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Abstract—Exoscopes are a promising tool for neurosurgeons,
offering improved visualisation and ergonomics compared with
traditional surgical microscopes. They consist of an external scope
that projects the surgical field onto a 2D or 3D monitor, providing
a wider field of view and better access to the surgical site. Despite
the advantages, exoscopes present some limitations, such as the
need for manual or foot joystick repositioning, which can disrupt
the flow of the procedure and increase the risk of user error. In
this study, a markerless visual-servoing approach for autonomous
exoscope control is proposed to address these limitations and
enhance the ergonomics and reduce the physical and cognitive
load compared with traditional joystick control. The system
uses visual information from the operating field to control the
exoscope, eliminating the need for markers or additional tracking
devices. The proposed approach was validated using a 7-DOF
robotic manipulator with a stereo camera in an eye-in-hand
configuration. Results showed that the system achieved 89 %
accuracy in detecting the target and tracking its movement with
a tracking error ranging from 0.50 ± 0.17 cm for low-speed
movements to 1.38 ± 0.73 cm for high-speed movements. The
proposed system also demonstrated improved efficiency, with
a shorter execution time of 72.07 ± 19.36 s compared with
106.52±18.50 s for the foot-joystick control. Additionally, the time
out of the FoV was significantly higher in the joystick control
mode and the frequency of appearance of the instrument in the
centre of the image was higher when using the proposed system.
The NASA TLX results indicated lower physical and cognitive
load compared with the joystick control-based modality.

Index Terms—Visual servoing, Autonomous Camera Control,
Exoscope placement, Surgical Robotics, Neurosurgery, Instru-
ment Tracking

I. INTRODUCTION

THE introduction of the exoscope in neurosurgery has
led to a more flexible and ergonomic working environ-

ment for the neurosurgeon, as viewing images through the
microscope eyepiece is no longer required, resulting in a
more comfortable operating position [1]. The exoscope is a
surgical telescope with high-quality magnification that can be
mounted above the surgical scene by means of holding arms or
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robotic manipulators. Additionally, the system includes a 3D
screen with high-definition (or 4K) resolution through which
the surgeon can observe the images captured by the exoscope,
and a wireless foot switch as shown in Fig. 1. Compared with
the standard microscope, the exoscope provides comparable
magnification, lighting, and high-definition images in all kinds
of cranial and spine surgery, both for surgeons and operating
room (OR) staff, as well as more manageability and higher
surgical comfort [2].

Fig. 1. Operating room setting for neurosurgery with exoscope system. On
the right is the holding arm with the 3D exoscope. A foot pedal is placed close
to the surgeon to operate the system. Images from the exoscope are projected
on external monitors that the surgeon watches while performing surgery.

Although the surgeon is provided with an enhanced view
and extended working area, the surgeon is required to man-
ually control it whenever the exoscope system has to be
re-positioned for better vision capture, causing interruptions
and distractions during surgical procedures. Exoscope systems
such as the VITOM (Karl Storz, Tuttlingen, Germany) use a
pneumatic holder that relies on compressed air to create a
mechanical movement, a 3D wheel and four programmable
function keys to control the camera [3]. The surgeon can
position the exoscope as desired and then lock its position once
again. However, this inevitably results in disrupted operational
workflow, distractions, longer operating time, and increased
surgeon’s mental workload [4]. Alternatives to manual reposi-
tioning have been proposed. The most popular one, currently
adopted by AESCULAP Aeos (Braun, Melsungen, Germany)
and ORBEYE (Olympus, Tokyo, Japan), is a foot-operated
joystick controller that, together with a pilot unit, controls
the movement of the exoscope mounted on a robotic arm.
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This allows the surgeon to remain ambidextrous throughout
the procedure, but the complexity of its use has emerged as a
limiting factor [5]. The inconvenience of repositioning is likely
to reduce the benefits of using the exoscope in the operating
room and emphasises the importance of hands-free camera
movement.

One promising solution to reduce the workload for the
surgeon, and improve ergonomics and efficiency is to increase
the level of autonomy (LoA) of the surgical robotic system to
help the surgeon obtain the optimal viewpoint without the need
for repetitive readjustments [6]. Considering the superiority
of spatial positioning accuracy, dexterity, and non-fatigability
of robotics, robot-assisted autonomous navigation techniques
have been integrated into neurosurgery applications [7]. The
first autonomous camera control was introduced by Synaptive
Medical with the release of 𝑀𝑜𝑑𝑢𝑠𝑉 in 2017 [8]. This
system enabled hands-free manipulation using optical tracking
systems together with passive markers attached to the suction
cannula. The main superiority of this system was the robotic
movement of the camera. However, obstructions between the
instrument and the tracking system could prevent the operation
of hands-free control. In addition, modification of the tracked
instrument was required to attach passive markers, which
limited the instrument’s manoeuvrability. Hence, determining
how to enhance the LoA of robotic systems while ensuring
safety and efficiency in neurosurgical scenarios remains a
critical issue.

This work proposes an autonomous vision-guided exoscope
robotic holder that aims to provide the surgeon with greater
ergonomics during neurosurgery, reduce physical and cog-
nitive load, and shorten operation time compared with the
current foot-joystick camera control. The system is based on
markerless visual-servoing techniques, which allow surgeons
to operate without using their hands to control camera move-
ments and focus entirely on the surgical procedure. Moreover,
the surgeon is able to turn the autonomous camera movement
on and off at any time, via a foot pedal, as well as to adapt it
to specific surgical steps that require special viewpoints.

II. RELATED WORK

Several strategies have been proposed to automate camera
movement and reduce the need for the surgeon to perform
secondary tasks during the surgical procedure. In this section,
a detailed analysis of the main approaches is described.

A. Eye Gaze and Voice Control

Gaze and voice control are two of the most popular ap-
proaches to camera automation. Gaze control involves using
gaze information and the user’s eye movement to control
the camera view. [9] proposed a system for laparoscopic
surgery that uses gaze tracking to control the movement of a
flexible robotic gastroscope. Although users reported positive
“satisfaction” scores and acknowledged the usefulness of the
system, they showed significantly faster performance using
conventional endoscopy. In addition, these control methods
rely on tracking technologies that are still relatively unreliable

[10]. In voice control, the surgeon’s voice commands are con-
verted by the control unit and then sent to the motor controller,
which moves the camera accordingly. Voice controls typically
allow for zoom in/out, up/down, and right/left movements,
but precise positioning can be complex. [11] presented a
new voice-controlled endoscope that achieves operating times
comparable to those of conventional endoscopy. However, it
still has a non-negligible number of errors that could pose
a risk during surgical procedures. Moreover, both strategies
require the direct intervention of the surgeon to control the
camera.

B. Instrument Tracking

An autonomous camera system that can understand the
surgeon’s intentions without instructions is one way to reduce
the workload of the surgeon during the repositioning of the
scope. In the field of surgery, monitoring the way instruments
are manipulated by the surgeon is one of the most widely used
methods for understanding the surgeon’s intentions, reducing
the cost of human assistants, and helping realise autonomous
navigation [12]. Many methods have been proposed to track
instruments. [13] and [14] have used the kinematic chain of
the robotic manipulator to track the position of instruments
and employ it in the control of the camera. However, this
method cannot be used in some traditional surgeries, such as
in neurosurgery where surgeons manipulate instruments free-
hand without relying on robotic assistance.

Optical tracking systems represent another alternative. In-
strument tracking can be done by attaching active or passive
markers on the instruments as the reference point for the target
location. However, these techniques have many drawbacks,
such as limited working space, and poor performance in the
presence of light variations and occlusions [15]. Moreover,
optical tracking systems require modification of the tracked
instrument to which markers can be attached. This reduces
the manageability of the instrument and can result in higher
costs [16]. A marker-based approach for the automation of
the da Vinci endoscope is proposed by [17]. In this case, the
detection of the tool is achieved via ArUco codes which may
fail in a real scenario when smoke and blood or other fluids
are present.

Computer vision methods eliminate the need for external
sensors or additional markers and can overcome the limita-
tions described above. Using information from vision sensors
without the need for additional markers is a very convenient
strategy, as a rich spectrum of information can be extracted
from image data. In addition, machine learning and deep
learning have become popular in object recognition and pose
estimation [18]. Moreover, the extraction of visual features can
be used as input to the control law of the robotic manipulator,
through a visual servo loop. Therefore, the integration of
advanced computer vision techniques that retrieve important
information from a highly complex and unstructured surgical
scenario can become a promising approach to improve the
LoA of the robot-assisted exoscope system during neurosur-
gical procedures.
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C. Visual Servoing

Visual-servoing control is a technique that relies on com-
puter vision data to control the motion of robots. It has been
widely integrated into various scenarios, such as automotive
and industrial robotics but has only gained more attention in
the medical field in the last decade. Two different control
approaches can be considered, namely Position-Based Visual
Servoing (PBVS) and Image-Based Visual Servoing (IBVS)
[19]. IBVS control schemes use the error between current
and desired visual features on the image plane and do not
involve any estimation of the target pose while PBVS control
schemes use the camera pose with respect to some reference
coordinate frame to define the error. Again, image features
are extracted but they are used to estimate the 3D position
of the object in Cartesian space. The reconstructed position
of the point of interest can eventually be used as feedback
in the control loop of a robotic manipulator. This approach
was used in the laparoscopy field by [20]. Here, a tooltip
localisation method based on surgical tool segmentation and
a visual-servoing approach was proposed. And, in the field of
microsurgery, [21] proposed a markerless PBVS technique to
improve the accuracy of surgical procedures. In this study, a
stereo microscope was used to track the tip of a handheld
micro-manipulator to help the surgeon reach a target with
high accuracy and avoid collision with anatomical structures
that could lead to complications. The identification of the tip
on the image plane was achieved by marking it with colored
paint, which is not representative of an actual surgical scenario.
Here, the potential of visual servoing in the medical field was
demonstrated despite the simplified tracking techniques used.
In the field of endoscopy, an autonomous system was proposed
by [22] where only the endoscope was used as a vision sensor
to segment and track surgical instruments, and a visual servo
approach ensured smooth and appropriate movements of the
endoscope.

III. MATERIALS AND METHODS

The method proposed in this study uses an eye-in-hand
markerless visual-servoing approach that can recognise and
track a selected surgical instrument and consists of three main
steps. First, a convolutional neural network (CNN) detects and
estimates the center of the distal region (CDR) of the surgical
tool in the 2D image space. In this way, the information
provided by the camera was employed in the control loop
of the robotic holder, and no additional external sensors or
markers are needed. Second, the 3D position of the target
in the robot space was retrieved using pose reconstruction
algorithms. Finally, the desired pose of the target was sent
to the visual-servoing controller, which was responsible for
zeroing the error between the desired and actual position. The
aim of the visual-servoing algorithm was to keep the camera
in a fixed relative position to the instrument so that it always
remains in the field of view (FoV), ideally in the center of the
image.

Note that, in the neurosurgical scenario, only the movements
of the camera in 2D space (along the X-Y plane) need to be
considered and implemented since the movements along the
depth direction (Z-axis) are only used for adjusting the focus of
the camera. Furthermore, movements along the Z-axis would
cause the manipulator to occupy the surgeons’ workspace, lim-
iting their dexterity and causing possible interference during
surgery. In this regard, in our framework, the Z-axis movement
was controlled by an autonomous zoom control module.

The schematic of the overall system can be divided into
two modules as shown in Fig. 2. From the bottom up, the
vision module includes the detection of the CDR of the tool,
the reconstruction of its 3D position and the zoom system and
the control module of the robotic manipulator.

A. Vision Module
The vision module of the proposed framework was com-

posed of an object detection neural network (i.e., Yolov3 [23])

Fig. 2. System overview: from the bottom, the instrument position (xR, yR ) and (xL, yL ) in the image space is identified, the cartesian position 𝑃 (𝑋,𝑌 , 𝑍 ) =
𝑻 𝒄𝒂𝒎
𝒐𝒃𝒋

is estimated. The 𝑍 position of the tool is sent to the Zoom control module to adjust the zoom level of the camera. The position 𝑻 𝒄𝒂𝒎
𝒐𝒃𝒋

filtered by the
Kalman Filter 𝑻 𝒄𝒂𝒎

𝒐𝒃𝒋 𝒇𝒊𝒍𝒕
together with the desired one 𝑻 𝒄𝒂𝒎∗

𝒐𝒃𝒋
gives the desired position in the robot frame 𝑻𝒃𝒂𝒔𝒆

𝒄𝒂𝒎∗. The error 𝒆, given by the desired position
and the actual position 𝑻 𝒄𝒂𝒎

𝒃𝒂𝒔𝒆
retrieved using the forward kinematics, is sent to the controller that uses the pseudoinverse of the manipulator’s Jacobian matrix

𝑱−1
𝑨𝒑𝒔𝒆𝒖𝒅𝒐

to compute the required joint positions 𝒒𝒅 that compensate for the error. This, together with the actual joint position 𝒒, is sent to the low level
control stage that outputs the required torque 𝝉 to move the camera 𝑻𝒃𝒂𝒔𝒆

𝒄𝒂𝒎 .
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trained to identify the distal region of the tip of laparoscopic
forceps. Images were acquired from a Full HD stereo camera
mounted on the end-effector (EE) of the robotic manipulator.
Left and right RGB frames, with a resolution of 960x1080
pixels each, were concatenated horizontally in a single RGB
image of 1920x1080 to process them simultaneously, thus
minimising the delay between instrument detection and posi-
tion transmission to the controller as much as possible. After
the concatenation, the images were downsampled to 416x416
using bilinear interpolation and fed to the CNN. The CNN
predicts the position of the distal region of the tip through
a bounding box (one for each stereo image) and provides
the confidence of the prediction. After the identification of
the instrument, the coordinates of the CDR of the tool were
considered to be the center of the bounding box (𝑋𝑅, 𝑌𝑅),
(𝑋𝐿 , 𝑌𝐿) as shown in Fig. 3. A pre-trained model of the object

Fig. 3. The images coming from right and left camera were put together in a
single image 1920 x 1080. (xR, yR ) and (xL, yL ) represent the coordinates
of the center of the bounding boxes in the image plane. (xC, yC ) is the center
of the image plane. Ddes is the desired size of the bounding box diagonal.

detection CNN on the Common Objects in Context (COCO)
dataset is available [24]. However, this dataset does not
include images of medical instruments; therefore, to train the
CNN in identifying surgical tools, a fine-tuning was performed
with a custom dataset for instrument tool detection.

Once the 2D coordinates of the CDR of the instrument were
extracted in both images, the 3D position was computed by
triangulation with respect to (w.r.t.) the right camera reference
frame, using the direct linear transform (DLT). The DLT
algorithm considered a linear relationship between the 2D
coordinates in the image plane and the 3D coordinates in the
camera reference frame 𝑿:

𝑨𝑿 = 0 (1)

where 𝑨 is a matrix containing the 2D camera space co-
ordinates and the projection components of the projection
matrix. Solving for 𝑨 by means of singular value decom-
position (SVD) algorithm, the 3D coordinate 𝑿 was recon-
structed. As a result, the current cartesian position of the tool
𝑷(𝑿,𝒀, 𝒁) = 𝑻𝒄𝒂𝒎

𝒐𝒃𝒋
w.r.t. the camera frame was estimated.

In addition, a Kalman Filter [25] was adopted to minimise
the reconstruction noise caused by noisy image coordinates
estimation. The motion of the instrument was modeled with

a 3D constant velocity model and was used to predict the
position of the tool at the next time step 𝑛 + 1:

𝒙̂𝑛+1,𝑛 = 𝑭𝒙̂𝑛,𝑛 + 𝒘𝒏 (2)

where 𝑭 is the state transition matrix, 𝒙̂ is the system state
vector represented by the coordinates 𝑋 , 𝑌 , 𝑍 and the veloci-
ties ¤𝑋 , ¤𝑌 , ¤𝑍 of the instrument tip and, 𝒘𝒏 is the process noise
modeled as discrete white noise. 𝒙̂𝑛,𝑛 is the system state vector
estimated at time step 𝑛 from the state update equation:

𝒙̂𝑛,𝑛 = 𝒙̂𝑛,𝑛−1 + 𝑲𝒏 (𝒛𝑛 − 𝑯𝒙̂𝑛,𝑛−1) (3)

where 𝑯 is the observation matrix, 𝒛𝒏 is the noisy mea-
surement, and 𝑲𝒏 is the Kalman gain that weights the pre-
diction given by the state equation and the measurement
in the new position estimate, 𝒙̂𝑛,𝑛. The filter computes the
position uncertainty as the variance between all estimations.
The measurement uncertainty and the process noise represent
the filter’s hyperparameters, which were empirically selected
and listed in Table I.

TABLE I
KALMAN FILTER’S HYPERPARAMETERS

Hyperparameter Value
(

mm2
)

Measurement uncertainity 𝑋 (𝜎2) 9

Measurement uncertainity 𝑌 (𝜎2) 9

Measurement uncertainity 𝑍 (𝜎2) 100

Process noise (𝑊𝑁 ) (𝜎2) 25

The bounding boxes detected by the CNN were forwarded
to the Zoom Controller, which, based on the detection,
generated zoom commands which were sent to the camera
to adjust the zoom level [26]. The main idea was to keep
the size of the bounding box of the instrument constant as
long as the tool was within a region of interest (ROI) defined
as a circle of radius 𝑟 = 7 cm, with the centre of the ROI
matching the centre of the image plane, 𝐶 = (𝑥𝑐, 𝑦𝑐). Once
the instrument was outside the ROI (i.e. the borders of the
image), the camera zoomed out to keep the instrument visible.
Therefore, two states could be distinguished:

State 1 - the tool inside the ROI: when the distal region
of the tool was inside a predefined region, the zoom
module tried to keep the size of the diagonal of the
bounding box, 𝐷𝑑𝑒𝑠 , constant and equal to 350 pixels.
In particular, the condition:

𝐷𝑑𝑒𝑠 − Δ < 𝐷𝑑𝑒𝑠 < 𝐷𝑑𝑒𝑠 + Δ (4)

is satisfied such that when the diagonal of the bounding
box, 𝐷𝑑𝑒𝑠 , is lower than the desired range, 𝐷𝑑𝑒𝑠 + Δ

(with Δ = 50 pixels), the camera zooms in and vice
versa.

State 2 - the tool outside the ROI: when the distal
region of the tool was in a forbidden region, the zoom
module sent a zoom out command to preserve the tool
within the camera FoV.
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B. Controller Design

For the control strategy, the first step was to use the visual
information to estimate the homogeneous transform of the ob-
ject w.r.t. the camera 𝑻𝒄𝒂𝒎

𝒐𝒃𝒋
. Then, a desired relative coordinate

transformation between the object and the camera, 𝑻𝒄𝒂𝒎∗
𝒐𝒃𝒋

, was
defined. Since the goal was to maintain the surgical instrument
tool at the center of the image, the desired position was defined
as follows:

𝑻𝒄𝒂𝒎∗
𝒐𝒃𝒋 =


1 0 0 0
0 1 0 0
0 0 1 𝑧

0 0 0 1

 (5)

The x and y positions of the camera had to be identical to the
one of the object while no constraint was considered along
the Z-axis. The actual position of the camera w.r.t. the robot
reference frame was retrieved as:

𝑻𝒃𝒂𝒔𝒆
𝒄𝒂𝒎 = 𝑻𝒃𝒂𝒔𝒆

𝑳𝑳 ∗ 𝑻𝑳𝑳
𝒄𝒂𝒎 (6)

where 𝑻𝒃𝒂𝒔𝒆
𝑳𝑳 is the position of the last (seventh) link w.r.t.

the robot base obtained from the kinematic chain and 𝑻𝑳𝑳
𝒄𝒂𝒎

is the position of the camera w.r.t. the last link of the ma-
nipulator calculated from the eye-hand calibration procedure.
The calibration involved capturing eight images of a static
checkerboard model (13x9 squares with a side length of 20
mm) with the camera to determine its position using the
camera’s intrinsic parameters. At the same time, the position
of the last link (LL) was recorded using the manipulator’s
kinematic chain. The fixed position of the checkerboard in
the eight different poses allowed the calculation of the camera
position relative to the last link to be simplified to solve the
equation which was accomplished using the OpenCV library
[27]:

𝑨𝑿 = 𝑿𝑩 (7)

where 𝑋 is the robot hand-to-eye transformation and 𝐴 and
𝐵 are the transformations between two selected camera and
end effector positions, respectively. To estimate the desired
position of the camera, the position of the object needed to be
expressed w.r.t. robot’s base reference frame:

𝑻𝒃𝒂𝒔𝒆
𝒐𝒃𝒋 = 𝑻𝒃𝒂𝒔𝒆

𝑳𝑳 ∗ 𝑻𝑳𝑳
𝒄𝒂𝒎 ∗ 𝑻𝒄𝒂𝒎

𝒐𝒃𝒋 (8)

The new desired position of the camera w.r.t. the robot
reference frame was then defined as:

𝑻𝒃𝒂𝒔𝒆
𝒄𝒂𝒎∗ = 𝑻𝒃𝒂𝒔𝒆

𝒐𝒃𝒋 ∗ (𝑻𝒄𝒂𝒎∗
𝒐𝒃𝒋 )

−1 (9)

All the defined transformations are illustrated in Fig. 4.
The operational space error was then formulated as:

𝒆 = 𝑻𝒃𝒂𝒔𝒆
𝒄𝒂𝒎∗ − 𝑻𝒃𝒂𝒔𝒆

𝒄𝒂𝒎 (10)

where 𝑻𝒃𝒂𝒔𝒆
𝒄𝒂𝒎∗ represents the desired position of the camera

while 𝑻𝒃𝒂𝒔𝒆
𝒄𝒂𝒎 is the actual one w.r.t the manipulator’s base. The

control goal of reaching the desired position was expressed as
an exponential decrease in error in the operating space:

¤𝒆 = −𝑲𝒆 (11)

Fig. 4. Coordinate transformation to calculate the desired camera pose in
the manipulator’s reference frame.

where 𝑲 is the gain that leads to the convergence of the error.
Applying differential kinematics, the relation between motion
in joint space and task space was defined as:

¤𝒆 = −𝑱𝑨(𝒒) ¤𝒒 (12)

where JA (𝑞) ∈ R6×7 is the analytical Jacobian matrix of
the robotic manipulator. By combining (10) and (11), the
appropriate change in joint space was computed, given an error
in space coordinates, as follows:

¤𝒒 = 𝑱−1
𝑨𝒑𝒔𝒆𝒖𝒅𝒐 (𝒒)𝑲𝒆 (13)

where 𝑱−1
𝑨𝒑𝒔𝒆𝒖𝒅𝒐 is the pseudoinverse of the Jacobian matrix

𝑱𝑨(𝒒). The final desired joint values, 𝒒𝒅𝒆𝒔 , were computed
by integration. These, together with the actual joint positions
𝒒, were commanded through the FRI library to a low-level
control that outputted the desired torque 𝝉 to move the
manipulator to the desired position.

IV. EXPERIMENTAL SETUP

A 7-DoFs redundant lightweight robot (LWR4+, KUKA,
Germany) was employed as a camera holder. The redundant
DoF of the robotic manipulator allowed for increased manip-
ulability and obstacle and singularities avoidance capability.
The robot was used with a stereo camera mounted in an
eye-in-hand configuration through a 3D printed mount. The
JVC GS-TD1 Full HD 3D Camcorder was used as a vision
sensor in this study. The camera was equipped with two 1/4.1”
cm OS sensors and Twin HD GT lenses with an intra-axial
distance of 35 mm, which allowed for the capture of two
different points of view of the scene being recorded, thus
offering 3D capabilities to the camera. Additionally, it offered
full 1920x1080p high definition capabilities and various zoom
modes in both formats (2D and 3D). It had a focal length
ranging from 3.76 to 18.8 mm, providing a maximum of 5x
zoom in 3D mode. In this paper, a maximum zoom level
of 2x was used, considering the operational space, which
corresponds to a displacement of 15 cm along the vertical
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direction (Z-axis) of the robotic manipulator. An infrared
transmitter connected to an Arduino Uno board was used to
send the zoom command to the camera.

The dataset for training the CNN contained a total number
of 5900 images. Among them, 4100 were recorded and man-
ually annotated, while the remaining were extracted from the
2017 EndoVis challenge [28]. The final dataset was split into
5300 images for the training and 600 images for the validation
test. Data augmentation was performed on the training dataset
as rotations, translations, changes in brightness, and left-right
flips. The network was trained on an Intel Xeon with a 12Gb
Nvidia Titan X GPU for 400 epochs with a learning rate set
to 0.001. A mini-batch size of eight images was used. The
hyper-parameter Intersection over Union (IoU) representing
how much the predicted bounding box overlapped with the
ground truth was set to 0.5, meaning that a predicted bounding
box overlap of more than 50 % with the ground truth was
considered a true positive (TP). Otherwise, a false positive
(FP) was considered. Finally, the confidence threshold was set
to 0.4 representing the value above which a prediction was
considered to be valid.

As the system was able to continuously track the CDR of
the surgical instrument, a foot pedal was introduced such that
the autonomous tracking was activated only when the pedal
was pressed. This was done to prevent instrument tracking
from becoming inconvenient for the surgeon in situations
where tracking was not necessary, such as during instrument
replacements. It also provided a safety precaution against
uncontrolled movements by being activated only when the
pedal was pressed.

A. System Characterisation

Each constitutive module of the proposed system (i.e. Detec-
tion Module, Position Reconstruction, and Control Strategy)
was evaluated separately. Specific metrics were defined for
each module to measure its respective performance.

Detection Module: Both the accuracy and inference time of
the detection were examined in order to assess the performance
of the detection module. The accuracy was evaluated using
the average precision (𝐴𝑃) on the validation set. The 𝐴𝑃 was
defined as the area under the precision-recall curve 𝑝(𝑟):

𝐴𝑃 =

∫ 1

0
𝑝(𝑟) 𝑑𝑟 (14)

As for the inference time, it was computed as the mean of the
inference times on the validation set.

Position Reconstruction: Both the performance of the tri-
angulation algorithm and the calibration procedure were con-
sidered in the evaluation of the 3D position reconstruction, as
both dictate its precision. Eight images of a 13x9 calibration
chessboard were acquired, and the corners of the chessboard
were taken as reference points. The root mean square (RMS)
re-projection error, 𝑅𝑀𝑆𝑟𝑒−𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛, was used to evaluate
the quality of the camera calibration and is defined as:

𝑅𝑀𝑆𝑟𝑒−𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =

√√
1
𝑛

𝑛∑︁
𝑖=1

𝜖2
𝑖

(15)

where 𝜖𝑖 represents the error on the image plane between the
actual coordinates of the control points on the calibration target
(chessboard corners) and the image coordinates reprojected
using the calibration parameters. The performance of the tri-
angulation algorithm was evaluated in terms of reconstruction
error, 𝐸𝑟𝑒𝑐, defined as the mean Euclidian distance between
the reconstructed object points and the ground truth:

𝐸𝑟𝑒𝑐 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑑𝑎 − 𝑑𝑟 | (16)

where the ground truth, 𝑑𝑎, is defined as the real distance
between two chessboard corners, equal to 20 mm, and 𝑑𝑟 is the
distance between the corners reconstructed by triangulation.

Control Strategy: To assess whether the system was able
to track the CDR of the instrument under conditions of
continuous change of direction and speed, the behavior of

Fig. 5. Task scene (on the left): the user must execute the task by observing only the limited task space projected on the external monitor. Task description
(on the right): (A) the task starts with the camera positioned in such a way that rings were seen. (B) shows the camera motion required to provide the view
of the destination board. The red delimited area represents the work space.
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the visual-servoing control was analysed. The instrument was
moved in the 𝑋𝑌 plane along a circular trajectory with a
diameter 𝑑 = 7.4 cm at three different increasing velocities
defined as slow, medium, and fast. Since the instrument
was moved by a human user, maintaining a constant speed
throughout the experiment proved difficult. As a result, the
following velocity ranges were considered: velocities from 0
to 1 cm/s were defined as slow motion, from 1 to 1.5 cm/s
as medium motion, and from 1.5 to 2.5 cm/s as fast motion.
The experiment was performed in triplicate for each velocity
level to evaluate the repeatability of the control strategy. To
quantify the functionality of the system, the tracking error was
used as a performance metric and was calculated as:

𝑇𝑒𝑟𝑟 =
√︁
(𝑋𝑑 − 𝑋𝑎)2 + (𝑌𝑑 − 𝑌𝑎)2 (17)

where (𝑋𝑑 , 𝑌𝑑) is the CDR position of the tool and (𝑋𝑎, 𝑌𝑎) is
the actual position of the EE in 3D space. The tracking error
was considered negligible when the operational space error
computed from the reconstructed position of the tool was less
than 5 mm.

B. System Usability

A user study was carried out including both autonomous and
joystick control modalities. The task designed for validation
was a pick-and-place in which users were asked to use a
surgical instrument to pick up four randomly distributed rings,
one at a time, in a designed workspace and placed them on
a target pegboard, as shown in Fig. 5(A). Users were asked
to perform this task by observing the scene on an external
monitor where the FoV of the camera was displayed. The
task began with one of the four rings in sight, while the other
three had to be found by the user by controlling the camera as
described in Fig. 5 (B). However, at the beginning of the task,
the user was allowed to observe the scene to get a general
idea of the position of the objects within the task space. The
distance in the 𝑍 direction between the camera and the task
space was kept fixed at 0.2 m to provide a reduced FoV and
force the user to move the camera to complete the task. The
task space was limited to an area of 40x50 cm. The task was
performed in two different modalities:

1) Autonomous camera control (ACC): the exoscope moved
autonomously to try to keep the instrument inside the
FoV. The user could activate and deactivate the motion
of the holder by pressing a foot pedal.

2) Joystick control (JC): the user moved the exoscope
using a foot-controlled joystick every time a different
viewpoint was needed.

For each modality (autonomous or joystick control), each user
performed three repetitions with each repetition ending when
all four rings were placed on the target board. The user study
was conducted on 𝑆 = 8 non-medical subjects (aged between
23 and 29, five males and three females, and all right-handed).
The experiments were made according to authorization number
16/2020. Informed consent was obtained from all participants
in the study. The exoscopic system with the two control
modalities was first shown to the participants who were then
given three minutes to become familiar with the system.

The following objective metrics were considered:
• Mean execution time [s] defined as the sum of the exe-

cution time reported by all users for the three repetitions:

𝑡𝑒𝑥 ( 𝑗) =
1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

𝑡𝑒𝑥 ( 𝑗)𝑖 (18)

where 𝑗 is the repetition number, 𝑡𝑒𝑥 ( 𝑗)𝑖 represents the
time required by the user 𝑖 to complete the task in
repetition 𝑗 , and 𝑁𝑢 is the number of the users.

• Total time outside the FoV [s] defined as the time
the instrument was outside the camera FoV (hence, not
visible to the user) normalised by the total execution time,
𝑡𝑒𝑥𝑖:

𝑡 𝑓 𝑜𝑣𝑜𝑢𝑡 =
𝑡 𝑓 𝑜𝑣out 𝑖

𝑡exi
(19)

• Instrument’s position frequency representing the fre-
quency distribution of the instrument in the image plane:

𝑓𝑖 =
𝑐𝑜𝑢𝑛𝑡𝑠𝑖

max𝑖 (𝑐𝑜𝑢𝑛𝑡𝑠𝑖)
(20)

For the computation of the frequency, the pixels of the
image were partitioned into a grid of 10x10 cells (100
bins in total). 𝑐𝑜𝑢𝑛𝑡𝑠𝑖 represented the number of times
the distal region of the instrument fell inside the bin 𝑖

of the image plane. The frequency within the bins was
normalised by the maximum bin density.

Finally, a qualitative analysis was carried out using the
NASA-TLX [29] survey. Users were asked to rank on a
scale from 0 to 100, with steps of 5, the perceived workload
while performing the task in either mode. A total of six
scores were given to mental, physical, and temporal demand,
and performance, effort, and frustration. The final score was
calculated as the average of all scores. The Wilcoxon signed-
rank test for paired samples was used to compare all the
metrics, with statistical significance assessed at 𝑝 < 0.05.

V. RESULTS AND DISCUSSION

A. System Characterisation Results

The results obtained for each module are presented below.
𝐴𝑃 on the validation set reached a maximum value of 0.89
with a number of epoch 𝑛 = 360. The inference time was
80 ± 10 ms resulting in a processing of 12.5 fps. The overall
accuracy of the calibration in terms of RMS re-projection
error resulted in a mean value equal to 0.71 pixels. As for
the accuracy of the triangulation method, the reconstruction
error resulted in a value of 1.31 ± 0.5 mm.

In the case of fast motion (2.01 ± 1.84 cm/s), the tracking
error on the x- and y-axis, along with the position and velocity
of the joints are shown in Fig. 6. A root mean square tracking
error of 1.15 cm and 1.03 cm on the x- and y-axis, respectively,
can be observed, with an overall tracking error of 1.54± 1.08
cm. Additionally, the proposed scheme was able to keep joint
angles within the admissible range (±170◦ for joint 𝜃1, 𝜃3,
𝜃5 and 𝜃7 and ±120◦ for the remaining joints [30]), and joint
velocities within the limits (180◦/s for 𝜃5 and 112.5◦/s for
the remaining joints) [31]. The tracking error computed in
the three repetitions for the three different speed conditions
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Fig. 6. Left: tracking error (dashed line). The solid line defines the position of the surgical instrument, the dotted line the EE position. In the center, joint
angles; in the right, joint velocities during a fast instrument movement.

is shown in Fig. 7. A mean error with the standard deviation
(SD) of 0.50 ± 0.17 cm, 0.90 ± 0.37 cm, and 1.38 ± 0.73 cm,
representing a percentage error of 0.78 %, 1.4 % and 2.15 %
in relation to the total available workspace, was found for slow,
medium, and fast motion, respectively. For each of the three
velocity conditions, the mean tracking error remains relatively
constant, and SD is comparatively small. This shows that the
system is repeatable and functional in keeping the CDR of
the instrument within the FoV. However, a significant increase
in the tracking error can be observed for high-velocity values
(fast motion).

Fig. 7. Tracking error for the 3 repetitions of the experiment for 3 increasing
velocities[cm/s]. From left to right 0 < 𝑣 < 1, 1 < 𝑣 < 1.5, 1.5 < 𝑣 < 2.5

B. System Usability Experiment Results

The mean and the SD of the execution time across all users
for the three repetitions are illustrated in Fig. 8. A significant
difference (𝑝-value < 0.05) was found for each repetition
between modalities. A mean value of 72.074 ± 19.36 s and
106.52 ± 18.50 s was observed in the third repetition for the
autonomous and joystick modality, respectively. A trend can
be observed for both modalities with the mean execution time
decreasing from 111.5 s to 106 s and 83.6 s to 72 s in the JC
and ACC control, respectively. However, the completion time
for the joystick control remained constant between the second

and third repetition, while it decreased in the autonomous
control. This might indicate a steeper learning curve for the
autonomous modality. With more repetitions of the experi-
ment, a stronger conclusion can be drawn. The lower execution
time that occurred with the autonomous control mode was
due to the fact that the user was relieved of secondary tasks,
such as repositioning the camera. In this way, the user could
focus only on the main task and, as a result, achieve lower
execution times. The time out of the FoV normalised by the

Fig. 8. Mean execution time and standard deviation for the three repetitions
for the two tested modalities.

total execution time is shown in Fig. 9. For each repetition,
the two distributions were found statistically different with
𝑝-value < 0.05. The time out of the FoV was significantly
higher in the joystick-controlled camera compared with the
autonomous one, with a mean value in the third repetition
of 18.8 ± 13.50 % and 3.6 ± 4.5 %, respectively. This could
be due to users’ need to divide their attention between the
execution of the task and the repositioning of the camera when
using the joystick control mode. Each time the camera had to
be moved, the user focused on the repositioning task, which
caused the instrument to be outside the FoV. In a real surgical
scenario, the surgeon’s inability to see the instrument during
surgery poses a risk to the patient’s safety as unwanted contact
between the instrument and delicate structures could occur.
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Fig. 9. Normalized time out of FoV for the three repetitions for the two
tested modalities. (**,𝑝 < 0.01).

The frequency of the distal region of the tool in the right
image for the three repetitions for all users is shown in Fig. 10.
The frequency was normalised by the total number of pixels
recorded in each distribution to have comparable values in the
colormap. For autonomous control, a high tool frequency was
observed in the centre of the image with a median value for all
users during the three repetitions of 453 and 511 pixels on the
x- and y-axis, respectively, while with the joystick-controlled
exoscope, higher values were observed around the left corner
of the image with a median of 232 and 695 pixels for the
x- and y-axis, respectively. This means that the ACC is more

Fig. 10. Instrument’s tip frequency inside the image plane normalized by
the total number of pixels for the autonomous (upper) and joystick (lower)
control modality. The color map ranging from blue to red shows the low and
high frequency, respectively.

effective in keeping the CDR of the instrument in the center
of the image, providing a better view of the scene.

As for the qualitative analysis, subjective metrics have been
extracted from the NASA-TLX survey. The users rated the task
load perceived with the autonomous camera control modality
much lower than the joystick control. The two groups resulted
statistically different (𝑝-value < 0.05) with an overall mean
value of 32.5 ± 13.93 and 54.05 ± 12.84 for the autonomous
and joystick control, respectively.

VI. CONCLUSION

This work proposes a framework for an autonomous vision-
guided exoscope holder based on a visual-servoing technique.
The main objective of the work was to test whether the
proposed system could support the surgeon more effectively
than traditional joystick control. From the initial analysis, the
system has demonstrated its ability to detect and track the
surgical instrument, ensuring that it remains in the centre of the
FoV. The results of the user study showed that the system can
improve the user experience by reducing completion time and
physical and cognitive loads during tasks. In addition, it was
demonstrated that the autonomous exoscope holder decreases
the amount of time the instrument was outside the FoV which
may decrease the risk of complications during surgery.

The proposed system could pave the way toward exoscope
automation in neurosurgery. However, in its current form,
some limitations are still present. It must be mentioned that the
training data set for the object detection CNN is not representa-
tive of a clinical scenario, but it is used to conceptually demon-
strate the current method. In addition, although the proposed
markerless visual-servoing approach is capable of detecting
multiple surgical instruments simultaneously, potential risks
exist when sending multiple instrument positions to the robot
controller. Consequently, future work will focus on the design
of an optimal control strategy for multiple existing surgical
instrument scenarios. Additionally, a dataset containing real
clinical images comprising the specific artifacts present in
neurosurgery should be utilised for training the neural network
to obtain robust training results. The processing speed is far
from being real-time causing a delay between the movement
of the instrument and that of the exoscope holder. This is
due to the limited hardware resources. Therefore, to exploit
the potential of CNN and minimise the response delay of the
control strategy as much as possible, it would be necessary
to use high computing power in the future. In addition, it
would be important to consider a task representative of the
neurosurgical scenario, as the one proposed was performed
to verify the functionality of the system. It would also be
necessary to have medical subjects test the system. Finally,
the introduction of multiple degrees of freedom (pan/tilt) in
the camera motion should be considered, as this is a common
motion in neurosurgery.
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