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Abstract
Given a positive operator A on some Hilbert space, and a nonnegative decreasing
summable function μ, we consider the abstract equation with memory

ü(t) + Au(t) −
∫ t

0
μ(s)Au(t − s)ds = 0

modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to
provide numerical evidence of the fact that the energy

E(t) =
(
1 −

∫ t

0
μ(s)ds

)
‖u(t)‖21 + ‖u̇(t)‖2 +

∫ t

0
μ(s)‖u(t) − u(t − s)‖21ds

of any nontrivial solution cannot decay faster than exponential, no matter how fast
might be the decay of the memory kernel μ. This will be accomplished by simulating
the integro-differential equation for different choices of the memory kernel μ and of
the initial data.
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1 The physical model

Within the theory of uniaxial deformations in isothermal viscoelasticity, the dynamics
of a homogeneous isotropic linearly viscoelastic solid, occupying a bounded volume
� ⊂ R

3 at rest, is described by the integrodifferential evolution equation (see, e.g.,
[3, 10, 18, 23, 25, 29, 37])

∂t t u(t) − κ(0)�u(t) −
∫ t

0
κ ′(s)�u(t − s)ds = 0, (1.1)

subject to the homogeneous Dirichlet boundary condition

u(t)|∂� = 0. (1.2)

The unknown u = u(x, t) : � × [0,∞) → R describes the axial displacement field
relative to the reference configuration �. Throughout the paper, the space variable x
will be always omitted. The function κ appearing in the convolution integral has the
form

κ(s) = κ∞ +
∫ ∞

s
μ(y)dy,

where κ∞ > 0, and thememory kernelμ is a (nonnull) nonnegative, decreasing, piece-
wise smooth, and summable function defined onR

+ = (0,∞). In particular, we allow
μ to have a finite number of discontinuities (downward jumps). These assumptions
imply the convexity of κ . The values

κ(0) > κ(∞) > 0

represent the instantaneous elastic modulus, and the relaxation modulus of the mate-
rial, respectively.

In more generality, in this work we will consider an abstract version of (1.1),
obtained by replacing the operator −� with Dirichlet boundary conditions, acting on
the Hilbert space L2(�), with a strictly positive selfadjoint linear operator A, acting
on some real Hilbert space H , with dense domain D(A) ⊂ H .

Notation

We agree to denote by 〈·, ·〉 and ‖ · ‖ the inner product and norm on H , respectively.
We also introduce the Hilbert space

V = D(A1/2),

endowed with the inner product and norm

〈u, v〉1 = 〈A1/2u, A1/2v〉 and ‖u‖1 = ‖A1/2u‖.
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Lack of superstable trajectories in linear viscoelasticity…

Observe that for the particular case of (1.1)–(1.2), the space V is nothing but the
Sobolev space H1

0 (�).
Setting for simplicity κ(0) = 1, which translates into the constraint

� =
∫ ∞

0
μ(s)ds < 1, (1.3)

we end up with the abstract Volterra evolution equation

ü(t) + Au(t) −
∫ t

0
μ(s)Au(t − s)ds = 0, (1.4)

of which the boundary value problem (1.1)–(1.2) is just a particular instance. Nonethe-
less, the abstract equation (1.4) covers also different models: for example, the one
employed in the description of the vibrations of thin viscoelastic rods, namely,

∂t t u(t) − ν�∂t t u(t) − �u(t) +
∫ t

0
μ(s)�u(t − s)ds = 0,

or of viscoelastic plates, namely,

∂t t u(t) − ν�∂t t u(t) + �2u(t) −
∫ t

0
μ(s)�2u(t − s)ds = 0,

with ν > 0 small (see [29, 31]). Both equations can be given the form (1.4) by setting
in the first case

A = −(1 − ν�)−1�,

and in the second one

A = (1 − ν�)−1�2.

Incidentally, the first occurrence of A is (more precisely, extends to) a bounded linear
operator on L2(�).

The abstract equation (1.4) is complemented with the initial conditions given at the
initial time t = 0

{
u(0) = u0,

u̇(0) = v0,
(1.5)

where u0 and v0 are assigned data. It is well known that for all initial data (u0, v0) ∈
V × H , problem (1.4)–(1.5) has a unique weak solution

u ∈ C0([0,∞), V ) ∩ C1([0,∞), H).
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Such a solution is actually a strong one, namely,

u ∈ C0([0,∞),D(A)) ∩ C1([0,∞), V ),

whenever the initial data (u0, v0) belong to the more regular space D(A) × V . The
natural energy of the system is defined by

E(t) =
(
1 −

∫ t

0
μ(s)ds

)
‖u(t)‖21 + ‖u̇(t)‖2 +

∫ t

0
μ(s)‖u(t) − u(t − s)‖21ds,

and it can be interpreted as the sum of the mechanical energy

E0(t) =
(
1 −

∫ t

0
μ(s)ds

)
‖u(t)‖21 + ‖u̇(t)‖2, (1.6)

and the memory energy

E1(t) =
∫ t

0
μ(s)‖u(t) − u(t − s)‖21ds, (1.7)

which is ultimately responsible for the dissipation. Note that, for large t

E0(t) ≈ (1 − �)‖u(t)‖21 + ‖u̇(t)‖2.

The dissipativity of (1.4) is witnessed by the fact that the E(t) is a decreasing function
of t (see, e.g., [8, 10, 18]; but see also the next formula (1.11)).

Equation (1.4) is sometimes referred to as a model of (linear) viscoelasticity of
Volterra type. A different and perhapsmore accuratemodel is the one of viscoelasticity
with infinite memory, which amounts to considering the convolution integral on the
whole R

+, to wit,

ü(t) + Au(t) −
∫ ∞

0
μ(s)Au(t − s)ds = 0. (1.8)

In this case, however, in order to compute the convolution integral one has to know
the values of u for all times before the actual time t . Accordingly, being the initial
time conventionally set at t = 0, the function u for negative times is assumed to be a
known initial datum, which need not solve the equation. Indeed, (1.8) is assumed to
hold only for t > 0. As pointed out in the seminal work [12] (see also [22]), one way
to handle (1.8) is to introduce the auxiliary variable

ηt (s) = u(t) − u(t − s), t ≥ 0, s > 0,

which keeps track of the past history of u, and is assigned as an initial datum at t = 0.
Hence, assuming the initial condition

η0(s) = η0(s),
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where η0 = η0(s) is an assigned datum, we immediately see that

ηt (s) =
{
u(t) − u(t − s) 0 < s ≤ t,

η0(s − t) + u(t) − u0 s > t .
(1.9)

With this choice, and recalling (1.3), equation (1.8) transforms into

ü(t) + (1 − �)Au(t) +
∫ ∞

0
μ(s)Aηt (s)ds = 0. (1.10)

Calling

M = L2
μ(R+, V )

the Lebesgue space of square summable V -valued functions on R
+ with respect to

the measure μ(s)ds, we introduce the Hilbert space

H = H × V × M,

endowed with the product norm

‖(u, v, η)‖2H = (1 − �)‖u‖21 + ‖v‖2 +
∫ ∞

0
μ(s)‖η(s)‖21ds.

Then, system (1.9)–(1.10) is known to generate a strongly continuous linear semigroup
S(t) of solutions1 acting onH, in the sense of [15, 35]. This means that, for any initial
datum u0 = (u0, v0, η0) ∈ H, there is a unique solution

u(t) = (u(t), u̇(t), ηt ) = S(t)u0 ∈ C([0,∞),H).

Remark 1.1 The infinitesimal generator of S(t) is the linear operator A on H acting
as

A(u, v, η) = (
v,−A

(
(1 − �)u + ∫ ∞

0 μ(s)η(s)ds
)
, Tη + v

)
.

with domain

D(A) = {
(u, v, η) ∈ H : v ∈ V , (1 − �)u + ∫ ∞

0 μ(s)η(s)ds ∈ D(A), η ∈ D(T )
}
.

Here, T is the infinitesimal generator of the right-translation semigroup onM, defined
as

(Tη)(s) = −η′(s) with domain D(T ) = {η ∈ M : η′ ∈ M, η(0) = 0},
1 This formulation of the problem has been introduced in [6].
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where theprimedenotes the distributional derivative.Accordingly, system (1.9)–(1.10)
can be equivalently viewed as the differential equation on H

d

dt
u(t) = Au(t).

The energy at time t corresponding to the initial datum u0 reads

F(t) = ‖S(t)u0‖2H = (1 − �)‖u(t)‖21 + ‖u̇(t)‖2 +
∫ ∞

0
μ(s)‖ηt (s)‖21ds,

and is a decreasing function of t , for it satisfies (for any regular initial datum) the
differential inequality

d

dt
F(t) =

∫ ∞

0
μ′(s)‖ηt (s)‖21ds +

∑
n

[μ(s+
n ) − μ(s−

n )]‖ηt (sn)‖21, (1.11)

where sn are the discontinuity points (if any) of μ (see [12, 33]). In the semigroup
language, this means that S(t) is a contraction semigroup, i.e., the operator norm of
the semigroup is less than or equal to 1 for all t ≥ 0. The analysis of S(t) and its
asymptotic features has been carried out by several authors since the Seventies of the
last century. To mention just a few of them, we quote the works [2, 12, 19–21, 30,
32–34] (stability and exponential stability issues), [4, 13] (spectral properties), [6,
7] (models with time dependent kernels), [14, 16, 17] (modeling aspects), [26–28]
(semigroup approach).

The link between the semigroup S(t) and the original Volterra equation (1.4) is
expressed by the following proposition.

Proposition 1.2 The solution u(t) to (1.4)with initial data (u0, v0) ∈ V ×H coincides
with the first component of the solution u(t) = S(t)u0 to (1.9)–(1.10)with initial datum
u0 = (u0, v0, u0).

Indeed, defining the function

G(t) =
∫ ∞

0
μ(t + s)A

[
η0(s) − u0

]
ds,

it is readily seen that system (1.9)–(1.10) can be equivalently written as

ü(t) + Au(t) −
∫ t

0
μ(s)Au(t − s)ds = G(t). (1.12)

This is nothing but (1.4), in presence of a time-dependent forcing term. Notice that the
functionG is identically zero whenever u0 = (u0, v0, u0). In this case, we recover vis-
coelasticity of Volterra type. Besides, observing that the third (or memory) component
ηt of u(t) now reads
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ηt (s) =
{
u(t) − u(t − s) 0 < s ≤ t,

u(t) s > t,

we obtain (as it should be) the equality E(t) = F(t).

2 The Decay rate of the energy

2.1 Exponential stability

Being S(t) a contraction semigroup, either its operator norm is always equal to 1, or
it goes to zero as t → ∞, and the decay is necessarily (at least) of exponential type
(see [15, 35]). In terms of the energy F, this means that there exist constants M ≥ 1
and ω > 0 such that, for all initial data in H,

F(t) ≤ MF(0)e−ωt . (2.1)

When (2.1) holds, the semigroup is said to be exponentially stable. The issue of the
exponential stability of S(t) has attracted the attention of several authors since the
appearance of [12], and it has been first proved within the sufficient condition that the
memory kernel μ, besides our general hypotheses, satisfies the differential inequality

μ′(s) + δμ(s) ≤ 0, (2.2)

for some δ > 0 (see [17, 26, 27, 30]). Later, in [2], it has been shown that a necessary
condition in order for S(t) to be exponentially stable is that

μ(t + s) ≤ Ce−δtμ(s), (2.3)

for some C ≥ 1 and δ > 0, which turns out to be equivalent to (2.2) when C = 1. The
necessary and sufficient condition has been established only in the more recent work
[34], where the following theorem is proved.

Theorem 2.1 If A is an unbounded operator, then the semigroup S(t) is exponentially
stable if and only if

(i) condition (2.3) holds; and
(ii) the kernel μ is not completely flat, that is, the set {s > 0 : μ′(s) < 0} has positive

measure.

Remark 2.2 If the operator A is bounded, the result is slightly different: exponential
stability occurs if and only if (i) holds, with the only exception of a certain class of flat
kernels, called resonant, where trajectories with conserved energy arise (see [2, 34]).

Summarizing, with regard to the exponential stability of the semigroup the picture
is nowadays completely clear. It is worth noting that (2.3) implies an exponential
decay of the kernel μ of rate δ (at least). The situation is a little bit more complicated
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if we restrict our attention to the decay of the energy E of the Volterra equation (1.4).
Here, lacking a semigroup structure, decay types other than exponential are possible.
Without claiming to give the result in full detail, roughly speaking what happens is
that the energy E and the kernel μ share the same decay type, but this occurs up to the
decay of exponential type (see [5, 8]). For faster decays, no results are available, as
remarked in [5].

2.2 Superstability

We now come to the core of the present work, that is, the existence of nontrivial
trajectories which converge to zero faster than any exponential. To this end, we define
the (exponential) decay rate of the energy2 of the semigroup S(t) to be the nonnegative
number

ω� = sup
{
ω ≥ 0 : 2.1 holds for some M = M(ω)

}
.

Thus, S(t) is exponentially stable if and only if ω� > 0, whereas if ω� = 0 then it has
unitary operator norm for all t .

Definition 2.3 We say that S(t) is superstable if ω� = ∞.

Remark 2.4 As shown in [4], it is actually possible to give a quantitative version of
Theorem 2.1, which says that if (2.1) holds for some ω > 0, then condition (2.3) is
necessarily satisfied for some δ ≥ ω.

This motivates the following definition.

Definition 2.5 The memory kernel μ is superexponential if condition (2.3) holds for
every δ > 0.

Accordingly, in view of the remark above, if S(t) is superstable, then the mem-
ory kernel μ is superexponential. Paradigmatic examples of superexponential kernels
are μ(s) = e−s2 and any compactly supported kernel (complying with the general
assumptions of the preceding section).

The main question now is:
Are there superexponential μ which render the corresponding S(t) superstable?

The answer to this question is negative, and this is perhaps the main result of the very
recent paper [4]. From a physical viewpoint, this fact somehow tells something about
the persistence of the elastic force versus viscous effects. Notwithstanding, it might
as well be possible that there do exist individual nontrivial trajectories that go to zero
in a superexponential fashion. In light of (1.12), the trajectories which are more likely
to decay fast are the ones corresponding to G ≡ 0, i.e., the solutions to the Volterra
equation (1.4). Our claim is that, for any nonzero initial data, the corresponding E
cannot decay arbitrarily fast. More precisely, we have the following conjecture.

2 The decay rate of the semigroup is just ω�/2.
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Conjecture 2.6 For any given memory kernel μ, there exists a structural constant
κ > 0 with the following property: for any (u0, v0) �= (0, 0), the corresponding E
fulfills the relation

lim sup
t→∞

E(t)eωt = ∞ whenever ω > κ.

Unfortunately, an analytic proof of such a conjecture seems to be out of reach.
Indeed, although we have refined techniques to study the global behavior of the semi-
group, we do not have at disposal significant tools that enable us to discuss in detail
the behavior of a single trajectory. This is the point of the story where the Numerics
steps in.

3 The numerical approach

3.1 The equation

We assume for simplicity that the domain D(A) of A is compactly embedded into
H . This assumption, which is satisfied in the concrete case of the Laplace-Dirichlet
operator occurring in viscoelasticity, guarantees that the spectrum of A is made by
eigenvalues only. Besides, denoting the eigenvalues of A (each counted with its own
multiplicity) by

0 < λ1 ≤ λ2 ≤ · · · ≤ λ j → ∞,

the (normalized) eigenvectors w j of λ j form a complete orthonormal basis of H (see,
e.g., [38]). This allows us to decompose the solution of (1.4) into the infinite sum

u(t) =
∞∑
j=1

u j (t)w j ,

where u j (t) is the solution to the ordinary differential equation obtained by project-
ing (1.4) along with the initial data (1.5) onto the eigenspace relative to the eigenvalue
λ j , that is (up to a straightforward change of variables)

ü j (t) + λ j u j (t) − λ j

∫ t

0
μ(t − s)u j (s)ds = 0, (3.1)

with initial values

{
u j (0) = u0, j ,

u̇ j (0) = v0, j ,
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where

u0, j = 〈u0, w j 〉 and v0, j = 〈v0, w j 〉.

By the classical Plancherel Theorem, the energy E(t) of (1.4) splits into the infinite
sum

E(t) =
∞∑
j=1

E j (t),

where

E j (t) =
(
1 −

∫ t

0
μ(s)ds

)
λ j |u j (t)|2 + |u̇ j (t)|2 + λ j

∫ t

0
μ(s)|u j (t) − u j (t − s)|2ds

is the energy corresponding to the j th-mode. Accordingly,

E(t) ≥ E j (t), ∀ j ∈ N.

This means that the decay rate of the energy of a particular trajectory is certainly
smaller than or equal to the decay rate of the fastest (nonzero) mode. Reason why we
can shift our focus to the study of the equation (3.1), ruling the evolution of the single
mode associated to λ j . Theorem 2.1 implies that, if the memory kernel complies with
assumption (2.3), then E j (t) decays at least exponentially for every j ∈ N. The validity
of our Conjecture 2.6 translates into the fact that every E j (t), for different choices of
the initial data, should not decay at an exponential rate higher than a certain threshold
κ > 0. To this end, we will solve numerically equation (3.1) for different values of
λ j over a time lapse [0, T ], with T sufficiently large for the energy to stabilize on a
specific decay pattern.

Clearly, we are interested in choosing a kernel μ(s) which is superexponential, in
the sense of Definition 2.5. Here a problem arises, namely, the fact that after a certain
period of time (possibly much smaller than T ) a superexponential kernel becomes
so small that some approximation issues may occur in the numerical scheme. To
overcome this difficulty, we introduce the truncated kernel

με(s) =
{

μ(s) 0 < s < 1
ε
,

0 s ≥ 1
ε
,

(3.2)

where ε > 0 will be chosen suitably small. Then, we consider the problem

üε
j (t) + λ j u

ε
j (t) − λ j

∫ t

0
με(t − s)uε

j (s)ds = 0. (3.3)

The following result, borrowed from [9], ensures that the solutions uε
j of converge to

u j as ε → 0.
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Proposition 3.1 Let u j and uε
j be solutions to respectively (3.1) and (3.3) with the

same initial data u0, j , v0, j . Then there exists a constant C > 0 such that

|u j (t) − uε
j (t)| + |u̇ j (t) − u̇ε

j (t)| ≤ C[ωε + √
ωε ](|u0, j | + |v0, j |),

where

ωε =
∫ ∞

0
(μ(s) − με(s))ds.

To summarize, having fixed a superexponential kernel μ(s), for suitably chosen
T and ε we will perform a numerical simulation of the ordinary integrodifferential
equation (where we write just u in place of uε

j and λ in place of λ j )

ü(t) + λu(t) − λ

∫ t

0
με(t − s)u(s)ds = 0, t ∈ [0, T ], (3.4)

and study the behavior of the related energy in dependence of λ and of the initial data
u0, v0.

3.2 The numerical scheme

In this section we briefly describe the approach to numerically approximate a second-
order integrodifferential equation of the form

ü(t) = −λu(t) + λ

∫ b(t)

a(t)
k(t, s)F(u(s))ds, t ∈ [0, T ], (3.5)

for given λ, and for integration limits a(t) and b(t) such that 0 ≤ a(t) ≤ b(t) ≤ T .
Notice that (3.4) can be written in the form (3.5) by choosing

k(t, s) = με(t − s), F(u(s)) = u(s), a(t) = 0, b(t) = t .

Over the years many numerical techniques have been developed to tackle problems of
this kind. We recall, among the others, perturbation methods, as well as spectral and
Chebyshev collocation methods (see, e.g., [1, 11, 40] and references therein), but the
list is far from being exhaustive. Here we employ a numerical approach that suitably
combines an ODE solver with an iterative scheme, as proposed in [24].

For a given integer Nh , let tn , with n = 0, . . . , Nh , be a set of time snapshots within
the interval [0, T ], with the convention that t0 = 0.We define yi to be the approximate
solution of u(t) at t = ti , i.e.,

yi ≈ u(ti ), i = 0 . . . , Nh,

and collect the values {yi }i=0,...,Nh
into the vector yn ∈ R

Nh+1. To compute yn we

proceed iteratively, i.e. given y(k)
n we compute y(k+1)

n , for k = 0, 1, 2, . . ..
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To set up the algorithm, we consider an initial guess y(0)
n . This is obtained by

solving numerically (3.5) and neglecting the integral term on the right hand-side,
by using for example, the variable-step, variable-order Adams-Bashforth-Moulton
(ABM) predictor-corrector scheme (see, e.g., [36, 39]). Next, we compute y(k+1)

n ←
y(k)
n as described in Algorithm 1.
Notice that in the first step of Algorithm 1, the integral appearing on the right hand

side is solved numerically, employing a Lobatto quadrature algorithm. Furthermore, α
is a suitable smoothing parameter,which is is equivalent to a relaxation parameter in the
context of iterative methods for linear systems. The iterative algorithm is terminated
whenever two consecutive iterates differ up to a prescribed (user-defined) tolerance
TOL, i.e.,

‖ y(k+1)
n − y(k)

n ‖2 < TOL

or whenever a maximum number of iterations Nit is reached.

Algorithm 1: Given α, TOL and Nit, compute the approximate solution yn .

Compute y(0)
n as the approximate solution to (3.5) neglecting the integral term

on the r.h.s.;
while k < Nit do

Compute y(k+1)
n as the approximate solution of (3.5) with y(k)

n on the r.h.s.;

Compute errk = ‖ y(k+1)
n − y(k)

n ‖2;
if errk < TOL then

yn = y(k+1)
n ;

RETURN
else

Update y(k+1)
n ← α y(k)

n + (1 − α) y(k+1)
n ;

Update k ← k + 1;

3.3 Numerical verification

For a fixed value of the tolerance TOL = 10−8, we are interested in validating the
numerical scheme, showing that the approximate solution yn converges to the exact
solution u(tn) as Nh → ∞ (or, equivalently, as h → 0). To this end, we consider the
following Cauchy problem

{
u̇(t) = t(1 + √

t)e−√
t − (t2 + t + 1)e−t + ∫ √

t
t tsu(s)ds,

u(0) = 1,
(3.6)

where t ∈ [0, 1]. This is the test case considered in [24]. For such an equation, the
exact solution is known and is equal to

u(t) = e−t .
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Fig. 1 Computed errh at the discretization points for different choices of Nh

We compute the numerical solution yn of (3.6) using an increasingly fine equispaced
approximation of the time span [0, 1]made by Nh = 50 ·2 j intervals, for j = 6, 8, 10.
Then, for each of the Nh , we evaluate the pointwise error at the discretization nodes

(errh)i = |( yn)i − u(ti )|, i = 1, . . . , Nh .

In Fig. 1 we report errh at the discretization points for our choices of Nh . As we can
see, the numerical performance of the scheme improves as Nh increases.

4 Numerical results

We investigate numerically (3.5) for three different superexponential kernels, namely,

μ1(s) = e−s2 ,

μ2(s) = e−es ,

μ3(s) = (1 − s)χ[0,1](s),

where χ denotes the characteristic function. Without claiming to be complete, we
believe that these functions provide a somewhat exhaustive overview of the most
important features which a superexponential kernel can enjoy. Indeed, μ1(s) is the
prototype of superexponential kernel, μ2(s) is a function which decays extremely fast
(faster than any function of the form e−s p , with p > 0), andμ3(s) is superexponential
simply because it is compactly supported.
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Remark 4.1 We also tested other types of memory kernels, obtaining comparable
results. Among others, we mention piecewise continuous kernels exhibiting a finite
number of (downward) jumps, as well as kernels possessing a weak singularity at zero,
such as

μ(s) = kp
e−s2

s p
or kp

(1 − s)

s p
χ[0,1](s),

with p ∈ (0, 1) and kp sufficiently small in order to guarantee that the total mass � is
less than 1, in compliance with (1.3).

For all the choices of superexponential kernels μi (s), i = 1, 2, 3 we consider two
test cases.

Test Case 1 In the first set of numerical experiments, we fix the initial data (u0, v0)
and compute numerically the energy E j for the choice λ j = j , with j = 1, . . . , 20.
Then, we plot log(E j ) against the time t . If Conjecture 2.6 were true, we would
expect to observe the following facts:

1. The single energy profile associated to a certain λ j is not log-concave. Accord-
ingly, since by Theorem 2.1 we know that the energy decays (at least)
exponentially, its profile should eventually become a straight line in the loga-
rithmic plot.

2. The exponential decay rates, which in this context correspond to the slopes of
the lines in the logarithmic plot, are bounded from above. This is witnessed by
the fact that either such rates reach a maximum (recall that the rate is positive
by definition), or they stabilize on a certain value as λ j increases.

Test Case 2 In the second set of numerical experiments, we investigate what
happens by changing the initial data. For every choice of (u0, v0) we compute the
exponential decay rate of E j for increasing choices of λ j , and seek for differences
in the behavior depending on the initial data. Once again, if Conjecture 2.6 were
true, barring minor distinctions, we should observe that for every choice of the
initial data the decay rates either reach a maximum or stabilize for large λ j .

All the numerical computations have been performed in MATLAB™, version R2021a.
Throughout the section the parameter α appearing in Algorithm 1 is chosen to be
α = 1/2.

Remark 4.2 In our Test Cases, we assumed the first eigenvalue λ1 of A to be equal
to 1. No difference occurs in the results if one starts from a different (but of course
strictly positive) λ1.

Before getting into the details of the results, we highlight a crucial issue. We would
like to perform a sufficiently accurate simulation of (3.5), up to a final time T large
enough to observe how the energy E j behaves asymptotically. However, since we are
dealing with exponentially and superexponentially decaying objects, in our computa-
tions we need to pay particular attention not to reach machine epsilon precision, as
well as to avoid possible round-off errors. In particular, whenever T becomes too large
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both the energy and the superexponential kernel might become too small, making the
simulation inaccurate. This is precisely the reason why we introduced the truncated
kernel με(s). Now let ε > 0 be small enough that

μ(1/ε) ≤ L,

where L is a user-defined tolerance. In practice we choose L equal to 10−16. Now, let
με(s) be defined as in (3.2). Then, recalling Proposition 3.1, we have

ωε =
∫ ∞

0
(μ(s) − με(s))ds =

∫ ∞

1/ε
μ(s)ds.

In the case of μ1(s), we have

∫ ∞

1/ε
μ1(s)ds =

∫ ∞

0
e−(s+1/ε)2ds ≤ e−1/ε2� ≤ L,

wherewehaveused (1.3) in the last inequality.Besides, since es > s2 for every s ∈ R
+,

it is clear that the latter inequality holds also for μ2(s). In light of Proposition 3.1, this
translates into an error of the order of

√
L. As we will see, this numerical error is of a

lower order than the computed energy, and therefore it does not affect the final result
of the numerical simulations. We do not need to define an ε for μ3(s), as the function
is already compactly supported (and the support is reasonably small).

4.1 The kernel�1

For the first kernel, we choose ε = 1/6 and T = 12. In particular, we truncate the
function at t = 6. In the first numerical test we work with fixed initial data

u0 = 0.1, v0 = 0.1, (4.1)

and we compute the energy E j (t) for λ j = 1, . . . , 20. The tolerance in Algorithm 1 is
set at TOL = 10−8 and Nh = 2000. In Fig. 2 we report the computed E j as a function
of the time (semi-logarithmic scale). For visualization purposes, we only selected the
profiles corresponding to the eigenvalues λ j = 2, 5, 9, 14, 20. We refer to Table 1 for
all the (least-square) computed exponential decay rates. We observe that the energy
decays exponentially fast for every λ j , but not superexponentially, as highlighted by
the fact that none of the decay profiles is log-concave. Furthermore, we see that, as
the λ j increases, the rate settles on a value of about 1.05, whereas the fastest decay,
about 1.1, is obtained in correspondence of λ11. Also observe that, in accordance with
our theoretical expectations, the energy computed numerically is indeed decreasing.

In the second numerical investigation (Test Case 2), we perform the same test
as before, except that now we try different initial data. The only difference in the
numerical parameters is the number of intervals, which is now set at Nh = 1600. In
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Fig. 2 Test Case 1, kernel μ1(s). Computed energy E j for initial data given in (4.1)

Table 1 Test Case 1, kernel μ1(s)

Kernel μ1(s) = e−s2

λ j 1 2 3 4 5 6 7 8 9 10

Rate 0.448 0.710 0.772 0.852 0.923 0.983 1.028 1.060 1.085 1.098

λ j 11 12 13 14 15 16 17 18 19 20

Rate 1.102 1.101 1.099 1.094 1.085 1.075 1.068 1.062 1.055 1.049

Computed exponential decay rates for initial data defined as in (4.1)

view of the linearity of (3.5), we restrict ourselves to initial data of Euclidean norm
equal to 1. Specifically, we choose

u0 = cos (θk) and v0 = sin (θk) , (4.2)

where

θk = kπ

20
, k = 0, . . . , 20.

For every initial datum, we verify that the energy profile is not log-concave (hence it
is log-linear). Then, we compute the decay rate (i.e., the slope) of the energy E j for
each λ j . In Fig. 3 we can see the plot of the results. To wit, on the x-axis we have the
different initial data, while on the y-axis we have λ j . For small λ j , the decay rate is
also small, for every choice of the initial data. Then, as we increase λ j , the rate starts
to increase and stabilizes on a certain profile. This limit profile attains its minimum
for the choice (u0, v0) = (0, 1).
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Fig. 3 Test Case 2, kernel μ1(s). Computed decay rate for variable initial data defined as in (4.2)

Fig. 4 Test Case 1, kernel μ2(s). Energy E j for initial data defined as in (4.1)

4.2 The kernel�2

Here we take ε = 5/18 and T = 12. Again, we choose TOL = 10−8, and Nh = 2000
for Test Case 1, whereas Nh = 1600 for Test Case 2. We perform the same set of
numerical experiments as before, obtaining similar results. Indeed, in Fig. 4, we see
that the energy relative to the initial data in (4.1) has an exponential decay. Moreover,
from the results reported in Table 2 there is the evidence that the decay rate settles
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Table 2 Test Case 1, kernel μ2(s)

Kernel μ2(s) = e−es

λ j 1 2 3 4 5 6 7 8 9 10

Rate 0.093 0.173 0.238 0.288 0.327 0.356 0.375 0.389 0.397 0.401

λ j 11 12 13 14 15 16 17 18 19 20

Rate 0.403 0.403 0.402 0.400 0.398 0.396 0.393 0.391 0.387 0.386

Computed exponential decay rates for initial data defined as in (4.1)

Fig. 5 Test Case 2, kernel μ2(s) Computed decay rate for variable initial data defined as in (4.2)

around 0.38 for large λ j , while Fig. 5 shows that the situation does not change for
different initial data. In fact, for this particular kernel, the experimental results exhibit
a less accentuated dependence on the initial data.

4.3 The kernel�3

The last set of numerical experiments features a compactly supported kernel. As
already mentioned, in this case there is no need use Proposition 3.1 and, therefore,
to define ε. For these experiments we set T = 6, which is already enough for the
energy to stabilize. The other numerical parameters are exactly the same as before.
Concerning Test Case 1, we see that every single energy profile is, again, log-linear.
The main difference with respect to the preceding kernels is that now the exponential
decay rate does not stabilize for large λ j . Indeed, it reaches its maximum at λ = 13,
and then starts to decrease for larger values (see Fig. 6 and Table 3).

Such a behavior is also observed in Test Case 2. Here, with very minor differences
depending on the initial data, the decay rate decreases as λ j increases. To confirm
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Fig. 6 Test Case 1, kernel μ3(s). Computed exponential decay rates for initial data defined as in (4.1)

Table 3 Test Case 1, kernel μ3(s)

Kernel μ3(s) = (1 − s)χ[0,1](s)

λ j 1 2 3 4 5 6 7 8 9 10

Rate 0.197 0.360 0.549 0.707 0.898 1.039 1.204 1.334 1.427 1.518

λ j 11 12 13 14 15 16 17 18 19 20

Rate 1.558 1.582 1.595 1.581 1.563 1.542 1.510 1.476 1.443 1.411

Computed decay rate for variable initial data defined as in (4.2)

this pattern, we actually performed other experiments with the values of λ j up to 40,
without noting significant differences (see Fig. 7).

5 Completely flat kernels

We conclude this work by exploiting our numerical approach to examine an issue
that, although not pertinent to the verification of Conjecture 2.6, has an independent
interest in the context of the theory of viscoelasticity. As shown in [2], for a completely
flat kernel μ (i.e., with μ′ = 0 almost everywhere) the contraction semigroup S(t)
generated by (1.10) is not exponentially stable. This is the case, for instance, if we
take the step kernel

μ(s) = χ[0,1/2](s),
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Fig. 7 Test Case 2, kernel μ3(s). Computed decay rate for variable initial data defined as in (4.2)

where � = 1/2 < 1. On the other hand, we know from [32] that S(t) is exponentially
stable for any kernel of the form

μ(s) = (1 − ρs)χ[0,1/2](s), ρ > 0. (5.1)

We aim to demonstrate, by employing our arguments, that the same feature reflects
on the corresponding energy E(t) of the Volterra equation. To this end, we perform a
final numerical simulation by taking μ as in (5.1) with

ρ = 1, ρ = 1

8
, ρ = 1

32
, ρ = 0.

We expect the energy to exponentially decay for ρ �= 0, but not for ρ = 0.We simulate
equation (3.5), with initial data (4.1), for the chosen kernels for λ = 2, Nh = 2000
and T = 12. The plot of the logarithm of the computed energies can be seen in Fig. 8.
Notably, the profile is a decreasing line whose angular coefficient tends to zero as
ρ → 0.

6 Conclusions

For several choices of initial data, we have shown that the (numerical) energy of the
solution is never log-concave. Furthermore, its decay rate remains bounded as λ j

increases. Such numerical results provide a strong evidence in support of Conjec-
ture 2.6.

Another interesting question concerns with the role played by each of the compo-
nents E0(t) and E1(t) of the energy, defined in (1.6)–(1.7), in the decay rate. One might
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Fig. 8 Computed energies E j for memory kernels defined as in (5.1)

Fig. 9 Kernel e−s2 , mechanical energy

argue that the lack of superstable trajectories suggested by our numerical simulations
is, in a sense, artificial, and only due to the presence of the memory energy E1(t), while
the “effective” mechanical energy E0(t) might still exhibit a superexponential decay.
In fact, we believe that a stronger statement than Conjecture 2.6 holds, namely, that
E0(t) itself cannot decay faster than an exponential. In this case, the numerical analysis
is slightly more complicated, since the mechanical energy is not a decreasing function
of time any longer, which introduces some technical difficulties in the interpretation
of the results.

As an example, we consider the numerical mechanical energy E0, j (i.e, E j without
the integral term) for the kernel μ1(s) and initial data (u0, v0) = (0.1, 0.1). We take
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T = 15, λ j = (8, 10, 12, 14, 16, 18, 20) and all the other parameters as in the first
experiment, that is,

ε = 1

6
, TOL = 10−8, Nh = 2000.

In Fig. 9 we can see the logarithmic plot of E0, j . Although the behavior of the (loga-
rithm of the) mechanical energy is not as regular as the one of E j (t), there is a clear
stabilization of the profile for every λ j . Although a single example cannot be taken as
an ultimate evidence, this suggests that Conjecture 2.6 holds in the stronger form.
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