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1  Introduction
As information technologies emerge, large amounts of data are generated and need to 
be managed - collected, transmitted, and processed - to support decision-making. Data 
quality (DQ) assurance plays a crucial role in guaranteeing that the decision is cost-
effective. Conversely, poor DQ may lead to decisions that negatively impact the perfor-
mance of the managed system and the optimal management of available resources.

Data and information are the pillars of SHM. The process is intended to transform 
data collected on a structure to support the decision-making process for the selection 
of the optimal management actions across its lifecycle (e.g., maintenance or emergency 
management). The optimal action is usually intended as cost-efficiency in terms of safety, 
serviceability, and sustainability.
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The first step in the DQ assurance in general, and SHM data in this paper, is the defini-
tion of the data attributes (i.e., “indicators” or “dimensions”) that define their “quality”. 
Once the attributes are identified, their impact on the decision-making process needs 
to be verified and possible ways to improve the quality of data and information can be 
determined.

Several authors have been working on DQ and data management in financial and 
economic environments for some time. Very few authors dealt with the SHM DQ and, 
almost all focused on assessing the DQ of sensors. Studies of financial and economic 
data, detailed in Sect. 2, suggest indicators that describe each attribute of DQ, as well 
as metrics to quantify these indicators. Most of the proposed measures are defined 
deterministically, except for Heinrich and Klier (2015) and Heinrich, Hristova, et  al., 
(2018) which provide probabilistic metrics for timeliness and consistency respectively 
(Sect. 2.2). One reason is that the focus of these studies has been on deterministic data 
that are not (or barely) affected by uncertainty.

This paper focuses on SHM data and information where a probabilistic approach is 
more appropriate to account for all uncertainties involved in managing them. As in 
Pipino et al. (2002), the terms data and information are considered interchangeable and 
not exclusive. For example, the assessed SHM set contains simple data (i.e., date of the 
recording, recording of the ambient noise, etc.) and information (i.e., fundamental fre-
quencies, etc.).

In this article, for the first time, necessary quality indicators are identified, and defi-
nitions are tailored to the specific case of SHM data. Then simplified deterministic 
SHM metrics are suggested, and more essentially probabilistic metrics are proposed to 
account for uncertainties and dataflow.

For this purpose, Sect.  2 details the indicators proposed in the literature. Section  3 
then adapts the definitions of the quality indicators identified for SHM data. Section 4 
addresses the state of the art of metrics. Section 5 offers the DQ deterministic and prob-
abilistic metrics which account for uncertainties and the data flow. Section 6 presents a 
generic example, then calculates the deterministic metrics, and recommends the proba-
bilistic metrics for the specific case. Finally, Sect. 6 concludes.

2 � Review of data quality indicators
Heink and Kowarik (2010) investigated the indicator term and noted that “it has a syno-
nym for ‘indicans’, i.e., a measure or component from which conclusions on the phenom-
enon of interest (the indicandum) can be inferred. Indication here is the reflection of an 
indicandum by an indicator”. In this paper, the term indicator indicates a DQ attribute, 
and the term metric indicates a measure of this attribute that allows its quantification. 
Furthermore, the terms indicator and attribute are used equally. This is because it influ-
ences the decision-making process of the information user (e.g., the owner of a moni-
tored bridge) and the information provider (e.g., the consulting company that provides 
the SHM service). In general, the more confident the user is in the data, the more likely 
they are to use it (and/or buy it) to support their decisions, and, consequently, the ben-
efits of the data increase.

Since the seventies, many researchers have focused on describing DQ. Some gen-
eral and preliminary ideas were put forward in Hoare (1975) and Chapple (1976). They 
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briefly examine data reliability issues and then summarize some of the conceptual and 
methodological tools available to address them. However, the DQ indicators started 
to take shape, in the eighties Brodie (1980). One of the first studies on DQ indicators 
is (Ballou and Pazer 1985). The most prominent classifications of attributes were pro-
posed in the nineties by Fox et al. (1994), Wang and Strong (1996), Redman (1996), Jarke 
et al. (1995), and Ballou et al. (1998). Fox et al. (1994) discussed the notion of data and 
detailed quality attributes such as currentness, age, and timeliness; completeness and 
duplication; consistency and integrity. Wang and Strong (1996) and Ballou et al. (1998) 
suggested an interesting classification to capture different DQ aspects. They used a two-
stage survey to identify DQ attributes perceived by data consumers. This was done by 
first listing 179 attributes that capture the consumer perspective on DQ. The list was 
subsequently narrowed to 11 attributes by merging synonyms. The authors then clus-
tered the 11 indicators into 4 categories of DQ: intrinsic, contextual, representational, 
accessibility. Intrinsic DQ includes attributes that can be assessed independently from 
the context (accuracy, believability, objectivity, reputation). Contextual DQ contains 
attributes that must be considered within the context of the task in hand (value-added, 
relevancy, timeliness, completeness, appropriate amount of data). Representational DQ 
embraces aspects related to the format and understandability of data (representational 
consistency, concise representation, interpretability, ease of understanding). Accessibil-
ity DQ describes the degree to which data is accessible but secure (accessibility, access 
security). This classification was detailed further in Batini and Scannapieco (2016) which 
organized the attributes into two main classes defined as “inherent” and “system depend-
ent”. The first includes the intrinsic category, the second incorporates the other three 
categories defined by Wang and Strong (1996).

Subsequently, Pipino et al. (2002) introduced the concept of subjective and objective 
DQ assessment, proposing a method for combining them. The subjective assessment is 
based on subjective perceptions of data by individuals. Thus, if data users perceive sub-
jectively that the data is poor, then this will influence their behavior (e.g., they will not 
buy and use the data). The objective assessment is based on the data set in question. It 
can be task-independent (i.e., applied to any data set, regardless of the tasks at hand) 
or task-dependent (i.e., developed in specific application contexts). They defined 16 DQ 
attributes and proposed functional forms to develop their metrics with a multidimen-
sional approach to account for multiple DQ attributes.

The classification originally introduced by Wang and Strong (1996) and detailed fur-
ther in Batini and Scannapieco (2006), was later refined by Färber et  al. (2017). They 
include consistency and verifiability in the list and extend the accessibility category 
through the attribute license and interlinking. Besides, they followed the steps of Wang 
and Strong (1996) and used indicators such as relevancy, and grouped several attributes 
under a single indicator. For example, trustworthiness is introduced to englobe believ-
ability, objectivity, and reputation; completeness is assumed to include an appropriate 
amount of data and value-added. Finally, interoperability (i.e., concerning machine-read-
ability) englobes interpretability (i.e., the extent to which data are in an appropriate lan-
guage and units and data definitions are clear).

Heinrich et al. (2007b), Heinrich and Klier (2009), Heinrich, Klier, et al., (2018), and 
Heinrich, Hristova, et al., (2018) deal with the DQ impact on decision making. In this 
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perspective, DQ indicators and metrics are important for several reasons. First, they 
can indicate to the decision-makers to what extent they can rely on the data they use to 
support their decisions. Second, they can support cost-efficient data management, i.e., 
data should be acquired only if its benefit outweighs the associated cost. And third, they 
can indicate how to improve the DQ. The quality attributes considered relevant in this 
framework by the authors are timeliness, completeness, reliability, correctness, and con-
sistency. Heinrich et  al. (2007b) focus on the attributes of correctness and timeliness, 
and Heinrich and Klier (2009) refine the timeliness definition to account for the avail-
ability of supplemental data.

Several authors such as Fox et al. (1994), Behkamal et al. (2014), and Fürber and Hepp 
(2010), introduce attribute duplication and defined it as the double presence of data that 
may jeopardize the decision-making process. In this paper, duplication is replaced by 
redundancy. It is defined by the availability of several datasets which can be used as a 
backup in the event of data losses. In SHM context, redundancy is a very important indi-
cator, as it ensures that many data sets are available for the decision problem.

The studies examined above have been conducted on financial and economic sector 
data. Few authors have focused on monitoring data. Gitzel (2016), studied DQ in time 
series. The considered indicators are completeness, free-of-error, plausibility, and rich-
ness of information. Jianwen and Feng (2015), to automatically control the DQ in a wire-
less sensor network, consider the indicators’ timeliness, consistency, incompleteness, 
anomaly, and redundancy.

All indicators reviewed in this article are gathered in Table 1 and categorized according 
to the classification proposed by Wang and Strong (1996). Table 1 first column reports 
the indicator name. The second shows the definitions of the indicator as suggested in the 
reference given in the third column. The “extent to which” and the “degree to which” at 
the beginning of definitions were replaced by (-) and (_) respectively.

3 � Selection of SHM data quality indicators
Selecting the DQ attributes most relevant to the problem at hand can be performed in 
various ways. Wang and Strong (1996) specified that the approaches used in the litera-
ture to select DQ indicators may be classified as: (1) intuitive, (2) theoretical, and (3) 
empirical.

1)	 The intuitive approach consists of selecting the attributes specific to the case at hand 
and based on the “researchers’ experience or intuitive understanding about what 
attributes are important”. It is the most frequently used approach.

2)	 The empirical approach, followed by Wang and Strong (1996), relies on collecting 
DQ attributes from data consumers. This approach is rarely used.

3)	 The analytical approach, seldom used as well, focuses on how data can become defi-
cient during the data manufacturing process. Wand and Wang (1996), used the onto-
logical approach for the analytical approach and explained its basics in Wand and 
Weber (1990).

Lately, Rodríguez and Servigne (2013) focused on sensor data and suggested three data 
layers: acquisition, processing, and utilization layers. Then, for each layer, a different set 
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Table 1  Data quality indicators

Indicator Definition Reference

Intrinsic

 Correctness free-of-error dimension represents data correct-
ness

(Pipino et al. 2002)

 Accuracy conformity with real word (Parssian et al. 2004)

Indicates the percentage cells in a dataset that 
has correct values according to the domain and 
the type of information of the dataset.

(Vetrò et al. 2016)

Indicates the ratio between the error in aggrega-
tion and the scale of data representation.

(Vetrò et al. 2016)

-data are correct, reliable, and certified free of 
error.

(Wand and Wang 1996)
(Färber et al. 2017)

The degree of closeness of a datum value v to 
some value v’ in the attribute domain is consid-
ered correct for the entity e and the attribute a.

(Fox et al. 1994)

How accurate do our data need to be? (Herzog et al. 2007)

The recorded value is in conformity with the 
actual value

(Ballou and Pazer 1985)

The value of the data is close to some value 
considered correct

(Fox et al. 1994)

Is correct according to a reference value (Rodríguez and Servigne 2013)

A value v is close to a value v’ considered as the 
correct representation of the real-phenomenon v 
aims to represent

(Batini and Scannapieco 2006)

 Precision It can represent a small quantity (resolution) (Fox et al. 1994)

 Veracity Refers to the accuracy of the data, and relates to 
the vernacular garbage-in, garbage-out descrip-
tion

(NIST, 2019)

 Trustworthiness Collective term for believability, reputation, objec-
tivity, and verifiability

(Färber et al. 2017)
(Wang and Strong 1996)
(Naumann 2002)

_the information is accepted to be correct, true, 
real, and credible

Zaveri et al. (2016)

 Consistency Is used when two or more values in a database 
are required to agree in some way.

(Date 1983)

if it satisfies all the constraints in the set. (Elmasri and Navathe 1989)

_data has attributes that are free from contradic-
tion and are coherent with other data in a specific 
context of use.

(ISO/IEC 25,012, 2008)

Two or more values do not conflict with each 
other, i.e., free of conflicting information.

(Bizer 2007)

Two or more values [in a dataset] do not conflict 
with each other

(Färber et al. 2017)

The representation of the data value is the same 
in all cases

(Ballou and Pazer 1985)

Data are always presented in the same format 
and are compatible with previous data

(Wang and Strong 1996)

Data satisfy specified constraints (Fox et al. 1994)

Data is free from internal contradiction with 
regard to a rule

(Heinrich et al. 2018)

Consistency at the schema level means that the 
schema of a dataset should be free of contradic-
tions. Consistency at the data level focuses on 
the degree to which the format and the value of 
the data conform to the predefined schema of a 
given dataset

(Behkamal et al. 2014)
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Table 1  (continued)

Indicator Definition Reference

 Compliance Indicates the percentage of standardized col-
umns in a dataset

(Vetrò et al. 2016)

Indicates the degree to which a dataset follows 
the e-GMS standard

(Vetrò et al. 2016)

Indicates the level of the 5-star Open Data model 
in which the dataset is and the advantage offered 
by this reason

(Vetrò et al. 2016)

 Uniqueness _data is free of redundancies, in breadth, depth, 
and scope

(Behkamal et al. 2014)
(Fürber and Hepp 2010)

 Uniqueness in breadth _ontology is free of redundancies regarding its 
represented classes and properties.

(Fürber and Hepp 2010)

 Uniqueness in scope _a knowledge base has multiple different 
instances to represent the same object.

(Fürber and Hepp 2010)

 Uniqueness in depth _values of a property are unique. (Fürber and Hepp 2010)

 Duplication The dataset contains distinct values for the same 
attribute of the same entity

(Fox et al. 1994)

 Free of error Data is correct and reliable synonym of accuracy (Färber et al. 2017)
(Gitzel 2016)

_data is correct and reliable (Pipino et al. 2002)

 Reliability The data is accurate (Heinrich et al. 2018)

The data is correct and integer. (Brodie 1980)

The data is accurate (Heinrich et al. 2018)

 Integrity Synonym of accuracy, correctness, security, and 
concurrency control

(Brodie 1980)

 Variety of data and data 
sources

-data are available from several different data 
sources.

(Pipino et al. 2002)
(Wang and Strong 1996)

 Redundancy Multiple sets of the same data are available (Jianwen and Feng 2015)

Representational

 Representational consist-
ency

-data are always presented in the same format 
and are compatible with previous data

(Färber et al. 2017)
(Pipino et al. 2002)
(Wang and Strong 1996)

 Understandability Indicates the percentage of columns in a dataset 
that is represented in a format that can be easily 
understood by the users and is also machine-
readable.

(Vetrò et al. 2016)

Indicates the percentage of columns in a dataset 
that has associated descriptive metadata.

(Vetrò et al. 2016)

-data is easily comprehended (Pipino et al. 2002)

 Ease of understanding -data are clear without ambiguity and easily 
comprehended

(Färber et al. 2017)
(Wang and Strong 1996)

 Interoperability A dimension that includes the aspects of 
interpretability, representational consistency, and 
concise representation.

(Färber et al. 2017)

 Concise Data are compactly represented without being 
overwhelming (i.e., brief in presentation, yet 
complete and to the point).

(Wang and Strong 1996)

 Concise representation -data are compactly represented without being 
overwhelming

(Färber et al. 2017)
(Pipino et al. 2002)

 Representational consist-
ency

-data are always presented in the same format 
and are compatible with previous data

(Wang and Strong 1996)

 Consistent representation -data are always presented in the same format (Pipino et al. 2002)

 Interpretability -data are in an appropriate language and units 
and the data definitions are clear

(Färber et al. 2017)
(Pipino et al. 2002)
(Wang and Strong 1996)

 Ease of operation -data are easily managed and manipulated 
(i.e., updated, moved, aggregated, reproduced, 
customized).

s(Wang and Strong 1996)

 Ease of manipulation -data is easy to manipulate and apply to different 
tasks

(Pipino et al. 2002)
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Table 1  (continued)

Indicator Definition Reference

Accessibility

 Accessibility -data are available or easily and quickly retrievable (Pipino et al. 2002)
(Färber et al. 2017)
(Wang and Strong 1996)

 Access security -access to data can be restricted and hence kept 
secure.

(Wang and Strong 1996)

 Security -access to data is restricted appropriately to 
maintain its security.

(Pipino et al. 2002)

 Believability -data are accepted or regarded as true, real, and 
credible

(Färber et al. 2017)

-data is regarded as true, real, and credible (Pipino et al. 2002)

 Reputation -data are trusted or highly regarded in terms of 
their source or content.

(Wang and Strong 1996)
(Pipino et al. 2002)

 Objectivity -data is unbiased, unprejudiced, and impartial (Pipino et al. 2002)
(Wang and Strong 1996)

 Traceability Indicates the presence or absence of metadata 
associated with the process of creation of a 
dataset.

(Vetrò et al. 2016)

-data are well documented, verifiable, and easily 
attributed to a source.

(Pipino et al. 2002)
(Wang and Strong 1996)

 Availability Data are accessible for an intended use (Rodríguez and Servigne 2013)

 License Is the granting of permission for a consumer to 
re-use a dataset under defined conditions

(Färber et al. 2017)

 Interlinking -entities that represent the same concept are
linked to each other, be it within or between two 
or more data sources

(Färber et al. 2017)

 Comparability -data fields present within these databases allow 
to easily link individuals across the databases.

(Herzog et al. 2007)

Contextual

 Timeliness The recorded value is not out of date Heinrich and Klier (2009)
Ballou et al. (1985)
Ballou et al. (1998)

-the age of the data is appropriate for the task 
at hand

Heinrich and Klier (2009)
Wang et al. (1996)
(Färber et al. 2017)

Property that the attributes or tuples respectively 
of a data product correspond to the current state 
of the discourse world, i.e. they are not out-dated

Heinrich and Klier (2009)
Hinrichs (2002)

Expresses how current data are for the task at 
hand

Heinrich and Klier (2009)
Batini et al. (2006)

interpreted as the probability that an attribute 
value is still up-to-date

Heinrich and Klier (2009)
(Heinrich et al. 2007b)
(Heinrich et al. 2007a)

Is the availability of information for decision 
making

(Fox et al. 1994)
Kleijnen (1980)

Expresses how “current” the information needs 
to be to predict which subsets of customers are 
more likely to purchase certain products.

(Herzog et al. 2007)

-the age of the data is sufficiently up-to-date for 
the task at hand

(Pipino et al. 2002)

Data is sufficiently up-to-date for the task at hand. (Pipino et al. 2002)

The quantization of data transmission delay (Jianwen Guo and Feng Liu, 2015)

Data is available for decision making (Fox et al. 1994)

 Age Is defined as a function of the processing delay 
necessary to generate and deliver information, 
and the reporting interval used in the system

(Fox et al. 1994)
Davis and Olson
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Table 1  (continued)

Indicator Definition Reference

 Currentness Indicates the percentage of rows of a dataset 
that have current values, and they don’t have 
any value that refers to a previous or a following 
period of time.

(Vetrò et al. 2016)

Indicates the ratio between the delay in the 
publication (number of days passed between the 
moment in which the information is available and 
the publication of the dataset) and the period of 
time referred by the dataset (week, month, year)

(Vetrò et al. 2016)

Data is correct at the time of evaluation (Fox et al. 1994)

The data value is up-to-date (Fox et al. 1994)

Data is current or updated (Rodríguez and Servigne 2013)

The value corresponds to its real-world coun-
terpart

(Hinrichs, 2002)

 Expiration Indicates the ratio between the delay in the 
publication of a dataset after the expiration of its 
previous version and the period of time referred 
by the dataset (week, month, year)

(Vetrò et al. 2016)

 Currency is when the age of data is appropriate to their use Heinrich and Klier (2009)
Price et al. (2005)

 Completeness Is the availability of all relevant data to satisfy the 
user requirement

Gardyn (1997)
Parssian et al. (2004)

At schema level, completeness means that all of 
the required classes and properties should be 
represented.
At data level, refers to the missing values of 
properties with respect to the schema.

Behkamal et al. (2013)

_data collection has values for all attributes of all 
entities that are supposed to have values

(Fox et al. 1994)

All values for a certain variable are recorded (Ballou and Pazer 1985)

-data are of sufficient breadth, depth, and scope 
for the task at hand

(Wang and Strong 1996)
(Färber et al. 2017)
(Pipino et al. 2002)

-data is not missing and is of sufficient breadth 
and depth for the task at hand

(Pipino et al. 2002)

Indicates the percentage of complete cells in a 
dataset.

(Vetrò et al. 2016)

Indicates the percentage of complete rows in a 
dataset.

(Vetrò et al. 2016)

means that no records are missing and that no 
records have missing data elements.

(Herzog et al. 2007)

 Appropriate amount of data -the quantity or volume of available data is appro-
priate for the task at hand

(Pipino et al. 2002)

-the quantity or
the volume of available data is appropriate.

(Wang and Strong 1996)

 Relevancy -data are applicable and helpful for the task at 
hand.

(Pipino et al. 2002) (Färber et al. 2017)
(Wang and Strong 1996)

-the data meet the basic needs for which they 
were collected, placed in a database, and used.
-data can be used for additional purposes and 
several different purposes

(Herzog et al. 2007)

 Value-added -data are beneficial and provide advantages from 
their use.

(Wang and Strong 1996)
(Pipino et al. 2002)

 Cost-effectiveness -the cost of collecting appropriate data is reason-
able.

(Pipino et al. 2002)
(Wang and Strong 1996)

 Flexibility -data are expandable, adaptable, and easily 
applied to other needs.

(Pipino et al. 2002)
(Wang and Strong 1996)
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of relevant DQ indicators is offered. Namely, the acquisition layer encloses accuracy, 
spatial precision, reliability, completeness, and communication reliability; the process-
ing layer embeds consistency, currency, and volatility; and the utilization layer englobes 
timeliness, availability, and adequacy.

In this article, like most researchers, the intuitive approach is used to select the SHM 
DQ indicators.

By “intuitive”, we mean “subjective” i.e., subjectivity in the choice of the indicators and 
not the analysis that follows. It means that the indicators to be used in this study were 
chosen from the list of indicators in the literature in a subjective way, as per the demand 
of the SHM case and expert opinion (as noted before, this procedure was followed by 
most researchers). Other experts might choose, based on the needs of their study, to 
focus on different indicators or select some of the available ones from the list we offered. 
However, we have tried to preserve the most variety possible.

Moreover, we note that this subjective selection is limited to the choice of indicators 
and does not extend to the assessment of the indicators’ metrics (in the following sec-
tions), and to extracting the information from the data, and structural analysis modeling.

Finally, we note that those indicators relate to both the sensor data and the extracted 
information as well. However, we are studying the quality of the data and informa-
tion and not the quality of the structural analysis model. Other researchers can apply 
the same method for other measurement tests in different case studies or use similar 
approaches to study the quality of the structural analysis model.

After selecting subjectively the SHM DQ indicators, those indicators are then classi-
fied for the layers suggested by Rodríguez and Servigne (2013). Therefore, to select our 
indicators, the following steps are done: (1) The state of the art is analysed; (2) the indi-
cators are clustered; (3) the indicators are classified.

1)	 Analysis of the state-of-the-art, SoA

	 Analysis of the SoA of DQ indicators (Sect. 2.1) shows that there are several diver-
gences in defining the attributes due to the contextual nature of the quality, also 
remarked by Batini et al. (2009). However, several basic indicators and definitions are 
included in all classifications. Those indicators are accuracy, completeness, consist-
ency, and timeliness. In Table 1, several different terms are associated with each of 
these indicators. In some cases, terms are synonyms and are used in different con-
texts. In other cases, they are representative of various aspects of the indicator. For 
example, accuracy and precisions may be considered as the different aspects of cor-
rectness. Trustworthiness Färber et al. (2017), may englobe believability, objectivity, 
and reputation; completeness may include the appropriate amount of data and value-
added; interoperability may contain interpretability.

2)	 Clustering
	 Using this approach, indicators with similar meanings were identified and clustered. 

Therefore, the indicators free of error, integrity, and reliability are clustered under 
correctness. Believability, objectivity, objectivity, reputation, and traceability are 
grouped under trustworthiness. Concise representation, interpretability, ease of 
manipulation, and understandability are assembled under interoperability. License 
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is clustered under accessibility. The appropriate amount of data, value-added, and 
richness of information are gathered under completeness. Compliance is represented 
under consistency. Currentness, age, and expiration are clustered under timeliness. 
Finally, duplication is replaced by redundancy.

	 For each of these clusters, one of the indicators (e.g., trustworthiness, timeliness) was 
chosen as representative and comprehensive, and the other indicators were therefore 
excluded from the list. Then, the indicators that describe different aspects of the same 
attribute (for example accuracy, precision, consistency, and correctness) were grouped 
together. Next, one was chosen as representative of the attribute (correctness in the 
example), and the others are considered sub-indicators. In some cases, the definition 
of the indicator has been adapted from Table 1 to express its wider meaning, which also 
includes that of the sub-indicators. This procedure resulted in the selection of six indica-
tors, and relevant sub-indicators reported in Table 2 along with the selected definitions.

3)	 Classification
	 Finally, taking as a basis and extending the work of Rodríguez and Servigne (2013), 

the six indicators were classified according to three layers of data management: 
acquisition, processing and sharing, and supporting decisions. This classification 
(presented in column 1 of Table 2) highlights aspects of DQ that are more relevant to 
each phase of data managemen

In this article, the most possible complete list of indicators is offered. Some indica-
tors such as interoperability and traceability sometimes will not be of great interest or 
will not greatly influence the decision-making except in very specific situations. There-
fore, the weights were offered in Sect. 5.1.1. For each context, the decision-maker must 
choose what is of interest to his situation. Moreover, the decision-maker can consider 
that those weights are zero or that they are prerequisites and not use them at all.

The indicators suggested are related to the monitoring system and the structural 
health monitoring system because they tackle indicators for both the data and informa-
tion (Sect. 1). For example, some of the variables considered were the recording of the 
ambient noise (i.e., the data) and the extracted frequency (i.e., the information) which 

Table 2  Data quality indicators and sub-indicators

Data management phase Indicator Definition

Acquisition Correctness data is accurate, precise, and consistent
Accuracy the measured value of data is close to the real-world

Precision the measured data values are close to each other

Consistency the measured data is free of internal contradictions with respect 
to a rule

Redundancy the measured data is not unique (multiple sets of data exist)

Processing and sharing Accessibility the measured data is available and can be shared reliably
Interoperability the measured data is concise and interpretable by machines

Security the access to data can be restricted to other parties and kept 
secure

Traceability the sources of data are known

Supporting decisions Timeliness the data is up-to-date when needed
Completeness all required data are available in the dataset
Relevancy the data is useful for the task at hand
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is a structural parameter. The indicators can also be used for other inspection methods. 
Moreover, those indicators are used in further studies for the decision-making of struc-
tural health monitoring systems.

Finally, some indicators such as redundancy and precision were given more suitable 
definitions for the SHM context herein. For example, precision is explained further as 
how close the measurements of the same parameter or variable are close to each other. 
While redundancy is explained further as several experiments/measurements for the 
same parameter or variable are available.

Moreover, one can consider in the future other indicators, if needed, such as indicators 
related to the extraction of information with existing data), or indicators for the lack of 
data of interests (or incomplete data of interests).

4 � State of art of the Metrics
In this section, a brief survey of the metrics proposed in the literature for the DQ indica-
tors selected in Table 2 is reported. Deterministic and probabilistic approaches to defin-
ing DQ metrics were proposed in the literature.

4.1 � Deterministic approach

The deterministic metrics are used broadly and mainly to assess DQ. The approach can 
be divided into general metrics methods to assess the indicators and specific metrics for 
some indicators.

4.1.1 � General metrics method for the indicators

Pipino et al. (2002) presented interesting deterministic approaches for determining the 
DQ metrics. They offered three functional forms: simple ratio, min or max operation, 
and weighted average. Those approaches were later utilized and/or adapted as appropri-
ate by Färber et al. (2017) and Vetrò et al. (2016).

Simple ratio is the ratio between the number of data values of the considered attribute 
(e.g., accuracy) and the total number of data values. This definition is applied for the met-
rics of indicators that have a unique definition such as free of error, completeness, consist-
ency, concise representation, relevancy, and ease of manipulation. Färber et al. (2017) and 
Vetrò et al. (2016) adopted a simple ratio approach to defining the metrics, which thus have 
values in the range of 0 to 1. For example, Vetrò et al. (2016) proposed, for data organized 
in Excel sheet format, metrics be defined as the percentage of data over the dataset avail-
able in the sheet. An accuracy value of 0.7 (or timeliness) means that 70% of data is accu-
rate (timely). Whereas a value of 0 and 1 means that all data are respectively inaccurate 
(untimely) or accurate (timely).

In other data types, a discrete definition of the metrics can be more appropriate. Färber 
et al. (2017) proposed discrete DQ metrics for knowledge graphs, and KGs (DBpedia, Free-
base, etc.) to compare different KGs, and find the most suitable for a given set. For example, 
for “Trustworthiness on statement level” (one of the trustworthiness metrics), they sug-
gested that “Trustworthiness on statement level” = 1 if provenance on statement level is 
used; 0.5, provenance on resource level is used; and 0 otherwise.
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Similar Rodríguez and Servigne (2013) proposed a simplified method in which the 
quality of each indicator is assessed using subjective scores (e.g., 0 = very low; 0.25 = low; 
0.50 = medium; 0.75 = high; 1 = very high).

Min or max operations are used for indicators that can be defined by several attributes 
such as believability (i.e., believability concerning a common standard, believability of the 
data source, or believability based on experience). In these cases, the metrics correspond-
ing to the different attributes are normalized to make them comparable. Then a min or max 
operator is applied to compute a comprehensive metric of the indicator. The min opera-
tor is conservative: the metric corresponds to the quality of the weakest attribute. The max 
operator is usually used for time-related indicators (such as timeliness and accessibility) 
to exclude negative values of the indicator that correspond to data prior to their validity 
period. In such cases, the metric is assumed to be zero. An example of a metric as mini-
mum value is the one used for the indicator “appropriate amount of data”. It is defined as 
the minimum between the ratio of the necessary data to the data provided and its inverse 
Pipino et al. (2002).

The weighted average is an alternative to the min/max operator where multiple aspects 
of the attribute need to be combined. It describes the importance of the different aspects 
of the DQ attribute Pipino et al. (2002). However, it requires a good understanding of the 
value of each variable in the overall assessment of a dimension. Hence, it is better to be 
assessed by an expert who will assign a weighting factor between zero and one, and make 
sure the sum of the weights equals one. This operator can be used, for example, to weigh 
the various aspects of the believability mentioned above differently.

The min/max and weighted average operators may be useful, not only to define the met-
rics for individual DQ attributes but also to combine different attributes (for example, the 
sub-indicators in Table 2, to obtain an appropriate indicator metric).

4.1.2 � Specific metrics for some of the indicators

Some metrics, such as completeness and timeliness, received a great deal of attention 
because of their importance to the DQ assessment and therefore to the decision-mak-
ing process that follows.

Completeness  Completeness is defined as the extent to which all required data is avail-
able within the dataset. In Blake and Mangiameli (2011) the completeness of a dataset of 
size N is defined as the simple ratio between values that are not missing (N-Nm) and the 
total value N:

Where Nm is the number of missing data in the dataset.

Timeliness  Another example is Timeliness, which is defined as the maximum value 
between 0 and the value Ballou et al. (1998). Timeliness is defined in terms of “currency” 
and “volatility”.

(1)QComp(N ) = 1−
Nm

N
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where currency indicates the age of the data once it becomes available to the user. T 
is the volatility (or shelf-life) that represents the total duration for which data remain 
valid. The exponent s is case-dependent and controls the sensitivity of the metric to 
the ratio between the currency and volatility. When the age of data exceeds the shelf-
life the metric becomes negative, and it is assumed to equal 0.

4.2 � Probabilistic approach

The deterministic approach is appropriate where the managed data represent phe-
nomena unaffected by uncertainty. When the data is affected by uncertainty, then the 
probabilistic approach provides more suitable metrics to account for it. For example, 
when the data is a measurement of physical quantities, such as SHM measurements, 
probabilistic metrics are more suitable. In the literature, probabilistic metrics were 
identified mainly for the two indicators timeliness and consistency.

Timeliness  Based on the deterministic definition of shelf-life in Ballou et  al. (1998), 
Heinrich et al. (2007b) proposed a probabilistic metric assuming the shelf-life T is expo-
nentially distributed. This distribution is memoryless. This means that the probability 
that the data becomes outdated in the next period of time is independent of its current 
age. Thus, the probability that at time t the data are still valid (i.e., the shelf-life is greater 
than t) is given by:

where the parameter � indicates the rate of decline of the data per unit of time. A value 
of � = 0.2 indicates that the shelf life decreases by 0.2% on average per unit time.

The density function corresponding to this cumulative distribution is:

Hence the probability of the data being outdated at time T (i.e., the shelf-life is less 
than T) is

Heinrich and Klier (2009) and Heinrich and Klier (2015) are an extension of this met-
ric for the case if additional data become available. The metric is then defined as the 
probability that the shelf life is greater than the current time conditional to the addi-
tional data.

Consistency  The same authors also proposed a probabilistic definition of consist-
ency where this quality is defined with respect to an uncertain rule Heinrich, Klier, 
et al., (2018). The definition of consistency is the degree to which data is free of internal 

(2)QTime(T ) = 1−
currency

T

s
> 0

(3)QTime(T ) = P(T ≥ t) = 1− F(T ) = e−�•T

(4)f (t) =

{

� • e−�•t ift ≥ 0
0else

(5)P(T ≤ t) = F(T ) =

∫ T

0

f (t)dt = 1− e−�•T
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contradictions with regard to a rule. This rule can be certain, e.g., “true by definition”, or 
uncertain. In the former case, consistency is defined by a binary outcome (consistent or 
not). In the latter case, it is defined in probabilistic terms as the probability of consist-
ency. Consider DB a database containing a set of n records T = {t1, t2, …, tn} and a set of 
attributes a = {a1, a2, …, an}.

For uncertain rules, the measurement consistency is defined in probabilistic terms as 
the probability p that the uncertain rule R is fulfilled. Since there are only two possibili-
ties (either the rule is fulfilled with a certain probability or it is violated with the comple-
mentary probability), the consistency of a measurement can be modeled as a Bernoulli 
trial Be(p) with parameter p. This distribution has an expected value p and a standard 
deviation p(1-p).

When the rule R is applied to all measurement tj in the database DB of n measure-
ments, the database consistency can be quantified by the sum of the consistencies of the 
individual measurements. Being the sum of n independent Bernoulli distributed random 
variables, the consistency of the database follows a binomial distribution B(n, p) with the 
expected value np and the standard deviation np(1-p).

Heinrich, Klier, et al., (2018) were looking for extreme values, i.e., values that are equal 
to or more extreme than the observed value (v) or the successes presented by p(X(r)) ≥ v. 
Since the Binomial distribution is symmetric, it may also represent the extreme values 
for the lower boundary. This case is captured by the two-sided p-value. Therefore, the 
consistency in Heinrich, Klier, et al., (2018) was represented by the two-sided p-value, 
which can be expressed as follows:

5 � Metrics for SHM Data Quality indicators
In this section, deterministic and probabilistic metrics are presented for each DQ indicator 
and sub-indicators for the SHM Context.

General deterministic DQ metrics are proposed using two approaches and then a global 
metric for the SHM DQ is assigned. This approach is simple and practical, less consuming 
in time and computation, does not consider uncertainties, and thus is less costly. It is espe-
cially useful, in the case limited knowledge is available on the parameters of the probability 
distribution functions. Also, it is practical when time, expertise, or money are not available 
for more elaborated probabilistic modelling.

Probabilistic DQ metrics are proposed as probability distribution functions. This method 
considers the uncertainties of the data. It is time-consuming and more costly as it is essen-
tial to recruit a probabilistic modelling expert to invest in advanced DQ models.

5.1 � Deterministic Metrics for SHM Data Quality indicators

A general deterministic approach is used to suggest DQ metrics. It assigns metrics as scales 
ranging from 0 to 1. Where 0 is the lowest quality and 1 is the highest quality for each DQ 
metric. The metrics are by discrete scales based on the method in Färber et al. (2017) and 
continuous scales based on the method in Vetrò et al. (2016) as follows.

(6)Consistency = p − value (X(r) ∼ Be(p), v)
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Discrete scale

	 The metric has at least two discrete values, for example:

where “yes” means that the data have the invested quality: for example, they are correct 
(for correctness), complete (for completeness), …; “no” means that they do not possess such 
qualities; and “partially” means that the data partially present the quality under considera-
tion, with a certain rate (e.g., 0.5).

Continuous scale

	 The metric is defined as the percentage of data that is accurate (or timely or com-
plete, …). For example, if the data is in the form of a set of measurements (i.e., M1, M2, 
M3, M4), two of them are accurate, then 50% of the data is accurate.

5.1.1 � The global metric for the SHM data quality

Once the DQ metric is obtained for each indicator, it is also useful to consider a global 
metric where each indicator is assigned some weights. The following method is sug-
gested for computing the global metric.

Let DQu represents a single quality (i.e., indicator) and DQTotal the value of the 
global DQ metric.

The decision-maker can use the DQu or DQTotal values respectively when he is inter-
ested in assessing a single quality (e.g., accuracy, completeness, etc.), or the global 
metric.

The DQTotal is determined using the following equation:

Where ωu are the normalized weights between 0 and 1 with and 
∑

u ωu = 1 and 
computed as follows:

The decision-maker (expert) is required to assign scales, Su, for each indicator based 
on the importance assigned to that indicator for the decision-making case under 
consideration.

Moreover, for completeness, one might also tailor the following formula for differ-
ent variables with several weights.

(7)metric =

{

1 yes
0 no

(8)metric =







1 yes
0.5 partially
0 no

(9)DQTotal =

∑

u
ωu • DQu

(10)ωu =
Su

∑

u Su



Page 16 of 32Makhoul ﻿Advances in Bridge Engineering            (2022) 3:17 

Where Cx is the completeness of the considered data/information variable of inter-
est and ωCx is the relative weight assigned to it, based on the relative interest of the 
data to the decision maker.

5.1.2 � The thresholds for the global metric of data quality

To characterize the metric of the global data quality, labels and thresholds are pro-
posed. The labels vary from excellent to very weak, respectively, and the data quality 
varies from 1 to 0 with 5 levels of different threshold ranges as per Table 3 proposed 
below.

5.2 � Probabilistic Metrics for SHM Data Quality indicators

In this approach, probability distribution functions are used to define and assess 
probabilistic metrics of indicators that are considered to incorporate uncertainties.

The following indicators are assigned a probability density function for their proba-
bilistic metrics: Accuracy, Precision, Consistency, Redundancy, Accessibility, Timeliness, 
Completeness, and Relevancy.

5.2.1 � Probability density functions for the SHM data quality metrics

Metrics, especially in an uncertain context, depend on the type of data and related 
uncertainties. In the SHM context, the probability distribution function assigned for 
probabilistic metrics is highly dependent on the flow of the data.

As stated, there are two possible SHM data types related to the data flow. The flow 
may be scarce in the case of occasional SHM measurements, or it may be abundant in 
the case of permanent SHM measurements. Thus, the data can be discrete (i.e., for occa-
sional measurement) or continuous (i.e., for permanent measurements), and henceforth 
different probability density functions are suggested.

a)	 Occasional measurements (i.e., discrete)

	 In case the measurement is occasional, the quality is assessed from time to time 
whenever a measurement is recorded. It can thus be reflected by a series of discrete 
values for the random variable. If the realizations of the time-variant quantity occur 

(11)CTotal =

∑

x
ωCx • Cx

Table 3  Data quality labels and thresholds ranges for the global metric

Data Quality Threshold

Excellent 0.8 ≤ DQ ≤ 1

Good 0.6 ≤ DQ < 0.8

Average 0.4 ≤ DQ < 0.6

Weak 0.2 ≤ DQ < 0.4

Very Weak 0 ≤ DQ < 0.2
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at a discrete time, then the random quantity is denoted random sequence. And 
thus, the Bernoulli trial sequence leads to the use of the binomial distribution Faber 
(2012). In this case, the metric is represented by a binomial distribution: metric ~ B 
(n, p) with the number of successes n, and the probability of successes p.

b)	 Permanent measurements (i.e., continuous)
	 If the measurement is permanent or continuous, it may be reflected with a series of 

continuous values for the random variable. Here the realizations of the time-variant 
quantity occur continuously over time, and the random quantity is denoted random 
process or stochastic process. Thus, the Normal or Gaussian process is used Faber 
(2012). In that case, the metric is represented by a normal distribution function: met-
ric ~ N (µ, σ) with the mean µ, and the standard deviation σ.

In the coming, the probabilistic metrics suggested for SHM are offered.

5.2.2 � Accuracy

The Real-world (R) and the Measurements (M) are represented by random variables. 
Accuracy reflects how the measurement M, which is a random variable, is close to the 
Real-world R.

A feasible metric of the accuracy of the measurement can be defined as the difference 
between the two random variables as follows:

In the assumption of normal distributions R ~ N (µR, σR), and M ~ N (µM, σM), then the 
mean value and standard deviation of accuracy A are:

A ~ N (µA, σA) with µA = µR − µM andσA =

√

σ 2
R − σ 2

M

As detailed above, if the data is recorded permanently, it is normally distributed N (µM, 
σM). And if it is recorded occasionally, then it follows a binomial distribution B (nM, pM).

Accuracy is the accuracy of data and information. It is the distance between the meas-
urement and the real-world, it is the opposite of the error as well (detailed further in 
Sect. 6.3.1).

Moreover, for example, in the case when the “structure modifies its properties”, the 
accuracy is still the distance between the new measurement and the new real-world.

Data analysis is reliant on data and specific to case studies. Thus, for other future case 
studies considering, for example, the detection of the failure of a sensor from the dam-
age to the structure, then the indicators and metrics will be considered to account for 
the specificity of the application.

5.2.3 � Precision

Precision is the degree to which the measured values are close to one another. Thus, the 
metric of precision is the standard deviation σd of the distribution of the measurement.

For permanent data, then for a random variable X with density f(x), µ is the expected 
value (the average) defined as:

(12)
A = R−M

(13)µ =

∫

+∞

−∞

xf (x)dx



Page 18 of 32Makhoul ﻿Advances in Bridge Engineering            (2022) 3:17 

And the standard deviation σ of X is defined as:

For the occasional data, then the random variable X takes a finite data set x1, …, xn 
with constant probabilities, and µ is defined as:

And the standard deviation σ of X is defined as:

5.2.4 � Consistency

Heinrich, Klier, et  al., (2018) inspired the SHM consistency metric herein, however, it 
was modified to serve the SHM context. Heinrich, Klier, et al., (2018) looked for con-
sistency in rare extreme values i.e., values that are equal to or more extreme than the 
observed value (v) or the successes presented by p(X(r) ≥ v.

In this article, the consistency metric aims to represent the number of successes for 
the selected rule, i.e., the largest number of consistent values for the chosen rule. There-
fore, in this case, consistency is defined as the probability that the uncertain rule R is 
fulfilled with a probability p. As explained (Sect. 4.2), for one record it is expressed as 
a Bernoulli trial Be(p) with parameter p. And when the rule R is applied to all measure-
ment tj in the database (of n measurements), the consistency of the database follows a 
binomial distribution B(n, p).

However, SHM metrics are dependent on the SHM data flow (Sect. 5.1.1). Therefore, 
for punctual measurements, then for a certain rule r, the consistency is given by:

Where nc, is the number of successful measurements and pc is the probability of 
success.

For permanent SHM measurements, the Bernoulli distribution, as usual, tends to be a 
normal distribution, and thus the consistency is given by:

Where µc, is the mean and σc is the standard deviation.

5.2.5 � Timeliness

The SHM data metric timeliness is represented by two very distinct cases (Sect. 5.1.1) 
that depend on the flow of the data i.e., permanent, or occasional measurements.

In the case of occasional monitoring, where the data is rare and represented by a dis-
crete variable, the formula suggested by Heinrich et al. (2007b) can be used:

(14)σ =

√

∫

+∞

−∞

(x − µ)2f (x)dx

(15)µ =
1

N

∑N

i=1
xi

(16)σ =

√

1

N

∑N

i=1
(xi − µ)2

(17)Co ∼ B (nc, pc)

(18)Co ∼ N (µc, σc)
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Where λ represents the number of times the measurement values become outdated on 
average over a period of time.

In the case of permanent data, then QTime = 1. Here the shelf-life tends towards zero 
(T→0) because data is continuously updated, and the decline rate tends to infinity 
(λ→∞). This leads to the data being always up-to-date, thus QTime = 1.

5.2.6 � Redundancy, accessibility, relevancy, and completeness

The metrics redundancy (R), accessibility (Ac), relevancy (Re), and completeness (C) are 
assessed simply according to the number of successes of that DQ each time it is evalu-
ated by the expert. The expert, once the data is available, can assess whether they possess 
the required quality (i.e., complete, relevant, redundant, and accessible).

There are only two possibilities (either the quality is fulfilled with a certain probability, 
or it is violated with the complementary probability). Thus, the quality can be modelled 
as a Bernoulli trial Be(p) with the parameter p representing the probability of success of 
this quality.

For all measurements, the quality of the database can be quantified by the sum of the 
qualities of the individual measurements. Being the sum of n independent Bernoulli dis-
tributed random variables, the quality of the database follows a binomial distribution 
B(n, p) with the expected value np and the standard deviation np(1-p).

Moreover, two cases are also available for these metrics based on the data flow (i.e., 
occasional, or permanent).

In the case of occasional measurements, the data are discrete, and thus the Binomial 
distribution is appropriate. However, in the case of permanent measurements, the data 
are continuous and thus the binomial distribution tends to the normal distribution. 
Therefore, the quality of completeness, relevancy, redundancy, and accessibility, is repre-
sented by a normal distribution).

Table 4 resumes the suggested SHM probabilistic metrics.

6 � Generic example for the SHM data quality metrics
A 5-spans concrete bridge benefiting from permanent acceleration and occasional ambi-
ent noise vibration measurements is considered. It is equipped with accelerometers that 
continuously are recording and transmitting data wirelessly to the processing site. Accel-
erations are processed to compute the fundamental frequency among other dynamic 
characteristics (modal shapes, etc.). Moreover, every five years an ambient vibrations 
measurement campaign is done using seismometers, to recheck the modal frequency 
extracted from the accelerations. The equipment and experiments are given in Table 5.

The reasons behind selecting these SHM experiments are: (1) the availability of redun-
dant measurements to recheck the frequencies calculations; and (2) the availability of 
different types of data (i.e., continuous for permanent and discrete for occasional ones).

(19)QTime(T ) = e−�•T
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6.1 � Decision Problem

To stress the importance of SHM DQ for the decision-making process, a decision prob-
lem is proposed. Suppose the bridge owner wants to decide whether to strengthen the 
bridge facing a seismic threat. The decision depends on the data collected on the bridge 
and its quality. Thus, it is necessary to include it.

For example, in the case of the permanent measurement (Fig. 1), the frequency data 
should vary around the initial fundamental frequency of 3 Hz according to the finite ele-
ment model (FEM) and the initial frequency measurement. However, it has been found, 
that it is varying around 2 Hz.

Similarly, for the occasional ambient vibration test, at some point, the measurement 
and computation of the fundamental frequency are performed. In this case, the data 
should drop every 5 years at most around 5% (or 0.15  Hz) relative to the initial fre-
quency of the structure according to the FEM and the initial frequency measurement 
(i.e., FEM deterioration modelling and experience). However, it was observed to have 
dropped to 2 Hz (Fig. 2, where fpi are the predicted frequencies and fmi are the measured 
frequencies).

In both cases, the bridge owner needs to know if the frequency drop is due to damage 
to the structure or the quality of the measurement. If a decision and action are taken with-
out verification of DQ, two scenarios are possible. Scenario-1 of high costs, and minimal 
risk, the owner can intervene and strengthen the structure, while it is in a good state, and 
thus loses a large amount of money. Scenario-2, the owner may not intervene to repair the 
structure, while it is damaged. Then, later, if the bridge collapses, the owner will have to 
face a tremendous cost related to the casualties, downtime, and replacement of the bridge. 
Immediately following the decision on Scenario-2, the cost is minimal, and the risk is high.

Table 5  The SHM equipment and experiments

Monitoring 
Tool

What is 
record

Unit How often it 
is recorded

What is 
computed

Unit How often it 
is compute

Analysed

Accelerometer Acceleration cm/s2 permanently Frequency Hz permanently Permanently

Seismometers Velocity cm/s each 5 years Frequency Hz each 5 years Punctually

Fig. 1  Frequency continuously computed from continuously recorded accelerations



Page 22 of 32Makhoul ﻿Advances in Bridge Engineering            (2022) 3:17 

6.2 � Deterministic metrics calculations

For the bridge in question, the DQ metrics were assessed by an expert for both the per-
manent and occasional monitoring systems using the deterministic method proposed in 
Sect. 5.1. Discrete (i.e., 1 is assigned for “yes” the data has a quality and 0 for “no” does 
not) and continuous deterministic methods (i.e., the percentage of data having this qual-
ity) were used.

A slight difference is noted in occasional and permanent monitoring when using con-
tinuous scales. For the discrete scale, no difference was noted between permanent and 
occasional monitoring, as the discrete scale rate the metrics simply by 0 or 1. On the 
other side, more refined values are noted for the continuous scale, because a percentage 
provides a more precise metric value of DQ.

Table 6 shows the values for the 4 cases (discrete and continuous scales and occasional 
and permanent monitoring).

The table suggested in Sect.  5.1.2 for the labels and thresholds for the data quality 
global metric is used. Since all the assessed DQTotal metrics are greater than 0.8, thus, the 
data is considered of excellent quality.

Thus, for example, for both cases where the frequency drops by 5% (i.e., for when no 
damage) and 30% (i.e., for when severe damage occurs), the aim here is to assess the data 
quality before deciding whether to go or not on the bridge. Because maybe there are not 
many funds to go on the bridge or the expert cannot access it easily, etc. Thus, the first 
step is to assess data and information more thoroughly and then act accordingly based 
on it. Moreover, if several sensors exist on the bridge one can check whether there is 
a problem with one of the sensors first. Finally, now that the data is assessed to be of 
good quality, thus, in the case where it dropped by 5%, the expert will not need to go 
to the field as there is likely no damage to the structure. While in the case when where 
it dropped by 30% the expert will need to go to the field for further inspections as it is 
likely that there is damage to the structure.

Fig. 2  Frequencies computed from occasionally recorded velocities
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In some cases, experts conduct an extensive campaign of measurements which can be 
the result of an assessment of data quality. However, this is not the aim here. We do not 
aim to check the data quality by doing more tests (i.e., other than the scheduled one). 
This can be interesting, however, not always feasible, due to fund limitations. We aim 
to assess the data quality of the existing monitoring systems and the already scheduled 
monitoring campaigns, using some indicators and metrics.

6.3 � Probabilistic metrics assigned probability distribution function

To apply the metrics, it is crucial to assign parameters for each of the suggested prob-
ability distribution functions and in both cases of permanent and occasional monitoring.

Three possibilities are available to determine the parameters for the probability 
distribution functions.

1)	 Analysing a reference dataset. It is a promising option in case the reference dataset is 
of good quality for the current study. For example, a bridge of the same typology with 
a large amount of monitoring inspections and DQ assessment history, i.e., the bridge 
has already been inspected over an extended duration and the DQ of the SHM meas-
urements has been assessed. Also, it could be the bridge itself with a long history of 
monitoring and DQ assessment.

2)	 Conducting a study. A series of on-site campaigns may take place for a series of 
bridges (or one) with a similar typology. Moreover, it can be done on the bridge itself, 
for some time and then deduce the parameters.

3)	 Surveying experts (i.e., surveying qualified individuals).

The assessment of the SHM DQ has not yet been done. Thus, no reference database set 
is yet available to the authors of this article. Moreover, there is no way to conduct a study 
rapidly because it is essential to be spread over a sufficient duration of several years. 
Therefore, in this article, the third expert-based approach is used. Until, in the future, 
other SHM DQ assessments are conducted to provide robust experimental parameters 
for the probability distribution functions.

6.3.1 � Accuracy

The metric for the measurement accuracy is given by A = R – M (Eq. 11). Where R and 
M are random variables of the real world and measurement fundamental frequency.

However, it is difficult to obtain the exact value of the real-world parameter unless, 
for example, a very high-quality digital twin model is installed. Therefore, an addi-
tional simplification is introduced to take account of this metric. Instead of assign-
ing probability distributions to the parameters of the real-world and measurements, 
it will be assigned directly to the accuracy utilizing the following manoeuvre.

The measurement is expressed as the real-world parameter value added to the 
measurement error (M = R + ε). Thus, the accuracy is the opposite of the error (ε) 
and is expressed by:

(20)
A = −ε
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The probability distribution function attributed to the inspection error is assigned 
a normal distribution N (µε, σε) with its mean µε and its standard deviation σε. 
Finally, the accuracy is A ~ N (-µε, σε).

Based on Brincker and Ventura (2015), Zhang et  al. (2022), Ali et  al. (2019), and 
Peng et  al. (2021), the expert suggested a value of 0 for the mean of the error and 
0.5 for the standard deviation. Moreover, for simplicity, the normal distribution is 
attributed to the error regardless of the data flow. Thus, the accuracy can be consid-
ered the same for permanent and occasional monitoring.

6.3.2 � Precision

The precision metric is the standard deviation of the distribution of the measurement. 
Therefore, based on Peng et al. (2021), the expert suggested a value of 0.03 for the stand-
ard deviation σd.

6.3.3 � Consistency

In this example, DB is a database containing a set of n SHM measurement records T 
= {t1, t2, …, tn}, of different lengths, all sampled at 100 Hz. And a = {a1, a2, …, an} is a 
set of attributes (i.e., duration of the record, number of points of the record, the max 
amplitude of the record, signal-to-noise ratio (S/N), etc.). Let’s consider the rule “record 
longer than 10s have a maximum amplitude 0.1 g”.

For the metric consistency, the expert estimated that the SHM DQ was assessed 5 
times. The data was only considered to be inconsistent once, with one record having a 
maximum amplitude greater than 0.1  g. Thus, for the occasional measurement, it has 
n = 4 and p = 0.8, and thus Co ~ B (4, 0.8). While for the permanent measurement the 
assessment offered µr of 0.8 and σr of 0.39, thus Co ~ N (0.8, 0.39).

6.3.4 � Timeliness

For occasional monitoring, and the duration of the 20 years monitored period, the 
expert considered that the decline rate is λ = 0.2. On average, 20% of the SHM data loses 
its validity over a given (i.e., 1/5).

For permanent monitoring, then, QTime = 1.

6.3.5 � Redundancy, accessibility, relevancy, and completeness

For the metrics redundancy, accessibility, completeness, and relevancy the expert esti-
mated that the SHM DQ was assessed 5 times.

Only once was the data found to be non-redundant because of the lack of occasional 
measurements. Thus, for the occasional measurement, it has n = 4 and p = 0.8, and thus 
R ~ B (4, 0.8). Whereas for the permanent measurement, the assessment offered µr of 0.8 
and σr of 0.39, thus R ~ N (0.8, 0.39).

For accessibility, the expert found that the data were only found to be inaccessible 
twice due to impediments to reaching the site. Thus, for the occasional measurement, it 

QTime(T ) = e−0.2•T
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has n = 3 and p = 0.6, and thus R ~ B (3, 0.6). Whereas for the permanent measurement, 
the assessment provided µr of 0.6 and σr of 0.46, thus Ac ~ N (0.6, 0.46).

For completeness, the expert found the data to be incomplete only once due to the 
absence of some measurements. Thus, for the occasional measurement, it has n = 4 and 
p = 0.8, and thus C ~ B (4, 0.8). Whereas for the permanent measurement, the assess-
ment offered µc of 0.8 and σc of 0.39, thus C ~ N (0.8, 0.39).

For relevancy, the expert found that the data was three times irrelevant to the decision 
problem at hand. Thus, for the occasional measurement, it has n = 2 and p = 0.4, and 
thus Re ~ B (3, 0.4). Whereas for the permanent measurement, the assessment offered µc 
of 0.8 and σc of 0.39, thus Re ~ N (0.4, 0.41). Table 7 resumes the SHM probability distri-
bution assigned to the metrics with adequate parameters.

7 � Real case example of the Z24‑bridge
The bridge located in Switzerland benefited from the environmental monitoring sys-
tem and accelerometers and measurements were recorded for nearly one year includ-
ing the one last month when the bridge was intentionally damaged. The experiments 
were detailed extensively in (Peeters and De Roeck 2001), (Reynders and Roeck 2008), 
(Reynders et  al. 2012), (Langone et al. 2017), and (Maeck et al. 2001) as well as the 
bridge which is presented in Fig. 3. Additional details of the KU Leuven Z24 Project 
are found at (Leuven, n.d.) https://​bwk.​kuleu​ven.​be/​bwm/​z24.

In Fig. 4, the data for the first three extracted frequencies is shown, where you can 
also notice, the values for the undamaged data, undamaged data with low tempera-
ture thus not very accurate and the damaged data (i.e., the data for when the bridge 
deteriorated). Further details are offered in (Omori Yano et al., 2022) and in (Santos 
et al., 2017).

For the experiment done, the data is considered fully accessible, interoperable, trace-
able, and relevant. As the experiment was permanently recorded and thus the data is 
timely.

For the accelerometer recordings, the data is considered redundant as there are many 
sensors for the one experimental set, and the security is considered the lowest since it 
was not secured.

The cold period caused the operational variation of frequencies, and this was for a 
total of 909 observations out of 5012. However, the accuracy and precision were pre-
served as the system was able to detect it.

For consistency regarding the rule being “for T > 0 the standard deviation of the fre-
quency modes is < 0.15”, this rule was verified based on the results Peeters and De Roeck 
(2001). All the data verified this rule; thus, the consistency with respect to this rule is 
considered as 1.

Finally, the recordings were interrupted from day 166 to day 200 out of the total 304 
days of recordings. For the total duration of 304 days, the completeness is 88% (in this 
case the total data quality is 0.967). However, if one is considering only the 270 days of 
the tests, the completeness is 100% (in this case the total data quality is 0.982).

https://bwk.kuleuven.be/bwm/z24
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Those values were filled in DQu column of Table 8. The indicators scores from 0 to 1 
were again offered for this specific test and reported in the Su column of Table 8.

Finally, with similar computations to the previous example, we obtained that the total 
data quality is 0.982. Based on Table 3 (Sect. 5.1.2), since the assessed DQTotal metric is 
greater than 0.8, thus, the data is considered of excellent quality.

Those assessed values helped as well provide the parameter values for the considered 
distribution of the probabilistic method as shown in Table 9. The error was considered 
to have a mean of zero and a standard deviation of 1 and the precision was considered 
for the first mode frequency computed as 0.1.

Fig. 3  The longitudinal section of the Z24- bridge and its top view (Peeters and De Roeck 2001)

Fig. 4  The frequencies for modes 1, 2, and 3 for the one-year observations



Page 29 of 32Makhoul ﻿Advances in Bridge Engineering            (2022) 3:17 	

8 � Results and conclusions
This article investigates the data quality and fills the gap in indicators and metrics in the 
SHM field.

To this end, this article reviews extensively the DQ indicators and their metrics. Six SHM 
DQ indicators are selected for data management phases and are assigned sub-indicators as 
needed to capture different aspects. Then their appropriate definitions are suggested.

The article proposes deterministic metrics in the form of discrete and continuous 
scales. It then offers probabilistic metrics to account for uncertainties. Additionally, dif-
ferent probability distribution functions for permanent and occasional SHM are offered. 
This provides a better understanding of the data stream influence on the selected prob-
ability distribution functions.

A generic example of SHM DQ metrics is provided and the results were presented for 
both deterministic and probabilistic metrics. For the deterministic metrics, the continu-
ous scale was found to offer more refined results than the discrete scale. For the proba-
bilistic metrics, the parameters for the probability distribution functions were assigned. 
Based on the DQ assessment, the data is found to be of good quality and therefore the 
bridge owner can make his decision without further investigations. Furthermore, a real 
case study of the assessment of the Z24 bridge was presented.

Finally, this article is the first step in a series of studies aimed at improving decision-
making for structural integrity management context by incorporating the SHM DQ. 
A variety of case studies and a great number of data will need to be considered in the 
future to tackle all different aspects of the indicators and metrics.

In future studies, indicators and metrics might be offered to account for the reliability of 
the monitoring system and SHM system Etebu and Shafiee (2018), Shamstabar et al. (2021). 
Similarly, indicators and metrics might be suggested for the environmental effects on the 
dynamic characteristics Worden and Cross (2018), Cross et  al. (2011), Brownjohn et  al. 
(2009). Moreover, indicators and metrics can be assessed not only for data and information 
variables suggested here but for other variables such as damping, the date of the measure-
ment, etc. regardless of the utility of this for decision making. The choice will be made for 
each case study and application based on the decision-making situation and context.

Table 8  Continuous scale DQ metric values for the permanent monitoring of the Z24 bridge

Indicator Continuous scale-permanent

DQu Su ωu DQuωu

Accuracy 1 0.8 0.143 0.143

Precision 1 0.7 0.125 0.125

Consistency 1 0.3 0.054 0.054

Redundancy 1 0.5 0.089 0.089

Accessibility 1 0.7 0.125 0.125

Interoperability 1 0.1 0.018 0.018

Security 0 0.1 0.018 0.000

Traceability 1 0.3 0.054 0.054

Timeliness 1 0.7 0.125 0.125

Completeness 1 0.7 0.125 0.125

Relevancy 1 0.7 0.125 0.125

Total 5.6 1 0.982
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