 iterations
as described in Section III. The results in Table I suggest that the
synthetic datasets more similar to the real one in terms of MMD
(lower values, p-value > 0.05), HD (lower values e.g., < 0.40), and
C2S metrics (near chance level), are #8, #9, #13, and #15, however,
on the basis of the observed metrics, no straightforward indication
of the ’most similar’ synthetic dataset can be derived. The PCD was
calculated to assess whether the synthetic datasets are able to maintain
correlations between features that resemble those in the original
dataset. PCD values obtained for the datasets with better MMD,
C2S, and HD are very close to each other (i.e., PCD#8 = 1.01,
PCD#9 = 0.83, PCD#13 = 0.65, PCD#15 = 0.81). Moreover,
PCD values are better (i.e., smaller) in the datasets mentioned above
than in the synthetic datasets with worse values of MMD, C2S, and
HD (e.g., PCD#11 = 2.51).

1) Analysis of classification performance: The LLM model
trained on the WHISPER dataset includes 12 rules overall (7 for
“no HL”, average covering = 25.32%; 5 for “HL”, average covering
= 25.65%). The rule with highest covering for class “no HL”

2The Python code and exemplary rulesets are available open source:
https://github.com/lenattimarta/BOW_rule_similarity.

https://github.com/lenattimarta/BOW_rule_similarity
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TABLE I
MMD, HD AND C2S METRICS FOR THE SYNTHETICALLY GENERATED

DATASETS AS A FUNCTION OF THE GAN SETTINGS.

# #epochs
MMD metric HD C2S metric

mean± sd(x10−2) p-value mean mean± sd

1) G units: 128,64,32,1; D units:32,64,128; Batch size: 64

1 10000 6.33 ± 0.10 0.003 0.50 0.72 ± 0.05

2 15000 6.11 ± 0.10 0.033 0.46 0.69 ± 0.04

3 20000 5.52 ± 0.03 0.042 0.46 0.61 ± 0.05

4 25000 5.55 ± 0.10 0.095 0.40 0.60 ± 0.06

5 30000 9.50 ± 0.30 0.000 0.67 0.91 ± 0.02

2) G units: 64,32,16,1; D units: 16, 32, 64; Batch size: 32

6 10000 5.94 ± 0.10 0.177 0.46 0.75 ± 0.04

7 15000 6.32 ± 0.20 0.049 0.46 0.68 ± 0.07

8 20000 5.21 ± 0.10 0.950 0.38 0.51 ± 0.06

9 25000 5.40 ± 0.10 0.776 0.39 0.49 ± 0.04

10 30000 5.62 ± 0.10 0.254 0.41 0.62 ± 0.09

3) G units: 64,32,16,1; D units: 16, 32, 64; Batch size: 64

11 10000 6.77 ± 0.20 0.002 0.47 0.71 ± 0.07

12 15000 5.55 ± 0.10 0.116 0.40 0.59 ± 0.10

13 20000 5.15 ± 0.10 0.995 0.37 0.48 ± 0.04

14 25000 5.49 ± 0.10 0.155 0.40 0.55 ± 0.05

15 30000 5.28 ± 0.10 0.369 0.39 0.51 ± 0.03

(Rr,noHL1) indicates that subjects younger than 52 years are more
likely to have better hearing ability than older subjects, in line with
the well-known relationship between age and hearing loss [42]. The
second rule with highest covering for class “no HL” (Rr,noHL2)
indicates that subjects with a negative SRT (i.e., below -7.35 dB SNR)
who achieve good results in the speech-in-noise test (i.e., more than
96 stimuli correctly identified) will probably belong to the normal
hearing class. This rule synthesizes well the relationship between
speech recognition ability and hearing loss. Conversely, subjects with
a poor performance of speech recognition in noise (i.e., lower than 59
correct responses) as in Rr,HL1 will more likely suffer from hearing
loss [23], [43].

Fig. 2 shows the classification performance on the test set (sen-
sitivity, specificity, and F1-score) of the four synthetic datasets with
low MMD and HD (#8, #9, #13, and #15) and a synthetic dataset
with high MMD and HD (#11), as computed in the conditions A, B,
C, and D defined in Section V-A. The degree of overfitting in the
analyzed models was assessed by evaluating the difference between
training and test accuracy of the LLM models obtained with the four
different combinations of training and test set. The following mean
differences were calculated for the datasets considered: condition A
= 5.72% (sd=3.6%) (average difference in performance obtained with
5-fold-cross validation), condition B = 2.28% (sd=1.1%), condition
C = 11.17% (sd=1.8%), condition D = 12.43% (sd=4.8%). The
discrepancy between training and test performance is limited (i.e.,
lower than 13% on average), including conditions C and D in
which training and test portions are extracted from different datasets.
Overall, the test performance is satisfactory, with accuracy around
75%-80% in the models with lower classification performance, thus
demonstrating limited overfitting.

Generally, the performance metrics measured on the synthetic
datasets #8, #9, #13, and #15 are higher than those measured on
datasets #11, reflecting the well-known capability of the MMD to
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Fig. 2. Test classification performance in terms of sensitivity (top panel),
specificity (center panel), and F1-score (bottom panel) of five synthetic
datasets (#11: p-value MMD test <0.05; #8, #9, #13, #15: p-value MMD
test ≥ 0.05), with respect to the real classification performance.

discriminate between datasets that are significantly different from
the original one and datasets that are similar to the original one.
In condition B, the classification performance of models trained and
tested on synthetic datasets #8, #9, #13, and #15 is similar to or higher
than that of models trained and tested on real data (condition A).
Specifically, higher specificity and F1-score, and similar sensitivity
is observed. In condition C, i.e. the condition in which the capability
of synthetic models to be applied on real data is assessed, synthetic
models from datasets #8, #9, #13, and #15 maintain a similar
specificity and F1-score with respect to real data, but are characterized
by a slightly lower sensitivity, suggesting that models trained on
synthetic datasets are in general less able to detect the ‘HL’ class,
when applied on real data, compared to real models. In condition D,
i.e. the condition in which the capability of the real model to classify
synthetic data is evaluated, similar F1-score, higher specificity, and
a drop in sensitivity are observed compared to condition A. The
cross-classification based on test accuracy in condition C yields the
following results: CC#8 = 0.98, CC#9 = 0.97, CC#13 = 0.94,
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CC#15 = 0.96, CC#11 = 0.60. The cross-classification based
on the test accuracy in condition D yields the following results:
CC#8 = 0.86, CC#9 = 0.99, CC#13 = 0.95, CC#15 = 0.92,
CC#11 = 0.56. The classification performance is similar to the real
one (i.e., CC close to 1) for synthetic datasets with lower MMD,
HD and C2S, whereas classification performance is worse (i.e., CC
lower than 1) for the synthetic dataset with higher MMD, HD and
C2S metrics.

2) Analysis of similarity between rules: Table II shows the
rule similarity coefficients, as defined in (5), obtained by comparing
the LLM model trained on the real dataset with those trained on
the synthetic datasets #8, #9, #13, and #15, i.e. the ones that are
not significantly different from the real dataset, according to the
MMD, HD, and C2S metrics. A global metric of comparison between
rulesets Gx is shown in the last column, defined as the ratio of the
number of real-synthetic rule pairs with similarity greater than 0.6 to
the total number of rules extracted from the real dataset. For the sake
of clarity, only rules with covering higher than 15% are considered.
The rules are reported in full detail in Appendix I.

For most of the rules extracted from the real dataset there is at
least one rule with similarity greater than 0.3 in each of the four
synthetic datasets considered. It is worth noting that the rule similarity
measure here used considers the rule structure, the cut-off values and
the related covering, as defined in Section V-B. For example, from
each of the four synthetic datasets a rule in the form Age ≤ µAge is
observed, that is very similar to the one extracted from the real dataset
(Rr,noHL1: Age ≤ 52), but the resulting similarities are slightly
different, mainly due to differences in covering. The highest value
of rule similarity has been identified for the rule R15,noHL5 that is
similar to the real rule Rr,noHL3 (SRT ≤ −16.11; C: 21.74%) in
terms of both structure and covering (SRT ≤ −17.75; C: 26.37%).
Among the four synthetic datasets here assessed, #15 is the one with
the highest global similarity Gx.

Fig. 3 shows a visual overview of the rules extracted from the real
dataset, from the optimal dataset, i.e. the one with low MMD, HD
and C2S metrics and high rule similarity (#15), from a dataset with
low MMD, HD and C2S metrics but relatively low global similarity
(#9) and from a dataset with high MMD, HD and C2S metrics (#11).
The inner circular crowns represent the rules of each model in terms
of covering (outer diameter), error (inner diameter), and class (color)
whereas the outer slices represent the values of each of the three input
features in terms of class (color) and relevance (opacity). The rules
extracted from the synthetic datasets #15 and #9 are more similar to
the ones obtained from the real dataset in terms of number, covering,
and error compared to those extracted from the synthetic dataset #11,
that is associated with a higher number of rules, lower covering,
and higher error. In terms of value ranges associated with the two
output classes, as shown in the outer slices, the synthetic dataset
#15 shows a clear separation of the two classes for each of the three
input features (cut-off values: Age: 49 years; #correct: 65; SRT: -9.49
dB SNR), with cut-off values that are similar to those observed in
the real dataset (Age: 52 years; #correct: 64; SRT: -10.16 dB SNR).
The model trained on dataset #9 presents similar cut-off in terms of
#correct (i.e., 63), a clear, but higher, cut-off on age (i.e., 66), but
no clearly defined cut-off on SRT. Conversely, no clearly identifiable
cut-off values are found in the model trained on dataset #11 as the
features are distributed in a similar way between the two classes.

VII. DISCUSSION

Synthetic data generation may be of help in creating large, bal-
anced, de-identified medical datasets that can be used to train and val-
idate new AI algorithms to improve disease detection and prediction,

overcoming common problems in real-world clinical datasets such as
data scarcity and class imbalance [5]–[8]. Trustworthiness of medical
decisions supported by AI models becomes essential, especially when
the model has been built using synthetic or augmented data [44]. In
this context, XAI techniques may enable transparent data generation
and analysis, allowing the end user to understand the logic of the
model and decide whether to trust and validate its decisions.

In this exploratory study, we propose and characterize a framework
of XAI as a means to assess the quality of synthetic tabular data.
Specifically, a fully interpretable algorithm (the LLM) is used to gen-
erate rule-based models of the data in order to simultaneously assess
distributions, predictive capabilities, and relationships in synthetic
data by the analysis of the set of rules and the related classification
performances.

For a first characterization of the proposed approach, a dataset
including multivariate measures of hearing performance, with a single
record per subject (dataset WHISPER, 156 records) is considered.
This dataset was chosen as an example, but the proposed approach
is general and can be extended to different applications. Synthetic
data (1000 records) are generated from this real dataset by using a
conditional GAN and by systematically varying the number of G and
D nodes, the batch size, and the number of epochs.

A. Assessment of synthetic data using XAI
Datasets with significantly different values of MMD, HD, and C2S

metrics are characterized by different levels of quality. Vice versa,
when dealing with different synthetic datasets that exhibit similar
values of utility metrics such as the MMD, HD and C2S metrics
here used, quantitative analysis of XAI in terms of classification
performances and inspection of decision rules is helpful to assess
the similarity between synthetic and real data.

An example of application based on the WHISPER dataset in-
cluding a subset of the most relevant input features (i.e., SRT, age,
#correct), and output class is proposed in Section VI-A. Specifically,
four different datasets similar to the real dataset based on MMD (i.e.,
low MMD, from 5.13x10−2 to 5.40x10−2, p-value > 0.05) and HD
values (i.e., low HD, < 0.40) are compared in terms of classification
performance (Fig. 2). LLM models trained on the selected synthetic
datasets (#8, #9, #13, and #15) have, on average, slightly lower
sensitivity with respect to the LLM model trained on real data,
when tested on real data (condition C), thus they are generally less
able to detect the target output class. Vice versa, synthetic models
are on average better in identifying normal hearing subjects (i.e.,
higher specificity). All the LLM models trained on the selected
synthetic datasets maintain a satisfactory classification performance,
remarkably similar to the performance of the model trained on real
data, as demonstrated by the cross-classification metric.

B. Analysis of similarity between rules
In this study a rule similarity metric (5), defined as a combination

of similarity in rule structure, cut-off values, and covering, is intro-
duced to assess possible differences between the sets of rules that
characterize the models extracted from different synthetic datasets.
Rule similarity analysis highlights that the LLM model trained on
synthetic dataset #15 is described by rules that are closer to those
of the real model (i.e., higher Gx) , with respect to those of the
other candidate datasets (Table II). Rule visualization (Fig. 3) helps
intuitively appreciate the differences in LLM models trained on the
real dataset, the optimal synthetic dataset (#15 i.e., low MMD, HD
and C2S metrics, highest Gx), a suboptimal synthetic dataset (#9 i.e.,
low MMD, HD and C2S metrics, low Gx) and an example where
data generation process has not achieved the desired results (#11 i.e.,
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TABLE II
RULE SIMILARITY COEFFICIENTS OBTAINED COMPARING THE REAL DATASET WITH THE SYNTHETIC DATASETS #8, #9, #13, AND #15.

Synthetic
Real

Rr,noHL1 Rr,noHL2 Rr,noHL3 Rr,HL1 Rr,HL2 Rr,HL3 Rr,HL4 G0.6

#8 R8,noHL1 0.92 0 0 R8,HL1 0.38 0.3 0.37 0.20 3\7
R8,noHL2 0.44 0.66 0.32 R8,HL2 0.7 0.37 0.43 0.29

#9
R9,noHL1 0.64 0.25 0 R9,HL1 0.5 0.25 0.25 0.16

1\7R9,noHL2 0.93 0 0 R9,HL2 0 0.46 0.25 0.34
R9,noHL3 0.43 0.43 0.42

#13

R13,noHL1 0 0.84 0.41 R13,HL1 0 0.56 0.31 0.41

2\7R13,noHL2 0.90 0 0 R13,HL2 0.59 0.32 0.34 0.23
R13,noHL3 0.26 0.57 0.33 R13,HL3 0 0.58 0.39 0.54
R13,noHL4 0.28 0.44 0.38

#15

R15,noHL1 0 0.64 0.50 R15,HL1 0 0.39 0.37 0.28

5\7
R15,noHL2 0.87 0 0 R15,HL2 0.37 0.72 0.82 0.58
R15,noHL3 0.41 0.62 0.45
R15,noHL4 0 0.61 0.47
R15,noHL5 0 0.36 0.96

Fig. 3. Rule visualization for the real dataset and for the synthetic datasets #15, #9, and #11.

high MMD, HD and C2S metrics). As it can be noticed in Fig. 3,
the inner logic of the LLM model trained on dataset #15 resembles
that of the real one, by maintaining similar input-output relationships
and cut-off values. Moreover, the data augmentation process seems
to simplify the intrinsic behavior of certain variables, by cleaning
up some regions of uncertainty in classification. For example, the
model trained on synthetic dataset #15 amplifies the well-known
relationship between SRT and hearing loss and allows us to define
a cut-off at -9.49 dB SNR which is similar to the one suggested by
previous studies (e.g., [43]). As expected, the LLM model trained
on the synthetic dataset #11 (worse MMD and C2S metrics) has a
much higher number of rules, with lower average covering, different
structure and different cut-off values, than the one trained on the
real dataset. Rule similarity analysis provides additional information
about the quality of the datasets compared to statistical measures
derived from distributions (e.g., utility metrics like MMD, HD, and
C2S metrics) or from model testing (e.g., classification performance
in conditions B, C, and D). The synthetic datasets that pass the
MMD, HD, and C2S tests (#8, #9, #13, #15) are then filtered by
rule similarity, that confirms their quality as they all present one
or more rules with similarity higher than 0.3 when compared to
the real rules. However, for some of these datasets (e.g., dataset
#15) higher Gx is observed, suggesting a higher similarity to the
real dataset in terms of input-output relationships. Therefore, the
proposed rule similarity metric allows us to select a specific dataset,
within a set of good-quality datasets that are considered equally
similar in terms of utility metrics. For the computation of a global
metric of comparison between datasets, in this preliminary study rule

similarity has been considered as high when it exceeds 0.6, however
this value needs to be further validated. The proposed metric has
been applied to LLM models, but it is in principle applicable to other
native rule-based methods (e.g., Decision Trees) or black box models
made explainable by post-hoc XAI methods. For example, visual
inspection of partial dependence plots estimated from Random Forest
models trained on real and synthetic datasets shows that the averaged
partial dependence trends obtained from the synthetic datasets #15
and #9 are similar to the one obtained from the real dataset, and
their approximate cut-off values are similar to the cut-off values of
the rules as shown in Fig. 3. However, for partial dependence plots
and, more generally, for post-hoc XAI techniques, further processing
is needed to determine decision rules and further research in this
direction would be necessary. As common guidelines are still lacking
on the evaluation of synthetic data in healthcare, further research may
deal with a broader range of synthetic datasets, generated from other
real-world datasets, to determine their specific similarity thresholds.

C. Related literature

In the past few years, some studies have explored different ap-
proaches for the generation and subsequent analysis of synthetic
datasets in healthcare. Lu et al. [11] investigated the use of GANs
to produce privacy-preserving synthetic data to circumvent possible
privacy violation issues due to the release of publicly available
datasets containing sensitive or identifying information. Specifically,
correlation matrices were calculated to check whether the synthetic
data preserved the original pairwise correlations between variables,
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and the similarity between the synthetic and original data distributions
was assessed by evaluating the accuracy in a machine learning
classification task, by considering the same conditions A, B, and
C as described in Section V-A. In our study, we further expand the
approach, by assessing whether the model trained on the original
data is able to properly describe the synthetic data (condition D
in the analysis of classification performance, subsection V-A). A
recent study by El Emam et al [13] investigates the ability of a
variety of utility metrics in evaluating 30 different health datasets
and 3 different synthetic data generation methods including Bayesian
networks, GANs, and sequential tree synthesis. According to the
authors, the HD is the metric that best ranks the synthetic data gener-
ation methods based on prediction performance. Another interesting
example of synthetic data validation is the study by Goncalves et
al [12] that evaluates the quality of data generated from the cancer
registry data from the Surveillance Epidemiology and End Results
program of the US National Institutes of Health (NIH). Data were
generated using Bayesian Networks and GANs and a set of different
metrics were proposed, including utility metrics such as the Kullback-
Leibler divergence, pairwise correlation difference, log-cluster metric,
support coverage, as well as cross-classification (i.e., models trained
on the original data only and tested on hold-out data from both
original and generated data, and models trained on synthetic data
only and tested on hold-out data from both original and generated
data). However, even if a decision tree was used to compute the cross-
classification metrics, the study did not address the rules extracted
by the decision tree trained on the real and synthetic datasets. To our
knowledge, no study so far has evaluated the quality of synthetic
data by combining statistics, performance metrics and XAI-based
measures. The results of this study confirm the potential value of
XAI for assessing synthetic data qualitatively and quantitatively due
to its ability to drive inspection of rules, thus clarifying the intrinsic
mechanisms underlying the data.

VIII. CONCLUSION

This study demonstrates that XAI can provide additional insights
in evaluating the quality of synthetic data, beyond the use of con-
ventional utility metrics, in a hearing screening dataset. Specifically,
a global similarity metric was introduced to assess the quality of
synthetic data based on the similarity between the classification rule
sets extracted from real and synthetic datasets. This metric allows
for additional information about the synthetic dataset to be selected,
when utility metrics do not allow for clear ranking. Moreover, XAI
helps to highlight which input-output relationships are amplified in
synthetic data and which ones may be neglected. Among the several
XAI techniques available, the LLM was used in this study due to its
ability to generate fully interpretable, rule-based models. However,
future studies will be needed to investigate novel metrics based
on other XAI approaches, for example post-hoc XAI techniques
such as partial dependence plots or Shapley additive explanations.
Further research is needed to investigate other datasets, including
multivariate longitudinal data or time series from a large sample of
subjects or biomedical signals to assess the generalizability of the
proposed approach. Moreover, investigation of synthetic health data
generated using other data generation algorithms (e.g., probabilistic
models, classification-based imputation models, and different GAN
algorithms) will be important to test whether XAI-derived metrics
can be adapted to specific data generation algorithms and possibly
used to assess the quality of synthetic data in real time, during the
generation process. Providing real time feedback during the data
generation process is one of the most promising goals to pursue as it
could help improve the performance and efficiency of synthetic data
generation methods.

APPENDIX I
RULES FROM SYNTHETIC AND REAL WHISPER

DATASETS

Table III shows the rules with covering higher than 15% obtained
from the real dataset and from four out of 15 synthetic datasets ,
specifically the ones with better MMD (lower values, p-value > 0.05)
and HD (lower values, < 0.40), as shown in Table I. The results of
Table III are used to compute the coefficients shown in Table II
(Section VI-A).
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TABLE III
RULES WITH HIGHER COVERING EXTRACTED BY THE LLM FROM WHISPER DATASET AND FROM THE SYNTHETIC DATASETS #8, #9, #13, AND

#15, DIVIDED BY OUTPUT CLASSES: ‘NO HL’ AND ‘HL’

Data # Rule conditions C(%)

real

Rr,noHL1 Age ≤ 52 60.8

Rr,noHL2 (−18.82 < SRT ≤ −7.35) ∧ (#correct > 96) 46.8

Rr,noHL3 SRT ≤ −16.11 21.74

Rr,HL1 #correct ≤ 59 52.17

Rr,HL2 (−10.30 < SRT ≤ −0.24) ∧ (Age > 66) 36.96

Rr,HL3 (−15.46 < SRT ≤ 5.78) ∧ (47 < Age ≤ 74) ∧ (#correct ≤ 68) 19.56

Rr,HL4 −16.38 < SRT ≤ −11.80 17.39

#8

R8,noHL1 Age ≤ 48 52.82

R8,noHL2 (−12.53 < SRT ≤ 24.95) ∧ (25 < Age ≤ 86) ∧ (58 < #correct ≤ 113) 50.28

R8,HL1 (SRT > −9.46) ∧ (48 < Age ≤ 85) ∧ (#correct < 108) 78.47

R8,HL2 (Age > 49) ∧ (#correct ≤ 63) 51.79

#9

R9,noHL1 Age ≤ 66 73.03

R9,noHL2 Age ≤ 47 53.92

R9,noHL3 (SRT ≤ −6.21) ∧ (48 < Age ≤ 73.44) ∧ (#correct > 62) 39.46

R9,HL1 (Age > 47) ∧ (#correct ≤ 62.61) 80.36

R9,HL2 Age > 65 63.26

#13

R13,noHL1 (SRT ≤ −13.80) ∧ (60 < #correct ≤ 103.32) 52.03

R13,noHL2 Age ≤ 47 50.76

R13,noHL3 (−15.7 < SRT ≤ −4.34) ∧ (42 < Age ≤ 85) ∧ (72 < #correct ≤ 103) 18.53

R13,noHL4 (−14.03 < SRT ≤ −5.34) ∧ (42 < Age ≤ 65) ∧ (#correct > 53) 18.27

R13,HL1 (SRT > −7.04) ∧ (Age > 43) 67.24

R13,HL2 (Age > 67) ∧ (#correct ≤ 79) 65.76

R13,HL3 Age > 78 30.29

#15

R15,noHL1 (SRT ≤ −4.3) ∧ (#correct > 72.43) 54.72

R15,noHL2 Age ≤ 47 48.01

R15,noHL3 (−17.05 < SRT ≤ −9.49) ∧ (Age ≤ 64) ∧ (#correct > 55) 36.07

R15,noHL4 (−18.55 < SRT ≤ −16.48) ∧ (Age > 45) ∧ (#correct > 63) 32.83

R15,noHL5 (SRT ≤ −17.75) 26.37

R15,HL1 (SRT > −9.49) ∧ (47.35 < Age ≤ 86.13) 71.36

R15,HL2 (−18.77 < SRT ≤ −2.31) ∧ (49 < Age ≤ 86) ∧ (#correct ≤ 65) 37.18
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