
Journal of Intelligent Manufacturing
https://doi.org/10.1007/s10845-022-02055-3

Modeling spatial point processes in video-imaging via Ripley’s
K-function: an application to spatter analysis in additive
manufacturing

Bianca Maria Colosimo1 · Luca Pagani2 ·Marco Grasso1

Received: 4 May 2022 / Accepted: 5 November 2022
© The Author(s) 2022

Abstract
For an increasing number of applications, the quality and the stability of manufacturing processes can be determined via image
and video-image data analysis and new techniques are required to extract and synthesize the relevant information content
enclosed in big sensor data to draw conclusions about the process and the final part quality. This paper focuses on video
image data where the phenomena under study is captured by a point process whose spatial signature is of interest. A novel
approach is proposed which combines spatial data modeling via Ripley’s K-function with Functional Analysis of Variance
(FANOVA), i.e., Analysis of Variance on Functional data. The K-function allows to synthesize the spatial pattern information
in a function while preserving the capability to capture changes in the process behavior. The method is applicable to quantities
and phenomena that can be represented as clusters, or clouds, of spatial points evolving over time. In our case, the motivating
case study regards the analysis of spatter ejections caused by the laser-material interaction in Additive Manufacturing via
Laser Powder Bed Fusion (L-PBF). The spatial spread of spatters, captured in the form of point particles through in-situ high
speed machine vision, can be used as a proxy to select the best conditions to avoid defects (pores) in the manufactured part.
The proposed approach is shown to be not only an efficient way to translate the high-dimensional video image data into a
lower dimensional format (the K-function curves), but also more effective than benchmark methods in detecting departures
from a stable and in-control state.

Keywords Spatial point pattern · K-function · Functional data · FANOVA · Additive Manufacturing · Spatters · Laser powder
bed fusion · Industry 4.0

Introduction

In the current Industry 4.0 framework, the use of image and
video-imagedata in industrial processmonitoring andquality
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modeling applications is becoming more and more common
and widespread thanks to the quick development of discrete
manufacturing process technologies and integrated sensing
equipment (Barari et al., 2021; Colosimo, 2014, 2018a;
Colosimo et al., 2018a, 2021;Megahed et al., 2011, 2012). In
this framework, amajor challenge regards how tomake sense
of big and complicated data to identify, model and analyze
relevant information patterns. In many cases, the quantities
of interest, also known as process signatures, exhibit spatial
and/or spatio-temporal dependencies and variations whose
proper characterization is the key to draw reliable conclu-
sions about the process stability and the product quality.

In-line video-image analysis can be applied for differ-
ent purposes. On the one hand, it can be used to make
process optimization and process calibration more efficient.
Indeed, in-line data may be used to reduce the experimental
effort and the need for expensive and time-consuming post-
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process inspections, as response variables can be measured
directly during the production process. On the other hand, in-
line video-image data provide rich information for process
monitoring, aiming at detecting process shifts and onsets of
anomalies while the part is being produced.

In the recent years, many authors outlined the need for
appropriate statistical modeling and monitoring methods for
image data (Megahed et al., 2011, 2012;Qiu, 2005;Yan et al.,
2017), but still limited attention has been devoted to video-
image data, where the underlying evolution of the process in
space and along time has to be properly captured and moni-
tored. In this framework, we may identify two major streams
of research. A first stream of methods consists of identifying
regions of interest (ROIs) in each video frame and monitor-
ing the evolution over time of their synthetic descriptors. This
first route also represents the most common way to process
video-image data in the industrial practice, especially when
the engineering knowledge can guide the selection of the
synthetic descriptors, i.e., the golden standard to be iden-
tified and counted in each frame. One main limitation of
these approaches regards the information loss imposed by
the selection of the quantities to be monitored. Another limi-
tation is that, in some cases, the spatial spread of ROIs within
the image can not be fully captured and modeled.

Another stream of research consists of modeling video-
images as a sequence of frames, where each frame is
represented as a matrix of pixel intensities. Following this
route, Yan et al. (2015) compared different extensions of
Principal Component Analysis (PCA) to detect shift of the
spatial intensity pattern observed in a video sequence. A
different method was proposed by Colosimo and Grasso
(2018), where a so-called spatio-temporal PCA (ST-PCA)
was used to enable a spatial localization of the occurred
anomaly within the image, by combining a T-mode PCA
implementation (Jolliffe, 2002) with a spatially weighted
variance-covariance matrix definition. With the same aim
of detecting an anomaly both in time and space, Yan et al.
(2021) presented a penalized regressionmodel, called spatio-
temporal smooth sparse decomposition, combined with a
control chart on the model parameters.

A limitation of this second family of methods is that they
look at the framesof video-imagedata asmatrices (or tensors)
of pixel intensities, without frame pre-processing to look for
specific elements or regions of the frame carrying detailed
information about the process of interest.

This study focuses on modeling video-image data where
the spatial signatures of interest can be represented as spatial
point patterns (SPPs). An SPP data set is a nite collection of
points specifying the locations of events within a given area
of interest, which can be a 2-D, a 3-D space or even a man-
ifold (Møller & Waagepetersen, 2017). Examples of SPPs
can be found in various fields, from medical applications,
e.g., spatial distributions of neurons (Jafari Mamaghani et

al., 2010); to ecology, e.g., spatial distribution of trees for
forest mapping (Velázquez et al., 2016); epidemiology (Dig-
gle et al., 2005); astronomy (Stoica et al., 2007). In industrial
applications, SPPs have been used to model the spatial distri-
bution of fibers in composite or particles in nanocomposite
manufacturing (Trias et al., 2007; Huang et al., 2015, 2017;
Kam et al., 2013; Zhou et al., 2014; Dong et al., 2017a)
or to study the porosity distribution in additively manufac-
tured parts (Liu et al., 2019). Examples of industrial images
exhibiting spatial point patterns are shown in Fig. 1. Despite
a large literature on K-functions and SPP methods for image
data, there is a lack of applications involving video-image
data, although the dimensionality reduction enabled by K-
functional representations makes such approach particularly
attractive in video-image processing and analysis too.

In our study, the motivating application regards the statis-
tical analysis of spattering in additive manufacturing, more
specifically Laser Powder Bed Fusion (L-PBF) (Gibson et
al., 2014).

L-PBF allows producing metal parts on a layer-by-layer
basis by using a highly focused laser beam to locally melt
a thin layer of metal powder. Different authors showed that
spatters generated by the laser-material interaction enclose
a rich information about the L-PBF process conditions and
their stability over time (Zhang et al., 2019; Repossini et
al., 2017; Andani et al., 2018; Bidare et al., 2018). Spat-
ters are hot metal particles ejected from the melted region or
the surrounding areas. Their spatial spread captured with a
high-speed machine vision equipment can be regarded as an
SPP. Indeed, at each given point in time, i.e., in each video-
frame, the spatters canbe represented as point particleswhose
spread in space is relevant to analyze the underlying pro-
cess phenomena (more details are provided in the motivating
example description in section “Motivating example”).

A technique suitable to synthesize the information enclosed
inSPPspassing from2-Dspatialmaps to 1-Dcurves is known
as Ripley’s K-function (Ripley, 1977; Diggle et al., 2000).
The K-function methodology allows one to describe the spa-
tial spread of point processes and to distinguish between
homogeneous, clustered and random spatial scatters of the
analyzed quantities as they reflect into different shapes of
theK-function curve.Ripley’sK-function has been applied to
model nanoparticles (Dong et al., 2017a), The interpretabil-
ity of resulting functional patterns represents a further benefit
thatmakes Ripley’s K-function a suitable datamodeling tool.

This paper presents a method which combines an image
segmentation and processing step to transform video-image
data of spatter ejections into Ripley’s K-function curves, and
a curve fitting approach based on Functional Data Analysis
(Ramsay, 2004), which enables the classification of different
process behaviors via FANOVA. We show that by analyzing
the statistical differences of K-functions associated to the
spatial spread of spatters in L-PBF, it is possible to distin-
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Fig. 1 Examples of industrial imageswhereK-functionsmaybe suitable tomodel spatial point patterns: SEMimage of ametalmatrix nanocomposite
(left), TEM image of a polymer nanocomposite (centre) (Huang et al., 2015), and a spatial spread of pores in a metal specimen (right)

guish between process conditions that cause different types
of volumetric defects (porosity) in the manufactured part. A
comparison against benchmark methods that rely on com-
puting synthetic spatter descriptors shows that the proposed
approach ismore effective in detecting actual departures from
a stable and in-control process condition.

The paper is organized as follows: section “Motivat-
ing example” presents the motivating case study in L-PBF;
section “Proposed methodology” describes the K-function
methodology and our proposed FANOVA solution; section
“Results” summarizes the main results in the spatter analysis
application and section “Conclusions and future develop-
ments” concludes the paper.

Motivating example

The motivating example for the proposed approach regards
the analysis of spatter ejections in L-PBF as a signature of the
process behavior. Spatters, as many other relevant quantities,
can be measured in-line and in-situ thanks to the layer-
wise paradigm that allows to observe (e.g., with high-speed
cameras or thermal cameras) many process-related phenom-
ena during the production of each layer (Colosimo, 2018a;
Colosimo et al., 2018a; Grasso & Colosimo, 2017; Grasso
et al., 2021; McCann et al., 2021). An increasing number of
studies have been devoted in the last years to the possibility
of using spatters and other L-PBF by-products (i.e., vapor gas
and plasma emissions) for in-line and in-situ process moni-
toring (Repossini et al., 2017; Andani et al., 2018; Nassar et
al., 2019; Zhang et al., 2018; Ly et al., 2017).

Spatter ejections are either caused by a vapor-driven
entrapment of powder particles or by unstable solid-liquid
transitions leading to molten material ejections (Liu et al.,
2015; Khairallah et al., 2016; Ly et al., 2017). The interested
reader is referred to (Grasso & Colosimo, 2017; Grasso et

al., 2021; McCann et al., 2021; Kumar et al., 2022; Li et al.,
2020; Tercan & Meisen, 2022; Liu et al., 2022; Zhang et al.,
2022) for review studies devoted to these phenomena and to
the development of process monitoring tools in L-PBF.

Various authors showed the effect of different process
parameters on the spatter behavior (Repossini et al., 2017;
Nassar et al., 2019; Zhang et al., 2018; Ly et al., 2017).
They mainly used high-speed video imaging to measure
spatter-related quantities and their evolution over time. The
mainstream analytic approach consists of estimating, frame
by frame, various synthetic descriptors, e.g., the number of
ejected spatters, their distance from the melt pool, their size,
velocity, etc., and relating them to the variation of process
conditions. Some authors also proposed classification meth-
ods based on logistic regression (Repossini et al., 2017) or
artificial neural networks (Zhang et al., 2018).

Figure 2 shows an example of high-speed (1000 fps) video
frames acquired during the L-PBF of a maraging steel sam-
ple, showing the spatter ejected during the production of one
single layer as bright (hot) particles on a dark background
(more detailed information about the experimental settings
are provided in Sect. 4). The laser beam is not visible because
the laser wavelength is outside the camera’s sensitivity range.
Top and bottom panels of Fig. 2 show two opposite out-of-
control conditions, namely the spatters ejected when a too
low energy input was provided to the material (top panel)
and spatters ejected when a too high energy input was pro-
vided (bottom panel), respectively. The former condition is
also known as lack-of-fusion, and the energy density is not
sufficient to completely melt the metal powder, leading to
large and irregular pores within the final part, and possible
delaminations between adjacent layers. The latter condition
is also known as over-melting, as the excessive energy den-
sity causes a local overheating and unstable solid-liquidus
interfaces, with consequent formation of pores mainly char-
acterized by a regular and spherical shape. The different
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Fig. 2 Examples of cropped video-frames showing spatter ejections during the L-PBF process of maraging steel samples under lack-of-fusion (top
panels) and over-melting (bottom panels) conditions

Fig. 3 Superimposition of
centroid locations of all the
spatters observed during the
L-PBF production of one layer
of maraging steel samples under
lack-of-fusion (left panel) and
over-melting (right panel)
conditions

effects of these two conditions on the final defectiveness
of the part make their quick detection and identification
extremely important to keep under control the process and
aid the part qualification task. Figure 3 shows a superimpo-
sition of all the spatters detected in the two videos of Fig. 2
(lack-of-fusion condition on the left and over-melting con-
dition on the right). Each spatter is identified by its centroid
in Fig. 3. Figures 2 and 3 show that the spatial spread of
spatters represents a suitable signature to identify different
process states. Moreover, the evolution of spatters generated
in L-PBF in space and along time can be regarded as a spatial
point process, as the spatialmapping of the spatterswithin the
image domain represents the feature of interest for process
state classification. Therefore, SPP analysis can be particu-
larly suitable to synthesize the relevant information content
of the video-image stream, translating the image-based prob-

lem to a functional data analysis framework (Ramsay, 2004).
It is worth noticing that this approach does not require any
a-priori selection of synthetic descriptors, while focusing the
attention on the actual spatial mapping of the spatter behav-
ior.

Proposedmethodology

Brief review of the Ripley’s K-function

The theoretical K-function can be defined as (Ripley, 1977;
Diggle et al., 2000):

K (t) = 1

θ
E

(# extra points within distance t of a randomly chosen point)

(1)
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where θ is the spatial density of points, i.e., the number
of points per unit area. Therefore, θ K (t) represents the
expected number of points that are within a distance t around
a randomly chosen point. This allows describing a point pro-
cess at different distance scales.

LetU be an image of m × p pixels, including n connected
components that can be treated as points whose coordinates
in the image domain are the coordinates of the connected
component’s centroid.Then, an asymptotically unbiased esti-
mator of the K-function K (t) is

K (t) = 1

n2

∑

(x,y) ∈ U

w(x, y) I (0 < d(x, y) ≤ t) (2)

where I (•) is the indicator function, d(x, y) is the Euclidean
distance between points x and y, and w(x, y) is the edge
correction factor.

The edge correction factor is applied to take into consid-
eration the fact that circles of radius d(x, y) centered in x
may be not fully included in U , depending on the closeness
to the image border and the radius d(x, y). Ignoring edge
effects may lead to a biased estimation of the K-function,
especially for large values of t . The correction factorw(x, y)

can be defined as w(x, y) = 1
PC I RC (x, d(x,y) | U )

, where
PC I RC (x, d(x, y) | U ) is the proportion of the circum-
ference of radius d(x, y) centered in x included into the
image domain U . If the circle is completely inside the
image domain, w(x, y) = 1. Different variants of the K (t)
have been proposed, involving different edge corrections for
boundary effects (Baddeley et al., 2006; Yamada & Roger-
son, 2003). In this study, boundary effects do not represent a
critical issue as the spatters are always located in a reduced
area in the center of the image, making the edge correction
not necessary. The interested reader may refer to Baddeley et
al. (2006) and Yamada and Rogerson (2003) for a discussion
on different applicable edge corrections.

Two other variants of the Ripley’s K-functions were pro-
posed, involving a normalization operation that leads to a
linear (L-function) or constant and equal to zero (H-function)
expected value, respectively (Kiskowski et al., 2009; Badde-
ley et al., 2006). These two variants were mainly proposed to
ease the qualitative analysis and interpretation of Ripley’s K-
functions and to aid statistical hypothesis testingwith respect
to the null hypothesis of a homogeneous Poisson process.

K-functions are also connected to “pair correlation func-
tions”, which may be obtained after differentiation and nor-
malization of the K-function (Baddeley et al., 2006). How-
ever, the estimation of pair correlation functions involves the
use of a kernel function, and the selection of the correspond-
ing kernel bandwidth. As the K-functions avoid the need
for this parameter selection, they are proposed in this study.
However, the method can be easily extended to L-, H- and
pair correlation functions.

K-functions have different properties that make them suit-
able to capture different patterns of spatial point processes.
Indeed, the shape of K-function reflects not only the type
of underlying distribution, but also the presence of clusters
together with their within- and between-cluster distances
at different scales. Figure 4, left panel, shows examples
of SPPs obtained by generating 200 points whose coor-
dinates were simulated as uncorrelated random numbers
from a normal distribution with mean µ = (0, 0)T and

� =
[
0.6 0
0 0.6

]
or � =

[
1 0
0 1

]
, uncorrelated uniform

numbers with parameters (−1, 1) and (−2, 2), random num-
bers from two overlapped clusters centered in (0, 0) but with
different variances, and random numbers from two separate
clusters. Figure 4, right panel, shows the corresponding esti-
mated K-functions. The value of t at which the estimated
K-function reaches the asymptote reflects the dispersion of
the points, whereas the slope and changes of the first and
second derivatives reflect whether the points are clustered
together and their relative distances at different scales. In
particular, the presence of clustered data leads to inflection
points in the K-function. The K-functions also capture infor-
mation about the number of points in a predefined area, since
the asymptote is K (∞) = A − A

n , being A the area of the
image. Thus, being fixed A, the larger the number of points,
the higher is the value of the asymptote. These features make
the K-function suitable to capture salient patterns of SPPs
including in one single curve information that could be cap-
tured via multiple simple statistics (e.g., number of points,
average distance from the center, etc.), but also information
that is difficult or impossible to fully describe via synthetic
descriptors.

Methodology

A video can be represented as a temporal sequence of video
frames U1, U2, . . . , U j where the j-th video frame, U j , is
an image of size A = m × p. The proposed approach
involves an image pre-processing phase followed by the
frame-by-frame estimation of the corresponding K-function.
The pre-processing phase consists of (i) identifying, in each
video frame, the n j connected components representing the
objects of interest and (ii) computing, for each of them, the
centroid’s coordinates. We assume that the number of con-
nected components, n j , may vary from one frame to another.
Once the centroid’s coordinates of all connected components
have been computed, the j-th K-function K j (t) can be esti-
mated using Eq. (2), for any pair of components (x, y).

Figure 5 shows an example of the sequence of steps to pass
from one video framewhere multiple connected components
are present to the corresponding K-function estimation. The
operation is then repeated for all video frames, as a parametric
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Fig. 4 Left panel: examples of normal, uniform and clustered spatial distributions; right panel: corresponding estimated k-functions

Fig. 5 Flowchart of the proposed approach with an example of conversion from one original video frame to the K-function representation

model of estimated functions can be fitted to enable statistical
inference of K-functional patterns.

As far as the spatter analysis in L-PBF is concerned, each
video frame consists of a dark background and different
bright areas in foreground. The foreground areas correspond
either to spatters ejected by the laser-material interaction
or to the laser heated zone. The laser heated zone is usu-
ally the largest bright area in the image, due to the high
radiation emission from the melt pool and the surrounding
heated material. Each spatter can be described as a distinct
connected component by converting the original gray-scale
video frames into a binary format. To this aim, the approach
proposed by Repossini et al. (2017), which foresees two
steps, was applied. First, the Otsu’s thresholding algorithm
(Chaki et al., 2014) was applied to binarize the images, such
that the foreground pixels in each connected component have
intensity equal to 1 and background pixels have intensity
equal to 0. The optimal threshold valuewas identified bymin-
imizing the intra-class intensity variance within the class of
dark (background) pixels and the one of bright (foreground)
pixels. In order to keep the same threshold value for all the
frames, and to reduce the in-line computational effort, the
optimal Otsu’s threshold was identified during a calibration

phase, choosing the sample mean of threshold values iden-
tified in calibration frames. Such calibration was carried out
by using a video-image data gathered in one of initial layers,
before starting the data acquisition for the actual test phase.
In principle, historical data from previous builds can be used
to calibrate the binarization settings as well. Once binary
frames have been obtained, the largest connected component
in correspondence of the melted region was labeled as laser
heated zone and not considered in next steps, to focus the
analysis only on the spatters and their spatial spread. The
spatter’s centroid was computed as the center of mass of the
connected component. In this study a connected component
labeling was applied with connectivity 8, i.e., such that each
connected components includes pixels that are connected if
their edges or their corners touch. All pre-processing opera-
tions were carried out using the Image Processing Toolbox
of Matlab.

The segmented centers of mass were then used to estimate
the Ripley’s K-function corresponding to a specific frame. It
is also worth noticing that the K-function estimation and its
use in our proposed approach do not rely on distributional
assumptions. One of the properties of a K-function is that
it has to be non decreasing, so a fitting method able to pre-
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serve this peculiarity must be used. As suggested by Ramsay
(2004), a non decreasing function can be estimated using the
equation:

K (t) = β0 + β1 exp

⎧
⎨

⎩

t∫

t0

W (u) du

⎫
⎬

⎭ (3)

where W (t) = f T (t)α is the usual regression term, whereas
β0 and β1 are the constant and the tangent term of the model.
Equation (3) describes a general set of curves with the con-
straint that they have to be non decreasing, i.e. the derivative
approaches 0 if t → ∞. It should be noted that the terms β0

and β1 have the samemeaning that they have in simple linear
regression: β0 is the value that the function assumeswhen t is
equal to 0 and β1 is the tangent at the same value. The model
has to describe a generic function, so the basis functions of
f (t)must be suitable to achieve a good curve reconstruction.
To this aim, we advocate the use of a third degree B-splines
basis functions. Once the basis in Eq. (3) has been selected,
the parameters’ vectors β and α are estimated byminimizing
the sum of squares:

min
β,α

n∑

i=1

[ki − K (ti )]
2 + λ

∫

T

d2K (t)

dt2
dt . (4)

The parameter λ controls the so-called smoothing penalty.
If λ is equal to 0, the function in Eq. (4) is the classic sum of
squares error function. In B-splines regression, a large num-
ber of basis function are commonly needed to estimate the
underling curve, leading to possible undesired effects like
undulation of the fitted curve or an ill-posed system of equa-
tions. To avoid these effects a small value of λ > 0 should
be set. It is also worth noticing that a curve of degree three
or higher must be used to compute the smoothing penalty in
Eq. (4). Figure 6 shows an example of estimated K-functions
corresponding to each video frame during the production of
one layer of one specimen in our real case study, and the cor-
responding fitted average curve K̂ (t). A four B-splines basis
function with five equally distant internal knots and λ equal
to 10−5 was used.

Once all the functions are fitted, they can be used to
identify different conditions of the underlying process. Let
µ1(t),µ2(t), . . . ,µl(t) be the mean K-functions fitted start-
ing from video-image data gathered in l different video
sequences. The sample average curve associated to the i-th
video, with i = 1, . . . , l can be estimated as follows:

µ̂i (t) = 1

ni

ni∑

j=1

K̂i j (t) (5)

Fig. 6 Example of measured K-functions during all frames of a video
and fitted mean function

where ni is the number of frames in the i-th video sequence.
In addition to the average curve, the corresponding 95% con-
fidence band can be estimated as:

Li (t) = µ̂i (t) − z0.975 σ̂i (t)

Ui (t) = µ̂i (t) + z0.975 σ̂i (t)
(6)

where z0.975 ≈ 1.96 is the 97.5% quantile of the Gaussian

distribution and σ̂i (t) =
√

σ̂ 2
i (t) is the estimation of the

standard deviation of the i-th function, with:

σ̂ 2
i (t) = 1

ni − 1

ni∑

j=1

(
Ki j (t) − µ̂i

)2
. (7)

Thanks to the computation of the confidence interval for
each sample mean of fitted K-functions, it is possible to
determine whether process conditions captured in different
portions of the same process, and/or during the production of
different parts, produced a statically different mean pattern
of spatter ejections. It is also possible to compare the K-
function representation of spatter patterns in any new layer
or any new build against a reference pattern, representative
of a stable and in-control process state. Once a statistically
significant difference from the reference confidence band is
observed, a departure from desired process conditions can be
detected. Moreover, the shape of the sample mean of fitted
K-functions in the current process state provides a rich and
interpretable information about the type of occurred devia-
tion. Because of this, the proposed approach can be used for
in-line and in-situ monitoring of the L-PBF process, taking
advantage of a reference pattern estimate carried out during a
training phase. It can be also used to support process charac-
terization and optimization relying on in-line measurement
of spatter ejections as a signature of the process.
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Table 1 L-PBF process parameters

Energy
density level

Exposure
time τ (ms)

Distance between
scan points dp (µm)

Distance between
adjacent tracks dh
(µm)

Laser power
P (W)

Laser
thickness Z
(µm)

Volumetric energy
density (J/cm)

1 39 65.0 80 200 50 30,000

2 85 85.0 80 200 50 50,000

3 104 65.0 80 200 50 80,000

4 125 62.5 80 200 50 100,000

5 115 50.0 80 200 50 115,000

6 104 40.0 80 200 50 130,000

Results

Experimental settings

The experimental case study involves the production of sim-
ple specimens via L-PBF of 18Ni (300) maraging steel. By
changing the process parameters, different melting condi-
tions were obtained, corresponding to different severities and
types of volumetric defects in the final parts. A high-speed
camera was used to monitor the spatter ejections during the
production of the specimens in different layers. At the end
of the process, two non-destructive methods were used to
estimate (i) the density of the samples (Archimede’s mea-
surement method) and (ii) the nature of pores, especially
their shape and location within the sample (X-ray computed
tomography, CT). The experimentation was carried out by
using an industrial L-PBF machine, namely a Renishaw
AM250, equipped with a single laser scanning system that
enables a point-wise scanning method. Along each scanned
track, the laser moves from one point to another spaced a
distance dp apart with an exposure time τ on each point. The
purpose of the study was to study the capability of the pro-
posed approach to properly identify statistically significant
differences in spatter patterns induced by different energy
inputs provided to the material. Six treatments, correspond-
ing to six different energy density levels, were obtained by
varying two controllable parameters, namely τ and dp. The
rationale behind the variation of both τ and dp is that act-
ing on these two parameters allowed exploring a wider range
of energy densities than controlling one single parameters,
while preserving safe operating modes. Indeed, due to the
pulsed melting mode implemented in the Renishaw AM250,
varying both the exposure time and the distance between
exposed points allowed inducing treatments ranging from
severe under-melting (also known as lack of fusion) to over-
melting condition. Each treatment was replicated three times
by printing three specimens for each energy density level,
leading to a total number of 18 specimens. All other control-
lable process parameters were kept fixed, apart from the scan
direction that was varied layerwise according to the standard

industrial practice. A stripe scanning strategy was applied,
with a 67◦ scan direction rotation every layer. The response
variable was the spatial spread of the spatters captured by
the high speed camera, which was then translated into the
1D K-function form. Table 1 shows the process parameters
corresponding to each energy density level and Fig. 7 shows
the specimen allocation within the build area. All the spec-
imens had equal geometry (i.e., parallelepipeds of size 5 ×
5 × 12 mm). The material used was a gas atomized powder
with average particle size of 25–35 µm.

The specimens were placed in themiddle of the build plat-
form (Fig. 7), at a sufficient distance from each other to avoid
thermal interference. The intermediate energy density level
(namely, level 3) corresponds to the default set of process
parameters suggested by the L-PBF system developer. Fig-
ure 8 shows the in-situ sensing setup used in this study. It
consists of a high-speed camera (Olympus I-speed 3 with
CMOS sensor) in the visible range (about 400 to 700 nm)
placed outside the protective window of the build chamber.
Video-imageswere acquired at 1000 frames per second (fps),
in order to capture the spattering behaviour with a sufficient
temporal resolution. A chessboard camera calibration was
performed to estimate the spatial resolution in the powder
bed plane, which was about 250 µm/pixel. A total of 240
layers were printed, but in-situ videos were acquired only
during six non-consecutive layers spanning the entire dura-
tion of the process. In each monitored layer, a video of the
L-PBF of all 18 specimens was acquired.

As-built quality characterization

The effects of different process parameters on the volumet-
ric defects of the specimens were investigated by measuring
the overall density of each specimen and its porosity struc-
ture. The final part density was evaluated by means of the
Archimede’s test and the results are shown in Fig. 9.

Figure 9 shows that energy density level 1 (30 kJ/cm)
caused a severe lack-of-fusion condition, with a low density
in the order of 90%. Energy density levels 2, 3 and 4 (50, 80,
100 kJ/cm) produced the highest density. Finally, levels 5 and
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Fig. 7 Scheme of the specimen allocation within the build area; numbers indicate the energy density level for each specimen

Fig. 8 High-speed video
imaging setup

Fig. 9 Density values measured
by using the Archimede’s test
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Fig. 10 Top view of the segmented pores using the CT results

6 (115, 130kJ/cm) caused ahigher part-to-part variability and
an average density slightly lower than 98%. To gather addi-
tional information about the structure of the internal porosity,
an X-ray CT scan of the specimens was performed, with a
voxel size of 10µm. Top views of the segmented pores are
shown in Fig. 10.

To characterize the different porosity structures, a further
descriptorwas computed for each pore, namely the sphericity
index. It was computed as:

φ =
3
√
36π V 2

S
(8)

where V and S are the volume and the sphericity of the pore
respectively. This index ranges from 0 to 1, where 1 indicates
a perfect sphere. Figure 11 shows the 95% confidence inter-
vals of the sphericity index for all the energy density levels.
Specimens printed with energy density level 1 (30 kJ/cm)
were characterized by large pores that were connected to
each other. Due to the impossibility of separating connected
pores in a reliable way, these pores were removed from the
estimate of confidence intervals shown in Fig. 11. Moreover,
one of the three samples printed with energy density equal
to 30 kJ/cm detached from the baseplate during the process

Fig. 11 95% confidence intervals for the sphericity index of each pore

because of a severe delamination. Thus, the non-destructive
characterization was performed only for two specimens at
energy density level 1.

As shown in Fig. 11, all specimens printed with energy
density levels 1 and 2 (i.e., energy density lower than 80
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kJ/cm) exhibited a porosity structure characterized by irreg-
ularly shaped pores. This structure is typical of lack-of-fusion
conditions, where insufficient energy input is provided to the
material. Although the number of pores at level 1 was much
higher than in level 2 (as shown also by the Archimede’s
test), specimens produced with these two energy density lev-
els shared the same internal porosity structure. On the other
hand, all specimens produced with energy density levels 3,
4, 5 and 6 (i.e., energy density ≤ 80 kJ/cm) exhibited near-
spherical pores mainly placed in the corners and along the
borders of the specimen. A higher concentration of nearly
spherical pores is typical of local over-melting conditions.
Pores are mainly located along the contours of the part
because of the inversion of laser motion at the end of each
scan track,which causes locally slower scan speed and higher
heat accumulation. This becomes evenmore severe in the cor-
ners where the length of adjacent scan tracks quickly drops
leading to a shorter time between two laser scans in the same
area and consequent over-heating effects.

Figure 11 clearly shows that the different energy den-
sity levels tested in this study produced two different kinds
of porosity structures. In particular, there is a clear transi-
tion between the lack-of-fusion condition and a “plateau”
characterized by a high density and a high concentration
of near-spherical pores along the borders of the speci-
men. Optimal process parameters—in terms of volumetric
defects—can be found at the beginning of such plateau, i.e.
in correspondence of the energy density level 3. The energy
density level 3 produced not only the lowest porosity in the
manufactured specimens but also pore that were more spher-
ical than all other tested conditions. On the one hand, the
capability to determine the transition between the lack-of-
fusion condition and the following plateau represents a key
issue to predict the final quality of the part relying on in-line
and in-situ data. On the other hand, the capability to detect
statistically significant differences from a reference (stable
and in-control) process behavior is necessary to design in-line
and in-situ process monitoring tools. The analysis discussed
in the following demonstrates the suitability of the proposed
approach to this aim, where the spatter behavior observed
with a volumetric energy density of 80 kJ/cm was used as a
signature of reference process performance.

Spatter analysis via K-functionmodeling

In the present case study, the dataset consists of one video per
monitored layer. Each video was split into six sub-portions,
each of them capturing the spatial spread of spatters during
the production of specimens with a given energy density.
An example of the spatial spread of spatters in one layer for
different energy densities is shown in Fig. 12.

K-functions estimated in different layers produced with
a given energy density can be considered as replicates of

K-functions generated under the same process conditions.
Figure 13 shows the fitted average K-functions for each layer
and each energy density level (left panel) together with the
95% confidence band of the fitted grandmean K-function for
each energy density level (right panel).

Figure 13 shows that energy density level 1 (30 kJ/cm)was
characterized by a K-function pattern considerably different
from the one observed at other energy density levels. At the
lowest energy density, the grandmean of theK-functionswas
much faster than all other function in reaching the asymptote,
which means that the spatial spread of spatters was smaller
than in other cases. Moreover, the asymptote was signifi-
cantly lower than in other K-functions, because of a much
lower number of spatters. The grand mean of the K-function
for energy density level 2 (50 kJ/cm) exhibited an interme-
diate pattern between the one at energy density level 1 and
the one of all other energy density levels. The grand means
of K-functions at energy density equal to or larger than 50
kJ/cm were characterized by overlapped confidence bands,
which is consistent with the plateau condition discussed in
Sect. 4.2.

To better highlight and interpret the different patterns of
the analyzed K-functions, the derivatives of the fitted grand
mean K-functions were computed as:

K ′(t) = d K (t)

dt
= β1 W (t) exp

{∫ t

t0
W (u) du

}
(9)

The curve in Eq. (9) is the derivative of the K-function
estimated using Eq. (3). The additional analysis of the K-
function derivative allows one to better highlight some local
differences in the K-function patterns. Figure 14 shows the
derivative of the fitted average K-functions for each layer
and each energy density level (left panel) together with the
corresponding 95% confidence band (right panel). Figure 14
confirms the existence of three distinct patterns, two corre-
sponding to energy density levels 1 and 2, and another one
consisting of a partial overlap of confidence bands for all
other energy densities. Figure 14 also shows an inflection
point of the derivatives of the grand means of K-functions.
At energy density levels 1 and 2, such inflection point is more
evident and it occurs at values t in the order t = 25-30 pix-
els. At higher energy density levels the inflection point is
present but less evident, and if occurs at larger values of t ,
i.e., t = 75-80 pixels. This is caused by the fact that the spat-
ter spread typically consists of most spatters close together
in the neighborhood of the melt pool, and a smaller number
of spatters with a kinetic energy sufficient to move away at
higher distances from the melt pool. The value t at which
the derivatives of the K-function exhibit an inflection point
is representative of the scale at which the transition occurs
between amajority of slower spatters and aminority of faster
ones able to travel a longer distance.
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Fig. 12 Example of spatial spread of spatters in one layer for different volumetric energy density levels

Fig. 13 Sample mean K-functions fitted in different layers and for different energy densities (a) and the corresponding grand mean K-functions
with 95% confidence intervals (b)

In order to have a quantitative evaluation of the statisti-
cal differences among the K-functions associated to different
energy densities, a functional variant of the analysis of vari-
ance can be applied, i.e., a hypothesis testing where the
response variable is a function. It consists of testing the fol-
lowing hypothesis:

{
H0 : µ1(t) = µ2(t) = · · · = µ6(t), t ∈ T

H1 : ∃ (i, j) : µi (t) �= µ j (t), t ∈ T
(10)

where µ̂1(t), . . . , µ̂6(t) are the grand mean K-functions
associated to the six different energy density levels tested

in this study. The reader is referred to Ramsden et al. (2007)
for an overview of the theoretical background of statistical
tests in functional data analysis. The resulting p-value of the
hypothesis test in Eq. (10) was close to zero (p < 0.001),
confirming the statistical difference among the K-functions
associated to different energy density levels. A further anal-
ysis consists of determining the differences between each
energy density level and a reference condition, i.e., the con-
dition that produced the lowest porosity in the manufactured
specimens. In this study, the reference conditions consists
of level 3, i.e., 80 kJ/cm. Such differences (also known as
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Fig. 14 Derivative of sample mean K-functions fitted in different layers and for different energy densities (a) and the corresponding grand mean
derivative K-functions with 95% confidence intervals (b)

Fig. 15 Contrast plots with 95% confidence interval using as a reference the K-function pattern at energy density level 3, i.e., 80 kJ/cm

contrasts) can be estimated as

cik = µi (t) − µk(t) (11)

The contrast cik represents the difference between the grand
mean of K-functions corresponding to the i-th energy den-
sity level and k-th level used as a reference, where k = 3.
Figure 15 shows the contrasts and their corresponding 95%
confidence bands. If the confidence band of a contrast in
Fig. 15 includes the 0 for all values of t , it means that there

is no statistical difference at the 95% confidence between
the K-functions associated to the i-th and k-th energy density
levels within the whole domain. On the contrary, if the con-
fidence band is entirely on the positive or the negative side
of the y-axis, it means that the K-functions associated to the
i-th and k-th energy density levels are statistical different at
the 95% confidence within the whole domain.

Figure 15a and b show that for energy densities levels 1
and 2, the contrast with respect to the reference level 3 is
well above 0 at lowest distances, t , and below 0 at highest
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distances. This clearly reflects the type of departure from the
reference spatter behavior at 80 kJ/cm under lack-of-fusion
conditions. Compared to the the reference spatter behavior,
most spatters produced with too low energy density con-
centrated at smaller distances above the heat affected zone
(positive contrast at low t), and a only a lower number of spat-
ters reached higher distances from the heat affected zone.
Figure 15 also shows the different spatter behavior in the
over-melting conditions (energy density levels from 4 to 6).
In this case, the confidence bands of contrasts with respect to
the reference level are below 0, and the higher is the energy
density, the more evident is the deviation of the correspond-
ing contrast towards negative values. At energy density level
4 (Fig. 15c), the confidence band of the contrast includes 0
in most of the domain, which indicates the lack of statis-
tical difference with respect to the reference condition. At
energy density level 5 (Fig. 15d), the upper bound of the
contrast’s confidence band is below 0 for most values of
t although being very close to 0. At energy density level
6 (Fig. 15e), eventually, the confidence band of the con-
trast is entirely below 0 and it shows a significant departure
from the reference condition. This result highlights a grad-
ual and significant departure of the spatter behavior from
the reference pattern as the energy density increases. Such
increasing deviations in the over-melting state correspond to
a higher porosity of the manufactured parts. Therefore, the
K-function patterns capture a clear transition from lack-of-
fusion conditions and a plateau condition starting from 80
kJ/cm. In addition, they also capture a gradual and signifi-
cant departure from the reference level 80 kJ/cm within the
plateau as higher energy densities are provided to the mate-
rial, especially at the highest energy density level, 130 kJ/cm.
Therefore, the proposedmethod allows synthesizing the spat-
ter behavior captured in video-image data is a way that is
suitable to capture the major differences between different
process states and their consequent effects on the final part
porosity. Because of this, the proposed approach is applicable
to detect departures from a reference (stable and in-control)
process state in the framework of in-line and in-situ process
monitoring via video-image data. The interpretability of the
fittedK-function patterns represents another advantage of the
proposed approach, as it allows the characterization of the
salient differences among spatial spreads of spatters in every
monitored condition, enclosing in one single curve multiple
properties of the analyzed phenomenon.

Sensitivity analysis

One parameter that may affect the performance of the K-
function representation of spatter patterns is the Otsu’s
threshold used to binarize the original video frames. To
determine the robustness of the proposed approach to this
parameter, a sensitivity analysis was performed. All video

Fig. 16 95% confidence intervals of the mean number of spatters iden-
tified as connected regions in video frames binarized using different
thresholds from 0 to 1

frames acquired during the production of one whole layer
were used to test different thresholds, ranging from 0 to 1.
Figure 16 shows 95% confidence intervals of the mean num-
ber of spatters identified as connected regions in video frames
binarized using different thresholds. Figure 16 shows that too
small values of the threshold introduce an anomalous peak in
the number of detected components caused by the fact that
several dark pixels of the background regions are wrongly
assigned to the foreground class. For threshold values larger
than 0.2, an increase of the threshold has aminor effect on the
number of identified spatters, and the number drops only for
very high thresholds, namely above 0.98. By testing our pro-
posed approach with different threshold values, we observed
that no significant change in the ANOVA results occurred
within awide range of values, roughly between 0.23 and0.73.
The optimal threshold used in this study, as a result of the cal-
ibration phase, was 0.42, which is well within this range. The
amplitude of the range makes the proposed approach robust
to uncertainty in video-image data pre-processing settings.
Generally speaking, we advocate a calibration phase as the
one described above to identify image binarization settings
that are suitable to generate robust and consistent results.

Comparison analysis

A comparison analysis was carried out to investigate the ben-
efits of the proposed approach for spatter analysis against
benchmark methods mainly used in the literature. As dis-
cussed in Sect. 2, the most common approach adopted in the
literature for the analysis of spatter ejections in L-PBF and
for process state classification using spatter-related informa-
tion involved the computation of synthetic descriptors, i.e.,
one or multiple scalar values associated to each spatter. It
is also worth noticing that currently there is no industrial
solution suitable to analyze spatter patterns. Indeed, most
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industrial L-PBF systems are equipped with sensors (includ-
ing machine vision devices) for in-situ monitoring, but the
focus is on the powder bed homogeneity and on the stabil-
ity of melt pool emissions. Despite of the different target
of the analysis, the best industrial practice for in-situ image
data analysis in L-PBF consists of computing either pixel-
wise variation metrics or synthetic descriptors associated to
regions of interest. Because of this, the competitor approach
considered in this study is not only representative of themain-
stream literature on spatter analysis and monitoring in AM,
but also of the best industrial practice applied to off-the-shelf
monitoring toolkits. Two synthetic indexes used by different
authors are the number of spatters and the area of the con-
vex hull including all the spatters in one frame. The area
of the convex hull is a synthetic measurement of the spatial
spread of the spatters. More details about their computation
can be found in Repossini et al. (2017). The two indexes were
computed in every frame and their average values were then
used as an alternative to the computation of sample mean
K-functions. Figure 17 shows the 95% confidence intervals
for the contrasts between the number of spatters and the con-
vex hull area computed under different energy density levels
and the reference level 3. Thus, Fig. 17 represents the anal-
ogous of Fig. 15. Figure 17 shows that both the synthetic
indexes allow detecting a statistically significant difference
between the two lack-of-fusion conditions (energy density
level 1 and 2) and the reference level. However, they fail
in detecting a statistical difference in the spatter behavior
between overmelting conditions (energy density levels 4 to
6) and the reference level 3. The adoption of the K-function
to characterize the spatial spread of spatters, instead, high-
lighted a statistically significant difference between the most
severe over-melting state and the reference, which was also
confirmed by a higher porosity in the part.

Figure 17 shows that synthetic indexes may be effective in
detecting most severe departures from a reference condition,
like the two lack-of-fusion states observed in this study, but

they are not enough sensitive to less severe deviations. More-
over, they capture a poorer information content compared
to K-functions, which results into a potentially lower inter-
pretation capability about the monitored phenomena. More
specifically, the K-function methodology allows capturing
variations of the underlying pattern at different scales, i.e.,
at different distances t within the image, in a way that is dif-
ferent or even impossible to represent by means of discrete
synthetic indexes. These results highlight the added potential
enabled by the proposed method for in-line and in-situ anal-
ysis and monitoring of spatial point patterns in video-image
data, and its possible application to L-PBF.

Conclusions and future developments

The increasing availability of image and video-image data
for statistical quality modeling and monitoring applications
is making more and more urgent the need for novel meth-
ods suitable to deal with real industrial problems. In this
study, we presented a methodology that allows summarizing
the spatial spread of multiple regions of interest in video-
image data by passing from a 2-D image to a 1-D profile
data format relying on the Ripley’s K-function approach.
More specifically, this study addressed the family of prob-
lems where the time-varying spatial signatures of interest
can be represented as SPPs, where each region of inter-
est can be treated as a point object. The application of the
proposed approach in L-PBF showed that the data synthe-
sis based on the K-functions representing the spatial spread
of spatters allowed distinguishing between different process
states that led to volumetric defects in the final part. In-situ
video-image data analysis via the Ripley’s K-function can
be used to detect process shifts associated to a change in the
spatter ejection behavior, which can be a possible driver of
defects in the part. This approach also represents a viable
way to reduce the dimensionality of big data gathered dur-

Fig. 17 95% confidence interval of contrasts with respect to energy density level 3: number of spatter (left panel) and area of the convex hull
including all spatters (right panel)
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ing the L-PBF process, with consequent benefits in terms of
data storage andmanagement requirements. Indeed, it allows
passing from terabytes per build, needed to store high-speed
videos gathered in every layer, to few megabytes needed to
store K-function data. We showed that it is more effective
than competitor methods commonly used in the literature,
which consist of analyzing pre-defined synthetic indexes.
Themethod is also suited to be used in a process optimization
framework, where in-line spatter measurements may sup-
port the identification of optimal processing windows, with
the further advantage of reducing the experimental effort and
the costs associated to post-process inspections. In summary,
the major strength points of the proposed methodology can
be synthesized as follows: (i) enhanced in-situ detection of
unstable process conditions: spatters are known to be a rel-
evant signature for in-situ monitoring of the L-PBF process,
and the proposed approach enables a more effective detec-
tion of departures from a stable process state than competing
methods adopted in the mainstream literature; (ii) enhanced
in-line data modeling for efficient process optimization, by
replacingpost-process inspectionwith in-linemeasurements,
(iii) reduction of data handling and storage needs thanks to
the massive data reduction enabled by the K-function mod-
eling, moving from high-speed/high-resolution video-image
streams to 1D functional representation of salient informa-
tion. Two possible extensions of the proposed approach can
be envisaged. One regards the extension from modeling spa-
tial patterns enclosed in the data stream to modeling the
spatio-temporal patterns. The use of K-functions to this aim
was discussed by some authors (Hohl et al., 2017). It includes
a temporal scale in addition to the spatial scale in the defini-
tion and estimation of the K-function. Such extension may
be suitable to model time-varying spatial patterns.

Another extension regards the possibility to include addi-
tional descriptors of interest associated to each particle,
e.g., area, shape, etc., into the SPP analysis. Variants of
the K-function and point process methodologies have been
proposed to this aim (Comas et al., 2011). They can be con-
sidered as a valuable extension when the description of the
phenomenon requires other features of interest associated to
each spatial location.

It is worth noticing that although spatters move in a three-
dimensional space, a monocular vision like the one used in
this study allows detecting only their apparent location in the
2-D image plane. Some recent papers (Eschner et al., 2019;
Barrett et al., 2018) demonstrated the feasibility of a 3-D spa-
tial spatter localization in L-PBF, although it requires more
complex machine vision equipment and measurement set-

tings. Albeit the 2-D spatial mapping of spatters, as discussed
in this paper, has been shown to be sufficient for the classi-
fication of different energy density conditions, the proposed
methodology can be further extended to 3-D spatial maps
possibly gathered through high-speed stereo vision systems
for a deeper analysis of process stability.
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Appendix

The frame-by-frame variability of the spatial spread of spat-
ters affects the interval prediction of K-function patterns in
new process realizations. Figures 18 and 19 show the 95%
prediction intervals for the different energy density levels
using, respectively, the original K-function estimates and
their derivatives. By comparing the prediction intervals asso-
ciated to different energy densities, it is still possible to
distinguish a change in the spatial spatter pattern moving
from the first two levels with too low energy input to the
following levels that belong to the so-called plateau state.
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Fig. 18 Sample mean K-functions fitted in different layers and for different energy densities (a) and the corresponding grand mean K-functions
with 95% prediction intervals (b)

Fig. 19 Derivative of sample mean K-functions fitted in different layers and for different energy densities (a) and the corresponding grand mean
derivative K-functions with 95% prediction intervals (b)
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