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ABSTRACT Increasingly in recent times, the mere prediction of a machine learning algorithm is considered
insufficient to gain complete control over the event being predicted. A machine learning algorithm should
be considered reliable in the way it allows to extract more knowledge and information than just having
a prediction at hand. In this perspective, the counterfactual theory plays a central role. By definition,
a counterfactual is the smallest variation of the input such that it changes the predicted behaviour. The paper
addresses counterfactuals through Support Vector Data Description (SVDD), empowered by explainability
and metric for assessing the counterfactual quality. After showing the specific case in which an analytical
solution may be found (under Euclidean distance and linear kernel), an optimisation problem is posed for any
type of distances and kernels. The vehicle platooning application is the use case considered to demonstrate
how the outlined methodology may offer support to safety-critical applications as well as how explanation
may shed new light into the control of the system at hand.

INDEX TERMS Counterfactuals, support vector data description, eXplainable machine learning.

I. INTRODUCTION
A. BACKGROUND
Counterfactual explanations (CEs), a concept borrowed from
philosophy of language and logic, has been first declined
in the context of machine learning by Wachter et al. [1]
as the minimal change that is required in the input fea-
tures of a certain observation in order for the prediction of
that observation to fall into the opposite class, in a binary
classification problem. Specifically, a change of a certain
delta in the features describing the observation x, belong-
ing to class C, leads to the generation of an observation x′

(i.e., the counterfactual of x) that will be classified as belong-
ing to classC′. These kind of local explanations are assuming
a certain importance, especially in machine learning models
dealing with images [2], as they allow to add a certain degree
of interpretability to the underlying behavior of complex
models like neural networks, in line with the demand of
the European General Data Protection Regulation (GDPR)1
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1https://gdpr.eu/tag/gdpr/

for greater transparency when handling decisions made by a
model.

Different approaches have been recently proposed to
produce realistic and feasible counterfactuals to provide
local explanations for automated decision making processes.
Table 1 provides an overview of related literature with regards
to the methods for CEs generation, the use cases, the valida-
tion approach and open issues. For example, White et al. [3]
determined counterfactuals by applying minimum perturba-
tions for each feature separately and use them to generate
local regression models, then evaluating the fidelity of these
regressions, in five different case studies. Poyiadzi et al. [4],
instead, proposed a method for generating CEs by consider-
ing a trade-off between the length of the path from the point
to its corresponding counterfactual and the data density along
this path. Finally,Mochaourab et al. [7] considered the design
of robust CEs for privacy preserving mechanisms based on
binary Support Vector Machines (SVM), by applying the
bisection method between two points belonging to different
classes and evaluating the trade off between accuracy, privacy
and explainability.

CEs are a rather versatile solution that can be applied to
different contexts, with various purposes. For example they
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TABLE 1. Overview of related literature.

can be generated in order to understand what are the changes
in the characteristics of a medical image that lead to a certain
diagnosis of pathology (e.g., [8]and [5]). Another possible
use of counterfactuals recently proposed in the literature [11]
concerns their application to generate actionable feedback
(e.g., realistic changes in expected salary or increase in work
experience word count) to candidates in a hiring marketplace
in order to improve their profile.

Whether an observation belongs to a certain class may
depend on two categories of features: controllable features,
which can be manipulated through internal/external interven-
tion (e.g., therapies or lifestyle changes in clinical classifica-
tion problems or control algorithms in systems modelling and
control problems) and non-controllable features, which by
their nature are not manipulable (e.g., the age of a subject in
health prediction algorithms). Therefore, the search for real-
istic counterfactuals should be performed by perturbing only
controllable variables. To our knowledge, only a limited num-
ber of attempts to force the generated CEs to have no change
in terms of non-controllable characteristics have been carried
out. For example, Nemirovsy et al [11] developed a method
to produce counterfactuals able to provide actionable feed-
backs in real-time using Generative Adversarial Networks
(GANs). However, in that case, feature immutability was
imposed after the application of the counterfactuals search

algorithm by setting the values of non-controllable features to
the original values rather than to the values suggested by the
counterfactuals search algorithm. By contrast, in this study,
the search for counterfactuals is guided by directly perturbing
only controllable features.

Previous related works validated the proposed CEs with
respect to explanations obtained with other local explain-
ability methods, like Local Interpretable Model-agnostic
Explanations (LIME) or Layer-Wise Relevance Propagation
(LRP) [3], [8] or with respect to other state-of-the-art method
for generation of CEs [4], [9], [11]. Often, the validation
measure relies on verifying that the CE is correctly associated
with its target outcome, based on the prediction of a classifier.
However, this measure is characterized by a degree of uncer-
tainty, since it is not guaranteed that the real class matches the
predicted class. To our knowledge, none of the approaches
presented in the literature is supported by a validation of the
generated CEs with computational simulations, capable of
verifying that the CE belongs to a certain class, and rule-based
models that explain the reason for this belonging.

The aim of this paper is to introduce a novel methodol-
ogy for counterfactual generation and validation. The coun-
terfactuals generation method uses regions defined by Two
Class-Support Vector Data Descriptors (TC-SVDDs) and is
here introduced in both analytical (II-A) and numerical (II-B)
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form. The validation method combines computational simu-
lations and eXplainable AI (XAI), specifically in the form
of rule-based classification of counterfactuals. An example
of application to collision detection in vehicle platooning is
introduced to demonstrate the method (III).

B. CONTRIBUTION
The main contributions of this paper include:

• the introduction of constrained counterfactuals, whose
search is based on perturbations of controllable features;

• the analytical and numerical formulations for the gener-
ation of counterfactual that include:

- the introduction of the minimum distance problem
between SVDD classes and its analytical solution
in the linear case;

- an SVDD-based counterfactuals generation algo-
rithm which is simpler than deep learning-based
solutions;

- the assessment of Counterfactual Distance
(i.e., whether it is over- or under- dimensioned);

• the use of an XAI global method to extract knowledge
from counterfactuals;

• the application of the newly introduced method to an
example of cyberphysical system and the validation by
means of simulations, together with the identification of
the rules that characterise the decisions.

C. STRUCTURE OF THE PAPER
The paper is structured as follows: section II introduces
the concept of counterfactual SVDD, its analytical (II-A)
and numerical solution (II-B), and the natively explainable
method used to define the rules that characterize both factuals
and counterfactuals (II-C), section III describes an example
of application of counterfactual SVDD to a case of truck
platooning, and section IV discusses our findings with respect
to related literature.

II. METHODOLOGY
Suppose we have a dataset X ×Y ⊂ RN ×{−1,+1}, N ≥ 2,
consisting of a subset of controllable features u and a subset
of non-controllable features z, so that an observation x ∈ X
can be described as

x =
(
u1, u2, . . . , un, z1, z2, . . . , zm

)
∈ Rn+m=N

We perform a TC-SVDD classification as in [12], obtain-
ing two regions

S1
.
= {x ∈ RN : ‖x− a1‖2 ≤ R21, ‖x− a2‖2 ≥ R22}

and

S2
.
= {x ∈ RN : ‖x− a2‖2 ≤ R22, ‖x− a1‖2 ≥ R21},

where R21,R
2
2, a1, a2 are, respectively, the radii and the cen-

ters of the spheres of the computed TC-SVDD.

Given an object x = (u, z) ∈ S1, our goal is to determine
the minimum variation 1u∗ of the controllable variables so
that the point

x∗ = (u+1u∗, z) (1)

belongs to the class S2. To determine 1u∗, we define the
following minimization problem

min
1u∈Rn

d(x, (u+1u, z)) (2a)

subject to ‖(u+1u, z)− a2‖2 ≤ R22 (2b)

‖(u+1u, z)− a1‖2 ≥ R21 (2c)

where d is a distance and (2b), (2c) are the constraints that
require x∗ to belong to S2 and not to S1, respectively. In other
words, the counterfactual x∗ is the nearest point, with respect
to distance d , that belongs to the class opposite to the original
class of a given point x, taking into account that only control-
lable features u can be modified.

1) OPTIMALITY
The optimality of a counterfactual refers to the identification,
in the target output class (i.e., the class opposite to the original
class the point belongs to), of the point that exhibits the
joint minimum variation of the input features with respect
to the starting point (i.e., the factual, that is by definition
a point outside the target class), as shown in (2). Typically,
it is possible to have variations of several combinations of
features although only one of these joint variations would be
at minimal distance. The proposed algorithm searches for the
minimal joint variation (of all the control variables) through
the minimum distance from the factual.

2) CLOSED-FORM VERSUS NUMERICAL SOLUTION
Finding an analytical solution of (2) is not an easy task
and might be impossible since the space of constraints is
not convex (i.e., the constraint (2c) is not convex), also it
is necessary to take into account the choice of distance d .
However, there are some cases where it is possible to analyt-
ically explicate the solution of (2), for example choosing as
distance the Euclidean norm, performing a linear TC-SVDD
and assuming to be only in two dimensions, with one feature
controllable and the other non-controllable. In other cases, the
solution of (2) will be performed numerically by sampling
the classification regions with quasi-random methods and
searching for the closest point of a given observation with
respect to a fixed distance.

A. R2 ANALYTICAL SOLUTION
Let be X × Y ⊂ R2

× {−1, 1} a labelled two-dimensional
dataset, in which each object x ∈ X consists of a control-
lable component u and a non-controllable one z, i.e. x =
(u, z) ∈ R2. After performing a linear TC-SVDD [12] and
determining two regions S1, S2 ⊂ R2, our goal is, given an
object x = (u, z) ∈ S1, to find the minimum change in the
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FIGURE 1. Counterfactual solutions for a 2-dimensional linear TC-SVDD with Euclidean distance. Points were sampled from a Gaussian
distribution of variance 0.5 and mean 0 and 5 for red and blue points, respectively. The controllable variables lie on the abscissas while those not
controllable on the ordinates, i.e. uOz plane.

controllable variable1u∗ so that the object x∗ = (u+1u∗, z)
is the closest point to x belonging to S2 and not belonging
to S1.

In R2, the problem to be solved is the following:

min
1u∈R

‖(u, z)− (u+1u, z)‖2 (3a)

subject to ‖(u+1u, z)− a2‖2 ≤ R22 (3b)

‖(u+1u, z)− a1‖2 ≥ R21 (3c)

Two slack variables ξ1, ξ2 are introduced and the above prob-
lem changes in:

min
1u∈R

1u2 + D1ξ1 + D2ξ2 (4a)

subject to ‖(u+1u, z)− a2‖2 ≤ R22 + ξ1, ξ1 ≥ 0 (4b)

‖(u+1u, z)− a1‖2 ≥ R21 − ξ2, ξ2 ≥ 0 (4c)

where the parameters D1,D2 control the trade-off between
the distance and the error.

Introducing the Lagrangemultipliers λ1, λ2, λ3, λ4 ≥ 0we
get the Lagrangian function

L(1u, ξ1, ξ2) = 1u2 + D1ξ1 + D2ξ2

−λ1

(
R22 + ξ1 − ‖(u+1u, z)− a2‖2

)
−λ2

(
‖(u+1u, z)− a1‖2 − R21 + ξ2

)
−λ3ξ1 − λ4ξ2 (5)

Setting partial derivatives to zero gives the following
constraints:

∂L
∂1u

= 0⇒ 1u =

(
λ2

(
u− au1

)
− λ1

(
u− au2

))
1+ λ1 − λ2

(6)

∂L
∂ξ1
= 0⇒ D1 − λ1 − λ3 = 0⇒ 0 ≤ λ1 ≤ D1 (7)

∂L
∂ξ2
= 0⇒ D2 − λ2 − λ4 = 0⇒ 0 ≤ λ2 ≤ D2 (8)

TABLE 2. Algorithm 1 legend.

where au1, a
u
2 are the projections of a1, a2 onto the controllable

variable u.
By substituting (6) into the expression of L we get:

L(λ1, λ2)

= −

(
λ2

(
u− au1

)
− λ1

(
u− au2

))2
1+ λ1 − λ2

−λ1

(
R22 − ‖(u, z)− a2‖2

)
− λ2

(
‖(u, z)− a1‖2 − R21

)
(9)

which must be maximized under the constraints (7) and (8) to
get λ∗1 and λ

∗

2 to be substituted into (6) to obtain the minimum
variation 1u∗.

B. NUMERICAL SOLUTION
As the size of the feature space increases and for more com-
plicated distances d or kernels, the solution of (2) may be
analytically unfeasible. Thus, a discreet search algorithm has
been developed.

1) CounterfactualSVDD ALGORITHM
Algorithm 1 returns the set C of counterfactuals of points
belonging to S1. Of course, the same procedure can be
applied to find the counterfactuals of the points belonging
to S2 simply by reversing the roles of S1 and S2. For better
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understanding, Table 2-B1 shows the meaning of the symbols
and variables used in Algorithm 1.

Algorithm 1 CounterfactualSVDD
Dataset X × Y ⊂ RN

× {−1,+1} is divided
in training set Xtr × Ytr and validation set
Xvl × Yvl .
A TC-SVDD [12] is performed on Xtr × Ytr
and validated on Xvl × Yvl in order to derive
S1 and S2.
NC > 0 is fixed.

1. C = [ ]
2. Sample quasi-randomly a new dataset G
3. G1 ∪ G2

.
= G ∩

(
S14S2

)
4. for i = 1 : NC
4.1 xi=(ui, zi)∈S1
4.2 di = d

(
xi,G2|z=zi

)
4.3 x′i = min(di)
4.4 if

(
xi ∈ S1 & x′i ∈ S2

)
4.4.1 C = C ∪ {x′i}
4.5 end
5. end
6. return C

The points for which a counterfactual is desired are ran-
domly or directly sampled in S1, while their counterfactual is
sought in the setG2, obtained from the intersection of S2 with
the set G, sampled in feature space using quasi-random
sampling techniques [13], with the non-controllable features
fixed. Thus, the accuracy of the counterfactual is related to
the granularity of the sampling: the denser the sampling,
the more accurate the counterfactual will be (bounds on the
best number of random sampling points can be found in the
literature [14]). Moreover, since the concept of counter-
factual is closely related to explainability, a set of rules
for each TC-SVDD class, R(Si), is defined according to
ExplainableSVDD algorithm [15], [16]. This is a further
validation that will then also be used as a basis for extracting
knowledge from the rules that characterise counterfactuals
(see Section III).

2) CONVERGENCE
The counterfactual generation method can, in principle, con-
verge to the optimal counterfactual based on the informa-
tion available. According to statistical learning theory, this
information corresponds to the set of points available for the
method to choose the candidate optimal one. More specif-
ically, this depends on to the size (L) of the set of can-
didate counterfactuals, taken within the randomly sampled
SVDD target region, on which the distance from the starting
point (the factual) is computed to find the point at minimum
distance. In this respect, [14] gives convergence assurance,
whose rate is linear with respect to L. It is also worth noting

that the gap between the solution and the optimum grows
exponentially in the dimension of the feature space.

3) COMPUTATIONAL COST
The estimation of the computational cost of Algorithm 1
takes into account several aspects and considerations that
need to be thoroughly investigated. First, there are two com-
plexities involved: the SVDD and the research of the counter-
factuals. Then, the counterfactual search itself involves other
methods with their own complexities.

Since the SVDD is closely related to the SVM, we can
assume that the computational cost is similar without losing
any information, and denoting with n the number of points
and with d the number of features, its computational cost
is estimated in O(max(n, d) min(n, d)2) [17]. Let us indicate
this computational time with O(SVDD).
Regarding instead the research of the counterfactuals,

we have to take into account

• the complexity of the quasi-random sampling,
• the number of the counterfactuals NC ,
• the computation of the distance,
• the search of the minimum of a vector.

The complexity of the quasi-random sampling depends
on the method used for the sampling and references for its
estimation can be found in [18]. Let us denote with O(q)
the complexity of the quasi-random sampling. The num-
ber of counterfactuals NC affects the computational time of
the for-loop, that is O(NC ). Inside this loop, we have to
compute the distance d which, in principle, can be based
on any kind of distance definition. Let us indicate with
O(D) its computational cost. Finally, the cost of the research
of the minimum of a vector can be estimated to be lin-
ear in the order of the number of the elements composing
the vector [19]. So its computational cost, denoting with
g = #G2|z=zi

, is O (g). Therefore, putting together all the
components computed so far, the total complexity of the
search of the counterfactuals, O (SC)), can be estimated
withO (max (q,NC · (max (D, g)))). And then, the total com-
putational cost of the Algorithm 1 can be estimated with
O (max (SVDD, SC)).

4) COUNTERFACTUAL DISTANCE
Since the counterfactual determined by the algorithm is an
approximation of the real counterfactual, a metric of the
quality of the extracted counterfactual is needed. Given a
point, its counterfactual is, by definition, the nearest point
belonging to the opposite class. Thus, a straightforward met-
ric for evaluating the quality q of the counterfactual x′ of a
point x ∈ S1 is to evaluate its distance from S1:

q = d(a1, x′)− R1 (10)

where a1 and R1 are respectively the center and the
radius of S1. We define this new metric as Counterfactual
Distance (CD).
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FIGURE 2. 2D-linear example of CD: this metric evaluates the goodness
of the counterfactual, the closer q is to zero the more the counterfactual
is optimal in terms of minimum distance. In the figure, q2 > q1 and the
blue counterfactual x′ is worst than the green (optimal) one x∗.

From Figure 2 it is easy to see that the lower the q, the
better the counterfactual and if q < 0 then the counterfactual
determined is incorrect.

C. EXPLAINABLE AI
XAI has gained a lot of importance in recent years. The
already mentioned European GDPR, in 2018, stated that ‘‘the
existence of automated decision-making should carry mean-
ingful information about the logic involved’’. XAI is therefore
a concept related to all those methods which can guarantee
trustworthiness and understanding to humans. Hence, they
often come in the form of intelligible rules. XAI drives
the SVDD counterfactual characterization and knowledge
extraction. The Logic Learning Machine (LLM) is used to
this aim. The LLM algoritm is based on a four-step process:
discretization and latticization, shadow clustering, and rule
generation as defined in [20], [21]. First, each variable is
transformed into a binary string in a proper Boolean lattice,
using the inverse only-one code binarization. All strings are
eventually concatenated in one unique large string per each
sample. Then, a set of binary values, called implicants, which
allow the identification of groups of points associated with
a specific class, is generated. Finally, implicants are trans-
formed into a collection of simple conditions and combined
into a set of intelligible rules. Therefore, the decision process
of an LLM algorithm can be summarized as a set of m intel-
ligible rules in the form IF (premise) THEN (consequence),
with the premise being the logical product of nk conditions
and the consequence being the output class. The relevance of
a rule rk is associated with two measures, namely:

Covering : C(rk ) =
TP(rk )

TP(rk )+ FN (rk )

Error : E(rk ) =
FP(rk )

FP(rk )+ TN (rk )

where TP(rk ),FP(rk ),TN (rk ), and FN (rk ) are the true posi-
tives, false positives, true negatives, and false negatives asso-
ciated with the rule rk . The covering is the percentage of
points for which a rule is true and maps the points on a target
class. The error is the percentage of points for which the rule
is true on classes other than the target one. Like decision
trees, the LLM is explainable by design and it is a global

method as it discovers rules which map clusters of points
into classes. Other XAI methods, such as Anchors and their
optimised variations [22], are ‘‘local’’ as they specialise rules
locally for each separate sample. More specifically, Anchors
explains the results of any black-box classifier, by approx-
imating it locally through linearization as in LIME [23] and
an interpretable model.2 Extending the validity (covering) of
a local rule over neighbour points is not a straightforward
matter [22]; for this reason, the LLM is preferred to facili-
tate the knowledge extraction from the SVDD counterfactu-
als, by following the approach in [15], [16]. This approach
applies the LLM around the boundary of the SVDD, thus
maintaining the global structure of the rule-based clustering,
still limiting the number of involved points and the inherent
computational burden.

1) FEATURE RANKING
Feature ranking helps rule interpretation and knowledge dis-
covery. It gives the importance of each feature in inferring
the right classification (e.g., distance and speed of vehicles as
outlined later on). It is also used for feature reduction in order
to synthesize themodel (just using themost relevant features).
Whatever the XAI solver is, feature ranking may be easily
derived from the ruleset, by applying sensitivity analysis on
model accuracy, with and without the feature to be ranked.
The interested reader is referred to [24] for further details
on that subject. Feature ranking is later used to synthetize
the knowledge extracted from the factual and counterfactual
rulesets at hand.

III. EXPERIMENT: VEHICLE PLATOONING
The following safety-critical application is considered. Vehi-
cle platooning is one of the most challenging problems in
smart mobility scenarios. It consists of a group of vehicles
interconnected via wireless that travel autonomously; the aim
is to find a compromise between performance (e.g., maximize
speed and minimize reciprocal distance, thus minimizing
air drag resistance and fuel consumption, too) and safety
(avoid collisions, even in the presence of anomalous events,
such as sudden brakes or cyberattacks, [25]). The aim here
is to determine what is the minimum variation in terms of
controllable factors (i.e, the initial mutual distance and speed
between two consecutive vehicles in the platoon, respectively
d0 and v0) that allows for a change in system safety (collision/
non-collision or vice versa). A point of the dataset is labelled
as collision if the distance between any couples of vehicles,
during the simulation run, becomes lower than 2 meters.

A. DATA SET DESCRIPTION
The data set concerning collision prediction in vehicle pla-
tooning is taken from [25], [26].3 The machine learning solu-
tion is based on a supervised classification task that maps the

2C. Molnar, Interpretable machine learning, https://christophm.github.
io/interpretable-ml-book/ (2019).

3https://github.com/mopamopa/Cyberplatooning and https://github.com/
mopamopa/Platooning
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FIGURE 3. Scatter plot of each pair of variables in the platooning data set. Red dots indicate collision and blue dots
indicate non-collision.

features into a potential collision in the near future. Features
are: braking force of lead vehicle (at the top of the platoon),
current speed, distance and acceleration, number and weight
of vehicles, as well as quality of service of the communication
channel (loss probability and delay). Controllable variables
are speed and distance only, thus making the restrictions
on counterfactual generation (with respect to the other vari-
ables), as well as the search in the grid of the destination
SVDD, very tight.

In this scenario, the counterfactual explanation can play
an effective role in improving the safety of the platooning
system: given a combination of the platoon input parameters
that brings the system into collision, the counterfactual finds
the minimal change in the controllable features such that the
platoon no longer collides. Finding such a minimal change
simplifies the recovery operation (from collision).

The behaviour of the platooning system is synthesised by
the following vector of features:

I = [N ,F,m, dms, p, d0, v0]

where N is the total number of vehicles of the platoon, F is
the braking force applied by the leader, m is the weight of the
vehicles, dms is the communication delay in milliseconds, p
is the probability of packet loss, and d0 and v0 are the mutual
distance and speed between each pair of vehicles in the initial
condition.

Data points are sampled by implementing the CACC sim-
ulator as in [25] in the following ranges:

N ∈ [3, 8],F∈[1000, 5000] N,m∈[500, 2000] Kg,

dms ∈ [0, 1000] ms, d0∈[4, 20] m,

v0 ∈ [30, 130] Km/h, p∈[0, 1].

The considered ranges are very challenging as they cover
a very large set of working conditions. As already said, since
the control of the dynamical system reacts by changing the
initial distance and speed, we consider the variables d0 and
v0 as the only controllable ones and the others as non-
controllable, therefore, named XPL the platooning dataset,
an observation x ∈ XPL can be written as

x = (u, z)

where u = (d0, v0) and z = (N ,F,m, dms, p).
The analysed platooning data set includes 20000 records

with equally distributed samples for the collision (+1) and
non-collision (−1) classes. A TC-SVDD with Gaussian Ker-
nel [27] has been trained (σ = 1.87, C1 = C2 = 1,
C3 = 1/(νN1), C4 = 1/(νN−1), where N1 and N−1 are the
sizes of the collision and non collision class, respectively, and
ν = 0.05 as in [12]) on 60% of the data and evaluated on
the remaining 40%. A set of 10000 CEs has been generated
through the implementation of Algorithm 1 and validated
both with rule-analysis and simulations.

Figure 3 presents the scatterplots of all the possible pairs
of features in the platooning data set, grouped by target class,
and reveals how the separation between safety and collision
may be hardly found without complex combinations of more
than two features.
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TABLE 3. Explainable rules extracted from SVDD through the algorithm ExplainableSVDD as in [15], [16].

TABLE 4. Counterfactual explanation table of ten points randomly sampled from the set of 10000 extracted collision points. The last column contains the
minimum change 1u∗ of the controllable features d0, initial distance, and v0, initial velocity, of the platoon.

B. RESULTS
The TC-SVDD trained on the platooning data achieved
the following classification performance: training accuracy
of 0.88, test accuracy of 0.88, sensitivity of 1.00, speci-
ficity of 0.75. LLM decision rules describing the two SVDD
regions are extracted as in [15], [16] and presented in Table 3.
Specifically, the collision region is described by four rules
(average number of conditions = 2.75), whereas the non
collision region is described by ten rules (average number of
conditions = 3.3).

The feature ranking in Figure 4 helps understand the most
relevant features for classes separation. Distance, braking
force and delay are the most meaningful ones; surprisingly,
speed and number of vehicles have less importance than
expected. The left and right directions of the bars indicate
the relevance in decreasing and increasing values, respec-
tively, of the feature. The directions of distance and speed
are coherent with intuition, e.g., decreasing distance increases
the frequency of collision. The direction of the bar associated
with the delay feature in the safety class (no collision) is
however counter-intuitive as it states that safety is achieved
by increasing delay. This is not uncommon in machine learn-
ing analysis as it should give unexpected insights into the
problem. In this case, the delay effect is superseded by the
ones of the other variables; the delay subplots in Figure 3
show the spread of red (collision) points over almost all the
delay ranges (except for very low delays). Together with
Table 3, the ranking figures help understand how much
global XAI drives amore synthetic knowledge extraction than
local XAI (such as through LIME, as often used in

counterfactual explanations [28]), which gives rules that are
built around the point of interest and have a limited covering
over the rest of the dataset. Global XAI still has local expla-
nation property (as outlined in Table 4), but it may give global
insight, too (as outlined later in Figure 6c).

C. EXPLANATION
To determine a counterfactual explanation of XPL ,
10000 points were randomly sampled from the collision
class (+1) and a counterfactual was determined for
each of them through Algorithm 1, using the Gaussian
kernel-induced distance d as the distance [29]

d(x, y) = 2− 2k(x, y)

where k(x, y) = e−
||x−y||2

2σ2 is the Gaussian kernel. Ten exam-
ples are shown in Table 4.

Each row of Table 4 shows the point belonging to the
collision class, classified with the SVDD and LLM and the
rule, with largest covering, it satisfies; the corresponding CE,
also classified with the SVDD and LLM, and the rule it
satisfies are reported. The last column reports the minimum
change 1u in distance and speed that allowed to move from
the collision class to the non-collision class.

D. VALIDATION
The validation of the counterfactuals safety is as fol-
lows: the 10000 CEs determined by Algorithm 1 were
tested by the CACC simulator [25], obtaining 7.82% error
(i.e., that the determined counterfactual still brings the system
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FIGURE 4. Graph of the most relevant features for the determination of the class.

into collision) and 92.18% actual counterfactuals, of which
only 2.07% are found to be overestimated. Overestimation is
defined with respect to a final distance larger than 10meters,4

such a distance is found at the end of the simulation run,
which is driven by the counterfactual. Figure 5 deals with the
temporal behaviour of three significant cases; the first two
(from top to bottom subplots) are optimal counterfactuals (the
first with change in speed and the second one with change
in distance), as they lead to a final condition which is very
close to collision. The last subplot (at the bottom of the
figure) highlights an over-dimensioned counterfactual as the
final distance is much larger than the boundary one (between
collision and non-collision).

E. ON THE MINIMUM DISTANCE
The analysis would suggest more insightful thinking on the
concept of ‘‘minimum’’ counterfactual distance, which is
ubiquitous in the literature. In the platooning application, that
concept would imply ‘‘almost collision’’ because the counter-
factual, by construction, should lie in the safety SVDD (under
the constraint of non-controllable variables), but still closest
to the collision one. On the one hand, this corroborates the
flexibility of counterfactual construction through the SVDD
with respect to deep learning, in which the positioning of
the (constrained and with minimum distance) counterfactual
should be mapped into a very complex training cost. On the
other hand, it would lead to other, more restricted, forms of
counterfactual construction, when safety plays a crucial role.
This topic is left open for future research.

F. QUALITY
The validation of the counterfactuals quality is as follows.
The CD of each CE is calculated (see Section II-B), thus
evidencing satisfactory statistics, as shown in Figure 6a,
in line with simulation evidence (Figure 6b). The CD metric
well synthesises the overestimation issue. Recall that high
CD means low quality in counterfactuals. In order to derive

4A collision is considered, in the original dataset, when the distance is
below the threshold of 2 meters.

further knowledge extraction from the CD analysis, the fol-
lowing supervised problem is defined over the CD values
and solved via the LLM. The factuals (i.e., points of the
collision class, which are mapped into the corresponding
counterfactuals) aremapped into two classes; the classes label
CD values under and above the 0.03 threshold. Values larger
than the threshold represent overdimensioned and almost
overdimensioned points, as evidenced in Figure 6a.
The resulting feature ranking in Figure 6c (for

CD>threshold) shows that high CD samples are associated
with critical factuals, namely, with increasing delay, leader
acceleration (force divided by the mass), loss, speed and
number of vehicles as well as decreasing distance. The ratio-
nale of the conditions relies on the fact that critical factuals
need to go deeper inside the destination class (thus leading to
larger CD) to replace the original conditions of collision into
new safety ones.Moreover, the rules identifying highCDmay
drive further optimisation of the respective counterfactuals,
e.g., through a finer granularity of the grid in a reduced search
space, identified by the ruleset itself [30]. This is left open for
future research as well.

IV. DISCUSSION
This study aims to define a new method for generating local
explanations by defining counterfactuals from observations
characterized by controllable and non-controllable features.
Nemirovsky et al. [6] first introduced the concept of CEs
with controllable and non-controllable features in a diabetes
prediction algorithm, however they first applied counterfac-
tual search to all the features and then they removed the
perturbations related to non-controllable features like age
and the number of pregnancies. In this study, controllable
and non-controllable features are handled in a more straight-
forward way, since the search for counterfactuals is instead
done by perturbing only the controllable features (i.e., d0 and
v0) in the kernel space, keeping the non-controllable vari-
ables fixed. Most of the recently proposed methods are deep
learning based [6], [8], thus requiring more complex archi-
tectures and higher computational cost for training. The use
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FIGURE 5. Table 4, row 3, 8, 9: examples of platoon distance trend of the original features and their counterfactual.

of TC-SVDD allows us to define the two regions with a
reduced computational cost, yet still achieving more than
satisfactory accuracy (e.g., >85%). Furthermore, the addi-
tional rule-based description of the SVDD regions provides
transparency to the point classification process, allowing for
a robust validation of correctness and consistency of the
generated CEs. Specifically, as shown in Table 4, in the pla-
tooning example, CEs are generally associated with greater
initial distance and reduced initial velocity of the platoon.
Moreover, the quality of explanations have been evaluated
in terms of distance from the region associated with the

opposite outcome. The optimal CE of x is the point, with
opposite class, located at minimum distance from x. The
introduction of a quality metric (CD) allows us to verify the
correctness of CEs, generated with the proposed numerical
approximation, since a distance greater than zero ensures
the non-intersection between the two SVDD regions, thus
the belonging of the CE to the correct class, with a certain
level of confidence defined by the TC-SVDD (i.e., 88% in
the platooning example) and a distance close to zero ensures
the minimum distance requirement. Figure 6b shows CD
values for the generated platooning CEs, demonstrating the
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FIGURE 6. Metrics for validating Algorithm 1: (6a) shows the CD of the extracted counterfactuals, (6b) represents the behaviour of the
10000 counterfactual simulations and (6c) shows the feature ranking for the class ‘‘High CD’’.

effectiveness of the proposed method, as most of the points
are associated to a low but positive CD value. Indeed, almost
40% of the points are associated to CD lower than 0.02 and
about 92% of the points present CD lower than 0.1.

Unlike previous works in this area, the validation of the
generated counterfactuals is not only based on class pre-
diction via SVDD, but further supported by validation via
simulations. In fact, the attribution of the point to the correct
class according to the prediction of the previously trained
model does not guarantee its real belonging to that class,
because of the existence of a certain number of false positives
and false negatives that, even if minimized, should not be
neglected. The validation process through the CACC simu-
lator (see 6a) has proven that the generated CEs are descrip-
tive of the non-collision class with a more than satisfactory
accuracy, and that only a small part of the generated points
overestimates the minimum distance. Hence, the use of CE
in platooning results applicable to the generation of control

algorithms, based on the correction of the system dynamics,
to prevent collisions.

A. OTHER APPLICATIONS
The considered approach is applicable to cyberphysical sys-
tems, empowered by simulated digital twins. However, the
method is applicable to a wider range of applications. Exam-
ples may lie in the following sectors: health sector (e.g, dis-
ease prediction and prevention), human behavioral analysis
(fraud detection) and social networks (guidance of public
opinion [31]5). The health sector is currently our next step
as it introduces some conceptual differences in the validation
process. As already pointed out for cyberphysical systems,
testing tools (via simulation, emulation, or replicable exper-
iments) may offer support to validation through additional

5See also, e.g., https://www.journals.uchicago.edu/doi/pdfplus/10.1086/
210513
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counterfactual-driven ground truth (i.e., testing the exact
counterfactual collision avoidance). Clinical analysis, on the
other hand, cannot exploit controllable ground truth in a
straigthforward manner (i.e., applying a medical treatment
just in accordance of the counterfactual). The health scenar-
ios would claim for additional human interaction between
AI and the clinician who interprets the (explained) artificial
reasoning (i.e., the suggested counterfactual) and maps it into
current clinical practice. In this case, the testing environment
would consist of dedicated medical trial campaigns.

B. DIABETES CHARACTERIZATION AND PREVENTION
In [32], CEs were used to characterize the smallest changes
in biomarker values that distinguish diabetic patients from
non-diabetic ones. Preliminary results have shown that
non-diabetics patients have on average lower values in terms
of fasting blood sugar (−0.88 mmol/L) and body mass index
(−0.14 kg/m2) and higher values of high-density lipoprotein
(0.26 mmol/L) with respect to diabetic ones. Particularly,
the changes in biomarkers tend to increase with age. These
variations, albeit small, reflect the literature on risk factors
for Type 2 diabetes and suggest the importance, in biomedical
applications, of integrating AI-generated recommendations
with medical knowledge and clinical guidelines. Possible
next developments could head in this direction as CEs gener-
ated through the application of variable distance perturbations
could be useful to provide an estimate of risk in the case
of chronic diseases, such as diabetes, and contribute to the
formulation of preventive strategies. In fact, CEs generated at
minimum distance are associated to an higher risk of devel-
oping the disease, whereas CEs generated at a progressively
increasing distance are associated with a lower risk.

V. CONCLUSION AND FUTURE WORKS
The proposed counterfactual methodology proves to be trust-
worthy, thanks to the use of the eXplainable AI, which allows
to characterize the extracted counterfactuals through readily
interpretable rules that can be easily understood and vali-
dated by application domain experts, even if they have no
prior knowledge in the field of artificial intelligence. Future
research will need to focus on further optimization of the
method as anticipated in the results section, as well as on
modifying the proposed method to handle categorical vari-
ables and images. Moreover, the aforementioned approach
shall be compared with other state-of-the-art solutions and
investigated with respect to different domains of application,
like the field of disease prevention, for example using obser-
vations derived from electronic medical records, from lon-
gitudinal population studies, or from individual monitoring
devices.

REFERENCES
[1] S. Wachter, and B. Mittelstadt, and C. Russell, ‘‘Counterfactual Expla-

nations Without Opening the Black Box: Automated Decisions and
the GDPR (October 6, 2017),’’ Harvard J. Law Technol., vol. 31,
no. 2, 2017. [Online]. Available: https://ssrn.com/abstract=3063289 and
http://dx.doi.org/10.2139/ssrn.3063289, doi: 10.2139/ssrn.3063289.

[2] M. Suzuki, Y. Kamcya, T. Kutsuna, and N. Mitsumoto, ‘‘Understanding
the reason for misclassification by generating counterfactual images,’’ in
Proc. 17th Int. Conf. Mach. Vis. Appl. (MVA), Jul. 2021, pp. 1–5.

[3] A. White and Artur S. d’Avila Garcez, ‘‘Measurable counterfactual local
explanations for any clas-sifier,’’ 2020, arXiv:1908.03020.

[4] R. Poyiadzi, K. Sokol, R. Santos-Rodríguez, T. D. Bie, and P. Flach, ‘‘Face:
Feasible and actionable counterfactual explanations,’’ in Proc. AAAI/ACM
Conf. AI, Ethics, Soc., 2020, pp. 344–350, doi: 10.1145/3375627.3375850.

[5] A. Van Looveren and J. Klaise, ‘‘Interpretable counterfactual explana-
tions guided by prototypes,’’ in Proc. Joint Eur. Conf. Mach. Learn.
Knowl. DiscoveryDatabases, 2021, pp. 650–665, doi: 10.1007/978-3-030-
86520-7_40.

[6] D. Nemirovsky, N. Thiebaut, Y. Xu, and A. Gupta, ‘‘CounteRGAN: Gen-
erating realistic counterfactuals with residual generative adversarial nets,’’
2020, arXiv:2009.05199.

[7] R. Mochaourab, S. Sinha, S. Greenstein, and P. Papapetrou,
‘‘Robust counterfactual explanations for privacy-preserving SVM,’’
2021, 10.48550/ARXIV.2102.03785. [Online]. Available: https://arxiv.org/
abs/2102.03785, doi: 10.48550/arxiv.2102.03785.

[8] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P.-S. Ting, K. Shanmugam,
and P. Das, ‘‘Explanations based on the missing: Towards contrastive
explanations with pertinent negatives,’’ 2018, 10.48550/ARXIV.1802.0762.
[Online]. Available: https://arxiv.org/abs/1802.07623, doi: 10.48550/
ARXIV.1802.07623.

[9] E. Albini, A. Rago, P. Baroni, and F. Toni, ‘‘Relation-based counterfactual
explanations for Bayesian network classifiers,’’ in Proc. 29th Int. Joint
Conf. Artif. Intell., Jul. 2020, pp. 451–457, doi: 10.24963/ijcai.2020/63.

[10] A. Shih, A. Choi, and A. Darwiche, ‘‘A symbolic approach to explaining
Bayesian network classifiers,’’ in Proc. 27th Int. Joint Conf. Artif. Intell.,
Jul. 2018, pp. 5103-5111, doi: 10.24963/ijcai.2018/708.

[11] D. Nemirovsky, N. Thiebaut, Y. Xu, and A. Gupta, ‘‘Providing actionable
feedback in hiring marketplaces using generative adversarial networks,’’ in
Proc. WSDM. New York, NY, USA: Association for Computing Machin-
ery, 2021, pp. 1089–1092, doi: 10.1145/3437963.3441705.

[12] G. Huang, H. Chen, Z. Zhou, F. Yin, and K. Guo, ‘‘Two-class
support vector data description,’’ Pattern Recognit., vol. 44, no. 2,
pp. 320–329, Feb. 2011. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0031320310004115

[13] C. Cervellera, M. Gaggero, D. Maccio, and R. Marcialis, ‘‘Quasi-random
sampling for approximate dynamic programming,’’ inProc. Int. Joint Conf.
Neural Netw. (IJCNN), Aug. 2013, pp. 1–8.

[14] C. Cervellera and M. Muselli, ‘‘Deterministic design for neural network
learning: An approach based on discrepancy,’’ IEEE Trans. neural Netw.,
vol. 15, no. 3, pp. 533–544, Jun. 2004.

[15] A. Carlevaro and M. Mongelli, ‘‘A new SVDD approach to reliable
and explainable AI,’’ IEEE Intell. Syst., vol. 37, no. 2, pp. 55–68,
Mar. 2022.

[16] A. Carlevaro and M. Mongelli, ‘‘Reliable AI trough SVDD and rule
extraction,’’ in Proc. Int. IFIP Cross Domain (CD) Conf. Mach. Learn.
Knowl. Extraction (MAKE) (CD-MAKE), pp. 153–171, 2021.

[17] O. Chapelle, ‘‘Training a support vector machine in the primal,’’ Neural
Comput., vol. 19, no. 5, pp. 1155–1178, 2007.

[18] S. Sen, T. Samanta, and A. Reese, ‘‘Quasi-versus pseudo-random
generators: Discrepancy, complexity and integration-error based com-
parison,’’ Int. J. Innov. Comput. Inf. Control, vol. 2, pp. 621–651,
Jan. 2006.

[19] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, ‘‘Time
bounds for selection,’’ J. Comput. Syst. Sci., vol. 7, no. 4, pp. 448–461,
Aug. 1973, doi: 10.1016/S0022-0000(73)80033-9.

[20] M. Muselli, ‘‘Switching neural networks: A new connectionist model for
classification,’’ in Neural Nets, B. Apolloni, M. Marinaro, G. Nicosia, and
R. Tagliaferri, Eds. Berlin, Germany: Springer, 2006, pp. 23–30.

[21] M. Muselli and E. Ferrari, ‘‘Coupling logical analysis of data and shadow
clustering for partially defined positive Boolean function reconstruction,’’
IEEE Trans. Knowl. Data Eng., vol. 23, no. 1, pp. 37–50, Jan. 2011, doi:
10.1109/tkde.2009.206.

[22] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, and
F. Turini, ‘‘Factual and counterfactual explanations for black box decision
making,’’ IEEE Intell. Syst., vol. 34, no. 6, pp. 14–23, Nov. 2019.

[23] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, ‘‘A survey of methods for explaining black box mod-
els,’’ ACM Comput. Surv., vol. 51, no. 5, pp. 1–42, Sep. 2019, doi:
10.1145/3236009.

60860 VOLUME 10, 2022

http://dx.doi.org/10.2139/ssrn.3063289
http://dx.doi.org/10.1145/3375627.3375850
http://dx.doi.org/10.1007/978-3-030-86520-7_40
http://dx.doi.org/10.1007/978-3-030-86520-7_40
http://dx.doi.org/10.48550/arxiv.2102.03785
http://dx.doi.org/10.48550/ARXIV.1802.07623
http://dx.doi.org/10.48550/ARXIV.1802.07623
http://dx.doi.org/10.24963/ijcai.2020/63
http://dx.doi.org/10.24963/ijcai.2018/708
http://dx.doi.org/10.1145/3437963.3441705
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1109/tkde.2009.206
http://dx.doi.org/10.1145/3236009


A. Carlevaro et al.: Counterfactual Building and Evaluation via eXplainable SVDD

[24] D. Cangelosi, F. Blengio, R. Versteeg, A. Eggert, A. Garaventa,
C. Gambini, M. Conte, A. Eva, M. Muselli, and L. Varesio, ‘‘Logic
learning machine creates explicit and stable rules stratifying neuroblas-
toma patients,’’ BMC Bioinf., vol. 14, no. S7, p. S12, Apr. 2013, doi:
10.1186/1471-2105-14-S7-S12.

[25] M. Mongelli, ‘‘Design of countermeasure to packet falsification in
vehicle platooning by explainable artificial intelligence,’’ Comput.
Commun., vol. 179, pp. 166–174, Nov. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366421002504

[26] M. Mongelli, E. Ferrari, M. Muselli, and A. Fermi, ‘‘Performance valida-
tion of vehicle platooning through intelligible analytics,’’ IET Cyber-Phys.
Syst., Theory Appl., vol. 4, no. 2, pp. 120–127, Jun. 2019, doi: 10.1049/iet-
cps.2018.5055.

[27] A. Carlevaro. (2022). NCLASS SVDD. MATLAB Central
File Exchange. Accessed: Jan. 8, 2022. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/104660-nclass-
svdd

[28] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘‘Why should I trust you?’
Explaining the predictions of any classifier,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining (KDD). New York, NY,
USA: Association for Computing Machinery, 2016, pp. 1135–1144, doi:
10.1145/2939672.2939778.

[29] B. Schölkopf, ‘‘The kernel trick for distances,’’ in Proc. 13th Int. Conf.
Neural Inf. Process. Syst. (NIPS). Cambridge,MA, USA:MIT Press, 2000,
pp. 283–289.

[30] S. Narteni, M. Ferretti, V. Orani, I. Vaccari, E. Cambiaso, andM.Mongelli,
‘‘From explainable to reliable artificial intelligence,’’ in Proc. Int. IFIP
Cross Domain (CD) Conf. Mach. Learn. Knowl. Extraction (MAKE) (CD-
MAKE), 2021, pp. 255–273.

[31] P. Sun and L. Zhang, ‘‘Public opinion guidance under the background of
big data technology,’’ in Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI),
Jul. 2019, p. 226.

[32] M. Lenatti, A. Carlevaro, K. Keshavjee, A. Guergachi, A. Paglialonga, and
M. Mongelli, ‘‘Characterization of type 2 diabetes using counterfactuals
and explainable AI,’’ inProc. 32ndMed. Informat. Eur. (EFMIMIE) Conf.,
Nice, France, May 2022, pp. 98–103, doi: 10.3233/SHTI220404.

ALBERTO CARLEVARO received the master’s
degree ( cum laude) in applied mathematics from
the University of Genoa, in May 2020, with a
physics–mathematics thesis on the behavior of liq-
uid crystals under electromagnetic fields, where
he is currently pursuing the Ph.D. degree with the
Department of Electrical, Electronic and Telecom-
munications Engineering and Naval Architecture
(DITEN), in the research topic ‘‘Traffic Analysis
in the Smart City,’’ in collaboration with CNR and

S.M.E. Aitek. He was a Research Fellow at the Institute of Electronics, Infor-
matics and Telecommunications Engineering (IEIIT), National Research
Council (CNR), where he worked on machine learning and explainable AI in
collaboration with Rulex Inc. His current research interests include machine
learning, deep learning, statistical learning, and explainable AI.

MARTA LENATTI received the master’s degree
(cum laude) in biomedical engineering from the
Politecnico di Milano, in December 2020. She
is currently a Graduate Research Fellow at the
Institute of Electronics, Information Engineering
and Telecommunications (IEIIT), Italian National
Research Council of Italy (CNR), Milan, Italy, and
a Visiting Scientist at Ryerson University, Toronto.
Her current research interests include explainable
AI, eHealth in audiology, and the application of

machine learning methods for the extraction of predictive and descriptive
biomarkers in patients with chronic pathologies.

ALESSIA PAGLIALONGA received theM.Sc. and
Ph.D. degrees in biomedical engineering from the
Politecnico di Milano, Italy, in 2005 and 2009,
respectively. She is currently a Researcher at
the Institute of Electronics, Information Engineer-
ing and Telecommunications (IEIIT), National
Research Council of Italy (CNR), Milan, Italy,
an Adjunct Professor at the Politecnico di Milano,
and a Visiting Scientist at Ryerson University,
Toronto. Her research interests include data ana-

lytics and predictive modeling for health, eHealth and mHealth, audiological
technology, machine learning, and biosignal processing. She is a member of
the European Society of Cardiology and a Senior Member of the European
Alliance for Innovation (EAI). She is serving as an Associate Editor for
BioMedical Engineering Online and the International Journal of Audiology.

MAURIZIO MONGELLI (Member, IEEE)
received the Ph.D. degree in electronics and com-
puter engineering from the University of Genoa
(UNIGE), in 2004. The Ph.D. was funded by
Selex Communications S.p.A. (Selex). He worked
with Selex and the Italian Telecommunications
Consortium (CNIT), from 2001 to 2010. During
his Ph.D. and in the following years, he worked on
the quality of service for military networks with
Selex. He was the CNIT Technical Co-ordinator

of a research project concerning satellite emulation systems, funded by
the European Space Agency; and he spent three months working on the
project at the German Aerospace Center in Munich. He is currently a
Researcher at the Institute of Electronics, Computer and Telecommunication
Engineering (IEIIT), National Research Council (CNR), where he deals
with machine learning applied to bioinformatics and cyber-physical systems.
He is the coauthor of over 100 international scientific articles, two patents,
and is participating in the SAE G-34/EUROCAE WG-114 AI in Aviation
Committee.

VOLUME 10, 2022 60861

http://dx.doi.org/10.1186/1471-2105-14-S7-S12
http://dx.doi.org/10.1049/iet-cps.2018.5055
http://dx.doi.org/10.1049/iet-cps.2018.5055
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.3233/SHTI220404

