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Abstract—In order to mitigate the security threat of quantum
computers, NIST is undertaking a process to standardize post-
quantum cryptosystems, aiming to assess their security and speed
up their adoption in production scenarios. Several hardware and
software implementations have been proposed for each candidate,
while only a few target heterogeneous platforms featuring CPUs
and FPGAs. This work presents a HW/SW co-design of BIKE for
embedded platforms featuring both CPUs and small FPGAs and
employs high-level synthesis (HLS) to timely deliver the hardware
accelerators. In contrast to state-of-the-art solutions targeting
performance-optimized HLS accelerators, the proposed solution
targets the small FPGAs implemented in the heterogeneous
platforms for embedded systems. Compared to the software-
only execution of BIKE, the experimental results collected on the
systems-on-chip of the entire Xilinx Zynq-7000 family highlight a
performance speedup ranging from 1.37×, on Z-7010, to 2.78×,
on Z-7020.

Index Terms—Post-quantum cryptography, code-based cryp-
tography, QC-MDPC codes, high-level synthesis, hardware-
software co-design, BIKE, FPGA

I. INTRODUCTION AND RELATED WORKS

In the near future, large-scale quantum computers are ex-
pected to break widely used public-key cryptosystems, whose
security relies on the hardness of factoring large integers
and computing discrete logarithms in a cyclic group. To
this end, post-quantum cryptography (PQC) aims to design
cryptoschemes that can be executed on traditional, i.e., non-
quantum, computers and are secure against both traditional
and quantum attacks.

In this scenario, the National Institute of Standards and
Technology (NIST) undertook the process of evaluating and
standardizing novel post-quantum schemes to face the security
threat imposed by the advances in quantum computing. Given
the wide range of scenarios that mandate the use of crypto-
graphic primitives, a goal of NIST is to ensure the possibility
of implementing the selected post-quantum cryptosystems on
the largest variety of computing platforms. Thus, efficient soft-
ware and hardware implementations targeting Intel Haswell
CPUs and Xilinx Artix-7 FPGAs, respectively, are critical
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factors in evaluating the NIST post-quantum candidates. How-
ever, the actual adoption of PQC into production environments
is subject to the time-consuming process of designing and
evaluating effective software and hardware implementations of
the candidate cryptosystems. To this end, the usage of high-
level synthesis (HLS) emerged as a viable solution for timely
delivery of hardware implementations of PQC solutions [1].

Starting from the cryptosystems selected for the fourth eval-
uation round of the NIST PQC contest [2], this work targets
the hardware-software (HW/SW) co-design of the BIKE post-
quantum key encapsulation module (KEM), a candidate for
future standardization that is based on QC-MDPC codes [3].
The proposed HW/SW co-design of BIKE targets embedded
platforms featuring both CPUs and small FPGAs and employs
HLS to design the hardware accelerators.

HLS has been extensively used to deliver hardware imple-
mentations of the candidates of the NIST PQC contest, includ-
ing lattice-based KEMs [1], the Classic McEliece code-based
KEM [4], and comprehensive implementations of both lattice-
based KEM and digital signature schemes [5]. A HW/SW co-
design approach exploiting HLS to design hardware accelera-
tors was successfully employed targeting Classic McEliece [4]
and lattice-based cryptosystems [6]. Notably, the state-of-the-
art contains few hardware [7]–[13] and software [3], [14], [15]
BIKE implementations, while, to the best of our knowledge,
no HW/SW co-design solution was proposed.

Contributions - In contrast to existing state-of-the-art solu-
tions targeting performance-optimized HLS accelerators, the
proposed HW/SW co-design approach aims to optimize the
area-performance trade-off for those embedded computing
platforms featuring both a CPU and programmable logic.
Notably, optimizing performance is subject to the limited
programmable hardware resources of the considered platforms
and thus represents an additional and challenging design factor
when using HLS to design the hardware accelerators.

Compared to the reference software execution of BIKE, the
results of the proposed HW/SW co-design targeting the Xilinx
Zynq-7000 embedded-class SoC family, i.e., Z-7010, Z-7015,
and Z-7020, show performance improvements up to 2.78×.©2022 IEEE
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Algorithm 1 Key generation.

1: function [H,σ, h] KEYGEN ( )
2: seed = TRNG ();
3: H = PRNG(SHAKE(seed));
4: f = h0; res = h0;
5: for i ∈ 1 to ⌊log2(p− 2)⌋ do
6: f = f ⊙ f22

i−1

;
7: if (p− 2)2[i] = 12 then
8: res = res⊙f2r−2 mod 2i

;

9: h0inv
= f2;

10: h = h1 ⊙ h0inv ;
11: σ = TRNG ();
12: return {H,σ, h};

Algorithm 2 Encapsulation.

1: function [K, c] ENCAPS (h)
2: m = TRNG ();
3: e = PRNG(SHAKE(m));
4: s = e0 ⊕ (e1 ⊙ h);
5: m′ = m⊕ SHA3(e);
6: c = {s,m′};
7: K =SHA3({m, c});
8: return {K, c};

Algorithm 3 Decapsulation.

1: function [K] DECAPS (H , σ, c)
2: s′ = h0 ⊙ s;
3: e′ = 0;
4: while s′ ̸= 0 do
5: upc = s′ ·H;
6: e′ = e′ ⊕ (upc ≥ thr);
7: s′ = e′ ⊙HT ;

8: m′′ = m′⊕ SHA3(e′);
9: a = e′ = PRNG(SHAKE(m′′)) ? m′′ : σ;

10: K = SHA3({a, c});
11: return K;

Fig. 1: Algorithms for the key generation, encapsulation, and decapsulation primitives of BIKE [3].

II. METHODOLOGY

A. BIKE specification and baseline HLS

Figure 1 shows the algorithms for the three main primitives
of BIKE, i.e., key generation (Algorithm 1), encapsulation (Al-
gorithm 2), and decapsulation (Algorithm 3). Notably, few
critical operations dominate the computational complexity,
thus representing the leading candidates for optimization in the
HLS process. The key generation requires a binary polynomial
inversion (see lines 4-9 in Algorithm 1), a binary polynomial
multiplication (line 10), and SHAKE256-based sampling (line
3). The encapsulation requires a binary polynomial multipli-
cation (see line 4 in Algorithm 2), uniform random sampling
employing SHAKE256 (line 3), and the computation of two
SHA3-384 hash digests (lines 5 and 7). The decapsulation
requires a binary polynomial multiplication (see line 2 in Al-
gorithm 3), QC-MDPC bit-flipping decoding (lines 3-7), com-
puting SHA3-384 digests (lines 8 and 10), and SHAKE256-
based sampling (line 9).

Baseline HLS implementation - Preliminary changes to the
original software are mandatory to meet the HLS specifi-
cation requirements. Unbounded arrays passed as arguments
by pointer are replaced with bounded arrays. Moreover, the
original recursive formulation of the multiplication is not
supported by the HLS frameworks, therefore it was replaced
with a simpler Comba implementation.

B. HLS optimizations and HW/SW co-design

The proposed co-design approach is organized in three steps
to deliver an area-performance optimized HW/SW solution.
The performance optimization step aims to optimize the exe-
cution time of each of the three primitives of BIKE separately.
The subsequent area optimization step targets the resource
utilization of each performance-optimized primitive of BIKE.
Last, the HW/SW co-design step delivers the final solution by
selectively implementing each primitive either in hardware or
software to maximize the area-performance trade-off.

Performance optimization - Starting from the baseline de-
signs, we explored the most time-consuming operations of
each primitive. In particular, multiplication is a critical op-
eration in all KEM primitives while also dominating the exe-
cution time for both the key generation and the decapsulation
primitives. We rewrite the multiplication code to speed up all
three KEM primitives by adding a Karatsuba multiplication
layer [16] on top of the Comba multiplication [17]. Notably,
the proposed design allows configuring the number of Karat-
suba recursions at compile-time to allow a configurable area-
performance trade-off. In addition, applying loop unrolling and
loop pipelining to the innermost Comba multiplication logic
significantly reduces the latency of multiplications.

Area optimization - Area optimization is carried out first by
enforcing resource sharing, employing the function inlining
and resource allocation HLS directives. Resource sharing
was enforced within the bit-flipping decoding, multiplication,
SHA-3, and SHAKE operations. In particular, we instantiate
the common logic of SHA-3 and SHAKE only once within
each KEM primitive since the two share a significant amount
of C code, drastically reducing their occupied area. Since mul-
tiplication also appears in key generation while encapsulation
employs multiplication, SHA-3, and SHAKE, the area of all
three KEM primitives is actually reduced by applying the
aforementioned changes. In addition, struct variables, which
used a multitude of LUT resources, were modified into array
variables, saving a significant amount of area. Moreover,
the storage binding HLS directive was used to force the
implementation of small variables as RAM instead of ROM
memories, for which the default implementation consumed
too many BRAM blocks. Last, array partitioning directives
were employed to reduce BRAM utilization, which otherwise
would end up as the scarcest resource due to the many array
variables declared in the C code. Such optimization allowed
indeed to force the usage of flip-flops, instead of BRAM, for
the smaller variables, such as 32-bit seed and 256-bit σ, m,
m′, and m′′ detailed in Figure 1. Notably, due to the large size



TABLE I: Comparison between software and HLS-based implementations across high-level synthesis optimization process.

Target Design KEM LUT FF DSP BRAM Clock Latency Speedup
(Optimization) Primitive [# (%)] [# (%)] [# (%)] [# (%)] [MHz] [ms (103 cc)] [×]

CPU Baseline SW
KeyGen − − − − 667 332.14 (221537) 1
Encaps − − − − 667 14.86 (9913) 1
Decaps − − − − 667 464.61 (309894) 1

FPGA

Baseline HLS
KeyGen 14110 10011 0 28 100 268.67 (26867) 1.24
Encaps 64097 56581 0 93 100 16.69 (1669) 0.89
Decaps 106799 86432 0 169 100 248.96 (24896) 1.86

Interm. HLS KeyGen 17208 14428 0 36 100 137.83 (13783) 2.41

(Perf) Encaps 66887 59219 0 129 100 6.49 (649) 2.29
Decaps 120918 95953 14 193 100 135.70 (13570) 3.42

Final HLS KeyGen 13567 11621 0 40 100 137.84 (13784) 2.41

(Perf+Area) Encaps 23260 15571 0 96 100 6.33 (633) 2.35
Decaps 37160 38118 35 90 100 135.48 (13548) 3.43

of the polynomials, in the order of thousands of bits, variables
holding polynomial data are instead left mapped to BRAM.

HW/SW co-design - The HW/SW co-design phase aims to
identify the best mix of KEM primitives executed on the CPU
and instantiated on the FPGA, depending on the performance
of the software execution and the HLS modules subject to
the resource utilization of the latter. The identified solution
must minimize latency while satisfying the area constraints
given by the FPGA part of the target SoC. The exploration
of the possible HW/SW combinations will prioritize hardware
modules that provide the most significant latency reductions
and that occupy the smallest amount of FPGA resources.

III. EXPERIMENTAL EVALUATION

This section discusses the results of the HW-SW co-design
of BIKE with NIST security level 1, i.e., security against
quantum attacks equivalent to AES-128, targeting the Z-7010,
Z-7015, and Z-7020 Xilinx Zynq-7000 SoCs.

A. Experimental setup

The reference software execution was carried out on the
CPU part of the Xilinx Zynq-7000 SoC, executing the Xilinx
Petalinux 2022.1 operating system. The Zynq-7000 chips
feature a 32-bit dual-core ARM Cortex-A9 processor that
implements the ARM v7 ISA and runs at a 667MHz clock
frequency. The software execution targeted the C99 reference
implementation of BIKE [3].

The high-level synthesis of the hardware components was
carried out through Xilinx Vitis HLS 2022.1, starting from the
portable optimized C implementation of BIKE [18]. The high-
level synthesis and the RTL synthesis and implementation via
Xilinx Vivado 2022.1 targeted the FPGA parts of the Xilinx
Zynq-7000 Z-7010, Z-7015, and Z-7020 chips, feeding them
a 100MHz clock frequency. The available FPGA resources
consist of 17600, 46200, and 53200 look-up tables (LUT),
35200, 92400, and 106400 flip-flops (FF), 80, 160, and 220
DSP slices (DSP), and 60, 95, and 140 36Kb blocks of block
RAM (BRAM), respectively. The area results reported in the
following were obtained after RTL implementation.

TABLE II: Area and performance comparison between soft-
ware, hardware, and hardware-software solutions. The − mark
denotes no resources used due to software execution.

Design KEM LUT FF DSP BRAM Latency
primitive [#] [#] [#] [#] [ms]

SW

KeyGen − − − − 332.14
Encaps − − − − 14.86
Decaps − − − − 464.61
Total − − − − 811.61

Z-7010

KeyGen 13567 11621 0 40 137.84

HW/SW

Encaps − − − − 14.86
Decaps − − − − 464.61
Total 13567 11621 0 40 617.31

Available 17600 35200 80 60

Z-7015

KeyGen − − − − 332.14

HW/SW

Encaps − − − − 14.86
Decaps 37160 38118 35 90 135.48
Total 37160 38118 35 90 482.48

Available 46200 92400 160 95

Z-7020

KeyGen 13567 11621 0 40 137.84

HW/SW

Encaps − − − − 14.86
Decaps 37160 38118 35 90 135.48
Total 50727 49739 35 130 288.18

Available 53200 106400 220 140

HW

KeyGen 13567 11621 0 40 137.84
Encaps 23260 15571 0 96 6.33
Decaps 37160 38118 35 90 135.48
Total 73987 65310 35 226 279.65

B. Experimental results

Table I details the resource utilization of the HLS-based
implementations of BIKE and compares their performance
with the reference software execution. Resource utilization
is expressed as the absolute amount of LUT, FF, DSP, and
BRAM resources and their relative utilization of the resources
available on the target FPGA. Performance statistics are re-
ported in terms of the clock frequency, expressed in MHz,
and the latency, expressed in milliseconds and thousands of
clock cycles. In addition, the speedup metric represents the
ratio between the execution time of the reference software
execution and the latency of the current target.

High-level synthesis optimization - In this paragraph, we dis-
cuss the improvements to the KEM primitive modules across
the HLS optimization process, referring to the experimental
results detailed in Table I.

Compared to the software execution of BIKE, the Baseline
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Fig. 2: Relative execution time, normalized to reference soft-
ware execution (lower is better).

HLS designs report a performance speedup of 1.24× and
1.86× for key generation and decapsulation, respectively,
while the encapsulation primitive was slightly slower. The
three HLS modules occupy a large number of resources, partic-
ularly LUT and BRAM ones, with only the KeyGen one fitting
in the Zynq-7000 chips. After performance optimization, the
Interm. HLS designs are at least 2× faster than software
execution, with a speedup up to 3.42× for decapsulation, at
the cost of increased area. Finally, after area optimization,
the Final HLS designs exhibit a large resource utilization
reduction with negligible performance penalties. The Decaps
module fits even in the intermediate Zynq-7000 SoC, i.e.,
Z-7015, while the combined KeyGen and Decaps modules
can be concurrently implemented on Z-7020. Notably, the
area-optimized Decaps module saves more than 80000 LUTs,
57000 FFs, and 100 BRAMs compared to the baseline HLS
design.

Hardware-software co-design - Table II details the resource
utilization and performance of the identified HW/SW solu-
tions, comparing them to the reference software execution
and the hardware instantiation of all three KEM primitives. In
addition, the execution time, normalized to reference software
execution, is represented in Figure 2. The KEM primitives
implemented in hardware are chosen to minimize latency while
fitting into the three Zynq-7000 chips.

The HW-SW co-design solution targeting the Z-7010 SoC
delivers a 1.31× performance speedup, i.e., 0.76× the latency
of software-only execution, implementing the KeyGen module
in hardware while the other two KEM primitives are executed
in software. The identified Z-7015 design provides a 1.70×
performance speedup, i.e., 0.59× the latency of software-
only execution, implementing the Decaps module in hardware
while the other two KEM primitives are executed in software.
Finally, applying our HW/SW co-design approach to the larger
Z-7020 chip results in a 2.78× performance speedup, i.e.,
0.36× the latency of software-only execution, implementing
both KeyGen and Decaps modules in hardware while Encaps
is still executed in software.

IV. CONCLUSIONS

This work presents an HW/SW co-design of BIKE for
those embedded platforms featuring both CPUs and small
FPGAs and employs high-level synthesis (HLS) to timely

deliver the hardware accelerators. In contrast to state-of-the-art
solutions targeting performance-optimized HLS accelerators,
the proposed solution offers an area-performance optimized
co-design targeting the small FPGAs implemented in het-
erogenous embedded platforms. Compared to the software-
only execution of BIKE, the experimental results collected on
the systems-on-chip of the entire Xilinx Zynq-7000 family
highlight a performance speedup ranging from 1.37×, on Z-
7010, to 2.78×, on Z-7020.
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