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Abstract—In this paper, we consider spatially coupled LDPC
codes derived from protographs. In particular, we analyze the
performance of the window decoder (WD), which allows reducing
the complexity, the memory requirements, and the latency of the
flood belief-propagation decoder. We show that the performance
degradation of WD is due to the fact that it exploits a single
decoding wave instead of two. This has effect both in the ideal
case of infinite code length, where it may imply a threshold loss,
and in the case of finite length, where it affects the slope of the
BER curve in the waterfall region. We show how a forward-
backward decoder can reduce such problems at the price of a
limited increase of average complexity.

I. INTRODUCTION

In the last few years, spatially coupled LDPC (SC-LDPC)
codes have been generally regarded by the scientific commu-
nity as one of the most promising coding techniques, from
several points of view. First, [1]-[2] have provided the proof of
threshold saturation, thus showing that, under mild hypotheses,
SC-LDPC codes are theoretically capacity-achieving. Second,
the same analysis has actually revealed that the code design
is greatly simplified with respect to block LDPC codes, as
it is enough to consider regular ensembles, and no degree
distribution optimization is anymore needed. Third, the intro-
duction of the window decoder (WD) in [3], has paved the
way for a relatively low-complexity decoder implementation,
whose latency and memory requirements are independent of
the block size, which is typically large for a high-performance
SC-LDPC code.

In this paper, we plan to partially correct the picture, and to
show that the three pros cited above cannot easily be achieved
all together. In particular, our goal is to show that, at infinite
as well as at finite length, the WD pays a performance penalty
with respect to the flood belief-propagation (BP) decoder.1

• At infinite length, it is well known that the WD has a
worse threshold than the flood BP decoder [3]. While
for symmetric edge spreading, it is proved in [4] that,
on the binary erasure channel (BEC), the WD threshold
converges to the BP threshold exponentially fast in the
window size W , we show that, for asymmetric SC-
LDPC codes, this convergence is not guaranteed, a fact
that is confirmed in the context of codes on GF(q) by

1In the jargon of the SC-LDPC codes literature, the flood BP decoder is
the standard BP decoder, where at each iteration all VNs and all CNs are
activated simultaneously.

[5]. We also give a simple justification of this lack of
convergence.

• At finite length, more importantly, the performance loss
takes the shape of a slope reduction in the waterfall region
of the BER curve, that spoils under WD part of the
convolutional gain [6] expected from SC-LDPC codes.

In both cases, we identify possible remedies to improve
the WD performance. In particular, for the finite-length case,
we introduce a new type of decoder, the forward-backward
decoder, which performs, if needed, a backward sweep analo-
gous to the forward sweep of the WD, in three variants, which
correspond to different trade-off between complexity/memory
requirements and performance.

In what follows, we will focus on protograph-based SC-
LDPC codes. While our results do extend to other types
of schemes, protograph-based SC-LDPC codes have become
the standard de facto of SC-LDPC design ([7]), thus jus-
tifying the attention we reserve them. It is worth noting,
however, that most of the theoretical results have been obtained
for SC-LDPC code schemes that are not, strictly speaking,
protograph-based.

A. Related work

The WD for SC-LDPC codes was introduced in [3] specif-
ically to reduce the decoding latency in delay-constrained
applications. Its most prominent precursor is the pipeline
decoder, an efficient solution for a parallel implementation
that was introduced in [8] and simplified in [9]. However,
the pipeline decoder has a latency growing linearly with the
number of iterations.

The analysis of the WD performance on the erasure channel
for infinite length can be found in [3] and [7], where the WD
threshold was defined. For the finite-length performance of
WD, to our knowledge, there is a lack of analytic studies.
In [10], the WD is studied together with other scheduling
approaches from the complexity point-of-view.

Even the phenomenon of error propagation has received lit-
tle attention. In [11], error propagation is faced as follows: for
those variables that have already been processed in previous
steps, the input at the current step is a convex combination
of the raw channel output and of the previously computed a-
posteriori information in the decoder output buffer. For the
similar class of braided convolutional codes, [12] proposed
a combination of techniques such as window extension and



Fig. 1. Pictorial representation of the WD. Colors on top of the current
window position represent different symbol types. Blue: memory symbols.
Red: target symbols. Green: look-ahead symbols.

a retransmission strategy based on synchronization between
TX and RX on a feedback channel. In [13], a method based
on an adaptive number of iterations and window shifting is
proposed to cope with error propagation in the WD decoder for
SC-LDPC codes. Finally, in a couple of recent papers ([14]-
[15]), Zhu et al. propose check node (CN) or variable node
(VN) doping to alleviate error propagation. In particular, VN
doping, consisting in inserting some known VN periodically in
the frame, unlike the other solutions, does not require altering
the WD. However, doping causes a rate loss.

The forward-backward decoder introduced in this paper
shows some similarity with the zig-zag decoder of [16], which
aims at improving the WD performance by decoding in the
backward direction, interrupting the forward one, at suitable
but unpredictable time instants. Also, the replica shuffled
BP decoder of [17] is a sort of forward-backward decoder
proposed in the context of uncoupled LDPC and turbo codes.
In the replica decoder, the VNs are activated serially and
in different orders, contrary to the WD where the CNs are
activated serially.

II. SC-LDPC CODES AND WINDOW DECODER

A. Protograph-based SC-LDPC Codes

SC-LDPC codes are terminated LDPC convolutional codes.
In the following, we will consider SC-LDPC codes derived
from protographs. Let B be the m×n protograph of a regular
(`, r) LDPC code, whose rows correspond to weight-r CNs
and columns to weight-` VNs. It follows that m = n `

r . Entry
(p, q) of B is a nonnegative integer, equal to the number of
edges connecting the p-th CN to the q-th VN. Such base
LDPC protograph is replicated L times, where L will be
called hereafter the coupling length. Then, edge spreading is
performed, i.e., some edges connected to VNs from the i-
th replica, i = 1, . . . , L, are detached from CNs at the same
position and moved to CNs at positions j ∈ [i+1, . . . , i+ms],
where ms is the memory (or coupling width)2, with a time-

2CNs must be added at positions L+ 1, . . . , L+ms in order to perform
edge spreading at the right end of the block.

invariant pattern. The resulting protograph of the (`, r,ms)
SC-LDPC code ensemble will then be given by

B[L] =



B0

B1
. . .

...
. . . B0

Bms B1

. . .
...

Bms


m(L+ms)×nL

(1)

where B0, . . . ,Bms
are m × n matrices of nonnegative in-

tegers, and
∑ms

j=0 Bj = B. Because of the termination, the
resulting rate of the SC-LDPC code is lower than that of the
underlying block LDPC code, but the rate loss tends to zero
as L→∞.

The parity-check matrix of the SC-LDPC code is then
obtained by lifting the protograph matrix in (1). Namely, if
M is the lifting factor, each zero of B[L] is lifted to a M×M
all-zero matrix. Instead, each entry of B[L] equal to b (with
b > 0) is lifted to the binary sum of b size-M permutation
matrices. The resulting LDPC convolutional code is in general
time-varying.

B. Window Decoder

We consider SC-LDPC codes on the AWGN channel. It
has been proved in [1]-[2] that SC-LDPC codes decoded
with flood BP decoding show the phenomenon of threshold
saturation, i.e., for sufficiently large L and M → ∞, the
flood BP threshold tends to the MAP threshold of the base
block LDPC code. However, for flood BP decoding, both
memory requirements and latency are proportional to the
coupling length L. Since L must be large in order to reduce
the rate loss, such requirements may be too demanding for
certain applications. The WD is a suboptimal scheduling of
BP messages that allows to avoid such problems.

The WD is divided into stages. At the i-th stage, only the
CNs that are at positions i, . . . , i+W−1 and the VNs that are
at positions i−ms, . . . , i+W −1 are activated. The VNs that
are at positions i are to be decoded at stage i and are called the
target symbols. The VNs at positions i −ms, . . . , i − 1 have
already been decoded and are called the memory symbols.
Finally, the VNs at positions i + 1, . . . , i +W at stage i are
called look-ahead symbols.3 After I iterations (or, after a given
performance criterion has been satisfied) the window shifts
right and down of one position and a new stage begins. Fig. 1
depicts the WD principles. Note that, because of its definition,
W ≥ ms + 1.

III. THRESHOLD OF SC-LDPC CODES UNDER WD

We consider in this section M →∞. Following [3], [7], we
define the WD threshold ρ(W, Imin) on the AWGN channel as
the infimum of Es/N0 values for which the mutual informa-
tion of target symbols is at least Imin after one decoding stage,

3All VNs at positions which are outside [1, L] can be thought to be set to
zero and perfectly known at the decoder.
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Fig. 2. WD threshold for rate-1/2 (5, 10,ms) SC-LDPC ensembles with
different values of ms on the BiAWGN channel.

given that, before decoding, the memory symbols have mutual
information at least Imin and the other symbols have mutual
information at least Ich, the one received from the channel.

An analysis of the WD threshold for regular SC-LDPC
codes on the BEC can be found in [4]. For a particular ensem-
ble and a given residual erasure probability after decoding, it
is shown in [4] that the WD threshold converges exponentially
fast to the flood threshold when W increases.

However, numerical results are shown in the following,
showing that the convergence is not guaranteed for all
protograph-based SC-LDPC ensembles. Consider, for instance,
the rate-1/2 regular ensemble (5, 10,ms) with B0 = (5 −
ms)[1, 1] and Bi = [1, 1] for i = 1, . . . ,ms. Fig. 2 shows
the WD threshold on the AWGN channel for such ensembles,
for ms = 1, . . . , 4, together with the flood threshold, which
is essentially the same for all values of ms. As it can be
seen, while for ms = 3, 4, the WD threshold converges to the
flood threshold for W sufficiently large,4 for ms = 1, 2 even
for W = 20 there is a relatively large gap between the two
thresholds. The best scheme is the one with ms = 3, which
has a good performance also for small values of W , since it
avoids degree-1 VNs within the window (see [5]).

The fact that, unlike for the symmetric ensemble of [4], the
WD threshold does not always converge to the flood threshold
for W → ∞ was already observed in [5] for nonbinary SC-
LDPC codes and can be explained as follows. We define on
the AWGN channel the left (resp., right) activation threshold
ρL(Imin) (resp., ρR(Imin)) as the minimum Es/N0 needed to
trigger the left (resp., right) decoding wave so as to achieve at
least a mutual information Imin for all symbols. Let ρf (Imin)
be the flood threshold on the AWGN channel, then

ρf (Imin) = min(ρL(Imin), ρR(Imin)) (2)

lim
W→∞

ρ(W, Imin) ≥ ρL(Imin). (3)

4The small gap is due to the fact that the WD threshold is actually an upper
bound to the actual threshold.
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Fig. 3. Performance of the FB-WD decoders and comparison with the flood
decoder and the WD: BER (solid lines) and WER (dashed lines) vs Es/N0.

Thus, if ρL(Imin) > ρR(Imin), the WD threshold does not
tend to the flood threshold. It is worth noting that, to avoid
this shortcoming, it suffices to “revert” the ensemble (i.e., to
define the new ensemble with B̃i = Bms−i, i = 0, . . . ,ms)
so as to exchange the values of ρL(Imin) and ρR(Imin).

IV. FINITE-LENGTH PERFORMANCE OF WD
For finite values of the lifting factor M , generally we

observe that the waterfall region of the BER curve of the
WD on the AWGN channel has a reduced slope compared
to the flood BP decoder. As an example, for a girth-6 sample
code of the rate-1/2 regular SC-LDPC ensemble (5, 10, 4) with
Bi = [1, 1] for all i, lifting factor M = 300 and coupling
length L = 100, Fig. 3 shows the performance, in terms of
BER/WER vs Es/N0, of the WD, with window size W = 20
and I = 3 iterations per window, versus the performance of
the flood BP decoder after 300 iterations. We have chosen a
large W in order to boost the WD performance. Increasing I
yields a marginal gain, as for the flood BP decoder beyond
300 iterations. In both cases we apply serial-C decoding,
where CNs are activated serially and VNs updated after each
CN activation, to improve the decoding convergence with the
iterations. As it can be seen, the BER curve for the WD is
flatter than for the flood decoder.

In order to study the origin of such performance loss,
we have investigated the statistics of the error events. We
can distinguish two different Es/N0 regions. Whenever the
Es/N0 value is larger than the BP threshold for the underlying
block LDPC code, error events are typically short, because
in this Es/N0 region each section is able to converge to
the correct codeword even when the information coming
from the neighboring sections is wrong or missing. However,
when the Es/N0 value is between the MAP and the BP
threshold for the underlying block LDPC code, each section
relies exclusively on the “decoding waves” coming from the
neighboring sections. Whenever these waves interrupt, it is
unlikely that the section alone is able to converge. Because



Fig. 4. Typical error events of various SC-LDPC decoders: flood BP (a), WD (b), Full-FB (c), Turbo-FB (d) and Channel-FB (e).

of that, error events are typically long and often in the WD,
where there is a single decoding wave, after they have started,
they cannot be stopped, giving rise to a sort of “avalanche
effect.” Fig. 4 (a)-(b) shows 50 typical error events collected
by the flood decoder and by the WD, at Es/N0 values for
which the SC-LDPC code is decoded on the AWGN channel
with WER ≈ 10−3. The x-axis represents the VN position i,
from 1 to nL = 200, while the y-axis counts codeword error
events. The colored bars represent VN positions affected by
the error event: the flood decoder errors (Fig. 4 (a)) start and
end at different positions within the block, whereas the WD
ones (Fig. 4 (b)) end close to the block extremity, but for their
very end which are resolved thanks to the termination effect.

We interpret the BER loss of the WD w.r.t. the flood BP
decoder as a consequence of the fact that, while in the latter
there are two decoding waves, one moving forward from the
beginning of the block, the other proceeding backward from
the end, in the former there is only the forward wave. In
the finite-length case, the steeper slope of the BER waterfall
for the flood BP decoder denotes thus a veritable diversity
gain w.r.t. the WD, that relies only on the forward wave for
successful decoding.

V. THE FORWARD-BACKWARD DECODER

In this section, we introduce a new decoder, called forward-
backward WD (FB-WD), implemented in a few variants,
which serves two purposes. The first is theoretical, since it
allows to verify that the performance loss of the WD is
actually due to the lack of diversity in the traveling wave,
as postulated above. The second is practical, since the various
FB-WD, lying so to speak in between the flood decoder and
the WD, represent a way of trading off the two opposite
exigences of performance and latency/memory requirements.
The FB-WD consists of two successive runs: the first is exactly
the same as the WD, while the second, starting when the
window has reached the block end, consists in a similar block
reprocessing where the window is shifted backward, up to the
beginning. In principle, we could define a different window
size for the two runs, which can be useful for asymmetric SC-
LDPC ensembles. The backward processing run is activated
only when the forward decoding is not successful, as can be
easily ascertained by checking the parity-check equations. The
variants of the FB-WD are described in the following.

• In the Full FB-WD, the backward processing uses the
messages on each edge generated by the forward pro-
cessing run.

• In the Channel FB-WD, the backward processing run,
activates the CNs backward using as input only the
messages coming from the channel, without using the
messages generated by the forward processing run. The
final decision for each VN is made by the backward
processing run only, neglecting the forward WD results.

• In the Turbo FB-WD, the backward processing works as
in the Channel FB-WD, but the final decision for each
VN is made by adding to the channel LLRs both extrinsic
LLRs of the two processing runs.

Fig. 3 shows the performance of the FB-WD, for window
size W = 20 and I = 3 iterations per window. The slope of
the BER waterfall for the Full FB-WD and Turbo FB-WD are
very similar to the flood decoder. The Channel-FB curve slope
is also better than for the WD, confirming the intuition of an
increased diversity thanks to the FB-WD.

To stress the difference between the FB-WD and the de-
coders previously proposed to avoid burst-like error patterns
as in [13], in Fig. 3 we also plot the performance curves
of the WSD algorithm from [13]. In the WSD, whenever
a stall is detected, the decoding window is shifted back by
nb blocks and decoding is rerun increasing the number I of
iterations per window, up to a maximum value Imax. In our
simulation, we set Imax = 2I , nb =W −1 and we use parity-
check stall detection. However, this reprocessing is clearly not
capable of exploiting the wave propagating in the opposite
direction, which is what the FB decoders conversely attempt
to do. In fact, albeit improving the error rate, the WSD shows
performance curve slopes not different from the WD.

For a deeper understanding, in Fig. 4 we also plot examples
of error events for the three FB-WD decoders. The variant Full
FB-WD (c) exhibits error events similar to the flood decoder,
whereas the variant Turbo FB-WD (d) exhibits many more,
shorter error events compared to the flood decoder. The two
processing runs of the Turbo FB-WD decoder cooperate in
recovering most of the mistaken bits inside the error events
of WD, but in some intermediate sections they fail to correct
some portions of these events. This behavior is confirmed by
the WER curves also shown as dashed lines in Fig. 3, which



are almost identical for the Turbo FB-WD and the Channel
FB-WD decoders. The error events of the Channel FB-WD
(e) have a symmetrical structure compared to WD, as obvious,
since the final decisions are made by the backward WD only.
Notwithstanding, the Channel FB-WD fails only when both
processing runs fail, which yields part of the diversity gain of
the flood decoder to its BER and WER curves.

From the practical point of view, all the FB-WD variants
have processing complexity very similar to the WD, since at
every step only those VNs and CNs that are within the window
are active. More precisely, if PW is the WER achieved by the
WD, we have

Zx−FB−WD ' (1 + PW )ZWD

where ZWD is the complexity of the WD and Zx−FB−WD is
the complexity of any FB-WD variant. Since PW is typically
increasing with L, the processing complexity will show a weak
dependence on L as well.

Memory requirements for the FB-WD can be much more
demanding than for the WD. In the Full FB-WD, there is
need to store the edge messages for the whole block, to be
used during the backward sweep, thus the amount of memory
needed is the same as for the flood decoder and grows with L.
Only the scheduling is much more efficient. In the Turbo FB-
WD, there is need to store the channel and the output LLRs
only, in order to run the backward sweep and to combine the
results at the end. Finally, in the Channel FB-WD, there is
need to store the channel LLRs only, in order to feed the
backward run should the forward run fail.

The FB-WD has also a larger maximum latency than the
WD, particularly for the VNs that are at the beginning of the
block. However, since the backward processing run is activated
only in case of failure of the WD, which occurs in a very
small fraction of the cases (see the WD WER curve in Fig. 3),
the average FB-WD latency is very close to the WD latency.
Precisely, for a WER equal to PW , the average latency of any
FB-WD variant can be computed as

Lx−FB−WD ' (1− PW )W + PW (L+W ) =W + PWL.

Hence, average latency shows a dependence on L, which,
however, tends to be negligible for PW � 1. The concept
of improving the WD performance by exploiting a backward
decoding is not new, but can be found, e.g., in [16], where the
so called zig-zag decoder is introduced. The zig-zag decoder
detects the starting and the ending point of an error event
in the forward sweep by computing partial syndromes. Upon
detection of the complete error event, the decoder inverts its
direction and starts decoding backward up to the beginning
of the wrong path. The decoding direction can change until
the error is corrected. While the zig-zag decoder has a good
performance, it presents some problem from the hardware
implementation point-of-view due to the unpredictable change
of decoding direction and the detection of the error events. In
comparison, the FB-WD decoder is easier to implement in
hardware and can still achieve a good performance improve-
ment over the standard WD.

VI. CONCLUSIONS

In this paper, we have compared the performance of the
WD for SC-LDPC codes with the flood BP decoder. In the
infinite-length case, the phenomenon of lack of convergence
of the threshold of the WD to that of the flood BP decoder
is observed and explained, while a simple possible method to
avoid it is proposed. In the finite-length case, we show simu-
lation results indicating that the slope of the BER threshold in
the waterfall region is lower for the WD than for the flood BP
decoder, a phenomenon explained as a lack of diversity. To
counteract this problem, the FB-WD is introduced, in several
variants, that, with different memory requirements, are able to
improve the BER slope without compromising the feasibility
of the decoder.
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