
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 1

EXSCALATE: An Extreme-Scale Virtual
Screening Platform for Drug Discovery Targeting

Polypharmacology to Fight SARS-CoV-2
Davide Gadioli, Emanuele Vitali, Federico Ficarelli, Chiara Latini, Candida Manelfi,

Carmine Talarico, Cristina Silvano, Fellow, IEEE, Carlo Cavazzoni,
Gianluca Palermo, Senior Member, IEEE, Andrea Rosario Beccari

Abstract—The social and economic impact of the COVID-19 pandemic demands a reduction of the time required to find a therapeutic
cure. In this paper, we describe the EXSCALATE molecular docking platform capable to scale on an entire modern supercomputer for
supporting extreme-scale virtual screening campaigns. Such virtual experiments can provide in short time information on which
molecules to consider in the next stages of the drug discovery pipeline, and it is a key asset in case of a pandemic. The EXSCALATE
platform has been designed to benefit from heterogeneous computation nodes and to reduce scaling issues. In particular, we
maximized the accelerators’ usage, minimized the communications between nodes, and aggregated the I/O requests to serve them
more efficiently. Moreover, we balanced the computation across the nodes by designing an ad-hoc workflow based on the execution
time prediction of each molecule. We deployed the platform on two HPC supercomputers, with a combined computational power of 81
PFLOPS, to evaluate the interaction between 70 billion of small molecules and 15 binding-sites of 12 viral proteins of SARS-CoV-2. The
experiment lasted 60 hours and it performed more than one trillion ligand-pocket evaluations, setting a new record on the virtual
screening scale.

Index Terms—Extreme-scale virtual screening, HPC, GPU, molecular docking, SARS-CoV-2, COVID-19

✦

1 INTRODUCTION

Drug discovery is a long process that usually involve in-
silico, in-vitro, and in-vivo stages. The outcome of this process
is a molecule, named ligand, that has the strongest interac-
tion with at least one binding site of the protein, also known
as pocket, that represents the target of the experiment. The
inhibition of the target that can be caused by this interaction
is expected to have a therapeutic effect. Virtual screening is
one of the early stages that aims to select a set of promising
ligands from a vast chemical library. The introduction of this
step led to an increase in the success rate of the next stages of
the drug discovery [1], [2], [3], [4], [5]. The complexity of this
operation is due to the ligand and pocket flexibility: both
of them can change shape when they interact. Therefore,
to estimate the interaction strength using a scoring function,
we also need to predict the displacement of their atoms
using a docking algorithm. This problem is computationally
heavy, and it is well known in literature [6]. Moreover, to
increase the probability of finding promising candidates, we
would like to increase the size of the chemical library as
much as possible, exacerbating the complexity of the virtual

• D. Gadioli, E. Vitali, C. Silvano, G. Palermo are with the Dipartimento di
Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano.
E-mail: name.surname@polimi.it

• F. Ficarelli, C. Latini are with SuperComputing Applications and Innova-
tion, CINECA, Casalecchio di Reno.
E-mail: f.ficarelli@cineca.it, c.latini@cineca.it

• C. Manelfi, c. Talarico, A. R. Beccari are with EXSCALATE, Dompé
farmaceutici S.p.A, Napoli.
E-mail: name.surname@dompe.it

• C.Cavazzoni is with Leonardo S.p.A., Genova.
E-mail: carlo.cavazzoni@leonardocompany.com

screening. Since the evaluation is in-silico, we can design
new molecules by simulating known chemical reactions.
Therefore the chemical library size is limited only by the
system’s computational power.

Urgent computing is an area of computer science that
investigate the usage of computation resources to predict
and prevent critical situation [7]. In this context, where the
time required to find a therapeutic cure should be as short
as possible, we re-designed the EXSCALATE platform with
the goal of virtual screening as many ligands as possible
in a reasonable time budget, i.e. from months to hours for
screening billions of ligands. To maximize the throughput
of the docking platform, we target High-Performance Com-
puting (HPC) supercomputers since their design maximizes
the number of arithmetic operations per second, using
double-precision floating-point numbers FLOP/s. Indeed,
the TOP500 list 1 ranks all the HPC supercomputers world-
wide according to their throughput. When we focus on the
top ten supercomputers, we can notice that most of them
have heterogeneous nodes that heavily rely on accelerators,
typically GPUs. Thus, we need to hinge on the node’s accel-
erators and efficiently scale up to the available nodes to use
all the computation power of the target machine. Even if we
focus on the software level, there are multiple well-known
issues [8], [9]. The most representatives of them are how
to efficiently use accelerators, how to transfer data within
a node to feed the accelerators, how to move data from
storage devices to the machine’s node and vice versa, how
to minimize communications between nodes and synchro-

1. TOP500 website - https://top500.org/

https://top500.org/

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 2

Fig. 1: Schematic representation of the dataset used for the EXSCALATE4CoV virtual screening experiment.

nizations between processes, and how to improve resilience
to reduce the impact of faults in the time-to-solution.

The EXSCALATE4CoV European project2 aims at find-
ing new potential drugs against the COVID-19 pandemic.
During this project, we deployed the EXSCALATE platform
on two HPC machines (CINECA Marconi100 and ENI HPC5
) with a combined throughput peak of 81 PFLOPS, to rank
a chemical library of more than 70 billion ligands against
15 binding-sites of 12 viral proteins of SARS-CoV-2 (Figure
1). Overall, the experiment lasted 60 hours and it per-
formed a trillion of docking operations, becoming the largest
structure-based virtual screening experiment with 50x more
small molecules and 7.5x more targets than the previous
record [10]. The knowledge generated by this experiment,
in terms of top-ranked molecules for each protein pocket
(binding sites), is publicly available through MEDIATE [11]
to share our findings with researchers interested in de-novo
drug design against SARS-CoV-2. The produced data are
suitable for a polypharmacology approach where we focus
our attention on drugs interacting with multiple targets.
Indeed, molecules hitting more than one target might be
more adequate to achieve a therapeutic effect [12]. Filters
on the molecules showing a too promiscuous behavior can
be applied on the output data. In-silico toxicity analyses are
not in the scope of the current use of the platform since the
targets of the extreme-scale experiment are only the viral
proteins. The EXSCALATE platform, and its polypharma-
cology support, has been already proved to be a useful
tool against SARS-CoV-2 by suggesting the Raloxifene [4]
as a potential clinical candidate while adopting a pure

2. Project website: https://www.exscalate4cov.eu

repurposing strategy on existing drugs.
The remainder of the document is organized as follows:

Section 2 briefly describes the most related applications that
can perform a virtual screening. Section 3 describes the EXS-
CALATE platform, highlighting the innovation introduced
and the design choices that led to the performance of the
virtual screening campaign that we reported in Section 5.
Section 4 reports the configuration of the machines used
for the experiment, both from the hardware and software
perspectives. Finally, Section 6 concludes the paper.

2 RELATED WORKS

Molecular docking applications can serve different pur-
poses, from virtual screening to accurate simulations. For
this reason, we have a wide spectrum of algorithms and
approaches [6], [13], [14], [15] that covers the performance-
accuracy curve trade-off. Since we use molecular docking
to select the most promising candidates, we are interested
in fast approaches such as ICM [16], PSOVina [17], or
EUDOCK [18]. However, the majority of these works are
designed for the day-by-day use case scenario, rather than
urgent computing where we aim at using all the compu-
tation power of the system. For this reason, there are few
approaches [19], [20], [21] that can use GPUs to improve
their performance with respect to a CPU implementation.
For example, PLANTS [19] reported a speedup of 60X when
using GPUs to carry out the computation. Besides improv-
ing the time-to-solution, the usage of GPUs is required to
access the majority of the computation power in modern
HPC machines. Moreover, there are even fewer approaches
that designed the I/O to efficiently handle more than a

https://www.exscalate4cov.eu

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 3

ligand and pocket pair, while providing the ability to use
accelerators. AMIDE v2 [22] focuses on inverse docking,
where ligands are evaluated in a large number of proteins.
They propose to divide each protein into twelve overlap-
ping sub-grids to use as independent pockets. To orchestrate
the elaboration they use scripts and SLURM job arrays.
METADOCK 2 [23] focuses on blind docking, where the
docking phase is not restrained in a specific pocket, but it
can be docked in the whole protein’s surface. They propose
to use a combined OpenMP/CUDA approach to use all the
computation power of a node, targeting HPC machines.

AutoDock [24] is the most related work, since it has been
ported in CUDA (AutoDock-GPU [25]) and deployed on
the Summit supercomputer, where they docked over one
billion molecules on two SARS-CoV-2 proteins in less than
two days [10]. They hinge on the Summit’s NVMe local
storage to dock batches of ligands in the target pocket and
to store the intermediate results. In particular, AutoDock-
GPU uses OpenMP to implement a threaded-based pipeline,
where each thread reads ligands from the file, launches the
CUDA kernels, waits for their completion, and it writes
back the results. Since most docking algorithms use a fast
but approximated scoring function to drive the estimation
of the 3D pose of a ligand, it is common to re-score the
most promising ones with a more accurate scoring function.
They use a custom CUDA version of RFScore-VS [26] to
perform such task and BlazingSQL for computing statistics
and selecting the top scoring ligands. To orchestrate the
workflow they use FireWorks [27] from an external cluster
to ensure a consistent state in presence of faults in the
computations nodes.

3 EXSCALATE PLATFORM

The approach that we followed to re-design the EXSCA-
LATE platform differs from the works described in Section 2
in several ways. We use a monolithic application to dock
and re-score the ligands, using MPI [28] to scale out, C++11
threads to scale up and CUDA kernels to accelerate the
compute-intensive sections, exploiting the V100 GPU on
the target HPC clusters. The proposed solution can reach a
high throughput without relying on the node’s local storage,
which is not available in the target HPC systems. Moreover,
we envelop the application in a more complex workflow
that compensates for its weak points.

The innovation introduced in this work can be catego-
rized into three main contributions:

1) Algorithm level, with the CUDA porting and opti-
mization of the docking and scoring phases.

2) Application level, with the complete rework of the
application and the creation of the high-throughput
molecular docking application.

3) Workflow level, with the creation of the EXSCA-
LATE workflow that allows us to handle the op-
eration in an easier and more resilient way.

3.1 The dock and score algorithm
The final output of the algorithm is an estimation of the
bond strength between a given ligand and the binding
site of the target protein. In the virtual screening context,

it is common to reduce the problem’s complexity by us-
ing heuristics and empirical rules instead of performing
a molecular dynamic simulation [29]. One implication of
this choice is that the numeric score of a ligand is strongly
correlated by the given 3D displacement of its atoms, which
is not trivial to compute due to the high number of degrees
of freedom involved in the operation. Besides the six degrees
of freedom derived by rotating and translating a rigid object
in a 3D space, we must consider the ligand flexibility. A
subset of the ligand’s bonds, named torsional bonds [30],
partition the ligand’s atoms in two disjoint sets, that can
rotate along the bond’s axis, changing the ligand’s shape.
A small molecule can have tens of torsional bonds. We
further reduce the problem complexity by considering in
the algorithms the protein as a rigid body [31]. It is then
possible to consider different conformational states of the
target protein by adopting ensemble docking strategies [32].

The entire process that we use in EXSCALATE to dock
and score a ligand is composed of four steps. All the
involved algorithms are deterministic from the functional
point of view, which means that they are not based on any
stochastic process to sample the conformational space. This
feature is important because it permits a coherent replay of
the docking phase and makes optional the storage of all the
generated poses, drastically reducing the data transfer for
large experiments. The first step is a ligand pre-processing
that unfolds the ligand by rotating the torsional bonds to
maximize the sum of the internal distances between all the
molecule atoms. This computation is protein independent.
The second step docks the ligand inside the binding site
of the target protein by using a greedy gradient descent
approach, with multiple restarts. The gradient is defined
by a scoring function that considers only geometrical steric
effects. Starting from different initial poses, the optimization
algorithm initially considers the ligand as a rigid body,
then in a later phase, it considers the internal flexibility
with small perturbations. We take into account the ligand’s
flexibility, but we consider the pocket as a rigid body. In the
experiment, we evaluated 256 different initial poses for each
ligand. The third step sorts the generated poses to select
only a few to re-score using the LiGen chemical scoring
function [33] in the fourth step. In particular, we cluster the
generated poses using a root mean square deviation (RMSD)
of 3Å as the threshold to deem two poses as similar. Then
we sort them to have in the first places the top-scoring pose
for each cluster, then all the others; sorted according to the
geometrical scoring function. In the experiment, we scored
only the top 30 poses for each ligand. The score of the ligand
is the score of the best pose that we found. The main idea is
that we prefer to re-score poses far from each other, rather
than just the ones that happen to have to highest geometrical
score, to avoid generating the same score twice.

We implemented the algorithm in C++17 to target CPUs,
and we previously implemented an OpenACC implemen-
tation to target accelerators [34]. The target HPC machines
are provided with NVIDIA GPUs, and it is known from
previous benchmarking works [35], [36] that it is possible
to gain significant speedup with a CUDA implementation
over OpenACC on these GPUs. For this reason, we decided
to rewrite using CUDA the docking and scoring kernels for
this experiment.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 4

T
im

e
(m

s)

Number of atoms

1 torsional bond
4 torsional bonds
8 torsional bonds

12 torsional bonds
16 torsional bonds
20 torsional bonds

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 20 30 40 50 60 70 80 90 100 110 120

(a) C++ implementation on CPU

T
im

e
(m

s)

Number of atoms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20 30 40 50 60 70 80 90 100 110 120

(b) CUDA implementation on GPU

Fig. 2: Time required to dock and score a ligand by varying the number of atoms and torsional bonds. The C++
implementation use a single core IBM 8335-GTG 2.6 GHz. The CUDA implementation use a single NVIDIA V100. The
vertical lines highlight when we use an addition warp to compute a ligand (e.g. after 64 atoms).

The algorithm’s asymptotic complexity is O(n · m),
where n is the number of atoms and m is the number
of torsional bonds. We omit features of the target docking
site since the docking site is constant during the docking
application lifetime. Figure 2 measures the time required to
dock and score a ligand on a Marconi100 node, by varying
the implementation, the ligand’s number of atoms, and
torsional bonds. While the observed execution time of the
C++ implementation (Figure 2a) increases linearly with the
number of atoms and torsional bond, the CUDA imple-
mentation (Figure 2b) exhibits a less evident relationship
with the number of atoms. This is due to the fact that we
use hardware parallelism to perform the computation on
the atoms, while we need to process the torsional bonds
serially to preserve the molecule geometry. Moreover, since
we organized the elaboration in bundles of 32 atoms (a
CUDA warp size), we have a steep increase in the docking
time when we need to process more atoms; for example after
64 and 96 atoms.

We can notice in both implementations how the docking
time is heavily input dependent, where the difference be-
tween the fastest and slowest class of ligands is more than
one order of magnitude. The maximum number of torsional
bonds and atoms is a compile-time parameter. The current
version is set to 156 atoms and 55 torsional bonds.

3.2 EXSCALATE high-throughput docking application

The only information required to dock and score a lig-
and in the target binding site is their description. Thus,
the virtual screening process is an embarrassingly parallel
problem. However, it is of paramount importance to design
how the data can be read from the storage, transferred to
the accelerator, and written back to the storage. Indeed,
another innovation introduced with this work is the high-
throughput docking application that aims at addressing all
the issues that are not related to the docking and scoring
kernels but are required for the experiment’s success, such
as data management, resources organization, and multi-
node scaling.

Figure 3 shows an overview of the application abstrac-
tion and software stack of the EXSCALATE high-throughput
docking application. We have chosen to write an MPI

application that implements an asynchronous pipeline. In
particular, we want to execute a single process for each node
available. Then, each process spawns a pipeline to carry
out the elaboration using all the computation resources
of its node. We use a dedicated thread for each stage of
the pipeline. Moreover, each stage may have a thread-safe
queue that stores input data.

The first stage is the reader, which reads from the actual
file that represents the chemical library a chunk of data that
it enqueues in the splitter’s queue. The splitter stage inspects
each chunk of data to separate all the ligands’ descriptions
that are contained in the chunk itself. Then it enqueues each
ligand description in the docker’s queue. In the experiment,
we describe a ligand using a custom binary format derived
from the TRIPOS Mol2 [37] format, described in more detail
in Section 5. The docker stage dequeues a ligand description,
it constructs the related data structures, performs the dock
and score steps described in Section 3.1, and it enqueues
the ligand’s score in the writer’s queue. The writer stage
dequeues the ligand score and accumulates in an internal
buffer the related output, which is the ligand’s SMILES rep-
resentation and its score value in a CSV-like fashion. When
the accumulation buffer is full, the writer stage initiates the
writing procedure.

The docker stage is the only one that can be composed
of several threads that operate on the same queues, thus
the workload is shared among all the workers of a single
node. Moreover, it is possible to use different algorithm
implementations, such as CUDA and C++, to leverage the
node’s heterogeneity. We refer to any docker thread as
worker. All the workers that use the CUDA implementation
are named CUDA workers, while the ones that use the C++
implementation are named CPP workers. Even if a single
CUDA worker is tied to a single GPU, it is possible to have
multiple CUDA workers tied to the same GPU.

We consider the target binding site constant during the
elaboration. Therefore, each process will fetch the related
information once at the beginning of the execution. Each
algorithm implementation is free to store the pocket data
structures in the most appropriate memory location during
its initialization. In particular, the C++ implementation uses
constant static memory, while the CUDA implementation
uses texture memory.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 5

CINECA/ENI Computation node

InfiniBand

Network
Interface Card CPUs NVIDIA V100

GPUs (4x)

Reader Splitter Docker Writer

CUDAMPI

libdpipe LiGenDock / LiGenScore

Exscalate Docking Pipeline

Ha
rd

w
ar

e
Ov

er
vi

ew
So

ft
w

ar
e

St
ac

k
Ab

st
ra

ct
io

n

Fig. 3: Overview of the EXSCALATE docking application by
varying the abstraction level.

Reader Splitter Docker Writer

Input binary

Output csv

struct message {
 description;
 atoms[][];
 scores[];
 ...
};

struct message {
 description;
 atoms[][];
 scores[];
 ...
};

0 1 1 0 1 0

1 1 0 0 0 1

0 0 1 1 1 1

0 1 1 1 1 0

1 0 0 0 0 1

Fig. 4: Example of I/O synchronization with three Applica-
tion instances, represented by different colors, that read the
input ligands and store the results.

The EXSCALATE Docking Pipeline library contains all
the application’s stages implementations. To parallelize the
computation it uses libdpipe, a custom library that imple-
ments high-level interfaces for MPI and C++ threads. The
LiGenDock/LiGenScore libraries implement the domain-
specific functional concerns.

Even if the problem is embarrassing parallel, we need to
synchronize all the application’s instances using MPI when
we perform I/O operations. Figure 4 depicts an example
of I/O coordination with three MPI processes, represented
by different colors. Since the computation pipeline is the
same for all the processes, we depict only one MPI process.
To distribute the computation workload among the MPI
processes, we split the input file in even slabs according
to the file size and the number of MPI processes. Since
the size of a molecule description depends on the ligand’s
properties, such as the number of atoms, it rarely happens
that a slab starts exactly with the beginning and stops at the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

S
p
e
e
d
u
p

Number of Nodes

Measured speedup Theoretical speedup

Fig. 5: Strong scaling experiment of the high-throughput
molecular docking on the whole Marconi100 supercom-
puter.

ending of a molecule description. We use the convention
that each task processes all the ligands whose description
begins between the slab start and stop. The last ligand
description may end after the slab stop.

On the main hand, we are using a very I/O-friendly ac-
cess pattern because we read a file sequentially. On the other
hand, the static data partition negates work-stealing among
MPI processes. Therefore, the application throughput is
equal to the throughput of the slowest process. However,
Section 3.3 describes how we solved this issue using a pre-
processing step. The frequency at which each process reads
from the input file depends on the pipeline throughput.

The writer stage uses collective I/O operations to coa-
lesce writing requests together before writing to the storage.
Indeed, the user can configure the number of processes
that issue I/O operations to reduce the pressure on the
file system. Therefore, the synchronization among processes
needs to concentrate the information that we want to write
on the processes that issue the I/O request and they have
to agree at which offset each MPI process starts to write.
This access pattern is I/O-friendly because all the writing
operations are parallel and sequential. Indeed, as we can
see from Figure 5, the I/O does not represent a bottleneck
and the scaling of the high-throughput molecular docking
application is very close to the optimal theoretical scaling.

3.3 EXSCALATE workflow

As we have seen from the strong scaling experiment, it
is possible to store all the ligands that we would like to
dock in a single file and to deploy the docking application
on the whole machine. However, this approach has several
drawbacks. The main concern is fault resiliency. The default
action to respond to a fault in an MPI communicator, for
example after a node failure, is to terminate all the pro-
cesses [28], which can lead to losing a significant amount
of computation effort. This is a well-known problem in
HPC [38], [39], [40]. Another concern lies in the application
performance. Figure 2 shows how docking and scoring a
large and complex ligand required much more time than a
small and simple ligand. Therefore, we have a significant

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 6

imbalance between the MPI processes if all the ligands with
many atoms and torsional bonds are close.

For these reasons we propose the EXSCALATE work-
flow: this approach addresses these issues with a pre-
processing phase on the chemical library to have a relatively
small number of jobs that can run in parallel using a
plain job array to coordinate the execution, such as the one
provided by SLURM or PBS. The job array is in charge of
controlling the execution of these jobs, and it is helped by
custom reactive tools in identifying failing jobs, re-running
them, and excluding failed nodes. To achieve this goal, we
divide the amount of ligands (70 billions) into ∼3400 smaller
sets. For every set, we create a job that runs on a subset of
32 nodes.

Figure 6 depicts the EXSCALATE workflow which re-
quires two different kinds of input from the domain knowl-
edge. On one hand, we require the binding sites of the
target proteins. A possible procedure to derive the drug-
gable cavities is reported in a previous work [41]. This
procedure is also the one adopted for the extreme-scale
experiment. On the other hand, we require the chemical
library of molecules that we want to evaluate. It is possible
to represent a molecule in a wide range of formats according
to the amount of information that we want to store. In our
case, we assume that the chemical library is stored using
the SMILES format [42], which can encode a molecule in a
single string that contains only the structure of the molecule
(ignoring the hydrogen) since it is the most compact.

The next step in the ligand pre-processing is to broadly
classify them in buckets according to their expected exe-
cution time, to reduce as much as possible the imbalance
during the computation. As shown in Figure 2, the number
of torsional bonds and atoms seem good predictors. How-
ever, it is not trivial to extract these properties from the
SMILES representation. For this reason, we trained a model
that predicts the execution time given properties that are
more accessible at this point of the workflow: the number
of heavy atoms, the number of rings, and the number of
chains. We also consider interactions between them. We
use a decision tree model with a maximum depth of 16 to
predict the ligand’s execution time.

Figure 7 shows the experimental campaign that we used
to train a decision tree regressor [43] written in Python.
Figure 7a shows the measured execution time of a dataset
with 21 million of ligands with a different number of atoms
and torsional bonds. We use the 80% of the data to train
the model, while the remaining data are used to compute
the prediction error reported in Figure 7b. The model has
a negligible mean error (−0.00088 ms), with a standard
deviation of 3.81 ms.

Even if the average error is almost zero, the standard
deviation suggests that we cannot use the proposed model
to predict the docking time of a single ligand. However,
since this pre-process aims at avoiding imbalance in the
computation while processing a large set of ligands, we are
interested only in the average behavior. In the experiment,
we cluster the ligands in buckets of 10 ms to further account
for this variability.

After the ligands classification according to their com-
plexity, we can perform the last pre-processing step. For
each ligand we add the hydrogen atoms, we generate the

initial displacement of its atoms in the 3D space, and we un-
fold the molecule (Section 3.1). This elaboration is required
once and it can be re-reused in all the virtual screening
campaigns.

Finally, once we have the target binding sites and the
ligand binaries, we can perform the virtual screening cam-
paign. The idea is to launch the docking application on
all the ligand files, one pocket at a time. The output of
the virtual screening is the ranking of the chemical library
against each docking site. Even if the scoring function uses
approximations that lead to a loss in accuracy, we can use
these results to select a much smaller set of molecules to
investigate more. For example, by using more accurate sim-
ulation techniques that also require a higher computation
effort per ligand. When domain experts selected the ligands
that have a strong interaction with multiple docking sites
or proteins, it is possible to re-create the 3D displacement
of the ligand’s atoms on demand. For this reason, we can
store only the structure of the molecule, using the SMILES
notation.

4 EXPERIMENTAL SETUP

This section reports the experimental setup for the virtual
screening experiment where we evaluated 70 billion ligands
against 15 binding sites of 12 viral proteins of SARS-CoV-2.

4.1 Target Dataset
The ligands that we evaluated in the experiment is part of
the EXSCALATE-library owned by Dompé that was built
starting from a database of millions of available commercial
reagents that were combined using a set of robust synthetic
reactions, in order to obtain a tangible chemical space,
meaning that this is truly achievable in one reaction step.
The steps to build the 3D structure of the molecule from
SMILES can be summarized as follows: an initial parsing
of the SMILES representation reconstructs the topological
structure of the molecule: atoms, bonds, and their types,
rings, and stereoisomerism. A force-field characterization,
based on MMFF94 [44], is then assigned to each atom, per-
mitting an initial guess of the coordinates based on known
bond lengths and angles, constrained by the expected ring
layout and the stereoisomers information from the pars-
ing step. The missing hydrogens are added to the heavy
atoms and the coordinates are assigned accordingly with
the same strategy. As a final step, the energy minimization
is performed via an iterative BFGS approach. Molecules not
reaching convergence are filtered out. Further filtering is
demanded for subsequent analyses: the focus of this work
was scanning the widest number of candidates, to build up
a set of promising compounds, to be later analyzed with
increased precision methods. The list of target proteins used
in the experiments has been reported in Table 1, with the
corresponding PDB code. The crystal structures of the main
functional units of the SARS-CoV-2 proteome were obtained
from the Protein Data Bank3. Homology models of the
proteins for which the crystal structure is not available were
generated and used. The procedure to derive the homology
models together with the identification of the druggable
cavities are reported in a previous work [41].

3. Protein Data Bank website - https://www.rcsb.org/

https://www.rcsb.org/

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 7

Protein models

Pockets identification

Target Pockets

CCCCN(C...
CCCCn1c(...
CC(C)CCO...
CCC(C)OC...

CCCCN(C...
CCCCn1c(...
CC(C)CCO...
CCC(C)OC...

Annotated SMILES Buckets of SMILES

Ligand pre-Processing

Ligand binaries

Complexity Prediction

Molecular Docking
3.3 CCCN(...
2.1 CCCCn...
2.5 CC(C)C...
23 CCC(C)...

6.4 CCCC...
4.9 CCCC(...
7.4 CC(C)...
1.3 CCC(C)...

Scored ligands

Ligand Ranking
1°) CCC(C)...
2°) CC(C)...
3°) CCCC...
4°) CCCC(...

Most Promising
Molecules

Fig. 6: EXSCALATE workflow, from the input (ligand’s chemical library and the protein models) on the left; to the final
outcome (most promising set of molecules) on the right.

Fr
e
q
u
e
n
cy

Execution time [ms]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

[0 5)

[5 10)

[10 15)

[15 20)

[20 25)

[25 30)

[30 35)

[35 40)

[40 45)

[45 50)

[50 55)

[55 60)

[60 65)

(a) Measured docking time

Fr
e
q
u
e
n
cy

Prediction Error [ms]

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

[-20 -15)

[-15 -10)

[-10 -5)

[-5 0)

[0 5)

[5 10)

[10 15)

[15 20)

(b) Prediction error

Fig. 7: Frequency distribution of the measured docking time, using the CUDA implementation, and its prediction error,
defined as the difference between the observed execution time and its predicted vale. We discared values with a frequency
lower than 0.001 for conciseness purposes.

TABLE 1: The 3D targets used in the molecular docking
experiments. A target might have different pockets.

Protein PDB code

3CL protease (NSP5) 6LU7
N-protein 6VYO
NSP3 6W02
NSP6 De novo model
NSP9 6W4B
NSP12 7BV2
NSP13 6XEZ
NSP14 Homology Model
NSP15 6W01
NSP16 6W4H
PL protease 6W9C
Spike-ACE2 6M0J

4.2 Hardware Environment

We deployed the EXSCALATE platform on Marconi100 at
CINECA and HPC5 at ENI, aggregating around 81 petaflops
of performance peak (respectively 29.3 and 51.7 petaflops).
A Marconi100 node is equipped with 32 IBM POWER9
AC922 cores (128 hardware threads) and 4 NVIDIA V100
GPU, with NVLINK 2.0. The computation node of HPC5 is
very similar since it also uses 4 NVIDIA V100 GPUs, but it
relies on Intel Xeon Gold 6252 24C as CPU (24 cores and 48
hardware threads) and it uses NVLINK only for the GPU to
GPU interconnection. The CPU to GPU connection uses PCI-
Express. The experiment has been run using a reservation of
800 out of 970 CINECA-Marconi100 nodes, and 1500 out of

1820 ENI-HPC nodes for 60 hours in each machine.

4.3 Software Environment
All software components were built on top of the same
software stack for both of the production systems: upstream
GCC 9.3, CUDA toolkit 11.0 and upstream MPICH 3.4.1.
The main difference between the two systems was in the job
scheduler: SLURM on Marconi100 and PBS on HPC5. On the
former, the single 32-nodes jobs were managed in multiple
job arrays, each one covering the whole set of docking
targets, while on the latter an ENI’s internal, proprietary
workflow management tool (Beat) was used to schedule
single jobs and deal with transient faults.

For the post-processing phase, a custom Dask pipeline
dealing with statistical descriptors and threshold selec-
tion has been developed and ran on an environment de-
ployed using upstream conda-forge (Dask 2.21.0 on Python
3.8.3). The same Python environment was used for the
pre-processing phase as well, where a custom regression
model was trained, serialized and deployed using scikit-
learn 0.22.1.

4.4 Performance Measurements
In the virtual screening context, the most important metric
to measure the application performance is throughput. Since
we run a single MPI process on each node, we can measure
the node’s throughput using std::chrono::steady clock facili-
ties. Each time that we need to compute the throughput, we

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 8

divide the number of ligands that the application has pro-
cessed by the elapsed time. We log this information in the
application output during the evolution of the elaboration.
To compute the average node’s throughput, we compute
the average value among the final throughput logged by
the applications.

To measure the machine throughput, we divide the total
number of ligands by the wall time of the computation, i.e.
the time required to complete the job array. In this way, the
measure includes all the overheads related to the execution.
Since a pocket elaboration lasts for hours, the accuracy of
the measure is compatible with the method used.

5 PERFORMANCE RESULTS

This section collects the experiment’s extra-functional prop-
erties in terms of storage and throughput.

5.1 Evaluating the storage requirements
One of the main concerns in HPC systems is storage. When
scaling an experiment to the scale of a trillion docking
operation, it requires us to evaluate in detail what we
want to read and write, giving attention to the format. To
perform the virtual screening, we need information about
the binding sites of the target proteins and the chemical
library of ligands that we want to analyze. The former is
not an issue since it requires total storage of 29MB and the
information needed is read once when the application starts.
The latter needs more careful consideration.

Domain experts use to work with SMILES format to
represent a ligand since it is the most compact. The chemical
library evaluated in the experiment encoded in the SMILES
format requires a total of 3.3TB. However, the docking ap-
plication requires a richer description of the molecule, as de-
scribed in Section 3.3. The most widely used format to store
the required information is the TRIPOS Mol2 [37], which
is encoded in ASCII characters and focuses on readability
rather than efficiency. For this reason, we use a custom
binary format that stores only the information required by
the docking application, such as the atom’s position, type,
and bonds. By comparing the size of the same molecules,
the Mol2 format requires 5− 6X more space with respect to
the binary format. Nonetheless, the whole binary chemical
library for the experiment requires 59TB of storage.

Storing all the docked poses is unfeasible since we need
to store the whole molecule description for each pose that
we want to consider. Since we are targeting 15 binding site
and we re-score 30 alternative poses for each input ligand
because it would require 26PB of storage, which exceeds
the combined capacity of the target HPC machines. For this
reason, we store only the SMILES of the molecule and its
best score in a CSV-like file. Then, we can re-generate the
docked pose on demand since the docking algorithm is
deterministic. The size of the final output is 69TB of data.

On average, the docking application requires a relatively
small I/O bandwidth: 1.68 GB/s for reading and 0.12 GB/s
for writing on the Marconi100 machine, while 2.53 GB/s for
reading and 0.18 GB/s for writing on the HPC5 machine.
Despite this result, we needed to carefully tune the software
knobs related to the I/O (Section 3.2) to avoid scaling issues
on large systems [45].

0

4

8

12

16

20

32

48

64

96

128

4 8 12 16 24 32 48 64 128

N
u
m

b
e
r

o
f

C
P
P
 w

o
rk

e
rs

Number of CUDA workers

2152 2278 2348 2379 2385 2290

2269 2361 2371 2399 2331

2185 2323 2353 2332 2404 2297

2193 2344 2348 2393 2356 2406

2200 2305 2369 2395 2414 2356

2184 2289 2357 2387 2257 2400

2288 2266 2260 2264 2194

2186 2164 2157

958 1571 1919

977 1594 1968 2093

1003 1614 1975

1022 1621 1924

1035 1625 1959

1043 1634 1934

1030 1553 1904 2122

967 1473 1859 2054 2146 2086

906 1369 1745 1979 2117 2084 2057 2013 1928

820 1274 1639 1861 1970 1798 1621 1616 1594

664 659 793 815 845 836 876 897 985

 0

 500

 1000

 1500

 2000

T
h
ro

u
g

h
p

u
t

(l
ig

a
n
d

/s
e
c)

Fig. 8: Throguhput of the docking application in terms of
ligands per seconds, by varying the number of CPP and
CUDA workers.

5.2 Exploiting a node heterogeneity

The availability of multiple implementations of the dock
and score algorithm grants access to heterogeneous re-
sources. Figure 2 shows the time elapsed by the CPP and
CUDA workers to perform the docking operation with dif-
ferent ligand characteristics. We can notice that the CUDA
implementation has, on average, a 64x speedup with respect
to the CPU version Therefore using only the CUDA imple-
mentation seems to be the most efficient solution. However,
the relationship between the number of CUDA and CPP
workers (Section 3.2) and the application throughput is not
trivial. Figure 8 shows the application throughput in terms
of docked ligands per second, by varying the number of
CUDA and CPP workers, when we deploy the application
on a Marconi100 node, which has 32 IBM POWER9 AC922
cores (128 hardware threads) and 4 NVIDIA V100 GPU. The
application binds each CUDA worker to a single GPU in a
round-robin fashion. For example, when we use 24 CUDA
workers, we have 6 threads that feed data and retrieve the
results for each GPU in the node.

From the throughput, we can notice how the application
reaches the peak performance for a high number of CUDA
workers. Moreover, when we increase the number of CPP
workers to match the number of hardware threads, we
harm the application performance. This behavior implies
that, in our case study, it is better to use CPUs to support
accelerators and I/O operations rather than contribute to
the elaboration itself. Furthermore, to benefit most from
a GPU it is not enough to use a single CUDA worker.
We expect this result because the CUDA worker needs to
parse the ligand description and initialize the related data
structures before launching any CUDA kernel. Thus, by
using more CUDA workers we can hide these overheads
and fully utilize the GPU. To perform this analysis we
used the dataset “Commercial Compound MW<330” from the
MEDIATE website [11]. It is composed of 5 million of small
molecules and it is publicly available.

5.3 Scaling on the target HPC machine

We used the EXSCALATE workflow described in Section 3.3
to overcome the limitations of using a single MPI applica-
tion that runs on the whole supercomputer. For this experi-
ment, we decided to evaluate the binding sites sequentially.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 9

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500

T
h
ro

u
g
h
p
u
t

[l
ig

/s
e
c/

N
o
d
e
]

Sub-Reaction ID

SPIKE M100

(a) SpikeACE on Marconi100

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 500 1000 1500 2000 2500 3000 3500

T
h
ro

u
g
h
p
u
t

[l
ig

/s
e
c/

N
o
d
e
]

Sub-Reaction ID

NSP3-HPC5

(b) NSP3 on HPC5

Fig. 9: Execution track of two entire job arrays targeting two different protein pockets on the two different supercomputers.

TABLE 2: The throughput reached per node and per ma-
chine for each binding site evaluated in the experiment.
∗The NSP13ortho binding site has been partially computed
in both machines.

Throughput Throughput HPC
Binding site (ligands/sec/node) (ligands/sec) machine

PLPRO 2496 1996800 M100
SPIKEACE 2498 1998400 M100
NSP12thumb 2499 1999200 M100
NSP13palm 2486 1988800 M100
3CL 2427 1941600 M100
NSP13allo 2498 1998400 M100
Nprot 2010 3015000 HPC5
NSP16 1980 2970000 HPC5
NSP3 1969 2953500 HPC5
NSP6 1985 2977500 HPC5
NSP12ortho 2001 3001500 HPC5
NSP14 1965 2947500 HPC5
NSP9 1996 2994000 HPC5
NSP15 1990 2985000 HPC5
NSP13ortho∗ 2454 1963200 M100
NSP13ortho∗ 1987 2980500 HPC5

With this configuration, for every binding site, we have a job
array of ∼3400 jobs, where each job is composed of 32 MPI
processes that last for about 5 minutes and targets a single
binding site.

Table 2 reports for each binding site the average through-
put of a node and the whole machine. On average, the
throughput of a single node is 2.4k ligands per second on
Marconi100 nodes, while is a little lower, 2k ligands per
second, on HPC5 nodes. Both supercomputer nodes are
equipped with 4 NVIDIA V100 GPU, and we have seen
that most of the throughput of the application is given
by the CUDA accelerated kernels. For this reason, this
difference in performance by the two nodes is unexpected.
However, there is a big difference in the architectures of the
Marconi100 node and the HPC5 node, that is how the GPUs
and CPUs are connected: Marconi100 has NVLINK2.0, while
HPC5 relies on PCI-Express. In our case study, NVLINK is
better at transferring the ligands’ data.

If we only consider the throughput of a Marconi100
node, we can notice that the throughput that we measured

while scaling to the whole machine is comparable to the
one that we measured while tuning the number of CUDA
and CPP workers, reported in Figure 8. Therefore, the
EXSCALATE platform was able to exploit all the available
resources, reaching a combined throughput of 5M ligands
per second on both supercomputers.

Finally, Figure 9 shows the execution track of the job
arrays on two different proteins running on the two super-
computers. Also in this case it is visible that the difference in
performance is not due to the target protein but mainly due
to the different node architecture. Despite the performance
are almost stable across the workload, the difference in
throughput between the jobs is due the average complexity
(i.e. number of atoms and rotatable bonds) of the ligands
included in the sub-reactions associated to the jobs. This can
be also noticed by the similar profile of the plots on the two
different machines. These results show how the throughput
is strongly influenced by the input data.

5.4 Data pre/post-processing
The main challenge of the experiment is to generate the
chemical knowledge of the virtual screening. However, it
requires a pre-processing phase to prepare the ligands: this
phase is described in detail in Section 3.3 and it must be
performed only once as the same pre-processed chemical
space is evaluated against all docking sites.

The output of the experiment is a list of files ranking the
ligands according to the strength of their interaction with
the target protein in a CSV-like file. Even if the output can be
used as-is, we chose for the sake of convenience to perform a
preliminary post-processing step to join all the scores for the
same ligand across all docking sites thus obtaining a single
global table for the whole experiment.

The actual post-processing phase involves several steps
aimed at obtaining statistical descriptors for the full score’s
distributions (mean, median, standard deviation, several
percentiles); these descriptors are then used to extract the
best-scoring compounds for each docking site to form the
final released dataset. The computation has been carried
out using a Dask distributed pipeline on the Marconi100
system. To identify the best prospect molecules we took

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 10

TABLE 3: Time and resources required to complete the
experiment’s phases.

Phase Time Resources

Pre-processing 5 days 100 M100 nodes (no GPUs)
Dock & Score 60 hours 800 M100 + 1500 HPC5 nodes
Post-processing 5 days 19 M100 nodes (no GPUs)

into account, for each docking site, all the compounds that
have been scored higher than 3 standard deviations from the
distribution’s mean. The resulting data set, containing more
than 570 million top-scoring compounds, is freely available
upon registration.

Table 3 summarizes the computational resources in-
volved in each of the phases above.

6 CONCLUSIONS

In the context of urgent computing, where we want to re-
duce the social and economic impact of a pandemic as much
as possible, we re-designed the EXSCALATE molecular
docking platform targeting HPC systems to make possible
an extreme-scale virtual screening campaign in a reasonable
time. We virtual screened more than 70 billion of ligands
against 15 binding sites of 12 viral proteins of SARS-CoV-
2. The raw results account for 69TB of data that describes
how the chemical library interacts with the targets. The set
of most promising compounds filtered for each target has
been made available on the MEDIATE portal [11] to permit
researchers to start more detailed de-novo campaigns from
a reduced set of compounds.

In this work, we outlined how we were able to scale to
two full HPC systems, Marconi100 at Cineca and HPC5 at
ENI S.p.A., at the time of the experiment the two most pow-
erful supercomputers in Europe, to run a one-trillion-docking
experiment4 in 60 continuous hours of production. The GPU
porting of the entire code for the docking and scoring part
of the workflow has been the key factor in reaching the
target throughput goal since we were dealing with Top500,
heterogeneous, GPU-accelerated HPC installations. Another
valuable outcome of this work is the availability of an end-
to-end high throughput virtual screening pipeline, capable
of evaluating trillions of compounds against tens of viral
targets by improving time-to-solution by means of extreme
scalability up to full Top500 sites. We tested the real-world
use of the pipeline on multiple HPC sites that were capable
of supporting us by providing procedures to deal with our
urgent computing needs that required severe reduction or
even complete stoppage of regular production.

Finally, the approach we presented has the potential to
provide a tool for robust in-silico analysis across multiple
targets. In the long term, we believe that the EXSCALATE
platform can support de-novo drug design challenges mov-
ing the problems from the generation of the data (i.e.
binding affinity calculation) to the use of them (i.e. hit
identification). Despite the main driver for the enhancement
of the EXSCALATE platform and for the experiment has
been the COVID-19 pandemic, we believe that the value
generated by our effort goes beyond it, having now a ready

4. Experiment website - https://1trilliondock.exscalate4cov.eu/

to use platform not only for the next pandemic but also
for other targets, such as rare disease or antibiotic-resistant
pathogens.

REFERENCES

[1] A. Corona, K. Wycisk, C. Talarico, C. Manelfi, J. Milia, R. Cannalire,
F. Esposito, P. Gribbon, A. Zaliani, D. Iaconis, A. R. Beccari,
V. Summa, M. Nowotny, and E. Tramontano, “Natural compounds
inhibit sars-cov-2 nsp13 unwinding and atpase enzyme activities,”
ACS Pharmacology & Translational Science, vol. 5, no. 4, pp. 226–239,
2022.

[2] H. Matter and C. Sotriffer, Applications and Success Stories in Virtual
Screening. John Wiley & Sons, Ltd, 2011, ch. 12, pp. 319–358.

[3] O. M. Becker, D. S. Dhanoa, Y. Marantz, D. Chen, S. Shacham,
S. Cheruku, A. Heifetz, P. Mohanty, M. Fichman, A. Sharadendu,
R. Nudelman, M. Kauffman, and S. Noiman, “An integrated in
silico 3d model-driven discovery of a novel, potent, and selective
amidosulfonamide 5-ht1a agonist (prx-00023) for the treatment of
anxiety and depression,” Journal of Medicinal Chemistry, vol. 49,
no. 11, pp. 3116–3135, 2006.

[4] M. Allegretti, M. C. Cesta, M. Zippoli, A. Beccari, C. Talarico,
F. Mantelli, E. M. Bucci, L. Scorzolini, and E. Nicastri, “Repurpos-
ing the estrogen receptor modulator raloxifene to treat sars-cov-2
infection,” Cell Death & Differentiation, vol. 29, pp. 156–166, 2022.

[5] J. Singh, C. E. Chuaqui, P. Boriack-Sjodin, W.-C. Lee, T. Pontz, M. J.
Corbley, H.-K. Cheung, R. M. Arduini, J. N. Mead, M. N. Newman,
J. L. Papadatos, S. Bowes, S. Josiah, and L. E. Ling, “Successful
shape-based virtual screening: The discovery of a potent inhibitor
of the type i tgfβ receptor kinase (tβri),” Bioorganic & Medicinal
Chemistry Letters, vol. 13, no. 24, pp. 4355–4359, 2003.

[6] N. S. Pagadala, K. Syed, and J. Tuszynski, “Software for molecular
docking: a review,” Biophysical Reviews, vol. 9, no. 2, pp. 91–102,
2017.

[7] N. López, L. D. Debbio, M. Baaden, M. Praprotnik, L. Grigori,
C. Simões, S. Bogaerts, F. Berberich, T. Lippert, J. Ignatius, P. Lav-
ocat, O. Pineda, M. G. Giuffreda, S. Girona, D. Kranzlmüller,
M. M. Resch, G. Scipione, and T. Schulthess, “Lessons learned from
urgent computing in europe: Tackling the covid-19 pandemic,”
Proceedings of the National Academy of Sciences, vol. 118, no. 46, p.
e2024891118, 2021.

[8] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Craw-
ford, J. Dongarra, D. Kothe, R. Lusk, P. Messina, T. Mezzacappa,
P. Moin, M. Norman, R. Rosner, V. Sarkar, A. Siegel, F. Streitz,
A. White, and M. Wright, “The opportunities and challenges of
exascale computing,” Summary Report of the Advanced Scientific
Computing Advisory Committee (ASCAC) Subcommittee, pp. 1–72,
2010.

[9] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler,
S. Kumar, E. Lusk, and J. L. Träff, “Mpi at exascale,” Procceedings
of SciDAC, vol. 2, pp. 14–35, 2010.

[10] J. Glaser, J. V. Vermaas, D. M. Rogers, J. Larkin, S. LeGrand,
S. Boehm, M. B. Baker, A. Scheinberg, A. F. Tillack, M. Thavappira-
gasam, A. Sedova, and O. Hernandez, “High-throughput virtual
laboratory for drug discovery using massive datasets,” The Inter-
national Journal of High Performance Computing Applications, vol. 35,
no. 5, pp. 452–468, 2021.

[11] Exscalate4CoV, “MEDIATE - molecular docking at home,” https:
//mediate.exscalate4cov.eu/, Accessed: 2021-09-17.

[12] A. Lavecchia and C. Cerchia, “In silico methods to address
polypharmacology: current status, applications and future per-
spectives,” Drug Discovery Today, vol. 21, no. 2, pp. 288–298, 2016.

[13] N. A. Murugan, A. Podobas, D. Gadioli, E. Vitali, G. Palermo, and
S. Markidis, “A review on parallel virtual screening softwares for
high-performance computers,” Pharmaceuticals, vol. 15, no. 1, p. 63,
2022.

[14] J. Biesiada, A. Porollo, P. Velayutham, M. Kouril, and J. Meller,
“Survey of public domain software for docking simulations and
virtual screening,” Human Genomics, vol. 5, no. 5, pp. 497–505,
2011.

[15] E. Yuriev, J. Holien, and P. A. Ramsland, “Improvements, trends,
and new ideas in molecular docking: 2012-2013 in review,” Journal
of Molecular Recognition, vol. 28, no. 10, pp. 581–604, 2015.

[16] M. A. Neves, M. Totrov, and R. Abagyan, “Docking and scoring
with icm: the benchmarking results and strategies for improve-
ment,” Journal of computer-aided molecular design, vol. 26, no. 6, pp.
675–686, 2012.

https://1trilliondock.exscalate4cov.eu/
https://mediate.exscalate4cov.eu/
https://mediate.exscalate4cov.eu/

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 11

[17] M. C. Ng, S. Fong, and S. W. Siu, “PSOVina: The hybrid particle
swarm optimization algorithm for protein-ligand docking,” Jour-
nal of Bioinformatics and Computational Biology, vol. 13, no. 3, p.
1541007, 2015.

[18] Y.-P. Pang, T. J. Mullins, B. A. Swartz, J. S. McAllister, B. E. Smith,
C. J. Archer, R. G. Musselman, A. E. Peters, B. P. Wallenfelt, and
K. W. Pinnow, “Eudoc on the ibm blue gene/l system: Accelerating
the transfer of drug discoveries from laboratory to patient,” IBM
Journal of Research and Development, vol. 52, no. 1.2, pp. 69–81, 2008.

[19] O. Korb, T. Stützle, and T. E. Exner, “Accelerating molecular
docking calculations using graphics processing units,” Journal of
Chemical Information and Modeling, vol. 51, no. 4, pp. 865–876, 2011.

[20] Y. Fang, Y. Ding, W. P. Feinstein, D. M. Koppelman, J. Moreno,
M. Jarrell, J. Ramanujam, and M. Brylinski, “Geauxdock: ac-
celerating structure-based virtual screening with heterogeneous
computing,” PloS one, vol. 11, no. 7, p. e0158898, 2016.

[21] I. Sánchez-Linares, H. Pérez-Sánchez, J. M. Cecilia, and J. M.
Garcı́a, “High-Throughput parallel blind Virtual Screening using
BINDSURF,” BMC Bioinformatics, vol. 13, no. SUPPL 14, 2012.

[22] P. Darme, M. Dauchez, A. Renard, L. Voutquenne-Nazabadioko,
D. Aubert, S. Escotte-Binet, J.-H. Renault, I. Villena, L.-A. Steffenel,
and S. Baud, “Amide v2: High-throughput screening based on
autodock-gpu and improved workflow leading to better perfor-
mance and reliability,” International journal of molecular sciences,
vol. 22, no. 14, p. 7489, 2021.

[23] B. Imbernón, A. Serrano, A. Bueno-Crespo, J. L. Abellán, H. Pérez-
Sánchez, and J. M. Cecilia, “METADOCK 2: a high-throughput
parallel metaheuristic scheme for molecular docking,” Bioinformat-
ics (Oxford, England), vol. 37, no. 11, pp. 1515–1520, 2021.

[24] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew,
D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility,” Journal of
Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, dec 2009.

[25] S. LeGrand, A. Scheinberg, A. F. Tillack, M. Thavappiragasam,
J. V. Vermaas, R. Agarwal, J. Larkin, D. Poole, D. Santos-Martins,
L. Solis-Vasquez, A. Koch, S. Forli, O. Hernandez, J. C. Smith,
and A. Sedova, “Gpu-accelerated drug discovery with docking on
the summit supercomputer: Porting, optimization, and application
to covid-19 research,” in Proceedings of the 11th ACM Interna-
tional Conference on Bioinformatics, Computational Biology and Health
Informatics. New York, NY, USA: Association for Computing
Machinery, 2020.

[26] M. Wójcikowski, P. J. Ballester, and P. Siedlecki, “Performance
of machine-learning scoring functions in structure-based virtual
screening,” Scientific Reports, vol. 7, no. 46710, pp. 1–10, 2017.

[27] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter,
and K. A. Persson, “Fireworks: a dynamic workflow system de-
signed for high-throughput applications,” Concurrency and Compu-
tation: Practice and Experience, vol. 27, no. 17, pp. 5037–5059, 2015.

[28] M. P. I. Forum, MPI: A Message-passing Interface Standard, Version
3.1 ; June 4, 2015. High-Performance Computing Center Stuttgart,
University of Stuttgart, 2015.

[29] T. Cheng, Q. Li, Z. Zhou, Y. Wang, and S. H. Bryant, “Structure-
based virtual screening for drug discovery: a problem-centric
review,” The AAPS journal, vol. 14, no. 1, pp. 133–141, 2012.

[30] D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward,
and K. D. Kopple, “Molecular properties that influence the oral
bioavailability of drug candidates,” Journal of medicinal chemistry,
vol. 45, no. 12, pp. 2615–2623, 2002.

[31] N. S. Pagadala, K. Syed, and J. Tuszynski, “Software for molecular
docking: a review,” Biophysical reviews, vol. 9, no. 2, pp. 91–102,
2017.

[32] R. E. Amaro, J. Baudry, J. Chodera, Ö. Demir, J. A.
McCammon, Y. Miao, and J. C. Smith, “Ensemble docking
in drug discovery,” Biophysical Journal, vol. 114, no. 10, pp.
2271–2278, 2018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0006349518303242

[33] C. Beato, A. Beccari, C. Cavazzoni, S. Lorenzi, and G. Costantino,
“Use of experimental design to optimize docking performance: the
case of ligendock, the docking module of ligen, a new de novo
design program.” Journal of Chemical Information and Modeling,
vol. 53, no. 6, pp. 1503–1517, 2013.

[34] E. Vitali, D. Gadioli, G. Palermo, A. Beccari, C. Cavazzoni, and
C. Silvano, “Exploiting openmp and openacc to accelerate a
geometric approach to molecular docking in heterogeneous hpc

nodes,” The Journal of Supercomputing, vol. 75, no. 7, pp. 3374–3396,
2019.

[35] G. A. de Araujo, D. Griebler, M. Danelutto, and L. G. Fernandes,
“Efficient nas parallel benchmark kernels with cuda,” in 2020
28th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). IEEE, 2020, pp. 9–16.

[36] S. R. M. Rostami and M. Ghaffari-Miab, “Finite difference gener-
ated transient potentials of open-layered media by parallel com-
puting using openmp, mpi, openacc, and cuda,” IEEE Transactions
on Antennas and Propagation, vol. 67, no. 10, pp. 6541–6550, 2019.

[37] TRIPOS-International, “SYBYL 7.1 - Mol2 file format,” 2005.
[38] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,

P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. DeBardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,
S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley,
and E. V. Hensbergen, “Addressing failures in exascale com-
puting,” The International Journal of High Performance Computing
Applications, vol. 28, no. 2, pp. 129–173, 2014.

[39] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of mpi communication capability: Design
and rationale,” The International Journal of High Performance Com-
puting Applications, vol. 27, no. 3, pp. 244–254, 2013.

[40] R. Rocco, D. Gadioli, and G. Palermo, “Legio: fault resiliency for
embarrassingly parallel mpi applications,” The Journal of Supercom-
puting, vol. 78, no. 2, pp. 2175–2195, 2022.

[41] S. Gervasoni, G. Vistoli, C. Talarico, C. Manelfi, A. R. Beccari,
G. Studer, G. Tauriello, A. M. Waterhouse, T. Schwede, and
A. Pedretti, “A comprehensive mapping of the druggable cavities
within the sars-cov-2 therapeutically relevant proteins by combin-
ing pocket and docking searches as implemented in pockets 2.0,”
International Journal of Molecular Sciences, vol. 21(14), no. 5152, 2020.

[42] D. Weininger, “Smiles, a chemical language and information sys-
tem. 1. introduction to methodology and encoding rules,” Journal
of Chemical Information and Computer Sciences, vol. 28, no. 1, pp.
31–36, 1988.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[44] T. A. Halgren, “Merck molecular force field. i. basis, form, scope,
parameterization, and performance of mmff94,” Journal of compu-
tational chemistry, vol. 17, no. 5-6, pp. 490–519, 1996.

[45] S. Markidis, D. Gadioli, E. Vitali, and G. Palermo, “Understanding
the i/o impact on the performance of high-throughput molecular
docking,” in 2021 IEEE/ACM Sixth International Parallel Data Sys-
tems Workshop (PDSW). IEEE Computer Society, 2021, pp. 9–14.

Davide Gadioli received his his Master of Sci-
ence degree in Computer Engineering in 2013,
while in 2019 he received the Ph.D degree in
Computer Engineering, from Politecnico di Mi-
lano (Italy). Currently, he is a postdoc at Dipar-
timento di Elettronica, Informazione e Bioingeg-
neria (DEIB) of Politecnico di Milano. In 2015,
he was a Visiting Student at IBM Research (The
Netherlands). His main research interests are
in application autotuning, autonomic computing
and approximate computing.

https://www.sciencedirect.com/science/article/pii/S0006349518303242
https://www.sciencedirect.com/science/article/pii/S0006349518303242

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. DOI 10.1109/TETC.2022.3187134 12

Emanuele Vitali graduated in 2015 from Politec-
nico di Milano (Italy) after completing his Mas-
ter of Science in Computer Engineering, and in
2021 he received the PhD degree from the same
university. Currently, he is a postdoc at Diparti-
mento di Elettronica, Informazione e Bioingeg-
neria (DEIB) of Politecnico di Milano. In 2019,
he has been Visiting Student at Dividiti (UK). His
main research interests include GPGPU archi-
tectures and programming, application autotun-
ing and high throughput molecular docking.

Federico Ficarelli graduated in Computer Sci-
ence at the University of Milan in 2008. He is
currently a senior HPC software engineer in the
High Performance Computing dept. at Cineca
where he leads several co-design and develop-
ment activities in the industrial R&D team. He is
involved in several research projects as respon-
sible for application and hardware-software co-
design activities focusing on novel computing ar-
chitectures, programming paradigms for hetero-
geneous platforms and compiler technologies.

Chiara Latini received the M.Sc. degree with
honors in particle Physics at the University of
Bologna. She earned a PhD in Electrical Engi-
neering at the University of Bologna with the the-
sis titled ”Numerical strategies for the solution of
the magneto-fuid-dynamic problem at Low Mag-
netic Reynolds Numbers”. Since 2008, when she
joined the HPC department at CINECA, she has
been working as a developer for industrial and
scientific applications.

Candida Manelfi graduated in Chemistry in
2006 at the Rome University ”La Sapienza”.
Since 2015 she is computational chemistry re-
searcher at Dompé Farmaceutici, supporting
the early drug discovery projects and provid-
ing Chemoinformatics and Bioinformatics ser-
vices as compound library design and HTS data
analysis. She is also part of the Joint Bioinfor-
matics Group (JBG) at the Institute of Protein
Biochemistry of CNR in Naples. Previously, she
was applications specialist at S-IN Soluzioni In-

formatiche providing computer-assisted solutions in chemistry-related
frameworks, and computational chemistry researcher at the Angelini
Research Center. She participated to the H2020-ANTAREX project and
she is co-PI to the PRACE granted project called Antarex for Zika.

Carmine Talarico graduated in Pharmacy at
the University ”Magna Graecia” of Catanzaro in
2014 and got a PhD in Life Sciences and Tech-
nologies (curriculum Pharmaceutical Sciences)
at the same university in 2017. He was awarded
in 2018 with Award of excellence Paul Ehrlich
MedChem Euro-PhD Network referring to his
PhD thesis. From 2017 he is author and co-
author of a book chapter and eleven scientific
papers published in international journals. He
works as Computational Chemist at Dompé from

2018, and he is a member of the EXSCALATE group. He has been
Project Leader of the PRACE granted project called Antarex for Zika.

Cristina Silvano is a Full Professor at the De-
partment of Electronics, Information and Bio-
engineering (DEIB), Politecnico di Milano. Her
main research interests are in energy-efficient
embedded systems, manycore architectures
and application autotuning. She has published
more that 160 scientific papers in peer-review
journals and conferences, and she holds sev-
eral patents in collaboration with Group Bull
and STMicroelectronics. She was Project Co-
ordinator of three European projects: H2020-

ANTAREX, FP7-2PARMA and FP7-MULTICUBE. She has served in
the organizing and program committees of several major conferences
in computer architectures, embedded systems and electronic design
automation. She is Associate Editor of ACM TACO and IEEE TC. In
2017, she has been elevated to the grade of IEEE Fellow.

Carlo Cavazzoni is head of Cloud Computing
in Leonardo, and director of the Leonardo HPC
Lab. He spent more than 20 years in Cineca,
where he become head of HPC R&D, with re-
sponsibility for the evolution and exploitation of
the national and european HPC infrastructure.
He is a member of the EuroHPC Research and
Innovation Advisory Board, steering board mem-
ber of the ETP4HPC association, and Leonardo
representative in GAIA-X. He has been gradu-
ated in physics at the University of Modena in

1994, and he attained the PhD degree at ISAS-SISSA in 1998. He was
responsible for the co-design and exploitation of the EURORA PRACE
2IP prototype and D.A.V.I.D.E. PRACE 3IP PCP prototype, and for the
parallel design of QUANTUM ESPRESSO suite of codes. He published
more than 100 peer review articles.

Gianluca Palermo received his Master of Sci-
ence degree in Electronic Engineering, in 2002,
and the PhD degree in Computer Engineering, in
2006, from Politecnico di Milano (Italy). He is cur-
rently an Associate Professor at the Department
of Electronics, Information and Bioengineering
(DEIB) at the same University. Previously, he
was part of the Low-Power Design Group of AST
- STMicroelectronics working on Network-on-
Chip architectures, and Research Assistant at
the Advanced Learning and Research Institute

(ALaRI) of the Universita’ della Svizzera Italiana. His research interests
include design methodologies and architectures for embedded and HPC
systems focusing on autotuning aspects. Since 2003, he published more
than 100 scientific papers in peer-reviewed conferences and journals.

Andrea R. Beccari is currently responsible for
the Drug Discovery Platform of Dompé Farma-
ceutici SpA and leader of the EXSCALATE team.
Since 2015, responsible of the Joint Bioinformat-
ics Groups at the IBP Institute of the National
Research Council of Italy. He was promoter and
coordinator of the open innovation initiative: Ital-
ian Drug Discovery Network and co-founder and
member of the board of the Avicenna Alliance
(Brussel). He was the originator and chairman
of the Computational Driven Drug Discovery and

Italian Drug Discovery Summit series of meetings. He has co-organized
several initiatives with the European Commission and parliament pro-
moting the use of in-silico simulation to increase the awareness to-
wards the potentiality of high-performance computing in healthcare. He
is project coordinator of the H2020-EXSCALATE4CoV and EuroHPC-
LIGATE projects. He published more than 20 publications in peer review
journals and co-author for 7 patents.

	Introduction
	Related Works
	Exscalate platform
	The dock and score algorithm
	EXSCALATE high-throughput docking application
	EXSCALATE workflow

	Experimental Setup
	Target Dataset
	Hardware Environment
	Software Environment
	Performance Measurements

	Performance results
	Evaluating the storage requirements
	Exploiting a node heterogeneity
	Scaling on the target HPC machine
	Data pre/post-processing

	Conclusions
	References
	Biographies
	Davide Gadioli
	Emanuele Vitali
	Federico Ficarelli
	Chiara Latini
	Candida Manelfi
	Carmine Talarico
	Cristina Silvano
	Carlo Cavazzoni
	Gianluca Palermo
	Andrea R. Beccari

