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Abstract—The beginning of the quantum-era has increased
the hype around computationally demanding problems and,
particularly, around NP-complete problems. One of the most
famous is Set Packing, which has several applications in dif-
ferent management contexts. Considering this, the present work
provides a solver for Set Packing Problem on quantum annealers
exploiting the QUBO model. In addition, It introduces a general
format to express instances of the Set Packing Problem that
lowers the barriers to adopting quantum annealers and enables
an automatic characterization. Comparing the performance of
two different quantum annealers topologies, we highlighted the
pros and cons of both technologies. As key evaluation indicators,
this work uses spatial features, such as the number of qubits and
maximum chain length, and the execution time required for a
reliable problem resolution and its breakdown.

Index Terms—Quantum Annealers, Set Packing Problem, op-
timization problems, problem format.

I. INTRODUCTION

Over the last decades, with the always-increasing demand
for resource management and logistic constraints, cutting-
edge computer science research has focused on developing
operations research models and algorithms to optimize and
automate decision-making processes. These models consist
in maximizing a profit or minimizing a loss for a set of
problem-specific parameters and constraints [1]. Among the
most spread optimization tasks, the Set Packing Problem is
an NP-complete decision problem which, given a universe set
and a list of subsets as input, aims at finding a collection of
mutually disjoint subsets, while maximizing the total number
of subsets included. It finds plenty of application fields, such
as railway planning [2], sphere packing [3], and airline crew
scheduling [4].

Given the highly complex nature of these problems, existing
tools can deal with them efficiently only at the cost of
reducing the degrees of freedom, hence, obtaining suboptimal
results. An example of software is CPLEX [5], which targets
a wide range of programming problems. An improvement
against classical solutions based on CPLEX consists of solving
the problem heuristically with algorithms like Greedy Ran-
domized Adaptative Search Procedure [6]. Even though this
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method is more effective than the classical solutions, issues
and time constraints with complex instances of the Set Pack-
ing Problem are far from negligible. However, Set Packing
Problems are only a small portion of complex optimization
problems whose solutions cannot be found easily. Other ex-
amples are the Maximum Cut, the Quadratic Knapsack, and
the Minimum Vertex Covering Problems [7].

In order to find an efficient solution, over the past ten years,
scientific research has focused on looking for solutions exploit-
ing a new emerging architecture, namely quantum computers.
Their model of computation involves quantum principles like
superposition, entanglement, and interference [8]. Thanks to
these principles, it is possible to achieve a higher degree
of parallelism and obtain up to superpolynomial speedup
compared to classical algorithms.

Nowadays, two main quantum computation models emerge
above the others: gate-based quantum computers [9] and
quantum annealers [10]. However, one of these systems’
main drawbacks is noise. We are in the so-called Noisy
Intermediate-Scale Quantum (NISQ) era, and noise represents
one of the most challenging problems in modern quantum
computers. Due to noise, gate-based NISQ devices can work
with only a reduced amount of qubits, limiting their applica-
bility in real complex problems. Instead, the annealer model
allows devices with a greater number of qubits within the
system, without excessively suffering from noise, at the cost
of a fixed architecture. However, researchers have proved
that by exploiting the Ising model [11] for statistical me-
chanics and the Quadratic Unconstrained Binary Optimization
(QUBO) [12], optimization problems can be instantiated on
quantum annealers to achieve a boost in performance.

In the depictured scenario, this paper presents the design of
a solver for the Set Packing Problem using quantum annealers.
More specifically, we used a cloud-based platform giving
application developers real-time access to D-Wave quantum
computers. We exploited the well-known QUBO formulation
provided by Glover et al. [7] to provide an effective solution.
Using such a complete formulation allowed us to obtain a
solution for the Set Packing Problem without limiting any
degree of freedom. Furthermore, in favor of providing a
general solution, the present paper also presents a general
format to describe the Set Packing Problem.

For these reasons, our main contributions are:
1) The design of an open-source code for D-Wave quantum



annealers to solve the Set Packing Problem without
limiting degrees of freedom (§III-A);

2) The definition of a universal format for problem in-
stances representation, which is currently missing in the
literature. Such a format also allows to express different
importance levels for each subset as weights (§III-C);

3) A computational comparison between two D-Wave
quantum annealers in terms of the number of qubits,
maximum chain length, chain strength, minimum en-
ergy, and time required to solve the problem (§IV).

II. MATHEMATICAL AND QUANTUM BACKGROUND

A. Set Packing Problem and its QUBO Formulation

The Set Packing Problem is a combinatorial programming
problem extensively studied in recent years [13]. The formu-
lation of the problem is the following [14]:

Definition 1 (Set Packing Problem). Given a collection S
(|S| = n) of finite subsets of the universe U , a packing is a
subcollection S ′ ⊆ S, all members of which are mutually
disjoint. The Set Packing Problem is to find a packing of
maximum size.

This definition allows different model formulations,
for instance, the classical or the QUBO ones. In-
deed, Glover et al. [7] reformulated the Set Pack-
ing Problem under the QUBO modeling framework, de-
scribing the binary optimization problems in terms of:

minimize/maximize y = xtQx
where x is a vector of binary decision variables and Q is a
square matrix (symmetric or upper triangular) of constants. In
the QUBO model, the traditional constraints of the optimiza-
tion problem are mapped onto a set of quadratic penalties. For
example, given a minimization problem with a constraint x1+
x2 ≤ 1, the objective function will become minimize y =
f(x) + Px1x2, with P chosen sufficiently large. The main
strength of the QUBO formalization is its adaptability to
several optimization problems and the ease of implementation
onto different hardware substrates, such as neuromorphic
computers and quantum annealers [15]. For the Set Packing
Problem, we obtained the following QUBO representation:

max xtQx
That corresponds to the following:

max

n∑
j=1

wjxj ; such that

n∑
j=1

aijxj ≤ 1∀i ∈ 1..m

where: n is the cardinality of S, i.e., the number of possible
subsets of the universe U ; m is the number of elements of
U ; xi are binary variables representing the selection of the
subset i in S (1 if the subset is selected, 0 otherwise); wj are
weights associated with each subset in S, representing their
importance in the selection process, and thus the probability to
be taken in the final solution; aij are binary coefficients which
are valued one if subset j contains element i. They represent
a penalty in the selection process to take non-disjoint-ness
between subsets into account. According to this formulation,

the framework is built as an optimization problem, which is
also a suitable problem formulation for anneal-based quantum
computers.

B. D-Wave Quantum Annealers

To execute the algorithm, we employed the quantum an-
nealers developed by D-Wave Systems [16], which are ac-
cessible through Leap, the real-time Quantum Application
Environment provided by the company. We considered two
quantum annealers, the 2000Q and the Advantage, that work
at extremely low temperature (around 15 mK) [17]. These
devices both present a D-Wave Quantum Processing Unit
(QPU), which is a lattice of interconnected qubits that uses
specific interconnections network among qubits. Specifically,
these are performed via internal and external couplers, which
are devices that can make two qubits tend to assume the same
state – both 0 or 1 – or opposite states. Between coupled
qubits, it is possible to program a correlation weight that
allows strengthening the link between them. This can be done
by setting the coupling strength, which is one of the program
parameters better described in §III [18].

The considered architectures’ QPU is not fully connected,
but can be connected by internal or external couplers. Specif-
ically, 2000Q’s configuration is named Chimera, uses 2000
qubits and 6000 couplers. Internal couplers are used to link
adjacent qubits. This set of linked qubits creates a unit. In
2000Q, this linking happens following two possible represen-
tations depicted in Figure 1: column or cross rendering of
qubits. These are essential to distinguish ways to organize
and connect qubits. In Advantage, instead, the configuration,
named Pegasus, uses 5000 qubits and 35000 couplers. Its
internal couplers connect qubits with opposite orientations and
there is not a simple schema as the one of 2000Q. External
couplers are instead used to connect colinear pairs of qubits
in different cells [19].

The configuration of couplers can be evaluated in terms of
the degree of connectivity for each qubit, expressesing the
average number of connected qubits for each of them. For
the configurations considered, it is 6 for 2000Q and 15 for
Advantage. Couplers topologies are generally limited, because
of the reduced connectivity between qubits. This implies that,
in order to connect a higher number of qubits with each other,
the QPU creates chains among qubits. In a chain, more qubits
represent the same logical variable. As an example, with a
6-degree connectivity, a connection between one variable and
7 different variables requires a chain, in which two qubits,
linked to each other, will represent the same logic element;
the first one will be then connected to 3 other qubits, and the
second one to the 4 remaining qubits.

III. PROPOSED APPROACH

This Section describes the approach for the resolution of
Set Packing Problem. Figure 2 depicts the proposed workflow
schema that aims to cover the definition of specific problem
instances and their resolution. In particular, the user provides
details about the instance of the Set Packing Problem and



Fig. 1: Chimera topology: column rendering (left) and cross
rendering (right) of qubits (vertices) and couplers (edges)

the automatic problem generator creates the JSON version
of that will be read by the solver. Another possibility of
the automatic problem generator is to randomly create new
instances of the SetPacking problem given a certain number of
variables and constraints. This allows to test the framework in
more general situations. §III-A describes the solver algorithm
and its implementation exploited to resolve a specific problem
instance. Afterwards, §III-B illustrates our steps for hyperpa-
rameter tuning, that improve the overall results. Finally, §III-C
details the novel format that eases the QUBO representation
generation and the automation of D-Wave quantum annealers
characterization, while lowering the barriers required to use
such novel technology.

A. The Solver Algorithm

As specified by Glover et al. [7], adopting the QUBO
formalization enables the exploitation of quantum annealers.
Therefore, we adopt this approach to design the solver al-
gorithm and its implementation. Since we are using D-Wave
quantum annealers, we took advantage of specific D-Wave
libraries, which allowed us to implement and solve a QUBO
problem. Among the several programming tools provided by
D-Wave, Ocean [20] is a software suite containing tools for
resolving hard mathematical problems. Specifically, Ocean’s
Binary Quadratic Model (BQM) API [21] represents the most
proper instrument to use for QUBO implementations.

Our starting point is the construction of a BQM object which
defines the QUBO variables to be instantiated on the qubits
of the used architecture and the interactions between them.
Indeed, the variables will correspond to all the possible subsets
of the problem, while the interactions will represent the con-
straints among subsets. As described in §II-A, each variable
has its own weight, which will be the one considered to select
or discard the variable. In particular, QUBO variables have
negative weights associated to specify the importance of the
various subsets in the solution. Instead, constraints represent
the requirement that no overlapping subsets are present in the
same solution. Therefore, we must define an interaction among
all subsets with at least one common element, by using a
positive weight. Notice that it is positive since it represents
a non-acceptable combination of subsets.

Algorithm 1 describes the proposed approach. Once the
BQM object is instantiated, the sampler is invoked. This object
of the library performs the instantiation of the given QUBO
problem on the QPU and performs the sampling process,
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Fig. 2: High-level view of the proposed approach: light green
are our contributions, while inputs/outputs are darker green.

Algorithm 1 Set Packing Problem solver

1: procedure SOLVESETPACKINGPROBLEM(filename, N )
2: parameters
3: penalty: penalty for violation of constraints
4: sampler: the sampler to use
5: end parameters
6: global variables
7: P : SetPackingProblem
8: BQM : BinaryQuadraticModel
9: end global variables

10: P := read sanitized file(filename)
11: for each subset ∈ P .subsets do
12: BQM .add variable(subset.name, subset.weight)
13: for each constraint ∈ P .constraints do
14: for each i ∈ constraint do
15: for each j ∈ constraint, j < i do
16: BQM .add interaction(i, j, penalty)
17: sampleset := sampler.sample(BQM ,num reads)
18: return sampleset

obtaining a solution for the instance of the problem. Such
a process is the core principle of a quantum annealer: the
qubits and their weights on the QPU are associated with the
variables of the problem. Couplers connecting qubits, instead,
keep the penalties for the undesired interactions. Then, QPU
applies quantum principles, like quantum fluctuations and
quantum tunneling [22], to obtain a final configuration of the
system, in which the potential energy function of the defined
quantum topology is minimized. The minimization of such
energy considers the weights of qubits and the interactions
among qubits. Negative weights will reduce the overall energy,



while positive weights will increase it. Thanks to the negative
weights of the qubits, the minimal solution will contain the
highest possible number of qubits, i.e., subsets. Differently,
the positive weights of the couplers for overlapping subsets
exclude configurations violating the minimal solution. Indeed,
their positive penalty would increase the overall energy of the
configuration. Finally, the solution to the Set Packing Problem
is the minimum point for the objective function.

At the end of the process, the sampler returns a sample set.
Its first element is the configuration with minimum energy
and the problem solution, while the other values represent
the remaining executions. In fact, because of the proba-
bilistic nature of the quantum annealer, more executions of
the problems must be done to obtain reliable results. This
number of executions, namely num reads, can be specified
programmatically and is one of the sampler object parameters.
Instead, the output of the sampler is a set of variables that can
be 1 or 0, whether the variable is taken or not.

B. Hyperparameter Tuning

Based on the designed algorithm, we had to tune some
hyperparameters to improve performance and to face the quan-
tum annealing programming issues. Among the most important
hyperparameters, there is the chain strength. As reported in
§II-B the number of connections per qubit is related to its
degree of connectivity. When more links are required, the QPU
creates chains. Yet, a chain may break if, after the sampling
process, the qubits belonging to that chain do not end up in
the same state. If this event happens, the final configuration
on the QPU will generally not correspond to a valid solution
to the problem, because of the constraint violation. For these
reasons, the chain strength value requires the QPU to spend
more energy and avoid chain breaks. However, we must stress
the fact that choosing an excessively low or high value of chain
strength has negative effects, such as a high number of chain
breaks or a change of the problem nature [23]. This latter event
may occur since QUBO constraints weights might be modified
and combined with excessive chain strength would shrink the
weights close to zero. Though this ensures no chain breaks, it
solves a completely different problem.

To choose a proper chain strength value, we used the
uniform torque compensation method [24], which com-
putes the chain strength that attempts to compensate for the
torque that would cause the chain breaks. Such a function
receives as input the pre factor parameter, which is the pa-
rameter that effectively needs to be tuned for an optimal chain
strength. The default value is 1.414, but we experimentally
derive 2.0 as the optimal value for our implementation.

We also tune the num reads that defines the number of
samples retrieved by the sampler. Though its default value
is set to a single sample, we deemed that 100 samples were
necessary to ascertain the correctness of the solution, given
probabilistic quantum annealer outputs.

C. Proposed Format

To characterize the proposed solution scaling with the prob-
lem size, we designed a novel formal descriptive paradigm that
eases the QUBO representation generation and the automa-
tion D-Wave quantum annealers chracterization. This format
describes instances of Set Packing Problems, enabling the
rigorous expression of all the subsets belonging to the set
and the related constraints according to the Glover formaliza-
tion [7]. Additionally, our novel format completely hides the
complexity of programming quantum annealers. Thus, such an
abstraction layer enables inexpert users to easily define and
solve Set Packing problems on D-Wave quantum annealers,
thus lowering the barriers to this technology.

For implementation purposes, we adopt the convenient
JavaScript Object Notation (JSON) [25] format, as it is
strongly expressive, widely supported by the majority of
scripting languages, and efficiently parseable by compiler
tools [26]. More in detail, a generic document for Set Packing
will define an array of objects, each of which describes an
instance of a problem. The usage of arrays allows for multiple
instances to be considered and solved in the same execution of
the algorithm. Each of these objects will contain two fields:
subsets, which is an array of all the subsets considered for
the universe set U (i.e., the collection S) and constraints,
which is an array of the constraints among the subsets. Such
a description, therefore, does not require the items of the
universe, since the variables of the QUBO formalization are
the subsets. These latter are defined as arrays of JSON objects,
each containing a name field, identifying the specific subset,
and, optionally, the corresponding weight (set by default to
1). The constraints are arrays of JSON objects as well, each
defining a field, sets, that represents a list of non-disjoint,
therefore incompatible, subsets referred to by their identifiers.
The criteria to construct the identifiers of the subsets is
arbitrary (e.g., the decimal conversion of the one-hot encoding
of the list of considered items, if m is sufficiently small).

As final remark, this format can potentially be generalized to
more optimization QUBO-suitable problems, since it enables
easy variables and constraints requirements.

IV. EXPERIMENTAL SETUP AND RESULTS

We characterize the performance of Advantage and 2000Q
D-Wave quantum annealers in terms of resource usage (§IV-A)
and execution times (§IV-B). We tested runs with randomly
generated instances of Set Packing Problem thanks to our
novel format. Each run is performed 10 times to collect more
reliable data. These runs have a number of constraints equal
to n/2, where n is the number of variables. This dependency
avoids random degenerative cases with too few constraints.

A. Spatial Results: Resource and Energy Scaling

Firstly, we consider the number of qubits and the max-
imum chain length. Since the number of qubits limits the
feasibility on available quantum architectures, Table I show-
cases our scaling analysis against the instances sizes growth.
Table I puts again a spotlight on the main difference between



TABLE I: Spatial comparison between 2000Q and Advantage

# Qubits Max Chain Length

# Variables 2000Q Advantage 2000Q Advantage

10 25 15 3 2
20 115 55 7 4
30 269 109 12 5
40 534 214 18 7
50 794 316 22 9
60 1151 427 28 12
70 - 553 - 11
80 - 761 - 13
90 - 920 - 13
100 - 1324 - 19
110 - 1785 - 25
120 - 1804 - 22
130 - 2356 - 28
140 - 2327 - 25
150 - 3309 - 34
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Fig. 3: Chain Strength scaling of up to 60 variables

Advantage and 2000Q: the number of available qubits. The
former in fact has over 5000 qubits while the latter almost
2000. This leads Advantage to solve more demanding prob-
lems in terms of qubits. In fact, it can scale up to 150
variables while 2000Q can’t go over 60 variables. Generally,
Advantage requires fewer qubits than 2000Q for the same
task, due to the better connectivity degree and couplers of
Pegasus configuration. Instead, the chain length provides in-
sights into solution robustness, as longer chains break more
easily. Table I demonstrates that Advantage has shorter chains.
This corresponds to a higher connectivity degree for its qubits.
Theoretically, Advantage improved coupling strategy enables
the resolution of more complex problems with smaller chains.
We also expect Advantage’s better coupling to have smaller

chain strength for chain break avoidance. Instead, Figure 3
graphically demonstrates experimentally that the two quan-
tum annealers scale similarly for those problem sizes. The
reason behind this stands in the higher noise of Advantage.
This noise leads to higher-than-expected chain strength value
from uniform torque compensation, thus not exploiting the
Pegasus couplers configuration (§II-B). Considering the stan-
dard deviation of the chain strength, this factor depends on the
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Fig. 4: Minimum Energy scaling of the considered annealers

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of Variables

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Ti
m

e
R

eq
ui

re
d

[m
s]

Advantage
2000Q

Fig. 5: QPU Access Time comparison between the annealers

problem complexity, hence scaling agnostically to the target
annealer. Besides, Figure 4 illustrates the minimum energy
needed for the resolution. Indeed, the higher required chain
strength of Advantage mirrors also in the required energy and
its variance that is higher than 2000Q.

B. Quantum Annealing Execution Time Analysis

Execution time for the Set Packing Problem resolution on
our target quantum annealers is affected by many contri-
butions, referred to, on the whole, as QPU Access Time.
Among the most prominent contributions, there are the QPU
Programming time and the QPU Sampling Time. The
former is related to the time required to prepare the BQM
object and to program the QPU, while the latter is the
time to solve all the problem samples. Table II reports the
numerical data in µs and the D-Wave tool (called Inspector)
offers a resolution of 0.01 µs [27]. The table showcases that,
for problem sizes up to the 2000Q limit, the programming
and sampling times of the annealers scale similarly, with a
higher standard deviation for Advantage. Figure 5 illustrates



TABLE II: Execution time breakdown and scaling against the problem size of 2000Q and Advantage quantum annealers.

QPU Access Time [µs] QPU Programming Time [µs] QPU Sampling Time [µs]

# Variables 2000Q Advantage 2000Q Advantage 2000Q Advantage

10 34708.60 ± 135.750 27160.44 ± 1167.398 10772.80 ± 17.214 15067.64 ± 1.262 23935.8 ± 132.183 12092.8 ± 1167.299
20 35074.86 ± 247.232 27017.68 ± 1340.257 10884.26 ± 17.834 15067.68 ± 1.237 24190.6 ± 257.968 11950.0 ± 1339.747
30 35367.48 ± 43.545 28242.32 ± 1482.749 10965.68 ± 37.49 15067.92 ± 1.416 24401.8 ± 67.714 13174.4 ± 1483.259
40 35425.20 ± 50.101 28332.92 ± 1118.501 11004.00 ± 52.44 15068.52 ± 1.688 24421.2 ± 37.312 13264.4 ± 1118.157
50 35462.34 ± 47.403 31412.84 ± 1748.458 11019.94 ± 38.682 15069.44 ± 1.449 24442.4 ± 11.384 16343.4 ± 1747.558
60 35527.96 ± 24.363 32606.36 ± 2127.879 11082.36 ± 24.422 15070.16 ± 2.517 24445.6 ± 0.843 17536.2 ± 2126.586
70 - 33596.56 ± 2472.715 - 15069.96 ± 2.3851 - 18526.6 ± 2472.826
80 - 34314.52 ± 1692.575 - 15070.12 ± 2.510 - 19244.4 ± 1693.747
90 - 35603.28 ± 2528.003 - 15072.48 ± 3.087 - 20530.8 ± 2527.003
100 - 35934.20 ± 1625.577 - 15070.00 ± 3.157 - 20864.2 ± 1626.582
110 - 37404.88 ± 1481.973 - 15071.68 ± 4.626 - 22333.2 ±1482.099
120 - 38464.40 ± 1320.063 - 150703.20 ± 3.112 - 23391.2 ± 1319.568
130 - 38598.84 ± 2651.135 - 15070.84 ± 3.817 - 23528.0 ± 2649.242
140 - 40265.40 ± 809.774 - 15073.60 ± 2.128 - 25191.8 ± 809.278
150 - 40807.88 ± 1198.013 - 15075.28 ± 3.991 - 25732.6 ± 1196.120

that Advantage is significantly faster than 2000Q for all the
tasks solved, while its variance, has a noteworthy increase in
contrast with 2000Q stability. This phenomenon is imputable
to the noise that affects Advantage.

To summarize the experimental characterization, Advantage
enables the resolution of more complex problems than 2000Q,
while scaling chain strength, energy, and time with many
noise-related issues. Indeed, the variance, measured again as
standard deviation, in solving big problem sizes is far from
negligible. Conversely, 2000Q tackle smaller problem instance
with a slower yet stable behavior. For these reasons, 2000Q
would be the way to for smaller problem sizes, while bigger
ones can exploit Advantage architecture.

V. CONCLUSION AND FUTURE WORKS

This manuscript presented a general formulation and a
solution methodology for the Set Packing Problem on D-
Wave quantum annealers. We designed a novel format that
eases the QUBO generation and the automation of annealers
characterization while lowering the barriers to using quantum
annealer technology. We analyze the strengths and weaknesses
of Advantage and 2000Q annealers. 2000Q exhibits higher ex-
ecution times with more stable results. Instead, Advantage has
a higher computational power and can scale the problem size,
but presents a non-negligible noise. We analyzed how to tune
hyperparameters to improve quantum annealers exploitation.

Based on this work, we envision new research directions.
On the one hand, Glover’s formulation, our solver, and format
pave the way for a library to solve optimization problems
through quantum annealers. In this regard, this library could be
a novel abstraction layer that completely hides the complexity
of using quantum annealers while offering an easier entry
point. On the other hand, we envision evaluating our character-
ization framework on different quantum annealers. Finally, we
will also work towards a comparison with quantum computers
based on the gate paradigm while finding a methodology to
map the annealing problem on such architectures.
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