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Abstract 

Various clustering methods have been applied to 

determine representative groups of buildings based on 

their energy use patterns. We reviewed and selected the 

most commonly used clustering methods, including k-

means, k-medoids, Self-Organizing Map (SOM) coupled 

with k-means and hierarchical, and our proposed deep 

clustering algorithm for comparative performance 

assessment using datasets of smart meters. After the data 

preparation (data cleaning, segmentation, and 

normalization), the clustering is run, firstly, letting the 

number of clusters free to be chosen by the optimization 

process, and then forcing it to be equal to the number of 

primary functions of buildings. Depending on the purpose 

of clustering, e.g., to identify daily 24-hour load shape, to 

identify primary building use type (e.g., office, 

residential, school, retail), the optimal number of 

clustering can vary greatly. Thus, based on the final aim, 

forcing somehow the number of clusters is the most 

followed and suggested for engineering purposes. The k-

means, the k-medoid, and the hierarchical algorithms 

show the best results, in all cases. While for the nature of 

the databases the additional step of adding a SOM to the 

k-means algorithms does not show improvements in terms 

of evaluation metrics.  The direct comparison of the 

different algorithms gives a clear overview of the existing 

main clustering approaches and their performance in 

capturing typical use patterns in typical smart meter 

databases. The resulting cluster centroids could be used to 

better understand and characterize the energy use patterns 

of different buildings and building typologies with the 

final aims of benchmarking or customers segmentation. 

Key Innovations 

• The most commonly used clustering algorithms 

are selected from the literature and directly 

compared on three typical smart meter 

databases. 

• A deep learning clustering is added as an 

algorithm that has never been applied for this 

kind of application before. 

• The comparison is performed via three 

evaluation metrics and not limited to one. 

Practical Implications 

Overall, the hierarchical, the k-means, and the k-medoids 

algorithms show good and similar results. The 

hierarchical method could be better exploited because, via 

the dendrogram, it gives the possibility to visualize the 

clustering and chose the number of clusters easily, which 

is usually a complex step to solve but fundamental in 

engineering applications. The organization of the 

database and the number of clusters are fundamental steps 

that could bring very different results. Thus, these two 

aspects must be well-tuned, based on the final aim of the 

clustering. 

 

Introduction 

Smart meters differ from traditional ones because of their 

capability to read high-frequency data for different 

resources (e.g., electricity, gas, water) that eventually can 

be stored in repositories. Useful information and 

application may be derived from the raw smart meter data, 

including load shape benchmarking (Luo et al., 2017), 

occupant behavior estimates (Causone et al., 2019), 

costumers classification (Chicco et al., 2004), anomalies 

detection (Devlin and Hayes, 2019), end-use 

disaggregation (Khalid et al., 2018), detect or design 

buildings changes/retrofit (Ren, Heo and Sunikka-Blank, 

2019). These applications mainly exploit clustering 

approaches to derive groups of buildings or customers 

with similar resource usage. 

Clustering is a specific area of applications of machine 

learning that involves algorithms able to group a dataset 

into N number of clusters (Ci, i =1, 2, …, N). Usually, 

clustering implies that the partitioning is unsupervised, 

thus, there are not labeled examples from which the 

machine can learn, no target feature is expressed, and the 

aim is to find similarities and differences in the data. 

Unsupervised learning is a powerful technique that can be 

helpful when nothing can be set for sure in the dataset. 

The aim, in this case, is to find patterns in the input. The 

data are naturally structured such that certain patterns 

occur more often than others and the machine itself finds 

the way to group the similarities. Clustering processes 

divide the dataset into a given number of groups sharing 

similar features so that the data in different clusters have 

distinctive characteristics (Lucchi et al., 2020). Thus, a 

cluster is a homogeneous subgroup existing within a 

population. The result will be the division of the data into 

some groups trying to minimize some criterion or error 

functions.  

Currently, the main clustering techniques used on smart 

meter data in the building sector include k-means (Yilmaz 

et al., 2019), k-medoids (Himpe and Janssens, 2019), 
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Self-Organizing Map (SOM) coupled with k-means 

(Ferrando et al., 2019). The number of final clusters is 

assessed via metrics, among them: Davies–Bouldin index 

(DBI), Silhouette index (SHI), Calinski-Harabasz Index 

(CHI). However, the majority of research works make use 

of just one or a few of these methods and metrics and tune 

the algorithm on a specific database. This hinders a clear 

comparison of the performance of different algorithms. 

Moreover, the implementation of the algorithms on just a 

single database is helpful to find the best option for that 

specific case but not a general approach that shows fair 

results in most cases for pre-analysis of data.  

This paper aims to compare the results from different 

clustering algorithms, and different performance metrics, 

applied on three databases, segmented from the Building 

Data Genome Project 2 based on three cities with different 

climate conditions (Miller et al., 2020). Particularly, the 

goal is to find an algorithm that gives fair results on 

different databases for pre-analysis of data.  

The database 

The Data Genome Project 2 database for electricity uses 

(Miller et al., 2020) is exploited. In particular, it has been 

filtered to create three different sub-databases to be used 

separately and compared. The three databases are related 

to three different universities and U.S. time zones. Table 

1 is a summary of the main characteristics of the 

databases. The three universities are identified via a code 

name (i.e., Bear, Rat, and Fox). They are located close to 

three large cities in the US (i.e., Berkeley (CA), 

Washington D.C., and Phoenix (AZ)), with different 

climate condition with respect to the  Köppen climate 

classification (Köppen, 1884) (i.e., warm-summer 

Mediterranean climate (Csb), humid subtropical climate 

(Cfa), and hot desert climates (Bwh)). In addition to these 

location data, the total number of buildings is provided 

with other basics characteristics of the buildings such as 

the primary usage, the area, the year of construction, and 

the number of floors. Figure 1 summarizes the percentage 

distribution of the primary usage in the three databases.  

Table 1: Summary of the main characteristics of the 

three databases. 

University 

code name 
Bear Rat Fox 

Latitude, 

Longitude 

37.9, 

-122.3 

38.9, 

-77.0 

33.4, 

-111.9 

Köppen 

climate 

classificatio

n  

Csb Cfa Bwh 

Time zone 
US/ 

Pacific 

US/ 

Eastern 

US/ 

Mountain 

Number of 

buildings 
91 304 134 

Primary 

building 

use 

7 types, 

Figure 1 

11 types, 

Figure 1 

12 types, 

Figure 1 

Building 

floor area 

(square 

meter)* 

M = 8874.0, 

S = 7969.2,  

Mi = 121.2, 

Mx = 

39101.5 

M = 6808.7, 

S = 9773.9,  

Mi = 74.4, 

Mx = 

76141.2 

M = 9196.8, 

S = 10511.6,  

Mi = 94.9, 

Mx = 

75207.8 

Year built* 

M = 1954.2,  

S = 32.1,  

Mi = 1903, 

Mx = 2016 

M = 1961.8, 

S = 35.3,  

Mi = 1900,  

Mx = 2017 

M = 1975.2,  

S = 25.8, Mi 

= 1907,  

Mx = 2014 

Number of 

Floors* 

M = 5.3,  

S = 2.7,  

Mi = 1,  

Mx = 14 

N.A. N.A. 

* M = Mean, S = Standard Deviation, Mi = Minimum, Ma = 

Maximum 

 

 

Figure 1: Building uses distribution in the databases. 

Methods 

The most used clustering methods have been selected 

from the literature (i.e., k-means, k-medoids, SOM 

coupled with k-means and hierarchical), moreover, a deep 

clustering algorithm is added. Looking at the metrics, the 

paper aims to understand how different algorithms change 

the results within the same database and understand which 

of the option perform better among databases.  

The workflow is subdivided into three main steps (Figure 

2). Firstly, the data are cleaned, segmented, and 

normalized for the clustering process (Step 1). Then, the 

characteristics of the single algorithm are optimized, and 

the best parameters are used to run a final clustering (Step 

2). Finally, the clusters are compared via metrics among 

them and databases (Step 3). Steps 2 and 3 are performed 

twice, once with the possibility for the algorithm to freely 

choose the best number of clusters (A-steps), secondly, 

imposing a number of clusters equal to the number of 

primary usages (B-steps). This number is chosen because 

different building usages bring to different average 

electricity usage and also different hourly patterns 

(Carnieletto et al., 2021). 

In particular, the data are investigated with traditional 

statistical approaches and a few outliers were eliminated 

(e.g., data cleaning). Moreover, the dataset covers two 

years with hourly values (from 1st of January 2016 to 31st 
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of December 2017). However, the year 2016 has 

numerous gaps, thus, only the year 2017 has been used for 

the research (e.g., data segmentation). The final aim is to 

have a set of 205 values for each building, thus, the 

electricity uses are divided by the building area (i.e., the 

values are in kWh/m2) and then organized as follow: 1 

annual value, 12 monthly values, the average 24 hourly 

values for 8 typical days (i.e., workday and holiday for the 

four seasons). The national holidays, Saturdays, and 

Sundays are set as holidays. Finally, normalization of 

these data is needed since a few clustering algorithms 

cannot treat non-normalized data or they could bring to 

large optimization errors. The normalization is achieved 

by dividing each of the 10 groups of data (i.e., annual 

values, monthly values, and 8 days by four seasons hourly 

values) by the maximum within the group. At this point, 

the database is ready to be used in the clustering process. 

The A-steps (Figure 2) are run resulting in the optimal 

number of clusters to be used. While in the B-steps the 

number of clusters is imposed to be equal to the number 

of primary usage of buildings. 

In the following sections, each of the implemented 

algorithms, their most influencing parameters, and the 

used metrics will be briefly explained. 

 

 

Figure 2: Schematic of the workflow. 

k-means and k-medoids 

The k-means and k-medoids algorithms are the simplest 

and most commonly used unsupervised learning 

algorithms (Aha, Kibler and Albert, 1991). They solve the 

problem of clustering given a fixed number (k) of 

centroids that can be intended as a multi-dimensional 

average, representing the center of a cluster. Firstly, the 

algorithm takes each input of the dataset and associates it 

to the nearest centroid. Next, it recalculates the k centroids 

as the barycenter of the clusters resulting from the 

previous step. The inputs are again associated with the 

centroids and a new complete iteration is computed. The 

calculation ends when the centroids change their location 

of a meaningful distance and the inputs associated with a 

specific centroid become the cluster. For this clustering 

technique, the input can move from cluster to cluster at 

each timestep, during the analysis. While the k-means 

tries to reduce the total squared error, k-medoids 

minimizes the sum of differences between the points 

assigned to a cluster and a point chosen as the center of 

that cluster, selecting data points as cluster centers (called 

medoids). 

The main parameters for the k-means and k-medoids 

algorithms are the method for initialization (i.e., how the 

initial clusters are selected), the number of initializations 

(i.e., the number of times the algorithm will be run with 

different centroid seeds), the maximum number of 

iterations of the algorithm for a single run, and the actual 

algorithm use to find the maximization in the iterative 

process.  

SOM coupled with k-means 

In some researches, coupling the SOM (Kohonen, 1990) 

with the k-means is proved to improve the clustering 

results (Vesanto and Alhoniemi, 2000; Hernández et al., 

2012). The SOM is part of Artificial Neural Networks 

(ANN), which consists of computational algorithms that 

try to simulate the behavior of a biologic brain and its 

neurons. The neurons are usually organized in layers, and 

their organization creates a structure called architecture or 

neural network. The neurons are interconnected by 

neighborhood relationships, called topology. In 

particular, the SOM is an unsupervised neural network 

method, able to classify data into clusters and it is 

exploited to display multidimensional data in a low-

dimensional grid. The SOM uses a competitive learning 

approach: when an input vector is presented to the 

network, the similarity with each neuron’s synaptic 

weight is computed and the weight of the neuron more 

similar to the input vector is the winner. In this research, 

a two level-approach clustering method was used, 

combining the SOM with the more classic unsupervised 

k-means algorithm. The SOM algorithm is used to create 

proto-clusters that are further grouped with a k-means 

algorithm to find the final clusters. The two main benefits 

are the minimization of the computational cost and the 

noise reduction since the proto-clusters are local averages 

of the original samples and, for this reason, less sensitive 

to single high or low cases in the data sample. The size of 

the initial SOM is given by the heuristic formula (Vesanto 

et al., 2000):  

 𝑚 = 5√𝑛 (1) 

In which 𝑚 is the final number of proto-clusters, 𝑛 is the 

number of data samples given as input. Moreover, the 

ratio of the side-lengths of the lattice would be the ratio 

between the two biggest eigenvalues of the covariance 

matrix of the given data, and the actual side-lengths are 

then set in such a way that their product is as close as 

possible to the desired 𝑚.  
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Besides the SOM dimension, other important parameters 

to be tested are the learning rate (i.e., the step size at each 

iteration as it moves towards the minimum), the radius of 

the different neighbors in the SOM, the activation 

distance (i.e., the distance used to activate the map), the 

topology of the map (i.e., the shape of the node also 

regulating how many neighbors each node has, could be 

rectangular or hexagonal), and the neighborhood function 

(i.e., the function that weights the neighborhood of a 

position in the map). 

Hierarchical 

A different approach is used in the hierarchical clustering 

algorithm (Nielsen, 2016), in which, in the beginning, 

each observation is seen as a separate single cluster. 

Lately, repeatedly the two closest clusters are merged 

until there is only one cluster counting all the original 

observations. The distance between two clusters can be 

computed using different metrics. Finally, based on the 

initial number of cluster (k) given to the algorithm, the 

process stops. An interesting aspect of the use of 

hierarchical clustering is the visualization of the 

relationships among clusters in the dendrogram, which is 

a tree-like graph able to show the similarities within 

groups. 

The main parameters in the hierarchical algorithm are the 

affinity (i.e., the metric used to compute the linkage 

between samples), and the linkage criterion (i.e., which 

distance criterion is used to merge the pairs of clusters that 

minimize the criterion itself). 

Deep learning 

Deep learning, is part of ANN as SOM but makes use of 

a more complex architecture in which the neurons are 

organized in far more layers. In the used deep learning 

algorithm (Xie, Girshick and Farhadi, 2016) a 

parameterized non-linear mapping from the data space to 

a lower-dimensional feature space is defined, optimizing 

a clustering objective. Unlike previous work, which 

operates on the data space or a shallow linear embedded 

space, a stochastic gradient descent via backpropagation 

on a clustering objective to learn the mapping is used, 

which is parameterized by a deep neural network. The aim 

is to simultaneously solve the cluster assignment and the 

underlying feature representation. However, being an 

unsupervised learning method, an iteratively refining of 

clusters is run. This process gradually improves the 

clustering as well as the feature representation. 

The main parameters of the deep learning algorithm are 

the learning rate, the dropout fraction (i.e., the fraction of 

neurons which should be set to 0 randomly for 

regularization purposes), the encoders dimension (i.e., the 

size of the underlying feature representation), and the 

iterations for the fine-tuning. 

The evaluation metrics 

The Calinski-Harabasz (CHI) (Caliński and Harabasz, 

1974), the Davies Bouldin (DBI) (Davies and Bouldin, 

1979), and the Silhouette (SHI) (Rousseeuw, 1987) are 

the three metrics used to compare the results among the 

databases. CHI is a heuristic metric, defined as the ratio 

between the within-cluster dispersion and the between-

cluster dispersion. There are no limits to its value, but it 

can be used to compare the results of clustering 

algorithms.  The higher this metric is, the better is the 

clustering result, meaning that clusters are dense and well-

separated. The DBI is used as the CHI, to compare the 

similarity (or dissimilarity) between each cluster and the 

similar one, comparing the distance between clusters with 

the size of the clusters themselves. In this case, the lower 

is this metric, the better is the clustering result and zero is 

the lowest possible score. Finally, the SHI is a value 

indicating how similar a sample is to its cluster with 

respect to other clusters. It is computed for each sample 

and is a combination of two scores, the mean distance 

between a sample and all other points in the same class 

and the mean distance between a sample and all other 

points in the next nearest cluster. The higher is this metric, 

the better is the clustering and it is bounded between -1 

for incorrect clustering and +1 for dense and well-

separated clusters.  

Results and Discussion 

A-steps (free number of clusters) 

Firstly, the main parameters and the number of clusters 

are optimized. The algorithms’ parameters among the 

three different databases after the optimization are very 

similar. For example, for k-means and k-medoids, the 

number of iterations is set to 10 in practically all cases. 

The SOM is always chosen to be rectangular and the 

Mexican hat (i.e., one of the typical continuous wavelets 

used in machine learning as neighborhood function 

(Kohonen, 1990)) is chosen as a neighborhood function. 

In the hierarchical algorithm, the affinity is always 

Euclidean, and the linkage criterion is Ward’s method or 

the average in Rat’s database. Also for deep learning, the 

optimized parameters are very similar among the 

databases, especially the same encoders dimension is 

chosen. These similar results could be explained by the 

fact that the databases are organized and normalized in the 

same way. Always a low number of clusters is chosen 

(ranging from 2 to 5).  The deep learning algorithm is the 

one selecting the highest number of clusters.  

For the Bear’s database (Figure 3), the k-means and the 

hierarchical algorithms show the best results with respect 

to the three metrics used. Also, the deep learning and k-

medoids algorithms show relatively good results, 

comparable with k-means and hierarchical. The SOM 

coupled with the k-means, on the other hand, shows the 

worst results. For Fox’s database (Figure 4), there is no 

distinction between k-means, k-medoids, and hierarchical 

because they bring the same result (with only 2 clusters). 

Overall, also the deep learning shows good results among 

the three metrics, while the addition of the SOM to the k-

means also in this case corresponds to a worsening of the 

results. Finally, in Rat’s databases (Figure 5), the 

evaluation metrics show the highest differences. The CHI 

assigns the best clustering to the k-means, while the DBI 

and the SHI to the hierarchical. In general, the k-means 

and the k-medoids are the two algorithms showing good 

results in all three metrics. Also, in this case, the SOM 
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coupled with k-means does not show an improvement in 

the clustering results. 

 

Figure 3: Metrics results for Bear database with the free 

number of clusters. 

 

Figure 4: Metrics results for Fox database with the free 

number of clusters. 

 

Figure 5: Metrics results for Rat database with the free 

number of clusters. 

Fixed number of clusters 

A small number of clusters (i.e., 2) is usually not an 

interesting result for building engineering applications. 

Thus, the number of clusters is imposed to be equal to the 

number of primary usages present in the database (i.e., 7 

for Bear’s database and 11 for Fox’s and Rat’s ones). Also 

in this case, the main parameters of each algorithm are 

optimized and they show similar results among the 

databases and compared to the run with a free number of 

clusters. However, in all cases the number of iterations for 

the k-means algorithms increases (average around 400). 

The SOM topology is always chosen to be rectangular and 

the neighborhood function is chosen to be again the 

Mexican hat. In the deep learning algorithms, the same 

encoders dimension is chosen as with the free number of 

clusters. However, for the hierarchical clustering, the 

taxicab geometry affinity is chosen (i.e., the distance is 

the summation of the absolute differences of their 

coordinates on a Cartesian plane). The same three metrics 

(i.e., CHI, DBI, and SHI) are used to compare the 

clustering results. Figures 6, 9, and 12 show the plots of 

the metric values. 

In Bear’s database (Figure 6), higher variability with 

respect to the case with the free number of clusters is 

registered. Looking at the DBI and the SHI, hierarchical 

clustering is the best option. However, for the CHI, the k-

medoids algorithm shows the highest value. Generally, k-

means, k-medoids, and hierarchical result in good 

clustering. While, the SOM, also in this case, does not 

improve the results. The hierarchical algorithm gives the 

possibility to visualize the clustering via a dendrogram 

(Figure 7), from which is visible that there are two 

families of samples very different from one another (this 

is the reason why keeping the optimization free to select 

the number of clusters, 2 was the final choice). In Figure 

7, one family of samples (the red one) is larger than the 

other (green), and inside them, two other big sub-families 

are visible. The clustering is stopped when the samples 

are divided into 7 clusters (black line). Thus, the green 

family will be divided into three main groups, while the 

red one in four main groups. In Figure 8, the centroids of 

the k-medoids algorithm of the 7 clusters are plotted. 

Keeping it in mind that the first value of the cluster is the 

annual sum, the next 12 values are monthly sums, and 

then the last 192 are the 8 average hourly patterns of the 

typical days, the differences between the clusters are 

visible. The algorithm is dividing the samples based on 

their values in terms of kWh/m2 (e.g., the difference 

between clusters 7 and 5), and also on their daily pattern 

(e.g., the difference between clusters 7 and 4). 

 

Figure 6: Metrics results for Bear database with a fixed 

number of clusters (i.e., 7) 
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Figure 7: Dendrogram resulting from the hierarchical 

clustering for Bear database 

 

Figure 8: k-medoids centroids for Bear database 

In Fox’s database, the metrics (Figure 9) show similar 

results compared to Bear’s one. Looking at the DBI and 

SHI hierarchical algorithm is the best option, while the 

CHI assigned to the k-means the highest value. The 

dendrogram (Figure 10), in this case, shows three distinct 

families (i.e., the green, the red, and the light blue). From 

this plot, we can see why the result of just two databases 

could not represent a good result since the two clusters 

could be only the distinction of the green family from the 

other two. The black line represents where the algorithm 

stops at 11 clusters. Thus, the green family and the red one 

are divided into two clusters each, while the light blue 

family is divided into 7 clusters. Figure 11 shows the 

centroids of the k-means clustering for Fox’s database, 

from which is again clear that the clusters represent 

differences in terms of kWh/m2 (e.g., the difference 

between cluster 7 and 10), but also in terms of the daily 

pattern (e.g., the difference between cluster 7 and 2). It is 

also visible how the patterns are more different in terms 

of the daily pattern than in Bear’s database, explaining the 

fact that the hierarchical clustering found three distinct 

families. 

 

Figure 9: Metrics results for Fox database with a fixed 

number of clusters (i.e., 11) 

 

Figure 10: Dendrogram resulting from the hierarchical 

clustering for Fox database 

 

Figure 11: k-means centroids for Fox database 

Finally, also for the Rat’s database (Figure 12) DBI and 

SHI assign to the hierarchical algorithm the best results, 

shole the CHI to the k-means as in Fox’s database. The 

dendrogram (Figure 13) shows that, in this case, there are 

two distinct families of inputs (i.e., red and green). The 

green one is more numerous than the red one. The black 

line, that indicates where the algorithm stopped at 11 

cluster, shows that the green family is divided into three 

main clusters, while the red one has a higher variability, 

and it is divided into 8 clusters. The k-means algorithm 

centroids (Figure 14) show that for this database the 

values in terms of average kWh/m2 are more similar and 

the clustering divided the samples more in terms of hourly 

patterns. In particular, clusters 3 and 4 have similar 

averages in terms of kWh/m2, but they are characterized 

by very different daily patterns. 

 

Figure 12: Metrics results for Rat database with a fixed 

number of clusters (i.e., 11) 
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Figure 13: Dendrogram resulting from the hierarchical 

clustering for Rat database 

 

Figure 14: k-means centroids for Rat database 

Overall, the hierarchical clustering shows the best results, 

followed by the k-means, k-medoid, and deep learning 

ones. The SOM, for the nature of the database, does not 

show an improvement in the results. In fact, the coupling 

of SOM with k-means is proved to improve the results in 

large and homogenous databases (Wu and Chow, 2004; 

Causone et al., 2019). Thus, we can assume that this result 

is strictly related to the organization of the database, 

which, in this case, is not large and show large differences 

among samples. 

Conclusion 

Different clustering methodologies are implemented to 

determine a few representative groups of buildings with 

similar energy use patterns. When the number of clusters 

is left free to be chosen by the optimization process, the 

number of final clusters does not show great variability 

and a low number is always chosen. Some clustering 

methods, however, bring to very similar results (i.e., k-

means, k-medoids, and hierarchical), both in terms of the 

sample grouping and evaluation metrics. When the 

number of clusters is forced to be equal to the number of 

primary uses of buildings, the hierarchical algorithm 

shows the best results, followed by the k-means and k-

medoid. For the nature of the databases, the additional 

step of adding a SOM to the k-means algorithms does not 

show improvements in terms of evaluation metrics.  The 

deep learning clustering shows good results. However, the 

computing time for its optimization is larger than all other 

algorithms. Thus, in this application, the use of this kind 

of algorithm could not be the best option. SOM Deep 

Learning involves a higher level of complexity that seems 

to overestimate the complexity of the problem resulting in 

lower performance. Hierarchical clustering performs 

better than k-means and k-medoids when the data is not 

well-separated into sphere-like clusters, which may be 

this case. 

The shape of the input data (205 values) could greatly 

change the results, thus, in further investigations, different 

data organization and normalization could be use and 

compared. In this case, the three kinds of values are all 

fundamental in the division of the patterns. In some cases 

(e.g., Figure 8) the annual and monthly values could seem 

unnecessary. However, for the other cases (Figure 11 ad 

Figure 14) the differences between clusters are dictated 

also from the annual and monthly values. This could be 

related to the fact that the Bear database shows fewer 

differences in terms of monthly values due to the 

homogenous climate throughout the year. Moreover, in 

this case, the clustering was performed on the electricity 

use of the Building Data Genome Project 2 database was 

exploited, however, this same analysis could also be 

performed on other usages (e.g., gas, water, etc.) 

separately or integrated into the same database. A further 

investigation could also aim to increase the number of 

clusters. As a matter of fact, more and more differences in 

the daily pattern could emerge, and this could be 

interesting based on the final aim of the clustering.  

In conclusion:  

• The most used clustering algorithms (adding a 

deep learning clustering never been applied for 

this kind of application before) are selected from 

the literature and directly compared on three 

typical smart meter databases. 

• The comparison is performed via three 

evaluation metrics and not limited to one. 

• This comparison of the different algorithms 

gives a clear overview of the main existing 

clustering approaches and their strength and 

limitations. 

• The resulting final cluster centroids could be 

exploited to better understand the energy 

patterns of different buildings and building 

typologies, especially, but not limited, to the 

final aims of benchmarking. 

• It must keep in mind that the final aim of the 

clustering cannot be overlooked, and especially 

the number of clusters must be chosen based on 

this final aim. 
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